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Abstract

Individual choices often depend on the order in which the decisions are made. In

this paper, we expose a general theory of measurable systems (an example of which is

an individual’s preferences) allowing for incompatible (non-commuting) measurements.

The basic concepts are illustrated in an example of non-classical rational choice. We

conclude with a discussion of some of the basic properties of non-classical systems in

the context of social sciences. In particular, we argue that the distinctive feature of

non-classical systems translates into a formulation of bounded rationality.

JEL: D80, C65, B41
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1 Introduction

In economics, an agent is defined by her preferences and beliefs, in psychology by her values,

attitudes and feelings. One also talks about “eliciting” or “revealing” preferences and atti-

tudes. This tacitly presumes that those properties are sufficiently well-defined (determined)

and stable. In particular, it is assumed that the mere fact of subjecting a person to an elic-

itation procedure, i.e., to “measure” her taste does not affect the taste. Yet, psychologists

are well aware that simply answering a question about a feeling may modify a person’s state
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of mind. For instance when asking a person “Do you feel angry?” a “yes” answer may take

her from a blended emotional state to an experience of anger. But before answering the

question, it may be neither true nor false that the person was angry. It may be a “jumble of

emotions”[25]. Similarly, Erev, Bornstein and Wallsten (1993) show in an experiment that

simply asking people to state the subjective probability they assign to some event affects the

way they make subsequent decisions. The so-called “disjunction effect” (Tversky and Shafir

(1992)) may also be viewed in this perspective. In a well-known experiment, the authors

find that significantly more students report they would buy a non-refundable Hawai vacation

if they knew whether they passed the exam or failed compared to when they don’t know

the outcome of the examination. In the case they passed, some buy the vacation to reward

themselves. In the case they failed, some purchase the vacation to console themselves. When

they don’t know, a seemingly inconsistent behavior is observed: fewer vacations are being

purchased than in any one of the two possible events.

In the examples above, the mere fact of subjecting an agent to a procedure that reveals

her feeling, preferences or beliefs seems to affect her. In this paper, we propose to adopt a

measurement theoretical approach to behavior: actual behavior reveals preferences (or be-

liefs) in the sense of being the outcome of a measurement of those preferences. Interestingly,

Kahneman and A. Tversky explicitly discuss some behavioral anomalies in terms of mea-

surement theory: “Analogously, - to classical physical measurement - the classical theory of

preference assumes that each individual has a well-defined preference order and that different

methods of elicitation produce the same ordering of options”. But, ”In these situations - of

violation of procedural invariance - observed preferences are not simply read off from some

master list; they are actually constructed in the elicitation process.” ([12] p. 504). A. Sen

[24] also emphasizes that the “act of choice” has implications for preferences. In this work

we adopt the view that performing a measurement on a system generally changes its state.

In particular, an experiment or a decision situation that reveals a person’s preferences affects

that person’s preferences.

Is it possible to build a predictive model of a system whose state changes as we perform

measurements on it? We assert that it is if the interaction between systems and measurement

instruments satisfies some natural conditions. We formulate them as axioms and show that

the state space is endowed with the structure of an atomistic orthomodular orthospace and

the states are realized as probability measures on the state space.
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Of course, our formalization does not build on an empty spot. The question of modeling

a system that changes when being measured is at the heart of Quantum Mechanics (QM).

Birkhoff and von Neumann’s seminal article from 1936 initiated a rich literature on the

mathematical foundations of QM. For an excellent review of the field see the introductory

chapter in Coecke, Moore and Wilce (2000). Recently, the interest for QM has been rapidly

expanding to other fields. Partly, this is due to the development of quantum computing,

which inspires physicists and more recently economists to investigate the use of quantum

information in games (Eisert (1999), La Mura (2004)). Another avenue of research has

emerged in response to observations that classical (or macro) objects (e.g. human perception

or preferences) can exhibit properties specific to QM-objects. In Lambert-Mogiliansky, Zamir

and Zwirn (2003), a Hilbert space model is proposed to describe economic agents’ preferences

and decision-making. Aerts (1994), Busemeyer and Townsend (2004) and Khrenikov et

al. (2003) investigate quantum-like phenomena in psychology. The basic idea is that the

mathematical formalism of QM, often referred to as “quantum logic” rather than its physical

content, is a suitable model for describing, explaining and predicting human behavioral

phenomena in psychology and social sciences.

In this paper we expose the foundations of a general measurement theory. The objective

with the proposed formulation is to allow assessing the relevance of this framework for

social sciences including for the analysis of individual choice and in particular for modelling

bounded rationality.

Section 2 offers a few examples of quantum and quantum-like behavior. In Section 3 we

introduce basic notions of measurement theory, namely that of measurement and of state.

They are illustrated in models of rational choice in Section 4. Axioms and their consequences

are exposed in Sections 5 and 6. Section 7 discusses an interpretation of the basic axioms

and properties for behavioral sciences.

2 Examples

Example 1: The spin of an electron

An electron is endowed with several characteristics including the spin. The spin is an

intrinsic property of any particle and corresponds to a magnetic moment which can be
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measured.1

It is well-known that the outcome of the measurement is always ±1/2 (in some units)

independently of the orientation of the measurement device. If we measure a concrete elec-

tron along some axis x and obtain result +1/2, then a new measurement along the same

axis will give the same result. Assume we prepare a number of electrons this way. If we, for

the second measurement, modify the orientation of the axis, e.g., the measurement device

is turned by 90◦, the result now shows equal probability for both outcomes. As we anew

perform the measurement along the x-axis, we do not recover our initial result. Instead, the

outcome will be −1/2 with .5 probability.

We limit ourselves to noting that once the spin of the electron along some axis is known,

the results of the measurement of the spin of that electron along some other axis has a

probabilistic character. This is a central feature. In the classic world, we are used to deal

with probabilities. But there the explanation for the random character of the outcome is

easily found. We simply do not know the exact state of the system, which we represent by a

probability mixture of other states. If we sort out this mixture in the end we obtain a pure

state and then the answer will be determinate. In the case with the spin, it is not possible to

simultaneously eliminate randomness in the outcome of measurements relative to different

axis.

Example 2: A fly in a box

Consider a box divided by two baffles into four rooms (left/front (LF), Left/Back (LB),

RF and RB. In this box, we hold a fly that flies around. Because of the baffles, it is limited

in its movements to the room where it is.

Assume that we only have access to two types of measurements. The first allows answer-

ing the question whether the fly is in the Left (L) or the Right (R) half of the box. And,

in the process of measurement, the baffle between the Front (F) and the Back (B) half of

the box is lifted while the separation between Right and Left is left in place. During that

process, the fly flies back and forth from Front to Back. When the measurement operation

is over and the baffle between Front and Back put back in place, the position of the fly is

therefore quite random (LF or LB). The same applies for the measurement of Front/Back.

1Stern and Gerlagh created an instrument such that the interaction between the magnetic moment of the

electron and that of the experimental setup generates the splitting of a beam of electrons. A measure of the

deviation can be interpreted of the measurement of spin (along some orientation).
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Assume that we have performed the measurement L/R and obtained answer L. Repeating

that same measurement even 100 times we will always obtain the same answer L. But if we

do, in between, the F/B measurement, we have equal (for the sake of simplicity) chances

to obtain R as L. We see that the behavior of our system reminds of that of the spin

(when the Stern-Gerlach device is rotated by an angle of 90◦). Here the position of the fly

cannot be determined with certainty with respect to the two measurements (LR) and (FB)

simultaneously. The measurement affects the system in an uncontrollable and unavoidable

way. This simple example exhibits all basic features of the non-classical measurement theory

developed in this paper.

Example 3: Attitudes and preferences

Consider the following situation. We are dealing with a group of individuals and we are

interested in their preferences (or attitudes). We dispose of two tests.

The first test is a questionnaire corresponding to a Prisoners’ Dilemma against an anony-

mous opponent. The options are cooperate (C) and defect (D). The second test corresponds

to the first mover’s choice in an Ultimatum Game (UG). The choice is between making an

offer of (9,1) or of (4,6).2

The observations we are about to describe cannot be obtained in a world of rational

agents whose preferences are fully described by their monetary payoff.3 But this is not our

point. Our point is that such observations exhibit the same patterns as the ones we described

in the spin and fly example above.

Suppose that we have the following observations. The respondents who answer C to the

first questionnaire repeat (with probability close to one) their answer when asked immedi-

ately once more. We now perform the second test (UG) and the first test (PD) again. In that

last PD test we observe that not all respondents repeat their initial answers. A (significant)

share of those who previously chose to cooperate now chooses to defect.4

2In the Ultimatum game the first mover makes an offer. The respondent either accepts the deal and the

payoffs are distributed accordingly. Or he refuses in which case no one receives any payoff.
3Game Theory uniquely predicts behavior: people defect (D) in the PD and (with common knowledge

of rationality) they offer (9,1) in UG. Experimentalists have however taught us to distinguish between

monetary payoffs, which can be controlled and preferences, which may include features beside monetary

payoffs unknown to the designer of the experiment.
4D. Balkenberg and T. Kapplan (University of Exeter, unpublished) conducted an experiment with those

two same games but with two populations of respondents. They investigate the frequency of the choices

when the two games are played in one order compared to when they are played in the reverse order. The
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How do we understand this kind of behavior? When deciding in the PD our respondent

may feel conflicted: she wants to give trust and encourage cooperation, but she does not like

to be taken advantage of. Consider the case when her optimistic ‘I’ takes over: she decides to

cooperate. When asked again immediately after, her state of mind is that of the optimistic

‘I’ so she feels no conflict: she confirms her first choice. Now she considers the UG. The deal

(4,6) is very generous but it may be perceived as plain stupid. The (9,1) offer is not generous

but given the alternative it should not be perceived as insulting. She feels conflicted again

because her optimistic ‘I’ does not provide clear guidance. Assume she chooses (9,1). Now

considering the Prisoners’ Dilemma again, she feels conflicted anew. Indeed, her choice of

(9,1) is not in line with the earlier optimistic mood so she may now choose to defect.5

As in the spin and the fly example, the measurement (elicitation of preferences) affects

the agent in an uncontrollable way so the observed behavior (measurement outcomes) may

exhibit instances characteristic for quantum-like systems.

3 Measurements and states

In this section we introduce and discuss two basic concepts of the theory, namely the concepts

of measurement and of state.

3.1 Measurements

A system is anything that we can performmeasurements on. A measurement is an interaction

between a system and some measurement device, which yields some result, the outcome of the

measurement that we can observe and record. The set of possible outcomes of a measurement

M is denoted O(M). For instance in the case with the Stern-Gerlach experimental setup,

we let the electron travel through a non-homogeneous magnetic field and observe deviation

either up or down. In the example with the fly we lift up a baffle and observe in which half

of the box the fly is located. In our third example, we let people play the Prisoner Dilemma

(and the UG) and observe their choice.

data shows an impact of the first choice on the second which is characteristic of non-classical measurements.
5We do not in any manner mean that the proposed description in terms of inner conflict is the only

possible one. A variety of psychological stories are consistent with such phenomena of non-commutativity.
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First-kindness

Measurements constitute a special class of interactions. We focus on non-destructive

measurements, which means that the system is not destroyed in the process of measurement

so we can perform new measurements on the system. In particular, we can perform a

measurement M twice in a row. If the outcomes of the two measurements always coincide,

we say that the measurement M is a first-kind measurement.6

In other words the results of a first-kind measurement are repeatable (reproducible). This

is a very important point that deserves some additional comments. One may wonder why a

“measurement” would fail to satisfy the property of first-kindness. There are several reasons

for that. A first and most important reason is that the system is evolving. For instance, the

thirst of a person running a marathon is not the same from one time to another along the

race. In this paper we focus on systems that do not have an own dynamics (or alternatively

on situations where measurements are made so close in time that we can disregard the own

dynamics). A second reason for failing first-kindness is noise in the measurement instrument

itself. We shall assume that measurements do not bring in own uncertainty. A third reason

is that the measurement operation actually is a combination of incompatible measurements.

We return to this point soon.

In what follows, we assume that all measurements are first-kind. Indeed, if a measurement

is not first-kind it is unclear what we measure and what the relation is between the outcome

of the measurement and our system. Of course, the question about first-kindness of any

concrete measurement is an experimental one.

Compatibility

Two measurements are compatible if they, roughly speaking, can be performed simultane-

ously or more precisely, if the performance of one measurement does not affect the result of

the other. Suppose that the first measurement gave outcome o; then we perform the second

measurement and the first one anew. In case we are dealing with compatible measurements

we obtain outcome o with certainty.

Given two compatible measurements M and N we can construct a third finer measure-

ment. We may performM and thereafterN and view this as a new (compound) measurement

6The term “first-kind” measurement was proposed by W. Pauli. J. von Neumann used the following

formulation: ”If the physical quantity is measured twice in succession on a system S then we get the same

value each time.”
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M ∗N with outcome set O(M)×O(N). Because of compatibility, the measurement M ∗N

is a first-kind measurement.

If all measurements are compatible we can substitute them with a single finest (complete)

measurement, which is also first-kind. Performing that measurement we learn everything

about the system. Such a system is classical.

The existence of incompatible measurements is a distinctive feature of non-classical sys-

tems. It is closely related to the impact of measurements on the state and the existence of

“dispersed” states (see next subsection).

In the examples of Section 2 all measurements were incompatible.

3.2 States

Measurable systems

As we perform a measurement and observe its result we learn something about a system.

All the information that we have about a system is “encapsulated” in the state of the system.

The state is the result of past measurements and it is the basis for making predictions of

future measurements. A theory (or a model) of a system should describe the set of states,

the results of any measurement in every state and the change in the state induced by any

measurement.7

The state of a system predicts the result of any measurement. But we do not assume that

it predicts a unique outcome. We only assume that the state determines the probabilities

for the outcomes, that is it determines a random outcome.

In order to avoid technical subtleties associated with the notion of probability, we shall

in what follows assume that the sets O(M) are finite. In such a case, a probabilistic measure

(or a random element) on O(M) is a collection of non-negative numbers (probabilities) µ(o)

for each o ∈ O(M) subjected to the condition
∑

o∈O(M) µ(o) = 1. The set (a simplex indeed)

of probabilistic measures on O(M) is denoted ∆(O(M)). In such a way the state s defines

a random outcome in O(M), that is a point µM(s) ∈ ∆(O(M)) for every measurement M .

Of course, the random outcome µM(s) can be degenerated, that is µM(o|s) = 1 for some

outcome o ∈ O(M). In the general case, the outcome is random; moreover, we are interested

in systems with “intrinsic uncertainty”. We return to this central point later, for now we

7If the system has an own dynamic the model should be enriched with a description of its evolution over

time.
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note that in the general case measurements impact on (change) the state. Indeed, let s

be a state such that the outcome of a measurement M is not uniquely determined. After

having performed measurement M (and obtained outcome o) the new state s′ of the system

differs from s because (according to the first-kindness of M) now the result of M is uniquely

determined and equal to o.

Definition. A measurable system is a system equipped with a set M of first-kind

measurements. A model of a measurable system includes the following three collections of

data:

1) a set of states S ;

2) an outcome mapping, µM : S → ∆(O(M)) for every measurement M ∈ M;

3) a transition mapping, τM,o : S → S for every measurement M ∈ M and any of its

outcome o ∈ O(M).

The first mapping defines the probabilities for the possible outcomes when performing

measurement M in an arbitrary state s. The second mapping τM,o points out where the state

s goes (transits) as we perform measurement M and obtain outcome o ∈ O(M). We have

to recognize that the mappings τM,o are not defined for those states in which the outcome o

is impossible.

It is useful at this point to introduce a few notions that we also use later. Let M be a

measurement and A ⊂ O(M). Denote

EM (A) = {s ∈ S, µM(A|s) :=
∑

o∈A

µM(o|s) = 1}.

The set EM(A) consists of the states endowed with the following property: the result of the

measurement M belongs to A for sure. The set EM (o) for o ∈ O(M) is called the eigenset

of measurement M corresponding to outcome o.

In these terms the mapping τM,o is not defined on the subset EM(O(M) \ {o}), where o

can not be an outcome of M . The image of τM,o coincides with the eigenset EM(o).

Pure states

Although it is not necessary, we shall suppose that two states coincide if all their pre-

dictions are the same. (Here we follow Mackey: “A state is a possible simultaneous set of

statistical distributions of the observables.”). In that case, we can consider the set S as some

subset of the convex set ×M∈M∆(O(M)).
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This allows to speak about mixtures of states. A state σ is called a (convex or proba-

bilistic) mixture of states s and t with (non-negative) weights α and 1− α, if

µM(o|σ) = αµM(o|s) + (1− α)µM(o|t)

for any M ∈ M and any o ∈ O(M). Mixtures of three or more states are defined similarly.

A state is said to be pure if it is not a non-trivial mixture of other states.

Without loss of generality one can suppose that the set of states S is convex (as a subset

of ×M∈M∆(O(M))). The subset P of pure states is the set of extreme points of the convex

set S, P = ext(S). In the sequel we assume that S is the convex hull of P, S = co(P).

Moreover, it is quite natural to assume that the transition mappings are linear (i.e., are

compatible with the convex structure on S). For this reason we can work with the set of

pure states P instead of S. Of course, we should keep in the mind that the transition state

τM,o(s) can be mixed.

In the classical world, pure states are dispersion-free, that is the outcome of any mea-

surement performed on a system in a pure state is uniquely determined. Randomness in the

results of a measurement indicates that the system is in a mixed state. One can sort out (or

filter) this mixture by making measurements so as to eventually obtain a pure state.

A distinctive feature of non-classical systems is the existence of dispersed (that is non

dispersion-free) pure states. This feature can be called “intrinsic uncertainty”. It is closely

related to two other properties of non-classical systems: the existence of incompatible mea-

surements and the impact of measurements on states. If a state is dispersion-free i.e., the

outcome of every possible measurement is uniquely determined, there is no reason for the

state to change. If all pure states are dispersion-free then measurements do not impact on

pure states and therefore all measurements are compatible. On the contrary, if a state is

dispersed then by necessity it will be modified by an appropriate measurement. On the

other hand, the change in a pure state is the reason for incompatibility of measurements.

The initial outcome of the first measurement M is not repeated because the system has been

modified by the second measurement N .

4 An illustration: non-classical rational choice

Let us illustrate the above introduced notions in (thought) examples of non-classical rational

choice behavior.
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We shall consider a situation where an agent is making a choice out of a set of alternatives

X . A primitive measurement is a choice from a subset A ⊂ X ; the set of outcomes of the

measurement is A (i.e. we consider single-valued choices). For this reason we denote such a

choice-measurement A. A main idea is that a choice out of “small” subsets is well-defined

and rational. By well-defined we mean that the corresponding measurement is first-kind. By

rational we mean that consecutive choices from “small” subsets satisfy Houthakker’s axiom

(or the principle of independence of irrelevant alternatives, IIA). Our motivation is that

an agent may, in his mind, structure any “small” set of alternatives, i.e., he is capable of

simultaneously comparing those alternatives. He may not be able to do that within a “big”

set (which we interpret as bounded rationality, see Section 7). This does not means that

our agent cannot make a choice from a “big” set. For example, he might use an appropriate

sequence of binary comparisons and choose the last winning alternative. However, such a

compound choice-measurement would not in general be first-kind.

We formulate Houthakker’s axiom in the following way. Let A and B be two “small”

subset, and A ⊂ B. In our context, Houthakker’s axiom consists of two parts:

1) Suppose the agent chooses from B an element a which also belongs to A. If the

consecutive measurement is A then the agent chooses a.

2) Suppose the agent chooses from A an element a. If the consecutive measurement is B

then the outcome of the choice is not in A \ {a}.

In order to be more concrete, we shall consider as “small” subsets of the size 3 or less.

We begin with the case when all choice-measurements are compatible. Performing binary

choices we obtain some binary relation≺ onX . From ternary choices we see that this relation

is transitive so that the relation ≺ is a linear order. Therefore, it is natural to identify the

set P of pure states with the set of linear orders on X . We obtain the well-known classical

model.

We now relax the assumption of compatibility of all choice-measurements and consider

three different models.

Model 1. X includes three alternatives a, b and c. To define a model we need to define

the set of states, the outcome and the transition mappings.

Let the set of pure states P consists of three states denoted [a], [b] and [c]. When the

agent is asked to choose an item out of X he chooses a in state [a], b in [b], and c in [c].

11



The choice-measurement X does not change the state. When the agent is asked to choose

an item out of {a, b}, a choice-measurement that we denote by ab, he chooses a in the state

[a], b in [b]; in the state [c] he chooses a and b with equal chances (and transits into [a] or [b]

correspondingly). Symmetrically for the choice-measurements ac and bc.

It is clear that Houthakker’s axiom is satisfied in this model. Note that the choice

measurements are incompatible. Indeed, let for instance the agent be in the state [c] and

choose c out of X . We then ask her to choose out of {a, b}. After that choice-measurement

she chooses a or b out of X but not c.

Model 2. The set of alternatives X is the same as in the previous model. But the set of

states differs. Now we identify (pure) states with outcomes of our four choice-measurements

ab, ac, bc, abc. That is P = {ab, ab, ac, ac, bc, bc, abc, abc, abc}. Here ac denotes the

choice of item a out of {a, c} and so on.

To define the model we have to specify the outcomes of the measurements and the

corresponding state transition.

Let the state be abc. The outcome of measurement abc is obvious, as well as that of

measurements ab and bc (by Houthakker’s axiom). The corresponding new states are abc, ab

and bc respectively. But what about choice-measurement ac? We assume that (with equal

chances) the new state is ac or ac.

Let now the state be ab. By definition b is the outcome of measurement ab and the state

does not change. Suppose that we perform the choice-measurement . We assume that the

new state is abc with probability 1/3 and is abc with probability 2/3. Houthakker’s axiom

says that a cannot be the outcome the abc measurement. Suppose that the measurement ac

is performed. The new state is ac with probability 2/3 and ac with probability 1/3. Similarly,

if we perform measurement bc we obtain c with probability 1/3 and b with probability 2/3.

The outcomes and the transitions into other states are defined symmetrically. This

completes the definition of our model which obviously satisfies the Houthakker axiom. Model

2 describes a rational (non-classical) choice behavior as does Model 1. Yet, the pure states

cannot be identified with orderings of the alternatives as in the classical model.

Clearly, the eigensets of the measurement abc are the one-element sets {abc}, {abc}

and {abc}. The eigensets of measurement ab look more interesting. They are the two-

elements sets {ab, abc} and {ab, abc}. The eigensets of the measurements bc and ac are

defined similarly. Here is the full list of the properties:
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a) 3 one-element subsets: {abc}, {abc}, {abc} (represented by the nodes of the second

line from below in the lattice below);

b) 6 two-element subsets: {ab, abc}, {ab, abc}, {ac, abc}, {ac, abc}, {bc, abc}, {bc, abc} (they

are represented by the nodes of the third line from below in the lattice);

c) 3 four-element subsets: {abc, abc, ac, bc}, {abc, abc, ab, bc}, {abc, abc, ac, ab}

(represented by the nodes of the fourth line of the lattice);

d) the empty set ∅ and the whole set P (respectively the bottom and the upper node in

the lattice).

Note that the intersection of properties is a property as well. The lattice of the properties

is drawn below:

❞

❞ ❞ ❞

❞ ❞

❞ ❞ ❞

❞

✚
✚

✚
✚❂ ❄

❩
❩
❩
❩⑦

❅
❅
❅❘

�
�

�✠

❩
❩
❩
❩❩⑦❄

✚
✚

✚
✚✚❂

❞ ❞

❆
❆❯

✁
✁☛

❞ ❞

❏
❏
❏❫

❅
❅❘

✓
✓

✓✓✴

�
�✠

◗
◗
◗
◗◗s

✑
✑

✑
✑✑✰

✟✟✟✟✙
❍❍❍❍❥

Figure 1

We note also that the lattice is not atomistic (not all elements can be written as the join of

atoms).

Model 3. Here the set X consists of four items: a, b, c and d. For any A ⊂ X with 3

or 2 elements the corresponding choice-measurement A is first-kind. We assume as before

that Houthakker’s axiom holds in any two consecutive choice-measurements. In addition,

we assume that choices out of A and B are compatible if A ∪ B 6= X . Thus, our agent is

“more classical” than in Model 2.

As in the classical case we can perform binary and ternary measurements on each triple

of items taken separately and reveal a linear order on that triple. It is therefore natural to

identify the set of pure states with the collection of those linear orders. There are 24 such

orders: [a > b > c], [c > d > a], and so on.

Suppose that the state is [a > b > c].
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1) If A ⊂ {a, b, c} then the outcome of choice-measurement A is determined by the order

a > b > c; the measurement does not change the state.

2) If we perform measurement A with outcome set {a, b, d}, the new state will be [a >

b > d], [a > d > b] or [d > a > b] with equal chances; the outcomes are a, a and d

correspondingly. For A = {a, c, d} or {b, c, d} the new states are defined similarly.

3) If we perform measurement A with outcome set {a, d}, the new state can be one of

[a > b > d], [a > c > d], [a > d > b], [a > d > c], [d > a > b], and [d > a > c] with equal

chances. In the first four cases the outcome is a; in the two last cases the outcome is d.

Similarly for A = {b, d} and A = {c, d}.

The eigenset of the measurement abc corresponding to a is {[a > b > c], [a > c > b]}.

The eigenset of the measurement ab corresponding to a is {[a > b > c], [a > c > b], [a >

b > d], [a > d > b], [c > a > b], [d > a > b]}.

Consider now a choice out of the set {a, b, c, d} . It is not a first-kind choice-measurement.

Here many scenarios are possible. We shall assume the agent proceeds by making two (first-

kind) measurements. First she chooses from a pair then from the triple consisting of the first

selected item and the two remaining items. We can call this behavior ”procedural rational”

because the agent proceeds as if she had preferences over the 4 items.

Let us consider the following scenario. Assume that the agent just made a choice in abc

and that the outcome was abc so the state belongs to {[c > b > a], [c > a > b]}. Suppose that

when confronted with abcd the agent follows the following procedure she performs the mea-

surement ab and then the measurement bcd (this means that the first outcome is ab). After

the first measurement, the state can be anyone of [c > b > a], [b > a > d] , [b > d > a] and

[d > b > a] . Therefore the outcome of bcd can be b. This violates of the principle of inde-

pendence of irrelevant alternative (IIA) and demonstrates preference reversal.8

The examples above demonstrate that there can be many different models of one and

same measurable system. Which of them is the correct one? It is an empirical question.

We also see from this illustration that as we consider the possibility of incompatible choice-

measurements on subsets of X , the behavior of a non-classical rational man differs from that

of a classical rational man in ways that can accommodate behavioral anomalies.

8In models 1 and 2 we could also obtain a phenomena of preference reversal but not in two consecutive

choices. Model 3 allows for that because the choice out of four items is a compound measurement.
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5 Basic structure on the state space

In this section we go further with the formal investigation. We show that if the model

of a measurable system (M, S, µ, τ) is endowed with some additional properties (that we

formulate as axioms) then the set of states is equipped with the structure of an orthomodular

ortho-separable orthospace.

5.1 Properties

We remind that, for M ∈ M and A ⊂ O(M), we introduced the set EM (A) as the set of

states s such that when performing measurement M on a system in state s, the result of the

measurement belongs to A for sure. The sets of the form EM(A) are called properties of our

system, namely the property to imply A when performing measurement M .

Different instruments measure different properties of a system. But it may happen that

one and the same property can be measured by several instruments. We require that in

such a case the probability for the property does not depend on the instrument. We note

that Model 1 from Section 4 does not meet that requirement. Indeed, property [a] can be

obtained by measurements abc and ab. But in state [c] , outcome a never obtains with the

first instrument while a obtains with probability 1/2 with the second instrument. Yet, this is

a very reasonable requirement and we impose the following (slightly stronger) monotonicity

condition:

Axiom 1 Let M and M ′ be two measurements, let A ⊂ O(M), and A′ ⊂ O(M ′). Suppose

that EM(A) ⊂ EM ′(A′). Then µM(A|s) ≤ µM ′(A′|s) for any state s.

In particular, if P = EM(A) = EM ′(A′) is a property then the probabilities µM(A|s)

and µM ′(A′|s) are equal and depend only on the property P . We denote this number as

s(P ) and understand it as the probability to obtain property P when performing a suitable

measurement of the system in state s. By definition we have

s(P ) = 1 ⇔ s ∈ P.

The set of all properties is denoted by P. As a subset of 2S, P is a poset (a partially

ordered set). It has a minimal element 0 = ∅ and a maximal element 1 = S. Any state s ∈ S

defines the monotone function s : P → R+, s(0) = 0, s(1) = 1.
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We now describe another basic structure on the property poset P. Let P = EM(A) be a

property. The subset P op = EM(O(M) \ A) is a property too. We have s(P op) = 1 − s(P )

for any state s ∈ S. Thus

P op = {s ∈ S, s(P op) = 1} = {s ∈ S, s(P ) = 0}

and the set-property P op depends only on P . We call it the opposite property to P .

Lemma 1 The poset P equipped with the operation ’ is an orthoposet. That is the following

assertions holds:

1) If P ⊂ Q then Qop ⊂ P op;

2) P ∩ P op = ∅ for every property P ;

3) P
′′

= P for every property P .

Proof. 1) Suppose s ∈ Qop. Then s (Qop) = 1 and s (Q) = 1− s (Qop) = 0. Since P ⊂ Q

by Axiom 1 we have that s (P ) = 0 as well. Therefore s (P op) = 1− s (P ) = 1 and s ∈ P op.

Assertions 2) and 3) are obvious. �

From Lemma 1 we obtain that 1 is the only property which contains both P and P op.

Indeed if P ∪ P ′ ⊂ Q then by 1) Qop ⊂ P op ∩ P ′′ = ∅, Qop = 0 and Q = 1. In other words

the supremum P ∨ P op equals 1 in the ortho-poset P. Note that in general P ∪ P op 6= S.

5.2 Orthospaces

The set of states S possesses a similar orthogonality structure. We say that two states s

and t are orthogonal (and write s ⊥ t) if there exists a property P such that s(P ) = 1 and

t(P ) = 0. Since, for the opposite property P op, it holds s(P op) = 0 and t(P op) = 1, we have

t ⊥ s, so that ⊥ is a symmetric relation on the set S. Clearly, ⊥ is an irreflexive relation.

This lead us to the following general notion.

Definition. A symmetric irreflexive binary relation ⊥ on a set X is called an orthogo-

nality relation. A set X equipped with an orthogonality relation ⊥ is called an orthospace.

Example 4. Consider an Euclidean space H equipped with a scalar product (x, y) . We

say that vectors x and y are orthogonal if (x, y) = 0. The symmetry of the orthogonality

relation follows from the symmetry of the scalar product. To obtain the irreflexivity we

have to remove the null vector. So that X = H\{0} is an orthospace. A Hilbert space over
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the field of complex numbers is another example. Such a model is standard for Quantum

Mechanic.

When graphically representing an orthospace, one may connect orthogonal elements and

obtain a (non-oriented) graph. This representation is often the most “economic”, since few

edges need to be written. Alternatively, one may connect non-orthogonal (or tolerant9)

elements. The tolerance graph quickly becomes extremely complex. In simple cases, we

combine the two representations. Dotted lines depict orthogonality and solid lines depict

tolerantness. The graphs of Example 2 (A fly in a box) is in figure 2.

Figure 2

For A ⊂ X , we denote by A⊥ the set of elements that are orthogonal to all elements of

A,

A⊥ = {x ∈ X, x ⊥ A}.

For instance ∅⊥ = X and X⊥ = ∅. If A ⊂ B then B⊥ ⊂ A⊥.

Definition. The subset A⊥⊥ is called the ortho-closure of a subset A. A set F is said

to be ortho-closed (also called a flat ) if F = F⊥⊥.

It is easily seen that for any A ⊂ X, the set A⊥ is ortho-closed. Indeed, let F = A⊥.

Then F ⊂ F⊥⊥. On the other side, A ⊂ A⊥⊥ = F⊥; applying ⊥ we reverse the inclusion

relation F⊥⊥ ⊂ A⊥ = F . In particular, the ortho-closure of any A is ortho-closed.

Let F(X,⊥) denote the set of all flats of orthospace (X,⊥) ordered by the set-theoretical

inclusion, which we denote ≤. It contains the largest element X , denoted 1, and the smallest

element ∅, denoted 0. Moreover the poset F (X,⊥) is a (complete) lattice. The intersection

9The term “tolerant” is used in mathematics to refer to a symmetric and reflexive relation.
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of two (or more) flats is a flat implying that A∧B exists and equals A∩B. The join A∨B

also exists and is given by the formula

A ∨B = (A ∪B)⊥⊥ .

Definition. An ortholattice is a lattice equipped with a mapping ⊥: F → F such that

i. x = x⊥⊥;

ii. x ≤ y if and only if y⊥ ≤ x⊥;

iii. x ∨ x⊥ = 1.

Thus the poset F(X,⊥) is an ortholattice.

5.3 The intersection axiom

We have associated to a measurable system two objects: the orthoposet of properties P and

the ortholattice of flats F(S,⊥). It is intuitively clear that these two objects are closely

related. But for now we can only assert the following inclusion

P op ⊂ P⊥

for a property P . Indeed, by the definition of ⊥, any element of P is orthogonal to any

element of the opposite property P op.

In order to go further we impose the following intersection axiom

Axiom 2 The intersection of any properties is a property.

Axiom 2 puts conditions on the set of measurements as it requires that if P and Q are two

properties there must exist a measurement such that P ∩ Q is one of its eigensets. Axiom

2 is fulfilled in Models 2 and 3 from Section 4. As we shall see this Axiom implies that

properties and flats are the same. To prove this we first get a few consequences of Axiom 2.

Lemma 2 P op = P⊥ for any property P .

Proof. Since P op ⊂ P⊥, we have to check the opposite inclusion P⊥ ⊂ P op. Let t be an

arbitrary element of P⊥, and let s be an arbitrary element of P . Since t⊥s, then by the

definition of ⊥ there exists a property Es such that t ∈ Es and s ∈ Eop
s . Set E = ∩s∈PEs; by

Axiom 2 E is a property. Since E ⊂ Es for any s, we have E
op

s ⊂ Eop. Together with s ∈ Eop
s

we obtain that P ⊂ Eop. Therefore E ⊂ P op, and we have that t ∈ ∩sEs = E ⊂ P op. �
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In particular, any property P = (P op)op = (P op)⊥ is orthoclosed. Hence the inclusion

P ⊂ F holds. We now prove the inverse inclusion, that is any flat is a property. We first

establish this faci for flats of the form {s}⊥, where s is a state. Let P (s) denote the least

property containing the state s, that is intersection of all properties containing the state s.

Lemma 3 s⊥ = P (s)op.

Proof. Since s ∈ P (s), we have that P (s)op = P (s)⊥ (by Lemma 1) is contained in

{s}⊥. In order to check the reverse inclusion, we consider an arbitrary element t of {s}⊥.

By definition this means that s ∈ E and t ∈ Eop for some property E. Since P (s) is the

minimal property containing s, we have P (s) ⊂ E. Hence Eop ⊂ P (s)op and t ∈ P (s)op.

This prove the inclusion {s}⊥ ⊂ P (s)op. �

In particular, flats of the form {s}⊥ are properties. Since any flat is an intersection of

subsets of the form {s}⊥, from the intersection axiom we obtain that any flat is a property.

Thus, we proved the following important theorem

Theorem 1 P = F(S,⊥).

From Theorem 1 we see that the orthoclosure A⊥⊥ of a set A is the least property

containing A. It consists of states having the properties that are common to all elements

of A. The elements of A⊥⊥ are also called superpositions of A. The following Proposition

implies that any mixture of A is a superposition of A.

Proposition 1 Suppose that a state s is the convex mixture of states s1, ..., sn with strictly

positive coefficients αi. Then the orthoclosure of s is the same as the orthoclosure of {s1, ..., sn}.

Proof. We have to show that s is endowed with property P if and only if s1, ..., sn are

endowed with property P. s ∈ P ⇔ s (P ) = 1. But s (P ) =
∑

i αisi (P ) . Since si (P ) ≤ 1

and αi > 0 for all i, we have that
∑

i αisi (P ) = 1 if and only if all si (P ) = 1 i.e., if and

only if s1, ..., sn ∈ P . �

Corollary. The natural mapping F(P,⊥) → F(S,⊥), where P is the set of pure states

with the induced orthogonality relation, is an isomorphism of ortholattices.

For this reason we can work with the orthospace P of pure states holding in mind that

mixtures are in principle possible.
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5.4 Atomicity and the preparation axiom

A state s is an atom if the set {s} is orthoclosed. By Proposition 1, any atom is a pure

state. Model 2 from Section 4 shows that the inverse is not true. Nevertheless in the sequel

we restrict our attention to systems in which any pure state is atom. We formulate this

requirement in terms of measurements.

Axiom 3 For any pure state s ∈ P, there exists a measurement M such that {s} is one of

its eigensets.

In other words, any pure state is fully characterized by its properties. Substantively (or

operationally) it means that, given any state s, there exists an experimental set-up which

can “prepare” the system in that state s. Axiom 3 is rather reasonable (it is fulfilled in

Model 3 from Section 4) and we explore its consequences.

Let s and t be two pure states. Due to Axiom 3, the set {t} is a property and therefore

we can speak about s(t) := s({t}), the probability for a transition from the state s to the

state-property t.

Lemma 4 Suppose Axiom 3 is fulfilled. Then t(s) = 0 if and only if s⊥t.

Proof: Let us suppose that s⊥t and let P be a property such that s ∈ P and t(P ) = 0.

From the inclusion {s} ⊂ P and the monotonicity axiom we have t({s}) = 0. The converse

assertion is more obvious because s belongs to the property {s} on which t vanishes. �

Corollary 1 s(t) = 0 if and only if t(s) = 0.

In the general case, s(t) can differ from t(s).

Axiom 3 implies the ortho-separability of the orthospace P. Let us remind that an

orthospace (X,⊥) is called ortho-separable if any single-element subset {x} of X is a flat. It

is easy to check that {x} is a flat if and only if for any y 6= x there exists z orthogonal to x

but not to y. For example, the orthospace in figure 3
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Figure 3

is not ortho-separable, since a⊥⊥ = {a, c, d} 6= {a}.

It is worthwhile noting that any ortho-separable orthospace (X,⊥) can be reconstructed

from the ortho-lattice F(X,⊥). Recall that an atom of a lattice F is a minimal non-zero

elements of F . A lattice F is called atomistic if any element of the lattice is the join of

atoms. If (X,⊥) is an ortho-separable orthospace then F(X,⊥) is a complete atomistic

ortho-lattice.

Conversely, let F be a complete atomistic ortho-lattice. Then, there exists an ortho-

separable orthospace (X,⊥) (unique up to isomorphism) such that F is isomorphic to

F (X,⊥). One needs to take the set of atoms of F as the set X ; atoms x and y are orthog-

onal if x ≤ y⊥. For more details see, for example [20]. Roughly speaking, ortho-separable

orthospaces and atomistic ortholattices are equivalent objects.

5.5 Orthomodularity

It was early recognized that the failure of classical logic to accommodate quantum phenomena

was due to the requirement that the lattice of properties should satisfy the distributivity law.

Birkhoff and von Neumann [3] proposed to substitute the distributivity law by the modularity

law. As it turned out, the weaker notion of orthomodularity proved to be more adequate,

see [13].

Definition. An orthospace (X,⊥) is said to be orthomodular if, for every two flats F

and G such that F ⊂ G there exists an element x ∈ G which is orthogonal to F .

In other words, if x does not belong to a flat F then there exists a superposition of F

and x which is orthogonal to F . Orthomodularity permits constructing orthogonal bases in
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the same way as in Euclidean spaces. An orthobasis of a flat F is a subset B of mutually

orthogonal elements such that F = B⊥⊥. In is easy to see that (for any orthospace) the

maximal flat 1 has an orthobasis. If X is orthomodular then each flat has an orthobasis.

More precisely, there holds

Lemma 5 Let F be a flat in an orthomodular space, and B′ ⊂ F be a subset consisting of

mutually orthogonal elements. Then, there exists an orthobasis B of F containing B′.

Proof. Let B be a maximal (by inclusion) subset in F which contains B′ and consists of

mutually orthogonal elements. We claim that the orthoclosure of B coincides with F . In

opposite case there exists an element x in F orthogonal to B. If we add x to B we extend

B which contradicts the assumption of B being maximal. �

In particular, beginning with the empty B′ we can construct an orthobasis of any flats.

Note, however, that ortobases of the same flat (even the maximal flat 1) can have different

numbers of elements.

The orthomodularity of space (X,⊥) implies the orthomodularity of the corresponding

ortho-lattice of flats F(X,⊥). Recall that an ortho-lattice F is called orthomodular if, for

every its elements a and b such that a ≤ b, the following equality holds

b = a ∨ (b ∧ a⊥).

Lemma 6 An orthospace (X,⊥) is orthomodular if and only if its ortholattice F (X,⊥) is

orthomodular.

Proof. Let (X,⊥) be orthomodular space and let F and G be two flats such that F ⊂ G.

We have to show that G = F ∨(G∧F⊥). Denote by G′ the right hand side of the expression;

it is clear that G′ ⊂ G. If the inclusion is strict then G consists an element x orthogonal to

G′. In particular, x is orthogonal to F , that is x belongs to F⊥. Since x belongs to G as

well then x belongs to G ∩ F⊥ and all the more to G′. But we obtain that x is orthogonal

to x which contradicts the irreflexivity of the orthogonality relation ⊥. Conversely, let the

lattice F(X,⊥) be orthomodular and F ⊂ G be two different flats. Since G = F ∨ (G∩F⊥)

then G∩F⊥ is nonempty. Every element of G∩F⊥ belongs to G and is orthogonal to F . �

We now impose the following requirement
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Axiom 4 Let P and Q be comparable properties (that is either P ⊂ Q or Q ⊂ P ). Then

there exists a measurement M ∈ M such that P = EM(A) and Q = EM(B) for some A,B

in O(M).

This is a serious restriction. For example, it is violated in Model 2 of Section 3. A first

consequence of Axiom 4 is the orthomodularity of the state space.

Proposition 2 If Axiom 4 is fulfilled then the state space S (or P ) is orthomodular.

Indeed, suppose that P ⊂ Q are two different properties. Let M be a measurement such

that P = EM(A) and Q = EM(B) for A,B ⊂ O(M). Obviously, A ⊂ B and this inclusion

is strict. If b ∈ B \ A then every element of EM(b) belongs to Q and is orthogonal to P . �

Another important consequence of Axiom 4 is that any state s ∈ S can be considered as

a probability measure on the orthospace P.

Definition. A probability measure on an orthospace (X,⊥) is a function p : F(X,⊥) →

R+ satisfying the following two requirements:

1) if F and F ′ are orthogonal flats then p(F ∨ F ′) = p(F ) + p(F ′);

2) p(1) = 1.

By induction we obtain the equality p(F1 ∨ ... ∨ Fn) = p(F1) + ... + p(Fn) for any mu-

tually orthogonal flats F1, ..., Fn. It is natural to call this property ortho-additivity. The

requirement 2) is simply a normalization. Note that 1) implies p(0) = 0. If the orthospace

(X,⊥) is orthomodular (what we shall assume) then p is monotone (that is p(F ) ≤ p(Q) for

F ⊂ Q). When all elements of X are orthogonal each to other (and X is a finite set) we

come to conventional notion of a probability measure on X , see 5.1.

We already (see 5.1) represented an arbitrary state s as a function on F(P,⊥). We now

assert that this function is ortho-additive.

Proposition 3 Axiom 4 implies that any state s (as a function on F(P,⊥)) is a probability

measure.

Proof. Since s(1) = 1 we have to check the ortho-additivity of s. Let F and F ′ be two

orthogonal flats, and G = F∨F ′. Since F ⊂ G then, by Axiom 4, there exists a measurement

M such that F = EM(A) and G = EM(B) for A ⊂ B ⊂ O(M). Set A′ = B \ A.
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We claim that F ′ = EM(A′). We begin with inclusion ⊂. Let us consider an arbitrary

state t from F ′. The outcome of the measurement M in the state t cannot belong to A

according to orthogonality of t and F . Hence the outcome of the measurement belongs to

A′ with certainty, that is t ∈ EM(A′). Thus, F ′ ⊂ EM(A′).

Suppose now that t is a state from EM(A′), but not from F ′. Due to orthomodularity,

we can assume that t is orthogonal to F ′. Since t is orthogonal to F = EM(A) as well, we

conclude that t is orthogonal to F ∨ F ′ = G and therefore cannot belong to EM(A′). A

contradiction. The claim is proven.

Now s(F ∨ F ′) = µM((A ∪A′)|s) = µM(B|s) = s(G). �

In particular, if {b1, ..., bn} is an orthobasis of a property F then s(F ) = s(b1)+ ...+s(bn)

for any state s.

6 Impact of measurements

Here we assume that (M, S, µ, τ) is a model of some measurable system satisfying Axioms

1-4. In the preceding Section we have shown that the state space P is an ortho-separable

orthomodular space. In this section we show that measurements act as orthogonal projections

in this orthospace.

6.1 Ideal measurements

We know that measurements impact on the state, that is the state of a system is modified

by the performance of measurements. Here we investigate measurements that “minimally”

impact on the state. These measurements are called ideal. Let us give a precise definition.

Let M ∈ M be a measurement with eigensets F (o) = EM(o), o ∈ O(M).

Definition. A measurement M is ideal if, for every state s, the new state τM,o(s) belongs

to the convex hull of the flat F (o) ∧ (s ∨ F (o)⊥).

Note that we earlier said that the transition mapping τM,o is undefined for states be-

longing to F (o)⊥. This is in agreement with the fact that, for s ∈ F (o)⊥, the flat F (o) ∧

(s ∨ F (o)⊥) = F (o) ∧ F (o)⊥ is empty. On the contrary, if s does not belong to F (o)⊥ then

the flat s ∨ F (o)⊥ is strictly larger than F (o)⊥. According to orthomodularity it contains
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an element orthogonal to F (o)⊥, that is an element belonging to F (o). Therefore the flat

F (o) ∧ (s ∨ F (o)⊥) is nonempty indeed.

Proposition 4 Let M be an ideal measurement. Suppose that a pure state s belong to one of

the eigensets of M . Then the performance of measurement M leaves the state s unaffected.

In that sense an ideal measurement minimally impacts on states or produces “a least

perturbation”.

Proof. Let us suppose that s belongs to the eigenset F = F (o). By the definition of

ideality, the new state is in F ∧ (s∨F⊥). Since s ∈ F we have the dual inclusion F⊥ ⊂ {s}⊥.

By force of orthomodularity s⊥ = F⊥ ∨ (s⊥ ∨ F ). Applying ⊥ we obtain the equality

F ∧ (s∨ F⊥) = s⊥⊥. By Axiom 3, that last set is made out of a single element s. Therefore

the new state coincides with s. �

Let us mention one more property of ideal measurements. When performing an ideal

measurement the new state s′ is not orthogonal to the old state s. This follows from the fact

that F ∧ (s ∨ F⊥) and s⊥ do not intersect. In fact,

s⊥ ∧ F ∧ (s ∨ F⊥) = (s ∨ F⊥)⊥ ∧ (s ∨ F⊥) = 0.

Strengthening Axiom 4, we postulate that there exists sufficiently many ideal measure-

ments. Let M ∈ M be a measurement. As we know, different flats EM (o) are orthogonal to

each other. Moreover, the join of all EM(o) is equal to 1. Indeed, if a state s is orthogonal

to EM(o) then EM(o) ⊂ s⊥ and consequently s(EM(o)) ≤ s(s⊥) = 1−s(s) = 0; on the other

hand,
∑

o s(EM(o)) = 1. This leads us to the following definition

Definition. An Orthogonal Decomposition of the Unit (ODU) is a finite family of flats

(Fi, i ∈ I) such that

a. Fi and Fj are orthogonal if i 6= j;

b. ∨i∈IFi = 1.

Thus, for a measurement M , the family of eigensets (EM(o), o ∈ O(M)) is an ODU. The

next ideality axiom asserts that any ODU may be obtained as the collection of the eigensets

of some ideal measurement.

Axiom 5 For any ODU (Fi, i ∈ I), there exists an ideal measurement M ∈ M with the

outcome set O(M) = I and the eigensets EM(i) = Fi.
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Axiom 5 connects ideal measurements with ODUs. This allows to investigate the central

issue of compatibility of measurements which we do next.

6.2 Compatible measurements

In Section 3 we informally discussed the notion of compatible measurements. In order to

consider this issue more formally we need to introduce a notion of commutativity in the

orthomodular space P. Two (or more) flats commute (or are compatible) if they possess a

common orthobasis (see 5.5). More precisely, a family (Fi, i ∈ I) of flats commute if there

exists an orthobasis B of P and a family (Ai, i ∈ I) of subsets of B such that Ai is an

orthobasis of the flat Fi.

For example, flats F and G commute if they are comparable or are orthogonal. One can

show that a family (Fi, i ∈ I) of flats commute if every two member of the family commute.

Lemma 7 Let flats F and G commute. Then F ∧ (G ∨ F⊥) = F ∧G.

Indeed, let B be a common orthobasis of F and G. That is F and G are the orthoclosure

of some subsets A and C of B. Then C ∪ (B \ A) is an orthobasis of the flat G ∨ F⊥ and

A ∩ (C ∪ (B \ A)) = A ∩ C is an orthobasis of the flat F ∧ (G ∨ F⊥). On the other hand,

A ∩ C is an orthobasis of the flat F ∧G. �

Let M andM ′ be two ideal measurements with eigensets EM(o) , o ∈ O(M), and EM ′(o′),

o′ ∈ O(M ′).

Definition. The ideal measurements M and M ′ are compatible ( or commute) if every

EM(o) commutes with every EM ′(o′).

We assert that compatible measurements are compatible in the previously mentioned

informal sense, that is performing one of the measurements does not affect the results from

the other measurement. Indeed, suppose that a state s is in an eigenset F := EM(o) and

therefore performing M gives outcome o. Suppose further that we perform measurement

M ′ and obtain an outcome o′. Then the new state s′ is in the flat G ∧ (s ∨ G⊥), where

G = EM ′(o′). All the more, the new state s′ is in the flat G ∧ (F ∨G⊥) = F ∧G according

to according to Lemma 7. Therefore s′ remain in F , and if we perform the measurement M

again we obtain the same outcome o.
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We next show that two ideal measurements are compatible if and only if they are “coars-

ening” of a third (finer) measurement. First a definition

Definition. A measurement M ′ is coarser than a measurement M (and M is finer than

M ′) if every eigenset of M is contained in some eigenset of M ′.

In other words, outcomes of M ′ can be obtained from outcomes of M by means of a

mapping f : O(M) → O(M ′). In this case the eigensets EM ′(o′) have the form EM (f−1(o′)).

If M ′ and M ′′ both are coarsening of M then they are compatible. For this aim we have

to take an orthobasis common to all eigensets of the measurement M .

Conversely, let M and M ′ be two compatible measurements. Then there exists an or-

thobasis B common for eigensets of M and M ′. If B is a finite set, then we can take as

M ′′ the (complete) measurement corresponding to the ODU B. In the general case, we

have to consider the family of flats (EM(o) ∧ EM ′(o′)), where o runs O(M) and o′ runs

O(M ′). Because of compatibility, these flats form an ODU. And we have to take as M ′′ the

corresponding measurement which exists by Axiom 5.

Thus, we proved the following

Theorem 2 Ideal measurements M and M ′ are compatible if and only if there exists an

ideal measurement refining both M and M ′.

6.3 Canonical decomposition of a model

We now show that a model of a measurable system satisfying Axioms 1 to 5 can be written as

the direct sums of its irreducible submodels. The argument below holds for any orthospace

but is of largest interest for ortho-separable orthospaces.

Let (X,⊥) be an orthospace. We say that two elements of X are connected if they can

be linked be a chain of pairwise non-orthogonal (tolerant) elements. This relation is an

equivalence relation and therefore divides the set X into classes of connected elements which

we denote X(ω), ω ∈ Ω. Elements from different connected components are orthogonal to

each other; therefore X(ω) are flats. These flats are called central or classical.

If F is a flat in X then, for any ω, the set F ∩ X(ω) is a flat in the orthospace X(ω)

equipped with the induced orthogonality relation. Conversely, suppose we have a collection

of flats F (ω) in X(ω), ω ∈ Ω. Then the union F = ∪ωFω is a flat in X . In other words, the

ortholattice F(X,⊥) is the direct (orthogonal) product of ortholattices F(X(ω),⊥).
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Let us go back to a model of a measurable system with orthospace (P,⊥). As any or-

thospace, P decomposes into connected (or irreducible) components P(ω), ω ∈ Ω. Since these

components form an ODU then, by Axiom 4, there exists a corresponding ideal measurement

C. Since any state is in some component, Proposition 4 implies that the measurement C

affects no state. It is natural to call the measurement C classical and to call the correspond-

ing components X(ω) classical super-states. The classical measurement C commutes with

any ideal measurement. For this reason, we can without loss of generality, consider only

irreducible models.

6.4 Axiom of Purity

The property of ideality of measurements significantly narrowed down the range of the

possible impact of a measurement on the state. We know that as we obtain the result o the

system moves from state s to state s′ belonging to the convex hull of the flat EM(o) ∧ (s ∨

EM(o)⊥). If this flat is an atom, the new state is uniquely determined. But if this flat is not

an atom (and that is fully possible) the new state may be a probabilistic mixture of states

in EM(o) ∧ (s ∨ EM(o)⊥).

To see this, let us consider the example of a fly in a 3×2 box. There are two measurements:

LR and FCB. Suppose the state F is realized as a probability measure F (L) = F (C) =

F (R) = 1/3 (of course, F (F ) = 1 and F (B) = 0 ). If we, in the state F , perform a

measurement with eigensets {L} and {L}⊥ = {C,R} and obtain outcome ”not L”, we may

conclude that the image of F is not a pure state but the equiprobable mixture of states C

and R. Such a conclusion is in agreement with the ideality of the measurement {C,R} which

sends the state F into {C,R} ∧ (F ∨ {C,R}⊥) = {C,R} ∧ (F ∨ L) = {C,R} ∧ 1 = {C,R}.

We introduce a last axiom guaranteeing that under the impact of a measurement any

pure state jumps into another pure state. Namely, we consider the following axiom of purity

Axiom 6 For any pure state s ∈ P and any flat F the flat F ∧ (s ∨ F⊥) is an atom of the

lattice F(P,⊥).

We have introduced above a number of non-trivial axioms. We assert that they are all

compatible with each other. Indeed, Example 2 (A fly in a box) gives a model satisfying to

all axioms. Another example is the so-called Hilbert space model of Quantum Mechanics.
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Example 4 (continued). Let H be a (finite-dimensional) Euclidean space, as in Example

4. And let P be the set of all one-dimensional vector subspaces of H . The orthogonality

relation is clear from Example 4. Any flat is given by a vector subspace V and consists of

one-dimensional subspaces in V . Measurements are identified with ODUs. Suppose that

(Vi, i ∈ I) is a family of pairwise orthogonal vector subspaces in H and
∑

i Vi = H , and

let v be a (non-zero) vector in H representing some state s. Denote by vi the orthogonal

projections of v on subspace Vi. Then under impact of the corresponding measurement the

state s moves into the state vi with probability cos2(ϕ), where ϕ is the angle between the

vectors v and vi (the probability is 0, if vi = 0), and give the outcome i. By the construction,

this measurement is ideal. It is easy to check that all other axioms also are fulfilled.

Remark. In some sense Example 4 is not only a special case. If the height of F is

more than 3 then the lattice F can be realized as a (ortho)lattice of vector subspaces of

some Hermitian space over some ∗-field K.10 The details can be found in [2] or in [11]. If

we additionally require that the orthospace P is compact and connected (as a topological

subspace of ∆(P,⊥)) then the field K is the real field R, the complex field C or the skew

field H of quaternions.

7 Non-classical models in social sciences: A discussion

In the last section we want to discuss some of the key properties of general measurable

systems in order to help the reader assess their relevance for social sciences. We wish to

emphasize that this section is highly explorative and should be viewed as a first step that

only aims at opening the discussion.

When applying the theory of measurable system exposed in this paper to behavioral and

social sciences, the general idea is to view an individual as a measurable system. She is

characterized by her type which encapsulates information about her preferences, attitudes,

beliefs, feelings etc. A decision situation (a situation such that she must choose an alternative

out of set of alternatives) or a questionnaire is a device that measures her type. Actual

behavior, e.g. the choice made in a decision situation, the actions taken in a game or the

10The case of the height 1 is trivial: F = {0, 1} and P consists of single state. The case of the height 2

is of more interest. The (ortho)lattice F = {0, 1} ∪ P, and the mapping s 7→ s⊥ acts on the set P as an

involution without fixed points. The case of the height 3 is very intricate and unclear.
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answer given to a questionnaire are measurement outcomes.

In the Introduction we formulated a question as to whether it is possible to build an

interesting theory about a system that changes when being measured. We answered by the

affirmative when imposing a series of properties on measurements and on their interaction

with the system. The state space representing the system is then endowed with the structure

of an atomistic orthomodular orthospace and the states are realized as probability measures

on the state space. We next propose a psychological and behavioral interpretation of some

of those properties.

First kindness

The first key property of a measurable system is that measurements satisfy first-kindness.

Classical measurement theory (including revealed preference theory) also relies on such an

assumption of repeatability. Some reservation may be in place. We do propose that a choice

be viewed as a measurement outcome that reveals or more precisely actualizes preferences.

But in many settings the repeated character of a choice changes the decision situation.

Clearly, a repeated interaction in a game situation is not equivalent to a repetition of one

and the same decision situation. The prolific theory of repeated games amply illustrates

this. So the repeatedness we have in mind pertains to elementary situations.

Compared with standard revealed preference theory, the requirement of repeatability is

limited in two respects. The property applies to a smaller set of choice experiments. As we

illustrated in section 4 not all choice sets can be associated with a first-kind measurement

unless we are dealing with a fully classical agent. Moreover repeatability is only requested

in two consecutive identical measurements. If another (incompatible) measurement is per-

formed on the system in-between, the initial result may not be repeated. Therefore although

the property of first-kindness is somehow restrictive it is still far less demanding than the

standard classical assumption. Yet, it is not an innocuous assumption and in particular it

precludes stochastic preferences.

Invariance

Axiom 1 is an axiom of invariance. In the context of choice theory, it is related to the

principle of procedure invariance assumed in classical rational choice theory. This principle

states that a preference relation should not depend on the procedure of elicitation. Numerous

experimental studies were made on choice versus pricing to exhibit examples of violation
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of procedure invariance. It is beyond the scope of this short comment to systematically

compare the classical concept of procedure invariance with Axiom 1. We confine ourselves to

remarking that Axiom 1 applies to systems in the same state and to remind that it concerns

first-kind measurements only. In particular, we do not take for granted that the pricing

or the matching procedure which are considered as computationally relatively demanding

(compared with a choice procedure) can be performed as a single measurement rather than

as a sequence of (possibly incompatible) measurements.

Axioms 2, 3, 4 and 5 are axioms which all formulate requirements on the richness of the

set of measurements. Another way to look at them that lends itself to an interpretation in

choice theory is that when the set of primitive measurements is actually limited - in Model

2 there could only be 4 measurements - the axioms imply that choice-measurements may

not all be incompatible with each other. Indeed, it is immediate to see that these axioms

are fulfilled for compatible measurements as these can be combined into new measurements

satisfying the axioms. For this very reason these axioms do seem very natural to a classically

minded person. In a non-classical world they do not follow naturally, which is demonstrated

by the fact that these axioms are violated in Model 2. Hence, in a choice theoretic context,

these axioms put a limit on how “non-classical” agent (a behavioral system) is allowed to

be. Model 3 satisfies all these axioms and still allows for so-called “behavioral anomalies”.

States and types

The notion of state is closely related to Harsanyi’s classical notion of type which is why

we use this term when referring to the state of agents. The Harsanyi type of an agent is a

complete description of her preferences, beliefs and private information such that it allows

predicting the agent’s behavior. By observing past behavior, we learn about an agent’s

type and can make finer predictions of her future behavior. In Harsanyi’s classical world

an information about past behavior is used to predict future behavior relying on Bayesian

updating. The same holds for any compatible choice-measurements made on a non-classical

agent. But generally (when some measurements are incompatible) learning is not Bayesian.

In Model 3 of section 4, we saw that the performance of the ab measurement on the agent in

state s ∈ {[c > b > a] , [c > a > b]} erases information about her preferences what concerns

the ordering between b and c so the agent can choose b in {b, c, d}.

As in Harsanyi’s model, a non-classical pure type is maximal information about the agent.
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But in contrast with Harsanyi, a pure type may still be dispersed (cf Section 3.4) so knowing

the pure type does not allow to predict behavior with certainty. This is reflected in the

structure of the type space. In Harsanyi’s type space types are orthogonal to each other. In

the non-classical model not all (pure) type are orthogonal. Instead, non-orthogonal states

are connected with each other in the sense that under the impact of a measurement the state

of the system can transit from one state to another. This strongly contrasts with Harsanyi’s

static model where the act of choosing (i.e. a measurement of the type) has no impact on

the type only on payoffs. The non-classical type space models a changing agent, we return

to this aspect below.

Incompatible measurements

In the models of rational choice of Section 4 measurements corresponds to sets of alter-

natives from which the agent makes a choice. Whichever model we choose, the existence of

incompatible choice-measurements implies that the agent cannot have a preference order on

all items simultaneously. Our theory gives a precise meaning to this impossibility. It means:

i) if the ordering over some subset of items is known (possibly only to the agent) then his

preferences over another incompatible subset is random (dispersed pure states); ii) as the

agent makes a choice in a given choice set his type (preferences) is being modified (measure-

ments affect the state). A non-classical agent does not have a fixed type (preferences). The

non-classical model is consistent with the hypothesis that an agent’s preferences are shaped

in the process of elicitation as proposed by Kahneman and Tversky (see Introduction).

Thus, the distinctive feature of the non-classical model namely the existence of incompat-

ible measurements (or alternatively the existence of dispersed states) delivers a formulation

of bounded rationality as the impossibility to compare and order all items simultaneously.

We view this formulation as particularly interesting because it is also linked to the idea that

an agent’s preferences are “context-dependent” (see [12], part 6). Both these themes: the

issue of comparability in the universal set of items and intrinsic contextuality of preferences

are central themes in behavioral and experimental economics.

As for today there is no consensus in Physics about the reasons for the non-classicality

of quantum physical phenomena. There exists however a huge literature on the subject in

epistemology. We do not wish to speculate on reasons for such phenomena in human be-

havior. Instead, we note that the (possible) non-classicality of agents invites social scientists

to making interactions the central object of their investigation. Clearly, game theory is all
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about interactions but it retains that the type of agents is exogenous. This cannot be main-

tained if agents are non-classical systems. Instead we ought to make agents’ type as (partly)

endogenous to interaction. 11 We are currently investigating simpler game situations along

these lines and we trust that it is a promising avenue of research.

The Stability of the state

The minimal perturbation principle (ideality) means that a coarse measurement leaves

unperturbed the uncertainty not sorted out by its set of outcomes. Axiom 5 demands that

there exists sufficiently many such ideal measurements.

In applications to behavioral sciences, an interpretation is that when asked to choose out

of an initial “state of hesitation” (a dispersed pure state), this hesitation is only resolved so as

to be able to produce an answer but no more. The remaining uncertainty is left “untouched”.

One way to understand this is to see that when we assume that a choice measurement is

ideal it is as if we assumed that the individual proceeds by taking the ”shortest way” to

resolve uncertainty. For instance, suppose as in Model 3 that we ask an individual to make

a choice out of {a, b, c} and that her initial state is a superposition (see section 5.3) of all

six orders. The minimal perturbation principle entails that the individual will proceed so

as to find the most preferred item without ordering the 3 items. Uncertainty not resolved

by an ideal choice-measurement is left untouched. Therefore we say that ideality implies

a certain stability of the type of a non-classical agent. This can be contrasted with the

classical assumption of complete stability, i.e. revealing preferences does not affect them at

all. Nevertheless ideality may turn out a rather demanding property, which should be viewed

as an approximation.

Axiom 6 further precises the impact of measurement. It tells us exactly were a mea-

surement takes the state. We focus on an informational interpretation. In a social science

context it implies that whatever choice the individual makes that changes her (pure) type,

the new behavioral type encapsulates maximal information about behavior as did the ini-

tial type and by ideality we know the new state.12 In a classical context such a pure state

corresponds to a state of complete information. In a non-classical context we know that

11Geanakoplos et al. (1989) pioneered an approach in psychological games where agent’s motivation

(utility) depends on other’s beliefs and therefore are endogenous to the interaction.
12Information in a pure state is maximal in the sense that no new information can be obtained

from any measurement without losing some other information, i.e. information that was true

in the initial state but is no longer true in the new state.
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there exist dispersed pure states and so a maximal information type (a pure type) does not

uniquely predict behavior in all circumstances.

Caveat

In applications to behavioral sciences a less attractive feature of our framework is that a

measurement erases information about the previous type. We should however recall that a

person is expected to be composed of a number of irreducible systems. The loss of memory

only applies locally, within one (irreducible) sub-system. Even within such a system, when

assuming ideality, memory is fully lost only in the case the measurement is complete (not

coarse). Yet, our approach implies that to some extent an individual’s previous choices are not

relevant to her current type. She may recall them but she experiences that she has changed.

Implicitly, we assume that at a higher cognitive level, the individual accepts changes in, e.g.

her tastes, which are not motivated by new cognition.

8 Concluding remarks

In this paper, we have described the basic structure of non-classical measurement theory. The

objective has been to investigate, from a theoretical point of view, whether this framework

could be suitable for describing, explaining and predicting human behavior.

As a non-classical measurable system, an agent is characterized by her type (preferences,

attitudes, beliefs etc...) which changes when she makes a choice actualizing her type. As a

consequence behavior exhibits an irreducible uncertainty. Yet, as we impose some axioms on

the interaction between measurements and the system, behavior is characterized by sufficient

regularity to allow for predictions. We have argued that some of the basic axioms and

properties that underline the theory can be given a meaningful interpretation consistent with

central themes addressed in psychology, behavioral and social sciences. We also argued that

the distinctive feature of non-classical measurement theory, i.e. the existence of incompatible

measurements, provides an appealing formulation of bounded rationality.
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