
CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF
CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH

Brigita Ferčec1 and Adam Mahdi2
1Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2,
SI-2000 Maribor, Slovenia, brigita.fercec@gmail.com, valery.romanovsky@uni-mb.si
2Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh NC
27695, USA, amahdi@ncsu.edu

Abstract
Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of
cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by
moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of
limit cycles bifurcating from each component of the center variety.

Key words and phrases
cyclicity; limit cycles; center problem

1. Introduction
We consider systems of ordinary differential equations on ℝ2 of the form

(1)

where λ is arbitrarily close to zero (possibly zero). The degree of system (1) is N = max{deg
P, deg Q}. Depending on nonlinear terms the origin of system (1) is either a center (every
orbit is an oval surrounding the origin), or a focus (every trajectory spirals towards or away
from the origin). The problem of distinguishing between a center and a focus is called the
center or the center-focus problem, for more details, see e.g. [20].

For system (1) denote by (λ, A, B) the set of its parameters λ, Aj,k and Bj,k, and by E(λ, A,
B) the associated space of parameters. Let also n(λ,A,B),ε denote the number of limit cycles
of system (1) that lie wholly within an ε-neighborhood of the origin. We define the key
concept of this article, namely the cyclicity of a singular point.

We say that the singularity at the origin for system (1) with fixed coefficients (λ*, A*, B*) ∈
E(λ, A, B) has cyclicity k with respect to the space E(λ, A, B) if there exist positive
constants δ0 and ε0 such that for every pair δ and ε satisfying 0 < δ < δ0 and 0 < ε < ε0

The problem of cyclicity of a center or a focus of a system of the form (1), which we always
assume to be located at the origin, is also known as the local 16th Hilbert problem [11].
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The concept of cyclicity was introduced by Bautin in his seminal paper [1], where he
showed that the cyclicity of focus or center in quadratic systems is three. The cyclicity of the
quadratic system has been studied by other methods in [14] and [24]. The cyclicity for some
Liénard systems has been studied recently in [22, 25]; for some systems of high degrees in
[18]; and the relationship between the cyclicity and the center problem in [12].

The cyclicity for systems with quadratic and cubic homogeneous nonlinearities can be
established easily using algorithms of computational algebra because the Bautin ideal for
these systems is radical. The problem becomes more difficult if the Bautin ideal is not
radical (which appears to be the generic case). An approach to finding the cyclicity in the
case of nonradical Bautin ideal has recently been proposed in [17].

In this paper we further generalize the method of [17] and apply it to the study of the
cyclicity problem for a family of real cubic systems whose expression in the complex form
is

(2)

where x = u + iv (the connection between system (1) and (2) is explained in detail in section
2). The motivation for studying system (2) is that it is one of the very few 5-parameter cubic
systems where the computation of the primary decomposition of the Bautin ideal is feasible
(because of computational complexity it is extremely difficult to treat 6-parameter cubic
systems with modern tools of computational algebra even using very powerful computers).
The center problem for system (2) has been solved in [3].

If we add to (2) the complex conjugate equation and consider x̅ as a new unknown function
y, and a̅ij as new parameters bji we obtain the associated complex system

(3)

which is also called the Lotka-Volterra system (see [5]). We shall study in detail the
structure of the Bautin ideal of system (3) as well as its variety. This will be used to derive
bounds for the cyclicity of the origin of the real system (2). We will see in section 4 that the
proposed method gives an estimation for the cyclicity of an elementary center or focus for
"almost all" points of the center variety. If with this approach one can algorithmically obtain
a bound for the cyclicity for "almost all" points of the center variety of any polynomial
family, then it can be considered as a solution to the cyclicity problem for an elementary
center or focus. However to confirm or reject this hypothesis more studies are needed.

The article is organized as follows. In section 2 we discuss a general approach to studying
cyclicity of polynomial systems. In section 3 we characterize the existence of the local
analytic first integral of system (3). This is a preliminary result needed in section 4 in order
to solve the cyclicity problem of system (2). Finally, in section 5 we estimate the cyclicity of
each component of the center variety of system (2).

2. Bautin ideal and cyclicity
In this section we briefly review an approach for studying the cyclicity problem. We also
discuss a method for bounding the cyclicity of a singular point by moving from the ring of
polynomials to a new ring, in which the Bautin ideal becomes radical or has a simple
structure.

Now we provide the basic definition of an ideal generated by polynomials, its variety and
the radical of the ideal. Let k is a field and denote by k[x1, x2, …, xn] the ring of
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polynomials in x1, …, xn with coefficients in the field k. Consider f1, f2, …, fs ∈ k[x1, …,
xn] and define the following set

We say that I is the ideal generated by the polynomials f1, …, fs and denoted by 〈f1, f2, …,
fs〉; the polynomials f1, …, fs are called the generators of I. By

we denote the variety of the ideal I. The radical of I, denoted by , is the set

We say that an ideal J ∈ k[x1, x2, …, xn] is radical if . Note that, if I is an ideal, then
its radical  is also an ideal and defines the same variety as I, i.e.

2.1. Complexification and focus quantities
The notion of the integrability and existence of a center are closely related. Recall that Φ(u,
v) is a first integral of (1) if

Using the notion of the first integral Poincaré and Lyapunov characterized the existence of a
center of systems (1).

Theorem 2.1 (Poincaré-Lyapunov). System (1) with λ = 0 has a center at (0, 0) if and only
if it admits a formal first integral of the form

(4)

In this theorem and the rest of the section j, k denote nonnegative integers. We introduce the
complex variable x = u + iv, and using u = (x + x̅)/2 and v = (x − x̅)/(2i) obtain from (1)

(5)

System (5) is just a complex form of the real system (1). Now adjoining the complex
conjugate
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and replacing x̅ by an independent complex variable y and a̅jk by independent complex
coefficient bkj, we obtain

(6)

We say that system (6) is the Complexification of system (1). Following Dulac [9] (see also
[20]) we consider the following extension of the concept of a center to system (6). We say
that system (6) on ℂ2 with λ = 0 has a center at the origin if it admits a formal first integral
of the form

(7)

The definition is justified by Theorem 2.1. One can always find a function Ψ of the form (7)
such that

where gqq is a polynomial in coefficients aij, bkj of system (6) called the qth focus quantity.
It is clear that the vanishing of all the focus quantities gqq is sufficient for the origin to be a
center. It turns out this is also necessary. We let (a, b) to denote the coefficient string (a20,
…, a0N, b20, …, b0N). Then system (6) with λ = 0 and (a, b) = (a*, b*) has a center at the
origin if and only if gqq(a*, b*) = 0 for all q ∈ ℕ (see e.g. [2], [20]). This explains the
importance played by the following ideal

called the Bautin ideal and its variety V(ℬ) called the center variety.

Since every ideal in the polynomial ring is finitely generated there exists K ∈ ℕ such that
the first K focus quantities generate the Bautin ideal ℬ. In other words if we denote by
ℬK := 〈g11, …, gKK〉, then there exists K ∈ ℕ such that ℬ = ℬK. In reality to solve the
center problem for a specific family (6) is to describe the center variety V(ℬ) of the Bautin
ideal.

2.2. Radical Bautin ideal
It is often convenient to use the focus quantities of system (6) to determine the cyclicity of
the origin of system (1) when it is a center. If system (6) is a Complexification of the real
system (1), then by the change of variables ajk = Ajk + iBjk and bkj = Ajk − iBjk we can

obtain the focus quantities of the real system . As before
A and B denote the parameters Aj,k and Bj,k, respectively, of the real system (1) and (A, B)
= (A20, …, A0N, BN0, …, B20).
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The next theorem reveals how the concept of minimality of the Bautin ideal is related to the
cyclicity of the center at the origin. Given a Noetherian ring R and an ordered set = {ν1,
ν2, …} ⊂ R, we construct a basis MinBasis(I) of the ideal I = 〈 υ1, υ2, …〉 as follows:

a. initially set MinBasis(I) = {vp}, where υp is a first non-zero element of 

b. sequentially check successive elements υj, starting with j = p + 1, adding υj to
MinBasis(I) if and only if υj ∉ 〈MinBasis(I)〉.

The basis MinBasis(I) constructed as above is called the minimal basis of the ideal I with
respect to the ordered set  The cardinality of MinBasis(I) is called the Bautin depth of I
[15]. The proof of the following theorem can be found, for example, in [20] and [17].

Theorem 2.2 (Radical Ideal Cyclicity Bound). Suppose that for (6) with λ = 0 the following
two conditions hold:

a. V(ℬ) = V(ℬK),

b. ℬK is a radical ideal.

Then the cyclicity of the origin of system (1) is at most the cardinality of MinBasis(ℬK),
that is the Bautin depth of ℬ.

2.3. Nonradical Bautin ideal
While there always exists K such that the first condition in Theorem 2.2 holds, the second
condition does not always hold. In some cases it is possible to overcome this difficulty
caused by the nonradicality of the ideal ℬK [21]. The idea is to move the problem to a
different ring in which the image of the Bautin ideal becomes radical [17] or has a simple
structure (for more details see section 4).

The following result, which is a reformulation of Theorem 6.2.9 of [20].

Theorem 2.3. Suppose that for (6) with λ = 0 we have ℬ = ℬm. Then the cyclicity of the
origin of system (1) is at most m.

In order to estimate the cyclicity of system (2) using Theorem 2.3 we will also need the
following result.

Proposition 2.4. Let I = 〈g1, …, gt〉 be an ideal in ℂ[x1, …, xn] such that the primary
decomposition of I is given as I = P1 ∩ … ∩ Pk ∩ Q1 ∩ … ∩ Qm where Pi and Qi are

primary ideals such that  for i = 1, …, k, and  for j = 1, …, m. Let Q =
Q1 ∩ … ∩ Qm and g be a polynomial vanishing on V(I). Let  be an arbitrary
point of V(I)\V(Q). Then in a small neighborhood of x* we have g = g1f1 + … + gtft, where
f1, …, ft are power series convergent at x*.

The proposition can be proved similarly as the corresponding result in [16].

3. Center variety of cubic system
Here we determine the conditions for the origin of family (3) to be a center, which is our
first main result. This will be used, in the following section, to establish another main result
of the paper, namely the determination of the cyclicity of the origin of system (2).

We shall need the following lemma, for a proof see [5].

Lemma 3.1. If the system (6) with λ = 0 has a local inverse integrating factor
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with Fi analytic in x and y, Fi(0, 0) ≠ 0 for i = 1, …, m, α ≠ 0, and α not an integer greater
than 1, then it has a first integral of the form (7).

The following theorem, is our main result for this section. It generalizes the result obtained
in [3] for real system (2).

Theorem 3.2. Let V(ℬ) be the variety of the Bautin ideal of family (3) with λ = 0 and let
ℬ4 := 〈g11, g22, g33, g44〉. Then we have V(ℬ) = V(ℬ4). Moreover, V(ℬ) consists of the
following five irreducible components

where

Proof. Necessity. Using, for example, the algorithm given in [20] we compute the first seven
focus quantities g11, …, g77 of system (3). The first four of them are given in Appendix A.
The other three polynomials are too long to be presented in the paper however the interested
reader can compute them easily with the help of, e.g. Mathematica [23] (see [20, p.308] an
algorithm; and [10, ?] for a generalization). By the Hilbert Basis Theorem V(ℬ) = V(ℬk) for
some k ∈ ℕ. Using the Radical Membership Test one can verify that

which leads us to expect that V(ℬ4) = V(ℬ). It is straightforward to check (using any
specialized computer algebra system, e.g. Singular) that the irreducible decomposition of
V(ℬ4) consists of five components given in the statements of the theorem.

Sufficiency. Now, we verify that each point of V(Jk), k = 1, 2, 3, 4, 5 corresponds to a
system with a center at the origin.

Component V(J1). Using the algorithm from [20, Table 5.1, p.235], see also [19]) we find
that the Zariski closure of all time-reversible systems in the family (3), denoted by ℛ̅, is the
variety of the ideal J1. Thus every system from V(J1) admits a first integral of the form (7)
and, therefore has a center.

Component V(J2). System (3) that corresponds to component V(J2) can be written as

Ferčec and Mahdi Page 6

Math Comput Simul. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

This system has two invariant algebraic curves l1 = x and l2 = y yielding the integrating
factor μ = x−2y−2 and the first integral

Thus H is of the form

where c = b11 and R = 1 + h.o.t. (h.o.t. stands for higher order terms). We claim that there
exists an analytic function S = 1 + h.o.t. such that

To prove the claim we consider

(9)

We note that K(0, 0, 1) = 0 and . Therefore, by the implicit function theorem
there is a function S = 1 + h.o.t., which gives the solution to (9) in a neighborhood of the
origin. This proves the claim. Now it is easy to see that H̄ = xy/S is an analytic first integral
of system (8).

Component V(J3). We shall show that the system

(10)

has a center at the origin, i.e. it admits a first integral of the form (7). Equivalently, we show
that it admits a first integral of the form

where, for k ∈ ℕ, fk(y) is an analytic function in the neighborhood of 0. Let

. It is easy to see that Ψ̇ = 0 if and only if

(11)

(12)
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(13)

for k ≥ 3.

We claim, and show by induction that fk(y) in (11)–(13) are of the form

(14)

where Pk(k) ∈ ℂ[y] of degree at most k. Integrating (11) and (12) we get

which proves our claim for k = 1, 2. Assuming our claim is true for k = 1, 2, …, j − 1, we
show that it is also true for k = j. Consider (13) for k = j and note that f¯j−1(y) is of the form
(14) with k = j − 1. Therefore for k = j, equation (13) is equivalent to

where Qj−1(y) ∈ ℂ[y] of degree at most j − 1. Equivalently

(15)

To conclude, we need to show that fj(y) in (15) has the form (14). If

Substituting the above expressions to (15), we get

Note that this equation can be easily solved for Pj. Therefore, function fj(y) is of the form
(14), which proves the claim.

Component V(J4). This case is similar to the previous one under the involution akj ↔ bkj.

Component V(J5). Now we consider

(16)

It has the following invariant curves l1 = x, l2 = y, l3 = 1 − b01y − b02y2, l4 = 1 − a10x −
a20x2, with the corresponding cofactors k1 = 1 − a10x − a20x2, k2 = −1 + b01y + b02y2, k3 =
−y(−b01 −2b02y), k4 = x(−a10 −2a20x). We can construct an inverse integrating factor of the
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form V = xyl3l4. Therefore, by Lemma 3.1 system (16) admits a first integral Ψ of the form
(7).

4. Cyclicity of a cubic system
In this section we prove the main result of the paper, namely a bound for the cyclicity of the
origin of system (2).

Theorem 4.1. Assume that |a20|+|a11|+|a02|≠ 0. Then the cyclicity of the center at the origin
of system (2) is at most four.

To prove Theorem 4.1 we shall make use of the following lemma.

Lemma 4.2. The focus quantities gkk of system (3) belong to the polynomial sub-algebra
ℂ[h1, …, h12] ⊂ ℂ [a, b], where

(17)

Proof. Define a set S := {(1, 0), (2, 0), (1, 1), (0, 2)}. Consistently with this we order the
eight coefficients as (a10, a20, a11, a02, b20, b11, b02, b01) so that any monomial, denoted by
[ν], appearing in gkk has the form

(18)

for some . Let  be the map defined by

By ν̂ we denote the involution of ν, i.e. ν̂ = (ν8, …, ν1). It is shown in [20] that the focus
quantities of system (3) have the form

(19)

Define the set , which has a structure of a monoid by

First, using the Algorithm in Table 5.1 of [20] we compute a Hilbert basis of ℳ, obtaining a
12-element set
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We denote by νj the jth element of this list and let hj = [νj] ∈ ℂ[a, b]. Hence we obtain (17).
Therefore we get

where , k ∈ ℕ, that is, the focus quantities gkk of system (2) with λ = 0 belong to the
polynomial subalgebra ℂ[h1, …, h12], which proves our lemma.

Proof of Theorem 4.1. To prove our cyclicity bound we first attempt to use Theorem 2.2.
The equality V(ℬ) = V(ℬ4) was established in Theorem 3.2. Thus condition (a) of Theorem
2.2 holds. Now we show that ℬ4 is not radical and thus the condition (b) (of Theorem 2.2) is
not fulfilled.

We claim that ℬ4 is not radical. To see that we denote by  the radical of ℬ4 (in practice
we compute the generators of  using e.g. the command radical of SINGULAR [7]). Now we
compute the reduced Gröbner bases ℬ4 and  of the ideals ℬ4 and , respectively. It is
clear that ℬ4 is radical if and only if ℬ4 and  are the same (see [6]). It turns out that
(using e.g. reduce command of SINGULAR [7]) some of the elements of  do not reduce to
zero modulo ℬ4.Therefore  which finishes the proof of the claim.

Therefore we seek to apply Theorem 2.3 instead. By Lemma 4.2 focus quantities of system
(2) belong to the polynomial subalgebra ℂ[h1, …, h12], where hj = hj(a, b) for j = 1, …, 12
are given in (17). We also define the polynomial mapping

which induces the ℂ-algebra homomorphism

where d(α) ∈ ℂ.

Now we shall compute , i.e. we seek to express the focus quantities g11, …, g44
∈ ℂ[a, b] in the new variables c1, …, c12. Since the focus quantities are lengthy
polynomials, we shall use a convenient algorithmic procedure (see [6]) for finding those
expressions. Choose any elimination ordering with {a, b} > {c}: for instance,
lexicographical ordering with a20 > a10 > a11 > a02 > b20 > b11 > b01 > b02 > c1 > … > c12:
Let c = (c1, …, c12) and denote by J ⊂ ℂ[a, b, c] the ideal generated by cj − hj(a, b), that is J
= 〈cj − hj(a, b) : j = 1, …, 12〉. Computing a Gröbner basis JG of the ideal J in ℂ[a, b, c] with
respect to the elimination ordering as above and forming the Gröbner basis R = JG ∩ ℂ[c] of
the ideal J ∩ ℂ[c] yields a 10-element set {r1, …, r10} given by
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By the Elimination Theorem (see e.g. [6] or [20]) the set given above is a Gröbner basis of

R: Finally, the division of each g11, …, g44 by JG yields polynomials  that are
given in Appendix B.

Geometrically equations (17) define a graph in ℂ8+12 and the projection of the graph to ℂ12

denoted by W is computed using the Elimination Theorem. The Zariski closure of the
projection is the variety of the ideal R, W̅ = V(R): Hence, to show that

we compute the reduced Gröbner basis of the ideal Nc, and find that it is the same as the

reduced Gröbner basis of the ideal  ⊂ ℂ[c]. Therefore

 which in turn, gives

By the natural isomorphism of ℂ[W̅] with ℂ[c]/R the ideal  is radical if and only

if the ideal  in ℂ[c]/R is radical. Its easy to see that this is true if the

ideal  is radical in ℂ[c].

Using the routine primdecGTZ of SINGULAR [8, 13] we compute the primary decomposition of
K and obtain

(20)

where P1, …, P5 are prime ideals but unfortunately Q is not prime. Thus K is not a radical
ideal in ℂ[c]/R. Therefore, the method of [17] cannot be directly applied.

We note, though, that the Q in (20) is a primary ideal such that

. Thus K has the
structure as in Proposition 2.4. In the parameter space E(a, b), the variety V(Q) is defined by

The intersection V(Q) with the parameter space E(a) is the set a20 = a11 = a02 = 0. Let now
(a*, a̅*) be a point from E(a, b) corresponding to system (2). If |a20|+|a11|+|a02|≠ 0 then F(a*,
a̅*) ∉ V(Q). Therefore, by Proposition 2.4, there exist rational functions fj,k, sj,k such that for
c ∈ W̅ in a neighborhood of F(a*, a̅*) with |a20|+|a11|+|a02|≠ 0 we have

(21)

Applying F* to (21) we get that

holds for all k > 4 in a neighborhood of (a*, a̅*).

In short, {g11, g22, g33, g44} is the minimal basis of ℬ and therefore by Theorem 2.3 the
cyclicity of the center at the origin of system (2) with |a20|+|a11|+|a02|≠ 0 is at most four.
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5. Cyclicity of the components
In this section we study the number of limit cycles that can bifurcate from each component
of the center variety of system (2). Our approach is based on a result by Christopher [4],
which relates these numbers to the dimension of each component.

First we shall introduce some notations. Denote by  the polynomials obtained by
replacing in gkk the variable bqp with a̅pq. Then the center variety of the real system (2) is the

variety Vℝ in E(a̅) of the ideal . We denote by  the Jacobian of the

polynomials  evaluated at the point p and by rank  the rank of .

Theorem 5.1 ([4]). Assume that for system (5) with λ = 0 and a point p ∈ Vℝ, rank
Then the codimension of Vℝ is at least k and there are bifurcations of (5), which produce
locally k limit cycles from the center corresponding to the parameter value p.

Moreover, if p lies on a component C of Vℝ of codimension k, then p is a smooth point of
the center variety, and the cyclicity of p and any generic point of C is exactly k.

In order apply this theorem, first we find all the irreducible components of Vℝ. This can be
obtained from the components of the complex center variety of system (3) described in
Theorem 3.2 by setting

(22)

where . The capital letters indicate the coefficients of the real system written in the
complex form as (2).

The following theorem describes in details the variety Vℝ.

Theorem 5.2. The center variety in ℝ8 of the real system (2) with λ = 0 consists of the
following three irreducible components

where

of dimension 5, 5, and 4, respectively.

Proof. We obtain the ideals G1, G2 and G3 by applying the change of variables (22)
respectively to the generators of the ideals J1, J2 and J5 of Theorem 3.2. We note that
applying (22) to J3 and J4 of Theorem 3.2 results in the same ideal 〈A11, B11, A02, B02, A20,
B20〉, which is a subvariety of G3.
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It is straightforward to see that the dimension of V(G2) and V(G3) is 5 and 4, respectively.
Now we show that dim V(G1) = 5.

We begin by finding the rational parametrization of V(G1). We claim that it is given by

(23)

where f0 = 0, f1 = t, f2 = u1, f3 = u2, f4 = u3, f5 = u4, f6 = −2u1u2u3, f7 = 2u2u3u4 and

. To prove our claim we construct an ideal Ie by eliminating the variables w, t,
u1, u2, u3, u4 from the ideal

in the ring

We note that Ie = G1. Therefore, by Theorem 2 of [6] we get that (23) is a rational
parametrization of G1; and dim V(G1) ≤ 5, which proves our claim. Now, since the rank of
the Jacobian of f0, …, f7 at the point t = 0, u1 = 1, u2 = −1, u3 = 2, u4 = 3 is five, we obtain
that, in fact, dim V(G1) = 5, which completes the proof of our theorem.

We define the following polynomials:

Theorem 5.3. The cyclicity of a generic point p of V(G1) with F1(p) ≠ 0 and of point p′ of
V(G2) with F2(p′) ≠ 0 is three. The cyclicity of a point p″ of V(G3) with F3(p″) ≠ 0 is four.

Proof. We find that for V(G1), rank  at p with F1(p) ≠ 0 and similarly for V(G2) we

obtain rank  at the point p′ with F2(p′) ≠ 0. Therefore, by Theorem 5.1 three limit
cycles bifurcate from the origin for the systems corresponding to p and p′, respectively. For

V(G3) we have rank  at the point p″ with F3(p″) ≠ 0: Since the codimension of V(G3)
is 4, by Theorem 5.1 the cyclicity for the system corresponding to p″ is 4.
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Appendix A
The first four focus quantities for the system (3) are as follows:
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g11 = b11 − a11,

g22 = −a02a20 + 6a10a11b01 − 6a10b01b11 + b02b20,

 ,

.

Appendix B
The first four focus quantities (each reduced modulo the ideal generated by the previous
ones and up to a constant) are as follows:

,

 ,
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