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Transfer-based adaptive tree for multimodal
sentiment analysis based on user latent aspects
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Wen Hua3

Abstract—Multimodal sentiment analysis benefits various applications such as human-computer interaction and recommendation
systems. It aims to infer the users’ bipolar ideas using visual, textual, and acoustic signals. Although researchers affirm the association
between cognitive cues and emotional manifestations, most of the current multimodal approaches in sentiment analysis disregard
user-specific aspects. To tackle this issue, we devise a novel method to perform multimodal sentiment prediction using cognitive cues,
such as personality. Our framework constructs an adaptive tree by hierarchically dividing users and trains the LSTM-based submodels,
utilizing an attention-based fusion to transfer cognitive-oriented knowledge within the tree. Subsequently, the framework consumes the
conclusive agglomerative knowledge from the adaptive tree to predict final sentiments. We also devise a dynamic dropout method to
facilitate data sharing between neighboring nodes, reducing data sparsity. The empirical results on real-world datasets determine that
our proposed model for sentiment prediction can surpass trending rivals. Moreover, compared to other ensemble approaches, the
proposed transfer-based algorithm can better utilize the latent cognitive cues and foster the prediction outcomes. Based on the given
extrinsic and intrinsic analysis results, we note that compared to other theoretical-based techniques, the proposed hierarchical
clustering approach can better group the users within the adaptive tree.

Index Terms—Transfer-based adaptive tree, Cognitive cues, Dynamic dropout, Hierarchical training, Multimodal sentiment analysis,
Attention-based fusion
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1 INTRODUCTION

A S a branch of affective computing, sentiment analy-
sis can classify user-generated content as positive or

negative [1]. This research area gains growing interest in
various domains: (i) In Human-Computer Interaction, to
expand the interchange between the agents and individuals
[2]. (ii) In political forecasting, to study political sentiments
[3]. (iii) In recommendation systems, to analyze the reviews
of consumers [4]. (IV) In market forecasting, to promote
financial prediction outcome [5]. With the rapid rise of social
media, individuals mostly tend to convey their opinions in
videos, creating the opportunity to analyze multiple input
channels known as Acoustic, Visual, and Textual modals.
Such multimodal input carries surplus information on the
individual’s latent cues, including personality, motivations,
and other ignored parameters in current sentiment analysis
methods. Given a video clip vi for user lk, we aim to employ
a cognitive-based ensemble approach to improve sentiment
analysis for vi through considering the cognitive cues of the
user lk, denoted by Ck. However, certain challenges abound:
Challenge 1 (Missing Cognitive Annotations)

The sentiment analysis task needs the annotations to
represent the cognitive cues of the user in the input video.
However, the majority of available datasets on multimodal
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affective interpretation, including MOSI [6], MOUD [7], and
IEMOCAP [8], are not enriched by cognitive annotations.
Aiming to augment the datasets using cognitive cues, one
can leverage the self and full-supervised methods. Addi-
tionally, utilizing the pre-trained models may seem partially
inaccurate because they include the perturbations from the
initial trainee dataset. To address this issue, one may opt for
devising a framework to reduce the cross dataset effects or
choose a labeled dataset with the minimum track of skews.
Challenge 2 (Assorted Categories Affected by Various Cues)

The resultant categories constructed by the cognitive-
oriented subset-based ensembles can have substantial sim-
ilarities or overlook information-theoretical parameters in-
cluding, entropy. Moreover, the unbiased categories must
adapt to the deep learning approaches to avoid starving
or overfitting. In retrospect, choosing the correct values for
adjustment parameters in categorization can be challenging.
Dimension, cut-point, and the number of clusters or hierar-
chical levels are samples of such parameters.

(a) Data categorization on MOSI[6] (b) modals accuracy comparison
Fig. 1: Base Models Accuracy Comparison

Observation To demonstrate how cognitive cues can parti-
tion a set of data instances, we set up an observation that
performs clustering on the videos in the MOSI affective
dataset. As depicted in Fig. 1a, we utilize the Euclidean
distance to classify the videos into four groups. The data
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points and individual colors respectively signify videos
and pertinent clusters. Furthermore, to investigate the ef-
fect of categorization on emotional manifestation, Fig. 1b
shows the accuracy heatmap to compare the modalities
of constructed clusters. The performance of the sentiment
analytics on video transcripts is higher than other input
channels, reaching up to %87 on accuracy. Moreover, the
accuracy deviation in various clusters of the visual channel
implies that the level of cognition can directly affect the
sentiment understanding. Hence, besides the effectiveness
of the categorization algorithms, the availability of sufficient
cognitive cues can foster the sentiment analysis procedure.
Challenge 3 (Data Scarcity in Subset Categories)

Intuitively, we perform top-bottom hierarchical catego-
rization on the adaptive tree to better exploit the cognitive
correlation between subsets. However, dividing the data
in each node into portions to form subsets can cause data
scarcity, where the data enclosed with some nodes may not
suffice to train the model, affecting the learning capability of
the deep architecture. Relying merely on the pruning proce-
dure to control the expansion of the adaptive tree based on
the correlation criteria can negatively affect the performance
of the cognitive-based categorization. To address this issue,
we urge that besides the pruning supervision, the subsets
must also be enriched to preserve the original subset char-
acteristics and avoid unintended influence on models.
Contributions. While most of the current works [9, 10, 11,
12] neglect the indispensable role of the cognitive cues in
multimodal sentiment analysis, our proposed framework in
this paper enhances analytical results by leveraging user-
specific latent characteristics. To the best of our knowledge,
we reveal the utopian spirit of the hidden parameters and
devise the first approach based on an adaptive tree that
utilizes an attention-based fusion to facilitate cognitive-
oriented knowledge transfer within the tree, forming an
ensemble of submodels. In retrospect, where our previous
works [13, 14, 15] focus on short-text understanding, we
propose an approach that not only takes advantage of the
textual analytics but also infers the cognitive cues from
acoustic and visual mediums to leverage the contrast be-
tween individuals and effectively predict the sentiments.
Our contributions are fourfold:
• We develop a novel transfer-based adaptive tree to

facilitate ensembles on multimodal submodels.
• We analyze multiple categorization strategies to clas-

sify individuals by leveraging pertinent latent cues.
• We design a dynamic dropout approach to regularize

data of relevant classes during hierarchical training.
• We propose a unified cognitive-based framework for

sentiment analysis on multimodal datasets.
The rest of the paper is as follows: in Sec. 2, we study
the literature; in Sec. 3, we provide the problem and our
framework; in Sec. 4 and 5 we explain our model and
experiments. Lastly, we conclude the paper in Sec. 6.
2 RELATED WORK
As Table 1 briefs, the literature is threefold: multimodal sen-
timent analysis, transfer learning, and leveraging individual
characteristics.
2.1 Multimodal Sentiment Analysis
Sentiment analysis as a branch of affective computing aims
to exploit the polarity expressed by an individual in three

possible categories of positive, negative, or neutral [1]. Ac-
cordingly, numerous research works analyze the sentiments
from each of the modals (unimodal), including text [16],
audio [17], and video [18]. Moreover, multimodal affective
analysis has adapted various input modals [19], including
acoustic-textual [20], acoustic-visual [18, 21], and the tri-
modal unified frameworks [9, 10]. The main challenge in the
multimodal analysis is the fusion method [1] that comprises
two literature domains of decision and feature level, facili-
tating a variety of modals combinations. Weighted voting
[22] and Bayes belief integration [23] are two instances
of decision-level fusion, fusing independent predictions of
each modal into a unified output. The feature-level ap-
proaches such as Tensor [9] and attention-based [10] gener-
ate the modal-specific embeddings to feed into another final
analysis module. Nevertheless, various architectures adapt
models, including Multiple Kernel Learning (MKL) on Sup-
port Vector Machine (SVM) classifiers [24] and Recurrent
Neural Networks (RNN) classes of Gated-Recurrent Unit
(GRU)[11] and Long Short-Term Memory (LSTM) [21, 10],
to target the context-dependent analysis of inputs. Ensemble
Learning approaches utilize various modules to improve the
performance by combining the results [25, 26]. Some train
the same model on distinct datasets, as [27] utilizes various
SVM classifiers trained on different dataset categories distin-
guished by emotion labels. Others train divergent models on
the same dataset, as [12] applies SVMs together with logis-
tic regression, decision tree, random forest, and clustering
modules on the same corpus. In retrospect, we propose an
ensemble on multimodal LSTM models equipped with an
attention-based fusion trained on data divisions based on
the composer’s latent cues.
2.2 Transfer Learning
Transfer Learning (TL) approaches benefit from pre-trained
models to improve learning by transferring knowledge be-
tween domains or extracting new representations of input
data as feature sets [28]. TL module adopts into unimodal
analysis approaches of textual, visual, and acoustic. For tex-
tual, [29] utilizes TL to perform textual analysis on emojis,
and [30] applies transformer encoding to detect emotions in
conversations, passing multi-turn conversation parameters
to an emotion classifier. For visual, [31] applies TL on large-
scale image classification to analyze visual cues in affective
analysis. Finally, [32] applies TL in sparse auto-encoding to
accomplish acoustic emotion prediction.
Furthermore, multimodal affective analysis adopts TL in
various applications: For instance, [33] detects audio-visual
emotions by obtaining CNN features of facial expressions
through the TL module. In retrospect, aiming to reduce the
effect of catastrophic forgetting in TL, the multi-task learner
in [34] adapts into multimodal affective analysis by learning
progressive networks on paralinguistic tasks, recognizing
emotions, speakers, and gender. Similarly, [35] forms the
multi-task learner by appending a classifier to each emotion,
where the work extends to [36] by integrating topical classi-
fication. Accordingly, we perform multimodal analysis with
a novel ensemble through a hierarchical knowledge transfer
in an adaptive tree based on users’ latent characteristics.
2.3 Individual Characteristics
In this section, we review the personal characteristics that
can influence users’ expressions. We get inspired by cogni-
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tive studies that affirm how significantly personality factors
can affect human behavior [37]. Accordingly, we survey the
literature assuming five personality traits as the primary
latent cues of humans. The research on uni-modal person-
ality analysis comprises trilateral input modals of acoustic
[38], textual [39], and visual [40]. Likewise, there is com-
prehensive research to investigate multimodal personalities,
[41] leverages a deep residual network that can predict
personality on the first impression for audio-visual input.
Similarly, Batrinca et al. [42] apply audio-visual predictions
on a Human-Computer Interaction (HCI) task, and [43]
collectively uses quadrilateral modals of audio, text, face,
and video background. Other works [44][45] examine per-
sonality in the context of synthetic applications, simulating
the crowd through constructing artificial agents designated
by personality weights that replicate emotion contagion
in incidents. From another perspective, [46, 47, 48] exploit
applications on personality perception. While [46] devises a
user-centric recommendation system where the personality
factor determines the similarity weights between users and
items, [47] leverages personality scores from social networks
to improve the user interaction with information systems.
Comparably, [48] utilizes the user’s personality to improve
the textual sentiment evaluation in short texts. Nevertheless,
the majority of practices in affective evaluations that con-
sider user characteristics are solely unimodal. In response,
we utilize user-specific characteristics in a multimodal ana-
lytical system to improve sentiment prediction results.

TABLE 1: Literature Review
Category Approaches References

Multimodal

Sentiment Analysis

Traditional Learning [27][12]

Deep Learning [21][9][10][24]

Transfer Learning
Knowledge Transfer [30][34][35][36]

Feature Extraction [29][31][32][33]

Individual

Characteristics

Prediction [38][39][40][41][42][43]

Perception [44][45][46][47][48]

3 PROBLEM STATEMENT
In this section, we elucidate primary definitions, the prob-
lem statements, and the proposed framework.
3.1 Preliminary Concepts
Definition 1. (Sentiment Value) The Sentiment value denoted by
s ∈ {0, 1} is a binary value, representing a positive or negative
opinion regarding an entity.
Definition 2. (Video) A video denoted by vi ∈ V reflects the
participating user, lk reactions and is associated with a sentiment
value, vi.s, start time, vi.ts, end time, vi.tf , and tri-modal data,
including, Acoustics (vai ), Visuals (vvi ), and Textual (vti ) contents.
Definition 3. (Utterance) Utterance, uj,i ∈ U, represents the
partition j of video vi, bounded by pauses. Each utterance uj,i
contains a sentiment value uj,i.s, start time uj,i.ts, and the end
time uj,i.tf , such that:
• The bounding rule applies as [uj,i.ts, uj,i.tf ] ⊆

[vi.ts, vi.tf ].
• Utterances shall not overlap with each other in a

video, ∀m,n, if m 6= n then [um,i.ts, um,i.tf ] ∩
[un,i.ts, un,i.tf ] = Ø.

Furthermore, any uj,i is associated with Acoustics (uaj,i), Visuals
(uvj,i), and Textual contents (utj,i). Also, each video vi is composed

of a set of utterances, vi = {uj,i|1 ≤ j ≤ zlenv (vi)}, where
zlenv : V→ Z is the function retrieving the number of utterances
in the given video and vi.s represents the majority aggregation on
sentiment values of the pertinent utterances.
Definition 4. (User) Each video vi is associated with a user lk ∈
L that expresses a sentiment value for every contained utterance
uj,i. Given one or more videos composed by user lk, we can utilize
the function zvl : L→ V to retrieve pertinent videos.
Definition 5. (Cognitive Cue) Each cognitive cue, denoted by
cy ∈ R, can constitute any latent cue, like personality, that can
distinguish individuals.
3.2 Problem Definition
Problem 1. (multimodal sentiment analysis) Given a video vi of
the user lk, our goal is to improve the estimation of sentiments
through utilizing the latent cues of lk.
Problem 2. (enhancing intra-ensemble awareness) Given a set of
submodels M , where each inference submodel mi ∈ M partially
contributes to the prediction process, our goal is to enrich the
knowledge submission between submodels in the ensemble.
Problem 3. (reducing data scarcity) Given a set of videos V , our
goal is to enrich any subset Ṽ ⊆ V with data insufficiency.
3.3 Framework Overview
Fig. 2 illustrates our proposed unified framework that em-
ploys cognitive cues to improve the sentiment prediction.
Through the offline phase, we firstly feed tri-modal visual,
textual, and acoustic data into feature extraction modules to
construct an aligned, normalized set for each of the Modals.
For data augmentation, we develop an inference algorithm
that extracts latent aspects of individuals. To follow, we
devise a novel adaptive tree with each node comprising a
user set, pertinent collective knowledge core, and a transfer-
based submodel. On the one hand, we employ clustering
and theoretical-based approaches in a top-bottom proce-
dure to perform hierarchical categorization of users based
on their cognitive cues, and on the other hand, we train
the transfer-based submodel and form the knowledge core
in parallel through a bottom-up process. Accordingly, the
LSTM submodel consumes the attention-based fusion that
comprises node-specific user data and the knowledge core,
aggregated by the submodels of the child nodes. Moreover, a
nontrivial module adopts users’ data from similar neighbors
to tackle data sparsity in training submodels within imma-
ture nodes through a dynamic dropout approach. Finally,
the prediction module utilizes the adaptive tree to evaluate
the sentiments based on user-specific latent cues.

Fig. 2: Framework
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In the online phase, we pass each input video into feature
extraction and cognitive assessment modules adopted from
the offline section. Given the cognitive cues of the video
composer, we then find a top-bottom route that leads to
the most relevant leaf node. Conversely, we take the route
to transfer the knowledge by executing the submodels in
a bottom-up manner. Finally, given the collective knowl-
edge of the tree, the prediction module performs the final
cognitive-based sentiment prediction of the input data.

4 METHODOLOGY
4.1 Offline Phase
4.1.1 Extracting Feature Vectors
As elucidated in Sec. 3.1, every input utterance, uj,i, is
associated with acoustic (uaj,i), visual (uvj,i), and textual (utj,i)
modals. We designate a modal-specific embedding to extract
the feature vectors, denoted by ~xj,i, for each modal (~xmj,i,
m ∈ (a, v, t)). The steps after feature extraction include
normalization and alignment, followed by an assignment
process which links features to respective utterance. Accord-
ingly, we explain the feature extraction modules as follows:
Acoustic Feature Extraction. Given the significance of
acoustic expression in affective computation, we need a
legitimate feature representation process. Hence, for each
utterance, uj,i with respective prevalent textual and acoustic
pre-alignments as utj,i and uaj,i, we partition the mono-
phonic audio signal into textually coherent partitions. Sub-
sequently, we adopt the acoustic means, including CO-
VAREP [49] and OpenSmile [50], to exploit the audio feature
vector for each partition, denoted by ~xaj,i, including the low-
level and diverse granular descriptors (LLD). To continue,
we devise an acoustic-LSTM module to generate the em-
bedded representation for each input segment, ~xaj,i.
Visual Feature Extraction. To infer the facial cues, we
fragment the visual contents uvj,i into the frames, isolate
the metaphorical facial region from the background for each
frame, and exclude negative frames where the human face
is unobserved. To adjust the visual feature vector ~xvj,i, we
successively utilize Openface2 [51] to detect facial land-
marks, estimate head pose and gaze direction, and recognize
facial action units. In contrast, we apply the Facet algorithm
[52] to analyze the feature value distribution on various
granular frame representations. The proposed Visual-LSTM
generates an embedded representation for each vector ~xvj,i.
Textual Feature Extraction. The textual contents, enclosed as
transcripts to utterance utj,i, are not infallible but tractable
to exploit the textual features. A naı̈ve solution would
be to notoriously train the exact textual contents [53][54],
yielding incorrect correlation weights [13][14]. Alternatively,
we utilize semantic embedding models [55] to obtain word
vectors. We then utilize the uni-dimensional convolution
networks besides the order-sensitive LSTM. Here, each con-
vnet serves the neural network as a preprocessing tool.
In other words, the convnet can transform the long input
sequence into shorter sequences of higher-level features ~xtj,i.
Finally, the Textual-LSTM can feed the feature vector ~xtj,i to
generate the associated embedded representations.

4.1.2 Cognitive Inference
As a complement to feature extraction, it is through map-
ping to cognitive space that we can hierarchically categorize
the users. Here, the cognitive space (Ω,zdΩ) adapts to a

pseudo-metric R|C| space [56] with Ω as the set of points,
C as the set of cognitive cues, and zdΩ as the pseudo-metric
distance. While each cognitive cue cy represents a dimen-
sion in the Ω space, the surrogate-point ϕk = (c1k, . . . , c

|C|
k )

delineates the user lk into Ω. In addition, we denote the set
of surrogate-points as Φ and clarify the connotations within
Ω by defining the following functions:
Mapping (zmΩ : L→ Ω): the function mapping the user lk to
a surrogate-point ϕk in Ω using each cognitive cue cyk.
Distance (zdΩ: Ω × Ω → R+

0 ): a pseudo-metric function to
measure the dissimilarity ratio between each pair of points
in Ω, denoted by (ϕi,ϕj). Only those distance metric models
that can sufficiently satisfy the pseudo-metric axioms, as
formulated in eq. 1, are eligible to estimate the similarity.

Positive Definiteness : zdΩ(ϕi, ϕj) ≥ 0;

Symmetry : zdΩ(ϕi, ϕj) = zdΩ(ϕj , ϕi);

Triangle Inequality :
zdΩ(ϕi, ϕj) ≤ zdΩ(ϕi, ϕk) + zdΩ(ϕk, ϕj);

(1)

We adopt the effective vector-based Minkowski measure as
the distance zdΩ (Eq.2) that is generalizable and capable of
accommodating an infinite number of cognitive cues. ϕi and
ϕj instantiate a pair of points in cognitive space Ω, and r ∈
N denotes the adjustment parameter.

zdΩ(ϕi, ϕj) = (

|C|∑
d=1

(|cdi − cdj |)r)
1

r (2)

Successively, we propose the mapping functionality zmΩ
by an effective model [41] that consumes the multimodal
users’ data to predict multi-aspect character attributes. To
continue, we propose an observation on user mapping using
three cues of agreeableness, consciousness, and extrover-
sion. As Fig. 3 depicts, we appoint each user in the dataset
[6] to a surrogate point in Ω using a three-dimensional
weight. Subsequently, we can utilize the K-means method
for clustering, illustrated in various colors.

Fig. 3: User distribution in a three-dimensional Ω on MOSI[6]
Lemma 1. The cognitive space is a pseudo-metric space.
Proof. By a contradiction, we assume (Ω,zdΩ) is a metric
space. In response, the distance module zdΩ must preserve
the metric axioms, including the non-zero criterion for the
distance between any pair of specific points (Eq. 3).

∀ϕi, ϕj ∈ Ω : ϕi 6= ϕj ⇐⇒ zdΩ(ϕi, ϕj) > 0 (3)
Let li and lj be a pair of users that can have identical cogni-
tive cues. Inherently, due to the high cognitive correlation as
formalized in Eq. 4, zmΩ can map the pair to the surrogate-
points of the same coordination in Ω, reflecting the zero
distance between users. Such an outcome can contradict the
primary assumption, proving the proposition.

∃li, lj , li 6= lj and ∀
cy∈C

(zmΩ (li).cy = zmΩ (lj).cy)

=⇒ zdΩ(zmΩ (li),zmΩ (lj)) = 0
(4)



5

Lemma 2. Minkowski measure satisfies pseudo-metric axioms. zdΩ(ϕi, ϕk) = ||u+ v||
zdΩ(ϕi, ϕj) = ||u||
zdΩ(ϕj , ϕk) = ||v||

(5)

Proof. With axioms in Eq. 1, the proof to preserve the Trian-
gle Inequality can leave out the naı̈ve proofs about both triv-
ial features of the Minkowski metric, positive definiteness
and the symmetry criterion. Accordingly, let ϕi, ϕj , ϕk ∈ Ω
be a triple surrogate-points and define the vectors u and v
as u = ϕi − ϕj and v = ϕj − ϕk, with the sum vector as
u + v = ϕi − ϕk. Hence, the vector norms in Eq. 5 equate
to the distance between corresponding points. Given u.v as
the dot product of the pair of vectors u and v, we can adopt
the norm convention to affirm the symmetry in Eq. 6 .

||u+ v||2 = ||u||2 + ||v||2 + 2u.v (6)
Given the triangle axiom, we must prove Eq. 7 inequality:

zdΩ(ϕi, ϕk) ≤ zdΩ(ϕi, ϕj) + zdΩ(ϕj , ϕk) (7)
To commence, we can attain the sequential order in Eq. 8 by
the criteria verbalized in Eq. 5:

||u+ v|| ≤ ||u||+ ||v|| Square=⇒
||u+ v||2 ≤ ||u||2 + ||v||2 + 2||u|| × ||v||

(8)

By replacing the Eq. 6 in Eq. 8, we can retrieve Eq. 9.
||u||2 + ||v||2 + 2u.v ≤ ||u||2 + ||v||2 + 2||u|| × ||v||

=⇒ u.v ≤ ||u|| × ||v||
(9)

Here the Eq. 9 results in Cauchy-Schwarz inequality[57]
(|u.v| ≤ ||u|| × ||v||) that logically proves the lemma.

4.1.3 Adaptive Ensemble Tree Definition
The necessity to devise a novel tree structure to categorize
users through performing sharding on the Ω space sets
off before determining the sentiment prediction models.
Aiming to carry out the user grouping procedure, we rely
on the verified association between the individuals’ latent
cues and affective manifestation [58].
Inspired by VP-Tree [59], which searches more efficiently
compared to R*-tree [60], we develop a non-trivial adaptive
tree T = (N,E) with N and E as the set of nodes and
edges. In response, the tree utilizes surrogate points to
divide Ω space based on the dimensions. Accordingly, the
sharding procedure hierarchically constructs a collection of
subspaces from Ω, facilitating parallel processing in simul-
taneous training of multiple subspaces.
The properties of each node n can be threefold: (1) The
Subspace nΦ comprising a set of surrogate points created
by sharding on the parent node, (2) The Submodel nm, a
transfer-based LSTM model that consumes the videos in nΦ,
denoted by {zvl (lk)|lk ∈ nΦ}, and (3) The Knowledge Core
nk to gain an aggregated perception from the child nodes.
Furthermore, the adaptive tree must hold two functions:
• Fragmentation (zfT : N → Ω) divides the subspace

pertinent to the given node nΦ into k tractable clus-
ters, adjusted by parameter ρ̈ where the cluster set
should attain specific criteria denoted by γΦ:

γΦ =

{
Φi 6= ∅, i ≤ k;

∪ki=1 Φi = nΦ
i ;

Φi ∩ Φj = ∅, i, j ≤ k & i 6= j;

(10)

Here Φi and Φj are the splits from fragmenting the
node subspace nΦ. Union (∪) ensures the subspace
nΦ will be a portmanteau of resultant splits and
intersection (∩) affirms the exclusivity of the splits.

• Disjunction (zdT : Ω → R+
0 ) specifies the relative

distance between every pair of node subspaces in the
same level of the adaptive tree (Eq.11). For (ni,nj) as
a pair, the disjunction will be the cognitive distance
zdΩ between the medoids, denoted by ϕ̃:

zdT (nΦ
i , n

Φ
j ) = zdΩ(nΦ

i .ϕ̃, n
Φ
j .ϕ̃) (11)

4.1.4 Cognitive space categorization
In this step, we devise a modified top-down breadth-first
traversing method to construct the adaptive tree (Sec. 4.1.3)
by iteratively partitioning the Ω space. Given node ni, we
can terminate the node branching by controlling the triple
data attributes of cohesion, sparsity, and amplitude. Given H
as the set of fragments on the node ni, we define trilateral
termination criteria for each split Φ ∈ H as follows:
Criterion1. Subject to cohesiveness attribute for each split
Φ, Eq. 12 determines the unity measure zuni to compute the
cognitive distance zdΩ between each pair of points in Φ.

zuni(Φ) =

(
|Φ|
2

)−1 ∑
ϕx,ϕz∈Φ

zdΩ(ϕx, ϕz) (12)

Eq. 13 obtains the branching tendency on the node subspace
nΦ
i for each split by evaluating the quality of fragmentation

using unity and disjunction trade-offs. Hence, we collectively
analyze the mean-variance (MV) to compute the recuperation
capacity zrcp using the acquired measures.

zrcp(H) = MV
Φ∈H

(
(|H| − 1)×zuni(Φ)∑
Φj∈H,Φj 6=Φ

zdT (Φ,Φj)
) (13)

Where lower values of recuperation ensure better cohesion
and separation, higher values than θp can stop branching.
Criterion2. Besides the recuperation ratio, we also need to
ensure the training capability of independent splits. Hence,
we propose an entropy-based criterion that consumes the
sentiment labels within split data to control the bias. Cor-
respondingly, Eq. 14 formalizes the set of utterances Uj
pertinent to users of a subspace Φj .

Uj = {uz,x|uz,x ⊆ vx, vx ∈ zvl (lk), lk ∈ Φj} (14)
Eq. 15 can estimate the portion of utterances Uj convey the
sentiment s̃ in each split Φj .

zpr(s̃,Φj) = { |u||Uj |
|u ∈ Uj , u.s = s̃} (15)

Eq. 16 adopts Shannon entropy [61] to measure data impu-
rity in the split Φj .

zimp(Φj) = −
∑

s̃∈{0,1}

zpr(s̃,Φj) log(zpr(s̃,Φj)) (16)

We can utilize the impurity ratio to evaluate the quality of
the set H of splits by

⊎
Φj∈Hzimp(Φj), where

⊎
denotes the

weighted average. Accordingly, we can compare the result
with the threshold θe to terminate nodes with lower rates.
Criterion3. Relying on data amplitude, this restrain asserts
under what verge the training can infer meaningful infor-
mation from each of the splits. Given the set of pertinent ut-
terances Uj in Eq. 14 for a split Φj , we ensure the amplitude
capacity of the splits using threshold θa, a prerequisite to
terminate the cases with lower values than minΦj∈H{|Uj |}.
Algorithm 1 initializes the adaptive tree T = (N,E), the
cognitive aggregate learning machine, with N and E as
the set of nodes and edges. Accordingly, the fragmentation
module can extend the tree by adopting clustering and
theoretical-based categorization techniques. We utilize a
breadth-first iterative fragmentation procedure to generate
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the subspaces for each node. Thus, we insert the subspaces
in-row with parents into the allocated queue, Q, where the
genuine Ω space represents the root node of no parent.
In a FIFO manner, we pop the item x in each iteration from
the queue with pertinent parent and subspace. We then
initialize x as node n and append it to the intrinsic tree.
Additionally, we fragment the node n subspace by adjusting
an optimized ρ̈ to retrieve H as the set of child splits. To
continue, we apply trilateral termination criteria on H to
evaluate branching and either append the node n as a leaf
or insert each split of H with n as a parent into the queue,
resulting in the growth of the subspaces in Q.

Algorithm 1 Adaptive Tree Generation
Input: Ω
Output: T, Leaf

1: Leaf = ∅, N = ∅, E = ∅, Q = ∅
2: Q.Enque({Ω, ∅})
3: while Q 6= ∅ do
4: x = Q.Deque()
5: n = Node(x[0], ∅, ∅)
6: N.append(n)
7: E.append({n, x[1]})
8: ρ̈ = AdaptParameters(x[0])
9: H = NodeFragmentation(n, ρ̈)

10: if Terminate(H) then
11: Leaf.append(n)
12: else
13: for all h in H do
14: Q.Enque({h, n})
15: end for
16: end if
17: end while
18: T = (N,E)
19: return T , Leaf

Prior to the tree construction, the fragmentation procedure
divides the subspace of each vertex n into a set of tractable
clusters, to be handled in two ways as follows:

Theoretical-based Subspace Categorization. In this ap-
proach, we employ the fragmentation zfT to build the tree T
within Ω space using the cut-points as Ω’s dimensions. Ac-
cordingly, zfT can consume the parameter ρ̈ comprising the
pair {c∗, c∗cut} to fragment given node on the c∗ dimension
to maximize the heterogeneity with c∗cut as the optimal cut-
point. Having C as the set of dimensions, Eq.17 verbalizes
the dimension c∗ selection for the fragmentation of node n.

c∗ = arg max
c∈C

{zhet(nΦ, c)} (17)

Inspired by [62], the ratio zhet retrieves the heterogeneity
by consuming the subspace Φ and the dimension c (Eq.18).

zhet(Φ, c) = −
∑

ϕx,ϕz∈Φ

d̃x,z(1− d̃cx,z) + d̃cx,z(1− d̃x,z) (18)

Here d̃x,z equates the local normalized cognitive distance
zdΩ(ϕx, ϕz) × d−1

max with dmax as the maximum local dis-
tance (i.e., Maxϕx,ϕz∈Φ{zdΩ(ϕx, ϕz)}), and d̃cx,z is calcu-
lated in the shrunk Ω space by the dimension c. To continue,
we can use Eq.19 to assert fragmentation with the best cut-
point c∗cut that, on the one hand, maintains cohesiveness
within each of the splits, and on the other hand, ensures
unbiased labels in each resultant subspaces.

c∗cut = arg max
k∈c∗

{λ
⊎

Φ∈Hk

zhet(Φ, c∗)+(1−λ)
⊎

Φ∈Hk

zimp(Φ)} (19)

Here λ is the adjustment parameter andHk denotes the split
pair formed by cutting the node nΦ using the cut-point k.

Cluster-based Subspace Categorization. In this approach,
we adopt the simple but effective K-means clustering as
zfT to fragment the subspaces. Unlike the theoretical-based
model, K-means comprises all dimensions in partitioning,
resulting in a more flexible sub-spacing. As verbalized in
Eq.20, we consume the parameter setting ρ̈ of {d∗} on node
n to categorize the node subspace nΦ into d∗ clusters.

zfT (n, {d∗}) = arg min
R
{
|nΦ|∑
x=1

d∗∑
y=1

rxy ×zdΩ(ϕx,Φy.ϕ̃)} (20)

Here R=(rxy) is an |nΦ|×d∗ matrix, rxy ∈ {0, 1} estimates if
user x participates in cluster Φy with Φy.ϕ̃ as medoid, where
the matrix assures exclusivity in fragmentation conditioned
by

∑d∗

y=1 rxy = 1 and 0 <
∑|nΦ|
x=1 rxy < |nΦ|. Finally, Eq. 21

computes the ideal number of clusters, denoted by d∗.

d∗ = arg max
d
{
⊎

Φ∈Hd

zslh(Φ) +
⊎

Φ∈Hd

zimp(Φ)−zrcp(Hd)} (21)

Here Hd is the set of splits generated by zfT (ni, {d}) and
zslh is the silhouette measure [63].

(a) Theoretical-based (b) Clustering-based
Fig. 4: Proposed Categorizations

Fig. 4 compares the theoretical-based categorization versus
clustering. Given extroversion and neuroticism cognitive
cues, the Ω space can be of two dimensions. While the
theoretical-based approach initially divides the space into
two splits using respective cut-point on neuroticism, the
clustering-based approach groups the surrogate-points into
three clusters.

4.1.5 Transfer-Based Submodels and Knowledge Core

In this section, we utilize a bottom-up traversing approach
to concurrently construct the transfer-based submodels and
the knowledge cores. As visualized in Fig. 5, for each node
n, on the one hand, we form the knowledge core nk by
consuming the submodel output of the child nodes, and
on the other hand, we collectively feed the submodel nm

with the pertinent video contents of the users belonging
to the node subspace and the knowledge core nk. Hence,
the tree can meticulously transfer the knowledge from child
submodels to the corresponding parent submodels.
As a prerequisite to generating the node-specific submodels,
we pad the utterance set of each video to a maximum length
g as formulated in Eq. 22:

g = max
vi∈V

zlenv (vi) (22)



7

Fig. 5: The Proposed Adaptive Tree Architecture

Given node n, each submodel nm includes three unimodal
LSTMs for each input modal and a multimodal LSTM. The
training of nm conjointly conveys both the node pertinent
videos {vi|vi ∈ zvl (lk), lk ∈ nΦ} and the knowledge
core nk. Given an input video vi with the set of utter-
ances [u1,i, u2,i, . . . , ug,i], we define the context criterion
for ui,j as {ui,z|∀z < g, z 6= j}. As Fig. 6 visualizes
the submodel architecture for nm, given feature vectors
Xm = {xmt |xmt ∈ Rdm , t ≤ g} with a set of modals as
m ∈ (A, V, T ) and dm as the length of the corresponding
feature vector, the unimodal models can generate modal-
specific embeddings, represented by Hm = {hmt |hmt ∈
Rd̃, t ≤ g}. The resultant embeddings Hm and the node
knowledge core K = {kt|kt ∈ Rd̃, i ≤ g} collectively
feed into the attention-based fusion module to provide the
fused input of HF = {hFt |hFt ∈ Rd̃, t ≤ g} for the final
multimodal model. To conclude, the multimodal model
utilizes HF to transfer an enhanced knowledge, denoted by
Hk = {hkt |hkt ∈ Rd̃, t ≤ g}, to the parent knowledge core.

Fig. 6: Submodels architecture
For both unimodal and multimodal models, INLSTM:
Rdm×g → Rd̃×g as an LSTM procedure can convey senti-
ment analysis. As formalized in Eq. 23, besides the internal
state smt , and the output hmt , the INLSTM comprises three
gates of forget fmt , external-input qmt , and output omt .

fmt = §(Umf .Xm +Wm
f .h

m
t−1 + bmf )

qmt = §(Ume .Xm +Wm
e .h

m
t−1 + bme )

omt = §(Umo .Xm +Wm
o .h

m
t−1 + bmo )

smt = fmt � smt−1 + qmt � tanh(Ums .X
m +Wm

s .h
m
t−1 + bms )

hmt = omt � tanh(smt ) (23)

Here, Wm
f , Wm

e , Wm
o , Wm

s , Umf , Ume , Umo , Ums ∈
Rdm×2dm , bmf , bmc , bmo , bms ∈ Rdm are training parameters
where § is the sigmoid function and � denotes the element-
wise multiplication. Given m ∈ (A, V, T ), the INLSTM
can generate the pertinent embedding output for the given
channel as Hm. Aiming to carry out the fusion procedure
(Eq. 24), we concatenate INLSTM outputs with the knowl-
edge core K to form H = {HA||HV ||HT ||K} that feeds the
multimodal input for the attention-based module.

bt = tanh(Wb.H)

αt = σ(ωTb .bt)

ct = H.αTt

hFt = tanh(Wh.ct + Uh.H) (24)
Having σ as the softmax function, we can retrieve HF

as an attention-based fusion for the output of unimodal
layers and the knowledge core to train the multimodal layer
within INLSTM, resulting in HK . Finally, we can transfer
the knowledge from HK to feed the knowledge core of the
parent node, continuing the bottom-up learning procedure
toward the root in the hierarchy.
4.1.6 Constructing Prediction Module
In general, our proposed framework maps the dataset users
to the Ω space, resulting in an adaptive tree that can hierar-
chically categorize the users and learn the ensemble of sub-
models. The prediction module can estimate the sentiments
by consuming the final improved representation of the data
in the root. As formalized in Eq. 25, the prediction module
can utilize a softmax function on HK

0 = [hK0,1, h
K
0,2, . . . , h

K
0,g]

with hK0,t ∈ Rd̃ that is the output of the root node submodel.
gt = σ(Wg.(h

K
0,t)

T + bg) (25)
y′t = arg max

m∈[0,1]

(gt[m])

Here, Wg, bg are parameters we learn during training the
prediction layer, and Y ′ = {y′t|y′t ∈ {0, 1}, t ≤ g} is the
final set of sentiment predictions for each utterance where
HK

0 is normalized to a probability distribution over binary
sentiments using cognitive-based perceptions.
4.1.7 Kind Neighbors
Given the node submodels with inadequate users, our goal
in this section is to reduce data sparsity. Hence, we em-
ploy a non-trivial approach to compensate insufficiency by
borrowing similar users from neighboring nodes. Each user
within a node can then either be original or marked as
adopted from adjacent nodes. Consequently, we propose the
dynamic dropout to optimize submodel training.
The sparsity phenomenon occurs when |nΦ

o |, as the number
of users in the subspace of the node no, deems to be less
than threshold θb. Accordingly, we can locate the nearest
neighbors using the least distance between pairs (Eq. 11)
and continue adopting the users from neighbors as long as
the amplitude satisfies the θb constraint. Hence, the higher
the dissimilarity between the nodes, the lower the node
adaptation chance, and the higher the dropout ratio will be,
resulting in a more generalized model in training. Given
the set of data enclosed with the adopted users from a
neighboring node nc, Eq. 26 calculates the dropout ratio pdc,o
for the given nc to facilitate training of the submodel of no.
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pdc,o =

Max
ϕi,ϕj∈nΦ

o

{zdΩ(ϕi, ϕj)}

zdT (nc, no)
× λ (26)

Here, λ is the adjusting parameter to scale the dropout
probability. Accordingly, the generalization of the model
will be proportionate to the conditional likelihood of the
adoption cases for each given original node. We compute
the probability by dividing the maximum distance between
the surrogate points within no sub-space by the distance
between no and any given neighboring node nc.

4.2 Online Phase
In the online phase, we evaluate the output sentiment for the
given video using a cognitive-based ensemble implemented
within an adaptive tree. After leveraging the features of all
data channels, we accomplish three procedures to complete
the inference process: Cognitive Assessment, Cognitive Tree
Routing, and Cognitive-Based Prediction.

4.2.1 Cognitive Assessment

In this section, given the input video and the participating
user, respectively denoted by v and v.l, we utilize the func-
tion zmΩ to map the user v.l to a corresponding surrogate-
point ϕ• within the Ω space (Eq. 27).

ϕ• = zmΩ (v.l) (27)

This approach is beneficial for cold-start users, where we
exploit the cognitive cues and estimate sentiments simulta-
neously. Moreover, we can benefit from mapping to track a
user-specific route within the adaptive tree.

4.2.2 Adaptive Tree Routing

In this section, we find the most relevant leaf node to the
corresponding surrogate point. To this end, we traverse a
route from the root toward the objective leaf node in the
adaptive tree. Following the categorization approach (Sec.
4.1.4) considered in the construction process of the tree, for
each node n within the traverse procedure, we obtain the
similar child node n̈ to the surrogate-point ϕ•.
Theoretical-Based Categorization In this approach, as a
prerequisite of fragmentation, for each node n in the adap-
tive tree, we hold both dimension c∗ and corresponding cut-
point c∗cut to assign the data to the left or right child node.
We then compare the value of c∗ at the point ϕ• versus c∗cut
to choose the corresponding child node n̈.
Clustering-Based Categorization Given N c as the set of
child nodes, the clustering-based method computes the
distance between ϕ• and the medoid of the subspace com-
prising candidate nodes to determine n̈ (Eq. 28).

n̈ = arg min
nκ∈Nc

{zdΩ(nΦ
κ .ϕ̃, ϕ•)} (28)

Here nΦ
κ .ϕ̃ is the subspace medoid of nκ. In a nutshell, we

firstly traverse the adaptive tree from the root toward the
specific leaf node in an iterative top-down process and sub-
sequently span the retrieved path in a bottom-up manner to
execute the transfer-based submodels.

4.2.3 Cognitive-Based Prediction
Algorithm 2 estimates cognitive-based sentiments for the
input video v, comprising four steps: feature extraction,
cognitive assessment, adaptive tree routing, and prediction.

Algorithm 2 Prediction In Online Phase
Input: v
Output: s

1: X = ∅, H = ∅, S = ∅, P = ∅
2: for all m in {A, V, T} do
3: for all uj ∈ v do
4: xmj = ExtractFeatures(umj )
5: end for
6: end for
7: ϕ• = zmΩ (v.l)
8: n̈ = n0

9: while n̈ 6= Null do
10: S.Push(n̈)
11: n̈ = SelectChildNode(n̈, ϕ•)
12: end while
13: while S 6= ∅ do
14: n̈ = S.Pop()
15: n̈k.append(H)
16: H = n̈m({XA, XV , XT }, n̈k)
17: end while
18: Y ′ = Predict(H) // Eq. 4.1.6
19: s = MajV ote(Y ′)
20: return s
Given video v with the set of utterances v = [u1, . . . , ug]
padded to the length g (Eq. 22), we first extract the modal-
specific feature vectors Xm ∈ Rdm×g for all utterances, with
m ∈ (A, V, T ) as the input modality and dm as the vector
length. We then put forward the function zmΩ to map the
participating user v.l to a point ϕ• in the Ω.
Consequently, we devise a novel stack-wise approach to
convey the routing process. Aiming to build the path for the
given user, we can trace a hierarchy from the root toward the
user-designated leaf node by obtaining similar child nodes
and pushing them into stack S.
Conversely, we process the set of feature vectors (XA, XV ,
and XT ) via a bottom-up approach using the pertinent
route from S to predict the sentiments of the input v. To
this end, we iteratively pop a node n̈ from S and append
the submodel output from the previous iteration to the
knowledge core n̈k, following by executing the node submodel
n̈m on the input feature vectors and the enclosed n̈k.
Finally, by executing the root submodel in the last iteration,
the predict module utilizes the submodel output of each
utterance as H ∈ Rd̃×g to obtain a set of predictions for
each utterance Y ′. The majority voting on Y ′ can attain the
final cognitive-based sentiment estimation s for v.
5 EXPERIMENT
We conducted extensive experiments on real-world datasets
[11] to evaluate our proposed model in multimodal senti-
ment analysis. We developed our algorithms using Tensor-
flow, Scikit-learn, and Seaborn. Additionally, we performed
the experiments on a server with 2.60GHz Intel Core i7-
6700HQ CPU, NVidia GeForce 1080 GPU, and 64GB of RAM
(available to download 1).
5.1 Configuration
5.1.1 Data
For the experiments, we used two publicly available
datasets [11] from online video-sharing platforms. Table 2
elucidates the corresponding dataset features.

1. https://sites.google.com/view/multi-modalsentimentanalysis

https://sites.google.com/view/multi-modalsentimentanalysis
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# of Users # of Videos Avg Utterance Density

CMU-MOSI 93 93 24 96.4%

MOUD 55 79 6 97.6%

TABLE 2: Datasets Statistical Description

CMU-MOSI [6] includes the multimodal reviews on movie
contents in English, where each video comprises multiple
segments as utterances. Multiple annotators assign labels
between -3 and +3 to utterances. We make the labels binary
(positive and negative) as required in experiments.
MOUD [7] includes video product reviews in the Spanish
language. The utterances labeled in neural, positive, and
negative classes similarly project into binary values.

5.1.2 Benchmark
Aiming to assess the multimodal sentiment prediction, we
tested the statistical hypothesis on the distinctive train and
test users for both datasets. We define the statistical param-
eters as follows: For each utterance uj composed by a user
ci, we determined True Positive when ci expressed positive
sentiment on uj while the model predicted the same positive
sentiment, False Positive when ci expressed negative senti-
ment on uj while the model predicted positive, True Neg-
ative when uj gained negative sentiment while the model
predicted the same sentiment, and False Negative when uj
gained positive sentiment while the model predicted the
opposite. Finally, we compute the performance metrics of
Precision, Recall, and F-measure to compare competitors in
the multimodal sentiment analysis.

5.1.3 Baselines
This section lists the baselines in multimodal sentiment
analysis in both cognitive and non-cognitive categories.
CHF This hierarchical framework[11] handles three input
modals of acoustics, visual, and textual to compute the
sentiments in a hierarchy of uni, bi, and tri-modal layers.
CAF This model[10] performs the context-dependent senti-
ment analysis on utterances using an LSTM network beside
an attention-based mechanism to handle fusion.
SEP Similar to [64], this ensemble model utilizes majority
voting on base models. The median divides cognitive cues
to train submodels on high and low splits.
CTP Our proposed cognitive-based sentiment analysis ap-
proach that leverages an attention-based fusion to transfer
the agglomerative knowledge within the adaptive tree. As
explained in Sec. 4.1.4, this method constructs the adaptive
tree through cluster-based categorization of users.
ITP As elucidated in Sec. 4.1.4, this approach replicates
CTP where it conversely builds the adaptive tree via a
theoretical-based categorization.

5.1.4 Data Cognitive Representation

One of the most notable points of our framework is that
the changes in cognitive features can substantially affect
the sentiment analysis results. As elucidated in Sec. 4.1.2,
we map each individual to the Ω space by zmΩ function,
resulting in unprecedented cognitive cues. The standard
density function of underlying distributions can compare
the cognitive space of various cues to include OPN, CON,
EXT, AGR, and NEU, representing openness, consciousness,
extroversion, agreeableness, and neuroticism.

Fig. 7: Cognitive cue annotation distribution on MOSI dataset

As Fig. 7 depicts, the distribution of cognitive cues, re-
flected by the users, follows the Gaussian distribution in
both datasets, an indication of high impurity that is more
centralized for AGR property. Such distribution can consti-
tute a significant contrast between samples that can further
facilitate the categorization of users. Compared to MOSI,
the cognitive values pertinent to OPN, EXT, and NEU are
slightly higher in MOUD. Such traits concerning the sen-
timent intensity and duration can directly affect emotion
manifestation [37]. Nevertheless, we will further need to
investigate if categorizing the users can result in meaningful
differences between datasets.
5.2 Effectiveness
5.2.1 Categorization Performance
In this section, we perform an intrinsic evaluation of the
clustering-based (CTP) and information-based (ITP) catego-
rization in the adaptive tree (Sec. 4.1.4).
To examine the cluster quality, we utilize both Silhouette
and Davies-Bouldin metrics [13], reporting the average
scores for each level in the hierarchical categorization. Ini-
tially, we observe that the more profound the hierarchy
grows toward the leaves (level 4), the lower the silhouette
score (Fig. 8). By contrast, the Davis-Bouldin index, an
evaluation based on the cluster centroids, does not pursue
a consistent behavior for ITP, reflecting an immense loss in
the second level and highlighting a sparse division due to
the limitedness of the ITP in generating the split pairs.

(a) MOSI (b) MOUD
Fig. 8: Evaluating clusters by Silhouette and Davies Bouldin

Finally, given higher values for Silhouette (solid lines) and
lower numbers for Davis-Bouldin (dashed lines) in Fig. 8
proves that compared to ITP, the divisions conveyed by the
CTP model can better obtain clusters.

5.2.2 Impact Of Trilateral Criteria
To attain optimal growth in the adaptive tree, as elucidated
in Sec. 4.1.4, we employ the trilateral criteria, proposing
three exclusive constraints denoted by θp, θe, and θa. Nev-
ertheless, the more significant the tree growth, the more
inevitable efficiency loss will be. Hence, we are to seek
thresholds that, on the one hand, can improve the effective-
ness of the model, increasing the accuracy, and on the other
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hand, can preserve the efficiency with a legitimate growth
in the adaptive tree.

(a) Accuracy (b) Tree Volume
Fig. 9: Trilateral Thresholds Comparison

Fig. 9 collectively examines the impact of recuperation (θp)
and impurity (θe) on the accuracy and the tree volume.
The accuracy measures in Fig. 9a show where θp ranges
between [0.725, 0.75], θe reflects a positive spike, with better
performance for the values of 0.55 and 0.65 where the latter
demonstrates more robustness compared to the former.
More specifically, as depicted in Fig. 9b, we notice that
compared to 0.55, setting θe to 0.65 can better control the size
of the tree, nominating θe = 0.65 as the best fit threshold.
In this way, we elegantly sacrifice the negligible change in
effectiveness to gain a significant improvement in efficiency.
Fig. 10 further analyzes the selected intervals on the accu-
racy and tree volume in a more fine-grained view. Finally,
if maximizing the performance of the proposed framework
in effectiveness and efficiency is of indication, the optimal
values of 0.74 and 0.6 for θp and θe can meet the preferences.

(a) Accuracy (b) Tree Volume
Fig. 10: Trilateral Thresholds Comparison

5.2.3 Impact Of Transferring In The Tree

One notable point about our framework is that it can inves-
tigate how the hierarchical transferring of the knowledge
from child submodels to the corresponding parent nodes
can improve the performance of the sentiment prediction
procedure. To empirically track the evidence, we conducted
an experiment to examine statistical measures during a trace
from leaf nodes toward the root, performed on the cognitive
tree. More specifically, given the test set associated with
node n (Sec. 4.2.2), we executed sentiment prediction on
the submodel nm using CTP. Finally, we used the average
F1-score for all nodes on the same level of the cognitive
tree, reported by Fig. 11 for MOSI and MOUD datasets of
the respective 5 and 3 levels. The higher the level in the
hierarchy, the more comprehensive the knowledge core will
be from transferring the submodel outputs of the lower
levels, resulting in an overall improvement in the tree.

(a) MOSI (b) MOUD
Fig. 11: Level-based comparison of F1 in the cognitive tree

Furthermore, the expected improvement ratio in the MOUD
dataset is more than MOSI, affirming the inference of Sec.
5.1.4, where the general cognitive differences imply that the
sentiment specifics, including density and duration, vary
more for users in the MOUD dataset. Hence, due to a better
contrast between users in the MOUD dataset, the cognitive
categorization and subsequent transferring modules have
substantially improved the initial predictions.

5.2.4 Effectiveness of multimodal sentiment analysis
Given the benchmark in Sec. 5.1.2, our goal is to examine the
competitors’ performance (Sec. 5.1.3) in multimodal senti-
ment prediction. Unlike CHF and CAF, the other three, SEP,
ITP, and CTP, are cognitive-aware in sentiment inference
procedure. Table 3 displays the statistics of an average 5-fold
test. While rc+ and rc− report the recall for the respective
positive and negative data classes, the pc and F1 represent
the precision and F1-score metrics.

TABLE 3: Baseline Comparison
MOSI MOUD

pc rc+ rc− F1 pc rc+ rc− F1

CHF 0.865 0.862 0.869 0.865 0.694 0.534 0.793 0.686

CAF 0.882 0.875 0.893 0.887 0.699 0.504 0.807 0.644

SEP 0.889 0.879 0.897 0.888 0.702 0.506 0.813 0.661

ITP 0.895 0.882 0.9 0.893 0.717 0.505 0.88 0.683

CTP 0.898 0.885 0.904 0.896 0.727 0.542 0.844 0.695

For the MOSI dataset, the cognitive-oriented approaches,
including ITP and CTP, significantly improve the perfor-
mance of non-cognitive methods. Nevertheless, while CTP
unanimously gains the best performance in all metrics, the
rate of improvement among cognitive-aware models (SEP,
ITP, and CTP) is less than 1%.
More specifically, the MOUD dataset reveals some latent as-
pects in performance concerning cognitive methods. Given
the F1 measure as the main metric to signify the best per-
formance, CTP overpasses other competitors, including ITP.
We note that while the number of positive data instances
dominates negative data samples, the second-best method,
ITP, plunges up to 4% less than other rivals (CHF and CTP).
Therefore, based on the nature of the dataset, we can rely
on 0.695 instead of 0.683 to gain up to 4% of improvement
for positive recall, sacrificing the negligible improvement
for the limited negative data samples. It worths mentioning
that using ITP in a converse manner can attain up to 4% of
improvement for negative recall when the positive samples
may flatten compared to negative data instances.
Since the recommended approaches of ITP and CTP are
the primary attempts in utilizing cognitive cues in the
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multimodal sentiment prediction, we compare the results
with non-cognitive baselines. Inherently, we observe the
advantage of considering cognitive cues in improving the
overall performance, where compared to non-cognitive-
based counterparts, the cognitive-based approaches show
an average of 2% improvement in the F1 measure. In a
nutshell, the results signify that using cognitive cues can
maximize the performance on the negative data class, re-
flecting an average of 3.6% increase in the recall.
More specifically, we probe the role of agglomerative ensem-
bles in cognitive-aware methods (ITP, CTP, and SEP). While
benefitting the MOUD dataset more, compared to SEP, the
F1-measures on ITP and CTP get enhanced significantly in
both datasets. The following affirms the empirical results in
Sec. 5.2.3 that compared to MOSI, the ratio of improvement
in each step of agglomeration is considerably higher for
MOUD. On the one hand, our proposed CTP framework
is capable of creating cohesive splits with higher separation
in the adaptive tree (Sec. 5.2.1), and on the other hand, by
maintaining a relatively higher performance compared to
ITP, it is capable of effectively distinguishing the users by
pertinent cognitive cues in their brief contents. To conclude,
the CTP model overpasses ITP both in the intrinsic and ex-
trinsic analysis, proving that the clustering-based adaptive
trees can better track cognitive-aware sentiments.
5.2.5 Multimodal Sentiment Analysis Complexity
In this section, we evaluate the time complexity of our
framework from a theoretical computer science perspective.
The proposed framework comprises offline and online com-
ponents, where the former supplies the output of the overall
training to the latter, justifying more time consumption
by the offline section. Henceforth, we first report the time
complexity of the offline components for both CTP and
ITP approaches, followed by complexity intuitions about
the online section. In retrospect, Eq.29 verbalizes the overall
complexity through aggregating the comprising times in the
framework.

T = Tf + Tc + T tb + T tm + Tp (29)

Here, Tf , Tc, T tb , T tm, and Tp respectively denote the time
complexities of the procedures, including feature extraction,
cognitive cue annotation, top-down tree generation, bottom-
up model construction, and the final prediction training.
Due to the insignificance effect of the feature extraction and
cognitive cue annotation modules, the relative time com-
plexities of Tf and Tc fade in contrast with the summation
of the other efficiency metrics, Eq. 29. To this end, we further
examine the complexity of T tb , T tm, and Tp.
Tree construction: T tb denotes the complexity for top-down
construction of the adaptive tree. Given each node n with
m instances, a three-fold set of actions are involved in con-
struction: fragmentation parameter setting T tpar , subspace
partitioning T tfrag , and trilateral termination criteria T tstop.
T tstop is the time requirements to control all the parameters
in the worst-case. Given H as the set of splits for the
node n, we can compute T tstop by the summation of three
complexities, including amplitude O(|H| × 1), impurity
O(|H| × 2 × 1), and recuperation O(2 × |H| × m) where
the overall complexity for T tstop can simplify as O(m).
Since the complexity T tpar referring to the parameter setting
differs for ITP and CTP models, on the one hand, we select
the dimension and the respective cut-point of the node

subspace for ITP, and on the other hand, we select the num-
ber of clusters in each node for CTP. Correspondingly, the
computation complexity of ITP equates to the summation
of selection complexities for dimension O(|C|2 × m2) and
the cut-point O(k ×m2), where |C| and k are respectively
the number of dimensions in Ω space and candidate points
in the selection process. Given 5 and 10 as the respective
values for |C| and k, we can simplify T tpar to O(m2) in
the ITP model. Similarly, given Eq. 21, we can obtain the
computation complexity for CTP by selecting an optimum
number of children as O(k × m2), where k counts the
constant number of candidates, ending with O(m2) as the
time requirements of T tpar .
Finally, we can respectively attain T tfrag for ITP and CTP
models using O(m) and O(k×m), where k denotes the con-
stant number of clusters, resulting in the same complexity
of O(m) for both. For ease of computation, the construction
complexity in each node can be calculated by the aggrega-
tion of the three-fold actions, equating to O(m + m2 + m),
where approximately is further simplified to O(m2). Eq. 30
formalizes the complexity of the tree construction (T tb ).

T tb ≈ O(m2
01) +O(m2

11 +m2
12 + . . . ) + . . . (30)

Here, we aggregate the computational complexity for the
nodes in each level. We further notice that the number of
instances in each node is less than the total count in the
root m01. Where we suppose the criterion

∑
jmij ≤ m01

for each level i, we can approximately conclude Eq. 30 as
T tb ≈ O(l ×m2

01). Accordingly, because of limited capacity
for the growth of the adaptive tree, we can disregard l, the
number of levels, in the final complexity.
Tree submodel construction: Given the training procedure
in LSTM models, we assume that the time required for each
weight in a time step is O(1). Hence, concerning W as the
total number of training parameters, the complexity can
be designated as O(W ) in each time step. As verbalized
in Eq. 31, W can disregard the biases and include three
final parameters of memory cells, input, and output units,
respectively denoted by dmc, di, and do.

W = 4× dmc + 4× dmc × di + dmc × do + 3× dmc (31)

To this end, for a node n with m instances, O(W ×e×m×t)
can represent the time for training an LSTM, where e is the
number of epochs and t is the time steps, equating to the
number of utterances within each video (Eq. 22). Both e and
t are constant values and can be dismissed [65].
Concerning the same input length, the complexity of the
four LSTMs will be identical to O(W × m). As Eq. 32
elucidates the total summation of the complexity for the
proposed adaptive tree T tm.
T tm ≈ O(W ×m01) +O(W ×m11 +W ×m12 + . . . ) + . . . (32)

Likewise, we can put a proposition forward to simplify the
complexity as O(l ×W ×m01).
Prediction module: converting an R-dimensional input to
an S-dimensional output demands a time requirement of
O(R×S). Here, the training time Tp will be linear and equal
to O(m01) with m01 as the total number of instances.
Finally, following Eq. 29, the overall running-time complex-
ity for the offline section will be the same for both CTP and
ITP approaches, formalized by Eq. 33:

T ≈ O(l ×m2
01) +O(l ×W ×m01) +O(m01) (33)
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By employing simplification on the above equation, the
computational complexity of the offline section in the frame-
work can be related to T ≈ O(m2

01).
Likewise, the time complexity for the online section will be
linear with the order of O(ḿ), where ḿ counts the number
of input instances. Since the time-sensitive scenarios, includ-
ing human-computer interaction, can adopt multimodal
affective analysis, the running time of the online module
deems quite crucial. Therefore, the efficient polynomial ap-
proach proposed in this paper can be significantly useful in
the practical requirements of real-time frameworks.

6 CONCLUSION
In this work, we propose a novel unified framework to
predict multimodal sentiments by consuming the cognitive
cues in user contents. In summary, to leverage individual
characteristics, we firstly map each individual to a cogni-
tive space based on exploited latent cues and subsequently
perform an agglomerative ensemble to carry out prediction.
Aiming to form the ensemble, we generate the novel adap-
tive tree by a hierarchical categorization of individuals in the
given cognitive space that is further followed by developing
transferring-based submodels. Correspondingly, we employ
both clustering and theoretical-based models to classify
individuals. Aiming to avoid data sparsity caused by the
construction of submodels, we devise a non-trivial deep
learning approach based on a dynamic dropout strategy to
borrow data from neighboring nodes. Finally, the prediction
module leverages the ensemble outcome of the adaptive tree
to analyze sentiments, deciding whether the multi-media
contents reflect a positive or a negative attitude.
The experimental results on two real-world datasets reveal
that leveraging latent cognitive cues can enhance multi-
modal sentiment analysis, the reason why the proposed so-
lution in this paper outperforms other trending approaches.
From another perspective, the proposed agglomerative en-
semble can better foster the impact of cognitive cues in
sentiment analysis via altering the theoretical-based module
by a clustering-based categorization technique. To continue,
we can integrate adversarial networks into the adaptive tree
to further compensate for data incompleteness and incorpo-
rate the personality effects into the fusion-based module to
support the attention function. We leave these tasks to tackle
in the future.
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