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Abstract

The Dynamic Saliency Prediction (DSP) task simulates the human selective attention

mechanism to perceive the dynamic scene, which is significant and imperative in many

vision tasks. Most of existing methods only consider visual cues, while neglect the

accompanied audio information, which can provide complementary information for

the scene understanding. In fact, there exists a strong relation between auditory and

visual cues, and humans generally perceive the surrounding scene by collaboratively

sensing these cues. Motivated by this, an audio-visual collaborative representation

learning method is proposed for the DSP task, which explores the audio modality to

better predict the dynamic saliency map by assisting vision modality. The proposed

method consists of three parts: 1) audio-visual encoding, 2) audio-visual location, and

3) collaborative integration parts. Firstly, a refined SoundNet architecture is adopted

to encode audio modality for obtaining corresponding features, and a modified 3D

ResNet-50 architecture is employed to learn visual features, containing both spatial

location and temporal motion information. Secondly, an audio-visual location part is

devised to locate the sound source in the visual scene by learning the correspondence

between audio-visual information. Thirdly, a collaborative integration part is devised to

adaptively aggregate audio-visual information and center-bias prior to generate the final

saliency map. Extensive experiments are conducted on six challenging audiovisual eye-

tracking datasets, including DIEM, AVAD, Coutrot1, Coutrot2, SumMe, and ETMD,

∗Corresponding author

Preprint submitted to Journal of Knowledge-Based Systems May 3, 2022

ar
X

iv
:2

10
9.

08
37

1v
3 

 [
cs

.C
V

] 
 2

 M
ay

 2
02

2



which shows significant superiority over state-of-the-art DSP models.

Keywords: Dynamic Saliency Prediction, Audio-Visual, Multi-Modal, Collaborative

Representation Learning

1. Introduction

Saliency prediction task aims to automatically predict the most prominent area in

the scene by simulating the human selective attention mechanism, which provides an

alternative for obtaining the most valuable information from massive data. The task has

served an important research topic in the field of computer vision, and can be of great

applications in many fields, such as scene understanding [1, 2], object detection [3, 4],

object tracking [5], image quality evaluation [6], automatic contrast enhancement [7],

and video compression [8].

In the field of computer vision, the saliency prediction task draws increasing at-

tention, and lots of methods have been proposed in recent years [9–13]. According to

the data type, the existing methods can be divided into two aspects, including Static

Saliency Prediction (SSP) methods and Dynamic Saliency Prediction (DSP) methods.

The SSP methods aim to leverage the low-level contrast information and high-level se-

mantic information of images to achieve the prediction of prominent area in the scene

[14]. As an early exploration of the saliency prediction task, Itti et al. [9] imitate the

human bottom-up visual selective attention process to extract the low-level features of

images, predict the corresponding saliency map. With the popularity of deep learning

[15–17], a large number of researchers conduct the saliency prediction task by mining

high-level semantic information in images [13, 18–20]. For example, Wang et al. [13]

obtain the hierarchically saliency information by extracting multi-scale features of im-

ages. The DSP methods focus on applying the spatio-temporal structure information in

the video for the prediction of prominent area in the scene. For example, Zhang et al.

[21] design a spatial-temporal DSP model for learning spatial features with a static net-

work and temporal features with a dynamic network. In view of practical applications,

this paper aims to investigate the saliency prediction for the dynamic video.
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1.1. Motivation and Overview

Generally, video data naturally includes two modalities, i.e., audio and vision. They

represent the scene content in the video from different aspects, and can complement to

help the viewer better understand the video content. Recently, lots of multi-modal

studies based on audio-visual data have shown that audios can significantly promote

the understanding of the scene [22–25]. For example, Hu et al. [23] proposed a cross-

task transfer learning model for scene classification based on audio-visual data, which

shows the benefits of audio-visual analysis compared with single-modality analysis.

However, most researchers in DSP have not fully realized the potential contribution

of audio information to the performance. They predict the dynamic saliency map by

only mining the information in the visual modality itself, while ignoring the latent

effect of the accompanied audio information.

It is well known that human attention is naturally influenced by audio-visual stimuli

rather than only auditory or visual stimuli in isolation. Inspired by this, we argue that

audio information can assist the vision modality to better predict the saliency map in

this paper. Specifically, humans practically pay more attention to the sounding object

in the video. With the assistance of audio-visual information, it is easily to locate more

salient sounding object based on audio-visual consistency learning. In addition, human

instinctively pays more attention to some other cues, such as the moving, center, and

high-level semantic objects. However, there are often some inconsistencies among the

influences for DSP by multiple cues. For example, 1) when existing multiple moving

objects in a scene, how to locate the more prominent sounding objects; 2) When the

original audio is replaced with background sound, or when the sounding objects is

not in the filed of the view, how to locate the salient objects; 3) As for the effect by

multiple cues, i.e. movement, sound, and center-prior, how to better integrate them.

These inconsistencies will bring some interference and are the main challenges for the

audio-visual DSP.

Based on the above opportunities and challenges, an audio-visual collaborative rep-

resentation learning method is proposed for the DSP task. The proposed method can

be purposely leveraged to predict the dynamic saliency map in videos by collabora-

tively integrating the audio-visual cues. Concretely, the proposed method is composed
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of three main parts: 1) audio-visual encoding, 2) audio-visual location, and 3) col-

laborative integration parts. Firstly, the audio-visual encoding part consists of two

branches, which are responsible for learning audio and visual features with spatial lo-

cation and temporal motion information, respectively. Specifically, the audio branch

adopts a refined SoundNet architecture [26], and the visual branch employs a mod-

ified 3D ResNet-50 architecture [27]. Secondly, with the proposed audio-visual lo-

cation part, the learned audio-visual features are jointly to locate the sound source

in the visual scene by learning the correspondence between audio-visual information.

Thirdly, the collaborative integration part is introduced to adaptively aggregate multi-

cues audio-visual information, so as to generate the final dynamic saliency map. Here,

the multi-cues information indicates the localized sound source information, spatio-

temporal visual information (motion, high-level semantics, etc.), as well as center-bias

prior.

1.2. Contributions

Generally, the main contributions of this paper are threefold:

• An audio-visual collaborative representation learning method is proposed, which

can comprehensively consider the influence of audio-visual cues on dynamic

saliency prediction, and realize the role of auxiliary enhancement.

• An audio-visual location part is devised to learn the correspondence between

audio and visual modalities, so as to predict the sounding objects in the scene

and reduce interference.

• A collaborative integration part is designed, which can adaptively aggregate the

influence of multiple cues on dynamic saliency prediction.

1.3. Organization

The remaining sections of the paper are arranged as follows: In Section 2, the

related works are reviewed. In Section 3, we describe the proposed method in details.

In Section 4, the experimental results are shown and discussed. And in Section 5, the

conclusion is drawn.
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Figure 1: The framework of the proposed method. Firstly, an audio-visual encoding part is de-
signed to learn audio-visual features. Secondly, an audio-visual location part is devised to locate
the sound source in the visual scene by learning the correspondence between audio-visual infor-
mation. Thirdly, a collaborative integration part is proposed to adaptively aggregate audio-visual
information and center-bias prior to generate the final dynamic saliency map.

2. Related works

In recent years, numerous saliency prediction methods have been proposed. Ac-

cording to the data type, the existing methods can be divided into two aspects, includ-

ing Static Saliency Prediction (SSP) methods and Dynamic Saliency Prediction (DSP)

methods. This section reviews the existing saliency prediction methods in the following

successively.

2.1. Static Saliency Prediction Methods

Earlier works devote to investigate the saliency prediction task based on static im-

ages [28–31]. These works are mostly on the basis of bottom-up visual attention mech-

anism [28, 32, 33]. Itti et al. [9] firstly conducted the saliency prediction task by im-

itating the human bottom-up visual selective attention process to extract the low-level

visual features of images. To match actual eye movements, Judd et al. [33] considered

both bottom-up visual attention and top-down image semantics, and collect a large eye

tracking dataset to address the problem. On the assumption of contrast, many compu-

tational methods on SSP have been proposed. Perazzi et al. [34] designed an intuitive
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SSP method based on the contrast feature. Wang et al. [35] leveraged selective contrast,

including color, texture, and location, to predict the salient regions of images. In addi-

tion, many researchers have realized the SSP from the aspects of information-theoretic

[10], decision-theoretic [11], and spectral analysis [12], etc.. Since the adopted features

in these methods are hand-crafted, large-scale data with complex distributions cannot

be well processed.

As a result, most researchers begin to conduct the SSP task by mining high-level

semantic information in images with deep neural networks [13, 18, 19]. Vig et al. [36]

firstly proposed utilizing deep neural networks for the SSP task. However, due to the

insufficient training data, the performance is limited. To address this problem, Jiang

et al. [37] built the SALICON dataset with plenty of natural images and the corre-

sponding eye-tracking data. Based on the dataset, lots of works on SSP are developed

by the follow-up researchers [38]. He et al. [38] explored the intrinsical reason of

the large gap between deep models and the inter-human baseline. In addition, more

effective network architectures are exploited for learning representative features [29–

31, 39–41]. Zhang et al. [30] proposed to incorporate prior knowledge of semantic

relationships so as to learn highlighted regions in images. Kroner et al. [31] developed

an encoder-decoder structure to learn multi-scale high-level visual features for SSP.

Considering that both low-level contrast features and high-level semantic features are

important for SSP, Yuan et al. [42] introduced a bio-inspired representation learning

method to generate the saliency map. Wang et al. [39] conducted the SSP by fusing

features from multiple layers of VGG-16. Kruthiventi et al. [43] considered the centre-

bias prior information and developed a computational method for SSP, which improves

the predicted results considerably.

2.2. Dynamic Saliency Prediction Methods

With the tremendous progress of data storage technology and mobile Internet tech-

nology, massive video data are soaring recently [44, 45]. In order to deal with the vast

amounts of information, researchers pay more attention on DSP to predict the most

valuable information in video data [46–53]. Jiang et al. [46] developed an object-to-

motion convolutional neural network for predicting the intra-frame visual saliency. Bak
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et al. [47] presented a spatio-temporal saliency network for DSP. Gorji et al. [48] pro-

posed a multi-stream ConvLSTM structure with the attentional push effect of the scene

actors and the photographer. To improve the performance of DSP models, Sun et al.

[49] put forward a step-gained fully convolutional network by simultaneously consider-

ing motion and temporal information. By conducting multi-scale feature learning and

spatio-temporal feature integration, Lai et al. [50] designed a residual attentive learn-

ing network for DSP. Wu et al. [51] presented an end-to-end neural network named

SalSAC for DSP. The network is based on CNN-LSTM-Attention and integrates both

static and dynamic information. In order to fully consider the effect of both global and

local consistency on DSP, Wang et al. [52] introduced a dynamic saliency network

on the basis of both global discriminations and local consistency. These methods have

greatly promoted the progress of DSP. Nevertheless, the effect of the audio information

accompanying the video is ignored when conducting the DSP task.

Considering the influence of audio cues on the vision task, a few attempts have

been made to better perceive the scene information and predict the saliency map. Start-

ing from application-specific, some researcher adopt the traditional signal processing

techniques for locating the salient region in the scene [54–56]. For example, Min et al.

[56] utilized cross-modal kernel canonical correlation analysis to predict the moving-

sounding object. Subsequently, more and more attention is paid on salient regions

location by integration of audio [25, 57–61]. Qian et al. [25] proposed a two-stage

audio-visual learning method for visually localizing multiple sound sources in uncon-

strained videos. To locate sounding objects in cocktail-party, Hu et al. [58] introduced

a two-stage learning framework with a self-supervised class-aware manner. Afouras

et al. [59] develop a model using attention to transform a video into several discrete

audio-visual objects. Tavakoli et al. [62] designed a conceptually simple and effective

audio-visual analysis method for dynamic saliency prediction. Tsiami et al. [60] pro-

posed a spatio-temporal audio-visual saliency network by combining both visual and

auditory information.

This paper is dedicated to conduct the dynamic saliency prediction task by explor-

ing the collaborative mechanism among different audio-visual cues, while alleviating

existing inconsistencies between audio-visual modalities.
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3. The proposed network

In this work, an audio-visual collaborative representation learning method is pro-

posed to generate dynamic saliency map. As is shown in Figure 1, the proposed method

is composed of three main parts: 1) audio-visual encoding, 2) audio-visual location,

and 3) collaborative integration parts. Thereinto, the audio-visual encoding part is

responsible for learning audio-visual features, which contain spatial location and tem-

poral motion information. The audio-visual location part aims at locating the sound

source in the visual scene by learning the correspondence between audio-visual fea-

tures. The collaborative integration part is in charge of adaptively aggregating the

localized sound source information, spatio-temporal visual information (motion, high-

level semantics, etc.), and center-bias prior information, so as to generate the final

dynamic saliency map. These parts are expatiated successively as follows.

3.1. Audio-Visual Encoding

The audio-visual encoding part consists of two paralleled branches for encoding

the original data as audio semantic features and spatio-temporal visual features, re-

spectively. Details about the two branches are elaborated in the following subsections.

3.1.1. Audio Encoding

In the DSP task based on audio-visual analysis, it is important to obtain the seman-

tic concept of audio rather than low-level signal [63]. To this end, the audio signals are

represented by using convolutional neural networks (CNNs). Specifically, we follow

the previous work [60] and adopt the 1-D fully convolutional network for processing

the audio waveform. Firstly, the audio segment is cropped to match the visual frames

duration (i.e. 16 frames). Secondly, a Hanning window is leveraged to acquire the

central audio value with a higher weight, which represents the current time instance,

and model the past and future attenuation values. Thirdly, a 1-D fully convolutional

network with the first seven layers of the SoundNet [26] and a temporal max-pooling

layer is applied for encoding high-level semantic features. Formulaically, the process
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of audio encoding can be written as:

SA = FA(XA; θA), (1)

where XA and SA represent the input audio data and the corresponding high-level

semantic feature, respectively. FA stands for the mapping function from audio data to

the corresponding high-level semantic feature. θA is the parameter during the process

of audio encoding.

3.1.2. Spatio-Temporal Visual Encoding

In order to capture the spatial semantic information and temporal motion informa-

tion, the 3-D CNNs is adopted for processing the video frames. Specifically, the 3D

ResNet-50 architecture [27], which is proposed initially for action recognition, is em-

ployed as the backbone to encode the spatio-temporal features. Lots of works [64–66]

have demonstrated that multi-scale features contribute to achieving a good performance

for perceiving objects with different scales. As a result, the multi-scale features are in-

troduced for DSP in this work. As is shown in Figure 1, the spatio-temporal visual

encoding branch adopts the first 4 ResNet convolutional blocks to provide the outputs

S1
V ,S

2
V ,S

3
V ,S

4
V , which contain different spatial and temporal information. The pro-

cess of spatio-temporal visual encoding can be written as:

Sm
V = Fm

V (XV ; θ
m
V ), (2)

where XV and Sm
V stand for the input video frames and the corresponding spatio-

temporal feature of the m-th ResNet convolutional block. Fm
V is the mapping function

from video frames to the corresponding spatio-temporal feature. θmV is the parameter

during the process of spatio-temporal visual encoding.

3.2. Audio-Visual Location

In this subsection, an audio-visual location part is devised to locate the sounding ob-

ject by exploiting the consistency between the audio and visual modalities in a sharing

latent space. By this way, the related sounding objects are selectively and dynamically
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brought out to the foreground when audio and visual concepts appear simultaneously.

For example, the playing the piano, barking dog, etc., in the video, are expected to be

detected after the audio-visual location.

The audio-visual location can be implemented with 4 steps. Firstly, the output

of the 4-th ResNet convolutional block is selected as spatio-temporal visual feature,

termed as S4
V , since it contains rich semantic information for the visual frames. In order

to marginal out the temporal dimension and acquire a global representation, a temporal

average pooling operation is applied for S4
V . For simplicity, the global representation is

denoted as a reshaped matrix form V = [v1; · · · ;vB ] ∈ RB×Dh . Secondly, to match

the dimension of the global representation in visual branch and higher level concept

of audio signal, two fully connected (FC) layers with ReLU activation are applied for

the audio feature SA, so as to generate the audio embedding hA with Dh-dimension.

Thirdly, an attention mechanism is utilized in the location module (see Figure 1) to

locate the sounding object and generate a audio-aware saliency map. It is achieved as

follows:

ab = 〈W1vb,W2hA〉 , (3)

αb =
exp(ab)∑B
b=1 exp(ab)

, (4)

where ab captures the dependency between hA and vb. W1 and W2 are the training

weights. 〈·, ·〉 means the inner-product operation between two matrixes. αb stands for

the b-th element in the sounding map α, which can be interpreted as the probability of

location related to the audio context. Further, the audio-aware saliency map Faudio can

be computed by a upsampling operation. Note that the upsampling operation adopts

the resize-convolution operation rather than deconvolution to avert the checkerboard

effect1. After obtaining the sounding map, we fourthly compute the representative

context vector hz to interact the sounding map with the global representation in visual

1https://distill.pub/2016/deconv-checkerboard/
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branch at the sound source location. The process is achieved by:

hz =

B∑
b=1

αbvb. (5)

Then, the representative context vector hz is transformed to a spatio-temporal vi-

sual feature v̂ with two fully connected (FC) layers with ReLU activation. Finally, a

location loss is imposed on v̂ and SA to learn the features to share latent space of the

audio and visual modality. Here, the Euclidean distance is employed to calculate the

location loss.

3.3. Collaborative Integration

As mentioned before, human attention is influenced by many aspects, including the

sounding, moving, center, high-level semantic objects, etc.. To model these aspects,

this subsection presents a collaborative integration mechanism. Specifically, a spatio-

temporal attention module is proposed to detect the moving and semantic objects. A

learnable center-bias prior function is introduced to generate center-bias prior-aware

map. A multi-cues aggregation module is devised to integrate the influence of different

cues and generate the final saliency map.

3.3.1. Moving and High-Level Semantic Objects Prediction

In order to model the influence of moving and semantic objects for DSP, a spatio-

temporal attention module is proposed. The spatio-temporal attention module contains

two branches for capturing the moving information and semantic information, respec-

tively.

As for the temporal attention branch, the temporally moving information is mod-

eled. As is shown in Figure 2 (a), the spatio-temporal visual feature from m-th ResNet

block is firstly processed with the operation of averaging pooling in the channel dimen-

sion, resulting in Sm
V,T . Secondly, the first and last frames are removed, respectively,

leading to Sm
V,T,−1 and Sm

V,T,0. Thirdly, the temporal attention is computed by con-

ducting the frame-wise similarity between Sm
V,T,−1 and Sm

V,T,0, so as to capture the

temporally moving information. Specifically, the frame-wise similarity can be imple-
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Figure 2: The devised spatio-temporal attention module.

mented as:

Mm
T =

t=T−1∑
t=1

(
1−

(
Sm
V,t,0 − Sm

V,t,−1

))
, (6)

where Mm
T represent the motion feature from the m-th ResNet convolutional block. t

indexes the frames. Afterwards, the motion feature is further processed with a 1 × 1

convolution and a resize-convolution operation to generate a motion-aware saliency

map Fm
motion.

In respect to the spatial attention branch, the high-level semantic information is

expected to be captured by leveraging the inter-spatial relationship of features. As is

shown in Figure 2 (b), the spatio-temporal visual feature from m-th ResNet block is

firstly processed with the operation of averaging pooling in the temporal dimension,

so as to obtain Sm
V,C . Secondly, we apply the max-pooling and average-pooling along

with the channel dimension, and concatenate them as an efficient feature descriptor.

In this way, the highlighting informative regions can be effectively shown [67, 68].
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Thirdly, a convolution layer with filter size of 7 × 7 is conducted for generating a

spatial weight matrix Mm
weight. Fourthly, by employing an element-wise multiplication

between Sm
V,C and the spatial weight matrix Mm

weight, the feature Mm
S with high-level

semantic information is learned. Finally, Mm
S is further processed with the 1 × 1

convolution and resize-convolution operation to generate a high-level semantic-aware

saliency map Fm
semantic.

3.3.2. Center-Bias Prior

According to previous studies [30, 69, 70], human attention tends to concentrate

on the center of scenes, which is termed as center-bias phenomenon. To this end, a

learnable center-bias prior function is adopted according to our preceding work [42].

Specifically, the center-bias prior-aware map Fcenter is generated using a Gaussian

function as follows:

Fcenter =
1

2πσxσy
exp

(
−
(
(x− x0)

2

2σ2
x

+
(y − y0)

2

2σ2
y

))
, (7)

where σ2
x and σ2

y indicate the to-be-learned horizontal variance and vertical variance,

respectively. The generated center-bias prior-aware map Fcenter represents a spatial

pattern. Note that the center-bias information is modeled purely from learning.

3.3.3. Multi-Cues Aggregation

We have computed the audio-aware saliency map, the motion-aware saliency map,

the high-level semantic-aware saliency map, and the center-bias prior-aware saliency

map. They can express the saliency driven by different cues. As a result, it is quite

essential to integrate them for generating the final saliency map. For this purpose, a

multi-cues aggregation module is proposed for integrating the influence of different

cues, by exploiting the consistency among them and reducing the difference.

As is shown in Figure 3, the multi-cues aggregation is conducted by two branches.

One branch is to learn the global channel context, and the other branch is responsi-

ble for perceiving local channel context. The outputs of the two branches are com-

bined to obtain the fused multi-cues feature. Specifically, the multi-cues aggregation
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module is composed of three main steps. Firstly, the concatenated feature Mconc =

[Faudio;Fmotion;Fsemantic;Fcenter] is processed as the global response context g by:

g = global(Mconc;W3)

= σ (B (PWC(σ (B (PWC(GAP(Mconc))))))) ,
(8)

where global denotes the global response mapping function. W3 is the to-be-learned

parameter. σ represents the Sigmoid function. B means the Batch Normolization (BN)

operation. PWC stands for the Point-Wise Convolution (PWC), which is chosen for

its lightweight. GAP represents the global average pooing.

In parallel, the local response context L can be computed by:

L = local(Mconc;W4)

= B (PWC(δ (B (PWC(Mconc))))) ,
(9)

where local denotes the local response mapping function. W4 is the to-be-learned

parameter. δ represents the ReLU function.

Secondly, to better integrate the influence of different cues on DSP, the global re-

sponse context and local response context are combined as:

Mfusion = g � L, (10)

where Mfusion represents the fused feature by considering different cues, and�means

the channel-wise multiplication.

Finally, based on the fused feature Mfusion, the final saliency map Fmap is com-

puted by a Readout Network, which is composed of three successive 1× 1 convolution

layers.

3.4. Optimizing Strategy

In order to obtain the final saliency map, we aggregate the saliency map driven

by cues of sounding, moving, center, high-level semantic objects. Let Ysal represent
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the ground-truth fixation map obtained by the eye-tracking data. During audio-visual

location process, the objective function is defined as:

LA = KL (Faudio,Ysal) + ‖(v̂,SA)‖2

= Ysal log

(
Ysal

Faudio + ε
+ ε

)
+ ‖(v̂,SA)‖2,

(11)

where KL(·, ·) stands for the Kullback–Leibler divergence between the two distribu-

tions. ‖·, ·‖2 is the Euclidean distance. ε indicates the regularization constant to avoid

the NaN value in the loss.

During the moving and high-level semantic objects prediction process, the objec-

tive function is defined as:

LMS =KL (Fmotion,Ysal) + KL (Fsemantic,Ysal)

=Ysal log

(
Ysal

Fmotion + ε
+ ε

)
+Ysal log

(
Ysal

Fsemantic + ε
+ ε

)
.

(12)

During the multi-cues aggregation process, the objective function is defined as:

Lfuse = KL (Fmap,Ysal)

= Ysal log

(
Ysal

Fmap + ε
+ ε

)
.

(13)
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Ultimately, the final loss Lfinal of training all parameters can be jointly combined

by the losses LA, LMS , and Lfuse, as follows.

Lfinal = w1LA + w2LMS + w3Lfuse, (14)

where w1, w2, and w3 are the tradeoff coefficients controlling the contribution of each

term.

Algorithm 1 The proposed method
Input:

Training video frames XV and the corresponding audio data XA;
Testing video frames Xte

V and the corresponding audio data Xte
A .

Output:
Testing saliency map Fte

map;
All the to-be-learned parameters W.

Initialization:
The parameter θA in the audio encoding branch is initialized from the origin
SoundNet [26]. The parameter θV in the spatio-temporal visual encoding branch
is initialized from the origin 3D ResNet-50 [27]. The remaining weights are ran-
domly initialized by truncated normal distribution.

Repeat:
1: Calculate the high-level semantic feature SA and spatio-temporal feature SV ac-

cording to Eq. 1 and Eq. 2, respectively;
2: Generate the audio-aware saliency map Faudio according to Eq. 3 and Eq. 4;
3: Calculate the motion-aware saliency map Fmotion, the high-level semantic-aware

saliency map Fsemantic, and center-bias prior-aware map Fcenter based on Section
3.3.1 and Section 3.3.2;

4: Generate the final saliency map Fmap based on Section 3.3.3;
5: Compute the final loss Lfinal according to Eq. 14;
6: Update all the parameters by utilizing Adam optimizer.

Until: A fixed number of iterations.
7: Generate the testing saliency map Fte

map.
Return:Fte

map, W

Based on the final loss Lfinal, the proposed method can be optimized as follows.

The parameter θA in the audio encoding part are initialized from the origin SoundNet

[26]. The parameter θV in the spatio-temporal visual encoding part is initialized from

the origin 3D ResNet-50 [27], which is pretrained on the Kinetics 400 dataset for action

recognition task. The remaining weights are randomly initialized by truncated normal

distribution. In the training stage, the optimizing process is composed of five main
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steps. Firstly, the training video frames XV and the corresponding audio data XA are

processed as high-level semantic feature SA and spatio-temporal feature SV with the

audio-visual encoding part. Secondly, the high-level semantic feature SA and spatio-

temporal feature SV are combined to locate the sounding object to generate the audio-

aware saliency map Faudio by exploiting the consistency in a sharing latent space of the

audio and visual modality. Thirdly, the motion-aware saliency map Fmotion, the high-

level semantic-aware saliency map Fsemantic, and center-bias prior-aware map Fcenter

are computed based on Section 3.3.1 and Section 3.3.2; Fourthly, the final saliency

map Fmap are inferred based on Faudio, Fmotion, Fsemantic, and Fcenter. Finally,

we compute the final loss Lfinal based on the generated final saliency map Fmap and

the ground-truth fixation map Ysal, and update all the parameters W by minimizing

Lfinal with Adam optimizer. Once the training epoch reaches 50, the training process

is terminated. Afterwards, the parameter W is utilized to infer the testing saliency map

Fte
map. It is to note that the proposed method is trained in an end-to-end manner. The

details about the optimization process are shown in Algorithm 1.

4. Experiment and results

The experiments are conducted on six benchmark datasets with audio-visual eye-

tracking data. In the following subsections, the implementation details, evaluation met-

rics are elaborated. In addition, the experimental results are given and analyzed from

the aspects of ablation study and comparison with the state-of-the-arts.

4.1. Setup

4.1.1. Datasets

The proposed method is trained and evaluated on AVAD [54], Coutrot1 [71, 72],

Coutrot2 [71, 72], DIEM [73], ETMD [74, 75] and SumMe [75, 76] datasets. These

datasets contains various types videos accompanied with audios. Specifically, 1) the

AVAD dataset [54] contains 45 video clips with each duration 5-10 seconds. It covers

various audio-visual activities, e.g., playing the piano, playing basketball, making an

interview, etc.. The dataset also contains the eye-tracking data from 16 participants.
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2) The Coutrot1 and Coutrot2 datasets are split from the Coutrot dataset [71, 72]. The

Coutrot1 dataset is with 60 video clips covering 4 visual categories: one moving object,

several moving objects, landscapes, and faces. The corresponding eye-tracking data

are recorded from 72 participants. The Coutrot2 dataset includes 15 video clips, which

record 4 persons having a meeting. The corresponding eye-tracking data are from

40 participants. 3) The DIEM dataset [73] involves 84 video clips, including game

trailers, music videos, advertisements, etc.. Note that the audio and visual tracks do

not correspond naturally. The eye-tracking data are recorded via 42 participants. The

ETMD dataset [74, 75] includes 12 video clips from several hollywood movies. The

eye-tracking data are annoted by 10 different people. The SumMe dataset [75, 76]

consists of 25 video clips with diverse topics, e.g., playing ball, cooking, traveling,

etc.. The corresponding eye-tracking data are collected from 10 viewers.

Following the previous work [60], we adopt the same data partitioning for traning

and testing. Specifically, 3 different splits of the data are created with non-overlapping

among train, validation and test sets. The performance are evaluated by taking the

average among all 3 splits.

4.1.2. Evaluation Metrics

In order to measure the consistency between the predicted saliency map and the

groundtruth fixation map, 5 widely-used evaluation metrics for DSP are employed [77].

The evaluation metrics include CC, NSS, AUC-Judd (AUC-J), shuffled AUC (sAUC),

and SIM. The CC measures the linear correlation coefficient between the groundtruth

fixation map and the predicted saliency map. The NSS aims at measuring the saliency

value on human fixations. The AUC-J and sAUC are location-based metrics for evalu-

ate the predicted saliency map. The SIM measures the similarity between the predicted

saliency map and groundtruth fixation map. The 5 evaluation metrics provide a com-

prehensive assessment for DSP.

4.1.3. Implementation Details

The input samples are processed as 16 video frames and the corresponding audio

stream. Each video frame is resized at 112× 112 pixels. Following the previous work
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[60], the data augmentation is also employed for random generation of training sam-

ples. The implementation adopts the 3D ResNet-50 [27] as backbone for encoding

spatio-temporal visual features, and applies SoundNet [26] as backbone for encoding

high-level audio semantic features. The Gaussian kernel for generating center-bias

prior map is with size of 7 × 7. The tradeoff coefficients w1, w2, and w3 in Eq. 14

are all selected as 1 empirically. The batchsize is set as 128. The proposed method is

optimized by utilizing the Adam optimizer with learning rate of 10−4. When the iter-

ative epoch reaches 50, the optimizing process is terminated. During the test process,

a sliding window method is adopted for inferring the final saliency map of each frame.

The experiment is conducted by the Pytorch library and on the PC with a TITAN RTX

GPU and 24G RAM.

4.2. Ablation Analysis

In this subsection, we aims at verifying the effectiveness of several main parts for

the proposed method. Specifically, six different variations are constructed, including:

• Visual Model: Only visual information is leveraged for DSP, while the audio

information is ignored.

• AV Inner-Product: The audio-visual location is implemented by directly con-

ducting inner-product operation, rather than by adopting the proposed audio-

visual location part to exploit the consistency between the audio and visual

modalities in a sharing latent space.

• Concatenate Fusion: In order to integrate the multi-cues maps and generate the

final saliency map, we directly concatenate them and further readout, rather than

by utilizing the proposed multi-cues aggregation module.

• Proposed (w/o SA): The spatial attention is not considered for modeling higher-

level semantic information.

• Proposed (w/o TA): The temporal attention is not considered for modeling mo-

tion information.

• Proposed: The complete method proposed by us.
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Table 1: The ablation study on six benchmark datasets.

Methods AVAD Coutrot1
CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑ CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑

Visual Model 0.5714 3.11 0.8928 0.5740 0.4635 0.4458 2.03 0.8527 0.5562 0.3630
AV Inner-Product 0.5751 3.14 0.9004 0.5827 0.4572 0.4608 2.16 0.8604 0.5681 0.3744

Concatenate Fusion 0.5826 3.32 0.9081 0.5944 0.4680 0.4714 2.29 0.8702 0.5774 0.3853
Proposed (w/o SA) 0.5907 3.36 0.9127 0.6014 0.4752 0.4807 2.35 0.8696 0.5842 0.3967
Proposed (w/o TA) 0.6125 3.44 0.9204 0.6145 0.4783 0.4852 2.36 0.8704 0.5861 0.4017

Proposed 0.6262 3.57 0.9251 0.6203 0.4820 0.4985 2.44 0.8798 0.6042 0.4154

Methods Coutrot2 DIEM
CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑ CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑

Visual Model 0.4260 3.26 0.9208 0.6344 0.3071 0.5461 2.08 0.8544 0.6351 0.4335
AV Inner-Product 0.6748 4.68 0.9370 0.6727 0.4283 0.5542 2.15 0.8716 0.6552 0.4551

Concatenate Fusion 0.7034 4.91 0.9435 0.6911 0.4824 0.5763 2.21 0.8835 0.6740 0.4673
Proposed (w/o SA) 0.7221 5.09 0.9466 0.7028 0.4960 0.5816 2.25 0.8847 0.6781 0.4726
Proposed (w/o TA) 0.7283 5.14 0.9473 0.7135 0.5048 0.5834 2.29 0.8903 0.6844 0.4830

Proposed 0.7481 5.45 0.9537 0.7294 0.5266 0.5924 2.33 0.8941 0.6982 0.4917

Methods ETMD SumMe
CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑ CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑

Visual Model 0.4817 2.41 0.9180 0.6842 0.3504 0.3482 1.86 0.8573 0.6235 0.2840
AV Inner-Product 0.5024 2.53 0.9247 0.6981 0.3584 0.3615 1.92 0.8650 0.6361 0.3015

Concatenate Fusion 0.5346 2.81 0.9283 0.7217 0.4011 0.4037 2.16 0.8742 0.6527 0.3281
Proposed (w/o SA) 0.5284 2.73 0.9217 0.7185 0.3952 0.4164 2.18 0.8780 0.6613 0.3327
Proposed (w/o TA) 0.5415 2.99 0.9274 0.7261 0.4133 0.4228 2.21 0.8807 0.6653 0.3371

Proposed 0.5664 3.05 0.9351 0.7406 0.4325 0.4392 2.25 0.8945 0.6712 0.3428

TABLE 1 exhibits the results of different variations. By the observation and analy-

sis from the results, we can verify five main observations:

1) The audio information plays a significant role on DSP. The conclusion can be

supported by the comparison results between Visual Model and the proposed method.

Specifically, It is worth noticing that the performance drops significantly when only vi-

sual information is leveraged. Concretely, the CC value drops by more than 5% on the

AVAD dataset. The NSS value is dropped form 5.45 to 3.26 on the Coutrot2 dataset.

The AUC-J value is decreased from 0.8941 to 0.8544 on the DIEM dataset. The sAUC

value falls almost 6% on the ETMD dataset. And the SIM metric drops nearly 8% on

the SumMe dataset. The results demonstrate the important role of audio information

for the DSP task. Especially, the results on the Coutrot2 dataset are more able to illus-

trate this point, since the Coutrot2 records 4 persons having a meeting, and the audio

plays a great role on human attention. In addition, Figure 4 depicts some visualized

results. Expectedly, from the comparison results of the third row and the fourth row,

we can clearly observe that the predicted saliency map is more accurate when the audio

information is considered. Concretely, in the first video (the first two columns), when

the audio information is ignored, the visual model locates the non-sounding person,
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Time Time Time

Proposed

GT

Frames

Visual Model

Figure 4: Some examples by adopting different settings. The first row shows the raw frames.
The second row shows the corresponding groundtruth (GT) of the saliency map. The third row
exhibits the predicted saliency maps when audio and visual information is employed simulta-
neously. The last row displays the predicted saliency maps when only visual information is
leveraged.

which is no salient. This further demonstrate that the audio information can prompt the

model to better locate the attention-grabbing sounding objects in the scene.

2) The devised audio-visual location part can locate the sounding objects effectively

so as to enhance the performance of DSP methods. For the observation from TABLE 1,

we can find that when the devised audio-visual location is replaced with inner-product

operation, the performance for DSP declines notably. For instance, the CC value is

decreased from 0.6262 to 0.5151 on the AVAD dataset, when we adopt the AV Inner-

Product method. This is because the devised audio-visual location part can be utilized

to effectively locate the sounding objects, which more attract human attention.

3) The proposed multi-cues aggregation module can be capable to integrate the

effects by multiple cues. From TABLE 1, we can find the great differences between the

results from Concatenate Fusion method and the proposed method. It is mainly because

the Concatenate Fusion method can not effectively integrate the influences of multiple

cues on saliency. In contrast, the proposed method can achieve this effectually, which

indicates the proposed multi-cues aggregation module is able to integrate the effects by

multiple cues.
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4) The spatial attention contributes to model the higher-level semantic information

for better DSP. Based on the comparison results between Proposed (w/o SA) and the

proposed method, we can discover that the latter can get more superior performance on

all benchmark datasets. Especially, the CC value on the ETMD dataset can be improved

nearly 4%, which indicates the importance of the spatial attention for capturing the

higher-level semantic information.

5) The temporal attention lifts the performance of DSP methods by modeling mo-

tion information. The comparison results between Proposed (w/o TA) and the proposed

method on TABLE 1 reveals the significance of the adopted temporal attention. It is

because the temporal attention can capture the temporally moving information by ex-

ploiting the frame-wise similarity. The results verify the importance of the temporal

attention for improving the performance of DSP methods.

4.3. Comparison with State-of-the-arts

To demonstrate the effectiveness of the proposed method, we compare the pro-

posed method with 8 state-of-the-art DSP methods. These comparison methods are

comprehensive, including 4 spatial methods and 5 spatio-temporal methods. 1) The

spatial methods process each frame independently to generate the saliency map, while

do not consider the temporal information among frames. The comparison spatial meth-

ods include DeepNet [78], DVA [13], SAM [69], and SalGAN [79] methods. DeepNet

[78] addresses the DSP problem by utilizing convnets for regression in an end-to-end

manner. DVA [13] learns multi-scale features for capturing hierarchical saliency in-

formation for DSP. SAM [69] predicts the saliency map by incorporating neural atten-

tive mechanisms using a convolutional long short-term memory. SalGAN [79] adopts

the data-driven metric for DSP by training with an adversarial loss function. 2) The

spatio-temporal methods generate the saliency map by capturing the spatial informa-

tion within each frame and the temporal information among frames simultaneously.

The comparison spatial methods include ACLNet [80], DeepVS [46], TASED [81],

and STAViS [60] methods. ACLNet [80] employs the CNN-LSTM architecture for

DSP with a supervised attention mechanism. DeepVS [46] develops an object-to-

motion convolutional neural network for estimating the intra-frame saliency. TASED
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Table 2: The quantitative comparison on six benchmark datasets.

Methods AVAD Coutrot1
CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑ CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑

DeepNet [78] 0.3831 1.85 0.8690 0.5616 0.2564 0.3402 1.41 0.8248 0.5597 0.2732
DVA [13] 0.5247 3.00 0.8887 0.5820 0.3633 0.4306 2.07 0.8531 0.5783 0.3324
SAM [69] 0.5279 2.99 0.9025 0.5777 0.4244 0.4329 2.11 0.8571 0.5768 0.3672

SalGAN [79] 0.4912 2.55 0.8865 0.5799 0.3608 0.4161 1.85 0.8536 0.5799 0.3321
ACLNet [80] 0.5809 3.17 0.9053 0.5600 0.4463 0.4253 1.92 0.8502 0.5429 0.3612
DeepVS [46] 0.5281 3.01 0.8968 0.5858 0.3914 0.3595 1.77 0.8306 0.5617 0.3174
TASED [81] 0.6006 3.16 0.9146 0.5898 0.4395 0.4799 2.18 0.8676 0.5808 0.3884
STAViS [60] 0.6086 3.18 0.9196 0.5936 0.4578 0.4722 2.11 0.8686 0.5847 0.3935

Proposed 0.6262 3.57 0.9251 0.6203 0.4820 0.4985 2.44 0.8798 0.6042 0.4154

Methods Coutrot2 DIEM
CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑ CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑

DeepNet [78] 0.3012 1.82 0.8966 0.6000 0.2019 0.4075 1.52 0.8321 0.6227 0.3183
DVA [13] 0.4634 3.45 0.9328 0.6324 0.2742 0.4779 1.97 0.8547 0.6410 0.3785
SAM [69] 0.4194 3.02 0.9320 0.6152 0.3041 0.4930 2.05 0.8592 0.6446 0.4261

SalGAN [79] 0.4398 2.96 0.9331 0.6183 0.2909 0.4868 1.89 0.8570 0.6609 0.3931
ACLNet [80] 0.4485 3.16 0.9267 0.5943 0.3229 0.5229 2.02 0.8690 0.6221 0.4279
DeepVS [46] 0.4494 3.79 0.9255 0.6469 0.2590 0.4523 1.86 0.8406 0.6256 0.3923
TASED [81] 0.4375 3.17 0.9216 0.6118 0.3142 0.5579 2.16 0.8812 0.6579 0.4615
STAViS [60] 0.7349 5.28 0.9581 0.7106 0.5111 0.5795 2.26 0.8838 0.6741 0.4824

Proposed 0.7481 5.45 0.9537 0.7294 0.5266 0.5924 2.33 0.8941 0.6982 0.4917

Methods ETMD SumMe
CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑ CC↑ NSS↑ AUC-J↑ sAUC↑ SIM↑

DeepNet [78] 0.3879 1.90 0.8897 0.6992 0.2253 0.3320 1.55 0.8488 0.6451 0.2274
DVA [13] 0.4965 2.72 0.9039 0.7288 0.3165 0.3983 2.14 0.8681 0.6686 0.2811
SAM [69] 0.5068 2.78 0.9073 0.7310 0.3790 0.4041 2.21 0.8717 0.6728 0.3272

SalGAN [79] 0.4765 2.46 0.9035 0.7463 0.3117 0.3978 1.97 0.8754 0.6882 0.2897
ACLNet [80] 0.4771 2.36 0.9152 0.6752 0.3290 0.3795 1.79 0.8687 0.6092 0.2965
DeepVS [46] 0.4616 2.48 0.9041 0.6861 0.3495 0.3172 1.62 0.8422 0.6120 0.2622
TASED [81] 0.5093 2.63 0.9164 0.7117 0.3660 0.4288 2.10 0.8840 0.6570 0.3337
STAViS [60] 0.5690 2.94 0.9316 0.7317 0.4251 0.4220 2.04 0.8883 0.6562 0.3373

Proposed 0.5664 3.05 0.9351 0.7406 0.4325 0.4392 2.25 0.8945 0.6712 0.3428

[81] exploits 3D fully-convolutional network architecture to generate the saliency map

of each frame by considering several past frames. STAViS [60] combines both visual

and auditory information for DSP in videos.

On the on hand, we compare the proposed method with 8 state-of-the-art DSP

methods qualitatively on six benchmark datasets with audio-visual eye-tracking data,

including AVAD [54], Coutrot1 [71, 72], Coutrot2 [71, 72], DIEM [73], ETMD [74, 75]

and SumMe [75, 76] datasets. TABLE 2 reports the qualitative results. As can be

observed evidently, the proposed method outperforms the comparison methods with

respect to most evaluation metrics. Especially, the proposed method surpasses the spa-

tial DSP methods, such as DeepNet [78], DVA [13], SAM [69], and SalGAN [79],

by a substantial margin. The success attributes to the proposed method capturing the

temporal information, which is quite important for DSP. Compared with the spatio-

temporal DSP methods, e.g., ACLNet [80], DeepVS [46], TASED [81], and STAViS
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Figure 5: Qualitative results of different methods on six benchmark datasets. From top to bottom,
each row represents the video frames, the corresponding groundtruth (GT), the predicted saliency
map with the proposed method and other comparison methods.

[60], the proposed method also exhibits better performance. It is mainly because the

proposed method can adaptively integrate multiple cues, which are essential for DSP.

More specifically, even though the STAViS method also adopts audio-visual informa-

tion for DSP, the proposed method surpasses it on the prediction of saliency map. This

because we integrate more information affecting DSP, design more effective audio-

visual location part for locating the sounding objects, and propose multi-cues aggre-

gation module to collaboratively integrate the influence of multiple cues on dynamic

saliency prediction. In addition, the higher CC and SIM values show that the gener-

ated saliency maps by the proposed method are more similar to the human annotations,

which further demonstrates the superiority of the proposed method.

On the other hand, the qualitative visual comparisons are also conducted, and the
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results are shown in Figure 5. As can be seen, the proposed method achieves the

optimal performance among the comparison methods. Concretely, as for the sample

in first column, the proposed method can locate both the sounding object (the piano)

and high-level semantic object (human face) at the same time. In contrast, the TASED

method mainly focuses on the sounding object. The DeepVS and ACLNet methods

only pay attention to the high-level semantic object. The reason is that the proposed

method collaboratively integrates multiple cues for DSP. Compared with the visualized

results of STAVis, the proposed method can predict the attention-grabbing objects in

the scene more accurately. It indicates the importance of other cues except for audio

cues for DSP, and the superiority of audio-visual location part for locating sounding

objects and the multi-cues aggregation module for adaptively integrating multi-cues

information.

5. Conclusions

In this paper, we propose an audio-visual collaborative representation learning

method for dynamic saliency prediction based on the fact that human attention is nat-

urally influenced by audio-visual stimuli, including sounding, moving, center, high-

level semantic objects. Specifically, the proposed method consists of three main parts:

audio-visual encoding, audio-visual location, and collaborative integration parts. The

audio-visual encoding part encodes the input data as audio semantic features and spatio-

temporal visual features. The audio-visual location part locates the sounding object by

exploiting the consistency between the audio and visual modalities in a sharing latent

space. The collaborative integration part captures the moving, center, and high-level

semantic information, and adaptively integrates them with the sounding information to

generate the final saliency map. The experimental results on six benchmark datasets

have demonstrated that: 1) the audio information contributes to the DSP task signifi-

cantly; 2) the consistency between the audio and visual modalities in a sharing latent

space enhances the performance of sounding object location; 3) the adaptively aggre-

gation of multi-cues helps the DSP method achieve the superior performance.
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