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Abstract

The purpose of this paper is to introduce a new basis of the set
of all TU games. Shapley (1953) introduced the unanimity game in
which cooperation of all players in a given coalition yields payoff. We
introduce the commander game in which only one player in a given
coalition yields payoff. The set of the commander games forms a basis
and has two properties. First, when we express a game by a linear
combination of the basis, the coefficients related to singletons coincide
with the Shapley value. Second, the basis induces the null space of
the Shapley value.
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1 Introduction

The basis consists of the unanimity games (Shapley (1953)) has long been
recognized as a useful tool for the analysis of TU cooperative game theory.
The basis is often used in the proof of axiomatization of the (weighted)
Shapley value; see Young (1985), Chun (1989), Kalai and Samet (1987) or van
den Brink (2002). The coefficient in the linear combination of the unanimity
games is called the dividend. The class of games with nonnegative dividends
was investigated by Llerena and Rafels (2006) or van den Brink et al. (2014).
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Since the set of TU games has a linear structure, to consider a basis is an
essential task. The purpose of this paper is to introduce a new basis and
explore its properties.

In the unanimity game, cooperation of all players in a given coalition
yields payoff. In this paper, we introduce the commander game in which
only one player in a given coalition yields payoff. The set of the commander
games forms a basis and has two properties. First, when we express a game
by a linear combination of the new basis, the coefficients related to singletons
coincide with the Shapley value. Second, the basis induces the null space of
the Shapley value: the set of games to which the Shapley value assigns 0
vector.

The payoff vector of each commander game can be uniquely determined
by using three axioms: efficiency, equal treatment property and null player
property. Thus, we can use the basis in the proof of axiomatization of the
Shapley value. In addition, by using the two properties of the new basis, we
can solve the following inverse problem: to characterize the class of games in
which the Shapley value is equal to a fixed vector.

Some previous works on TU game discussed a way to express a game by
using a specific class of games. Llerena and Rafels (2006) show that any TU
game is expressed as the maximum of a finite collection of almost positive
games. In the context of voting game, O’Neil and Peleg (2008) show five
ways to combine two proper games into one game where the winning of a
coalition depends on the two component games. The new basis in this paper
also makes a contribution to this stream of research. We can express a game
by a linear combination of games where the Shapley value is equal to 0.

The new basis is also applicable to other research topics of the Shapley
value. The basis enables us to give a new axiomatization of the weighted
Shapley value; see Yokote (2014). Moreover, the basis can be used to inves-
tigate the relationship between the Shapley value and other solutions; see
Yokote et al. (2013a).

This paper is organized as follows. Section 2 contains notations and
definitions. In Section 3, we define the commander game and show that the
set of the games is a basis. We also prove the first property of the new basis.
In Section 4, we discuss the new basis from Shapley’s (1953) axioms and
prove the second property. In Section 5, we extend the new basis and deal
with variants of the Shapley value.
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2 Notations and definitions

For two sets A and B, A ⊆ B means that A is a subset of B. A ⊂ B
means that A ⊆ B and A ̸= B. Let |A| denote the cardinality of A. N ⊂ N
denotes a finite set of players, and we call S ⊆ N a coalition of N . We define
|N | = n. A characteristic function v : 2N → R assigns a real number to each
coalition of N . We assume v(∅) = 0. We call v(S) the worth of coalition
S. A pair of (N, v) is called a TU cooperative game, or simply a game. In
the remaining part, we fix player set N and write v instead of (N, v). Let
ΓN denote the set of all games with player set N . We say that v ∈ ΓN is a
simple game if v(S) = 0 or 1 for all S ⊆ N . We regard ΓN as a linear space
R2n−1 by defining addition and scalar multiplication as follows: for any v,
w ∈ ΓN and α ∈ R, we define v + w and αv by (v + w)(S) = v(S) + w(S)
and (αv)(S) = αv(S) for all S ⊆ N .

A solution function is a function from ΓN to Rn. We define the Shapley
value, introduced by Shapley (1953), as follows: for any v ∈ ΓN ,

ϕi(v) =
∑

S⊆N :i∈S

(n− |S|)!(|S| − 1)!

n!

(
v(S)− v(S\{i})

)
for all i ∈ N.

We can also calculate the Shapley value by using the dividend introduced by
Harsanyi (1959). For any v ∈ ΓN and S ⊆ N , S ̸= ∅, we define the dividend
as follows:

D(S, v) =
∑
T⊆S

(−1)|S\T |v(T ).

The following equation holds: for any v ∈ ΓN ,

ϕi(v) =
∑

S⊆N :i∈S

1

|S|
D(S, v) for all i ∈ N.

Mathematically, the Shapley value ϕ is a surjective1 linear mapping from
R2n−1 to Rn. The mapping ϕ has the null space defined by

{v ∈ ΓN : ϕ(v) = 0}.

The null space is the set of all games to which the Shapley value assigns 0
vector. The dimension of the space is equal to 2n − 1− n.

1Surjective is due to the following inessential game property: let x ∈ Rn and consider
the game v such that v(S) =

∑
i∈S xi for all S ⊆ N , S ̸= ∅. Then, ϕ(v) = x.
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3 New basis

The purpose of this section is to define a new set of games and show that
the set is a basis. We first revisit the set of the unanimity games introduced
by Shapley (1953). Let T ⊆ N , T ̸= ∅. We define the unanimity game uT as
follows:

uT (S) =

{
1 if T ⊆ S,

0 otherwise.

In the unanimity game, the cooperation of all players in T yields payoff.
When we express a game v ∈ ΓN by a linear combination of {uT}∅̸=T⊆N , the
coefficient of uT is equal to the dividend D(T, v).

We now define a new game, which is the main research target of this
paper. Let T ⊆ N , T ̸= ∅. We define the game ūT as follows:

ūT (S) =

{
1 if |S ∩ T | = 1,

0 otherwise.

From the definition, ūT is a simple game. We call ūT commander game.
We consider the following situation behind the game. Each member in T
is a commander and has authority to control other players. If a coalition
that includes only one member in T forms, then the member behaves as a
commander. The coalition obtains power, which results in the payoff of 1.
On the other hand, if a coalition that includes two or more members in T
forms, then they compete with each other and the coalition obtains nothing.

In order to prove that the set of the commander games is a basis, we
prove a lemma.

Lemma 1 Let T ⊆ N , T ̸= ∅. Then, we have

|T |uT =
∑

S⊆T :S ̸=∅

(−1)|S|−1ūS.

Proof. Let an arbitrary coalition R ⊆ N be given. We calculate the worth
of coalition R in the right-hand side. From the definition of the commander
game, we only need to consider a coalition S ⊆ T such that |S ∩ R| = 1.
Such a coalition S can be determined by choosing 1 player from T ∩ R and
k players from T\R, where 0 ≤ k ≤ |T\R|. As a result, we obtain

∑
S⊆T :S ̸=∅

(−1)|S|−1ūS(R) = |T ∩R| ·
|T\R|∑
k=0

(
|T\R|
k

)
(−1)k =

{
|T | if T ⊆ R,

0 otherwise,
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where the second equality holds from the binomial theorem. It follows that
the worth of coalition R in the right-hand side is equal to |T |uT (R). �

Theorem 1 The set of games {ūT}∅̸=T⊆N is a basis of ΓN .

Proof. Let v ∈ ΓN . From the fact that the dividend is the coefficient in the
linear combination of the unanimity games, we have

v =
∑

R⊆N :R ̸=∅

D(R, v)

|R|
· |R|uR

=
∑

R⊆N :R ̸=∅

D(R, v)

|R|
·
∑
T⊆R

(−1)|T |−1ūT

=
∑

T⊆N :T ̸=∅

(−1)|T |−1
∑

R⊆N :T⊆R

D(R, v)

|R|
ūT , (1)

where the second equality holds from Lemma 1. As a result, any game v ∈ ΓN

can be expressed by a linear combination of the games {ūT}∅̸=T⊆N . In other
words, the set {ūT}∅̸=T⊆N spans ΓN . If the set {ūT}∅≠T⊆N is linearly depen-
dent, then there exist a coalition T ⊆ N , T ̸= ∅, and a vector (αS)∅≠S⊆N,S ̸=T

such that
ūT =

∑
S⊆N :S ̸=∅,S ̸=T

αSūS.

Together with equation (1), the set ΓN can be spanned by vectors with less
than 2n − 1 vectors, which is a contradiction.2 �

For any v ∈ ΓN , let d(T, v) denote the coefficient in the linear combination of
{ūT}∅≠T⊆N , namely, v =

∑
T⊆N :T ̸=∅ d(T, v)ūT . From equation (1), we obtain

the following proposition:

Proposition 1 For any v ∈ ΓN ,

d({i}, v) =
∑

R⊆N :i∈R

D(R, v)

|R|
= ϕi(v) for all i ∈ N.

Proposition 1 states that the coefficients related to singletons coincide with
the Shapley value. We will revisit this property in the next section.

2Recall the following result in linear algebra: if the vectors x1, · · · , xn span a linear
space X and the vectors y1, · · · , yj in X are linearly independent, then j ≤ n. See Lax
(2007), Lemma 1 on page 5.
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Remark 1 Equation (1) explains how to calculate the coefficient d(T, v)
by using the dividend. We can also calculate the coefficient by using the
potential function P (T, v), introduced by Hart and Mas-Colell (1989), as
follows:

d(T, v) =
∑

S:N\T⊆S

(−1)|S∩T |−1P (S, v) for all T ⊆ N, T ̸= ∅.

For the proof, see Yokote et al. (2013b). From the above equation, d(T, v) is
expressed by P (T, v). In addition, P (T, v) can be expressed by the dividend
D(T, v).3 These results explain the relationship between the three real-valued
functions, d(T, v), P (T, v) and D(T, v).

4 Basis and Shapley’s axioms

The unanimity game is useful in that the payoff vector of the game can be
uniquely determined by using axioms. In this section, we show that the
commander game has the same property. We introduce additional notations.
Let v ∈ ΓN and i, j ∈ N , i ̸= j, be given. We say that i and j are substitutes
in v if v(S ∪ {i}) − v(S) = v(S ∪ {j}) − v(S) for all S ⊆ N\{i, j}. We say
that i is a null player in v if v(S ∪ {i})− v(S) = 0 for all S ⊆ N\{i}.

Shapley (1953) characterized the Shapley value by using the following
axioms satisfied by a solution function ψ:

Efficiency
∑

i∈N ψi(v) = v(N) for all v ∈ ΓN .

Equal Treatment Property If i and j are substitutes in v ∈ ΓN , then
ψi(v) = ψj(v).

Null Player Property If i is a null player in v ∈ ΓN , then ψi(v) = 0.

Additivity For any v, w ∈ ΓN , we have ψ(v + w) = ψ(v) + ψ(w).

By using the first three axioms, we can calculate the Shapley value in the
game ūT , T ⊆ N , |T | ≥ 2. First, consider a player j ∈ N\T . Then, for
any coalition S ⊆ N\{j}, we have |S ∩ T | = |(S ∪ {j}) ∩ T |. Thus, j is
a null player, which implies ϕj(ūT ) = 0 from Null Player Property. From
Efficiency,

∑
i∈T ϕi(ūT ) = 0. Since any two players in T are substitutes, from

Equal Treatment Property, we have ϕi(ūT ) = 0 for all i ∈ T . It follows that
ϕ(ūT ) = 0. Note that we can also determine the payoff vector in the game
ū{i}, i ∈ N , in the same way.

3See equation (2.3) of Hart and Mas-Colell (1989).
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Since the set {ūT : T ⊆ N, |T | ≥ 2} consists of 2n − 1 − n linearly
independent vectors, we obtain the following theorem:

Proposition 2 The set {ūT : T ⊆ N, |T | ≥ 2} spans the null space of ϕ.

Proposition 2 states that the Shapley value does not depend on the coefficient
d(T, v), T ⊆ N , |T | ≥ 2. Recall that from Proposition 1, the coefficients
d({i}, v), i ∈ N , coincide with the Shapley value. As a consequence, we
obtain the following corollary:

Corollary 1 Let x ∈ Rn. Then, ϕ(v) = x if and only if there exists a vector
(αT )T⊆N :|T |≥2 ∈ R2n−1−n such that

v =
∑
i∈N

xiū{i} +
∑

T⊆N :|T |≥2

αT ūT .

In Corollary 1, we characterize the set of all games to which the Shapley
value assigns a fixed vector. This approach is known as the inverse problem.
By solving the problem, we can characterize the equivalence relation that
relates two different games with the same Shapley value. If two games are
equivalent by the relation, we can know that the Shapley value is silent about
the difference between the two situations described by the games.

Example 1 By using Corollary 1, we obtain the following result for 3-person
games: let v ∈ ΓN , N = {1, 2, 3}. Then, ϕ(v) = x if and only if there exists
(y12, y13, y23, yN) ∈ R4 such that v(N) = x1 + x2 + x3 and

v({i, j}) = xi + xj + yik + yjk, v({k}) = xk + yik + yjk + yN ,

where i, j, k are distinct players in N . The above equations imply

v({i, j}) = xi + xj + v({k})− xk − yN .

As a result, we obtain the following: let v ∈ ΓN , N = {1, 2, 3}, be a game
such that v({k}) = 0 for all k ∈ N . Then, ϕ(v) = x if and only if there exists
y ∈ R such that v(N) = x1 + x2 + x3 and

v({i, j}) = xi + xj − xk + y,

where i, j, k are distinct players in N . The only if part says that, given an
arbitrary vector x, we can always find an identical amount y for all coalitions
with 2 players.
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The null space or the inverse problem have been investigated in previous
works. As for the null space, Kleinberg and Weiss (1985) give a direct sum
decomposition of the space. Dragan et al. (1989) characterized the space
by using the basis related to the potential function by Hart and Mas-Colell
(1989). As for the inverse problem, see Dragan (2005) or Dragan (2012).
The merit of using the new basis is that we can solve the above problems by
using only simple games.

5 Basis of variants of the Shapley value

By slightly changing the definition of the new basis, we can deal with variants
of the Shapley value. We first consider the weighted Shapley value. For any
w ∈ Rn

++, we define the weighted Shapley value with positive weight w as
follows: for any v ∈ ΓN ,

ϕw
i (v) =

∑
S⊆N :i∈S

D(S, v) · wi∑
j∈S wj

for all i ∈ N.

For any w ∈ Rn
++ and T ⊆ N , T ̸= ∅, we define ūwT ∈ ΓN as follows:

ūwT (S) =

{
wi, i ∈ T ∩ S if |S ∩ T | = 1,

0 otherwise.

Remark 2 (Theorem 2 of Yokote (2014)) Let w ∈ Rn
++. Then, the set

of games {ū{i} : i ∈ N} ∪ {ūwT : |T | ≥ 2} is a basis of ΓN . When we express
a game v ∈ ΓN by a linear combination of this basis, the coefficient of ū{i} is
equal to ϕw

i (v) for all i ∈ N . Moreover, the set of games {ūwT : T ⊆ N, |T | ≥
2} spans the null space of ϕw.

Next, we consider another variant. Let a player set N = {1, · · · , n} be
given. Consider a function f : {1, · · · , n} → R\{0}. We define vf ∈ ΓN as
follows:

vf (S) = f(|S|)v(S) for all S ⊆ N,S ̸= ∅.

We define a new solution function ϕf by ϕf (v) = ϕ(vf ) for all v ∈ ΓN . For
any T ⊆ N , T ̸= ∅, we define ūfT as follows:

ūfT (S) =

{
1/f(|S|) if |S ∩ T | = 1,

0 otherwise.
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Remark 3 Let f : {1, · · · , n} → R\{0}. Then, the set of games {ūfT : T ⊆
N, T ̸= ∅} is a basis of ΓN . When we express a game v ∈ ΓN by a linear
combination of this basis, the coefficient of ūf{i} is equal to ϕ

f
i (v) for all i ∈ N .

Moreover, the set of games {ūfT : |T | ≥ 2} spans the null space of ϕf .

We skip the proof since it is straightforward from (ūfT )
f = ūT for all T ⊆ N ,

T ̸= ∅. For any δ ∈ (0, 1], by letting f(x) = δn−x, ϕf is the discounted
Shapley value with discount factor δ introduced by Joosten (1996). We can
also determine the payoff vector in the game ūfT by using efficiency, equal
treatment property and δ-reducing player property introduced by van den
Brink and Funaki (2010).
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