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Abstract
We are working to develop beating-heart atrial septal defect (ASD) closure techniques using real-
time 3D ultrasound guidance. The major image processing challenges are the low image quality and
the processing of information at high frame rate. This paper presents comparative results for ASD
tracking in time sequences of 3D volumes of cardiac ultrasound. We introduce a block flow technique,
which combines the velocity computation from optical flow for an entire block with template
matching. Enforcing adapted similarity constraints to both the previous and first frames ensures
optimal and unique solutions. We compare the performance of the proposed algorithm with that of
block matching and region-based optical flow on eight in-vivo 4D datasets acquired from porcine
beating-heart procedures. Results show that our technique is more stable and has higher sensitivity
than both optical flow and block matching in tracking ASDs. Computing velocity at the block level,
our technique tracks ASD motion at 2 frames/s, much faster than optical flow and comparable in
computation cost to block matching, and shows promise for real-time (30 frames/s). We report
consistent results on clinical intra-operative images and retrieve the cardiac cycle (in ungated images)
from error analysis. Quantitative results are evaluated on synthetic data with maximum tracking
errors of 1 voxel.
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1. INTRODUCTION
Atrial septal defects (ASD) are congenital heart malformations consisting of openings in the
septum between the atria. This allows blood to shunt from the left atrium into the right atrium,
which decreases the efficiency of heart pumping. Secundum-type ASD has been reported to
account for up to 15% of congenital heart malformations (Benson and Freedom, 1992).
Although the surgical intervention for ASD closure is well established and has excellent
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prognosis, it is performed under cardiopulmonary bypass (CPB), which has widely
acknowledged harmful effects.

Recent studies have highlighted the practicability of minimally invasive image-guided beating-
heart ASD closure. The patient rehabilitation is improved by avoiding the use of CPB. A
compelling review of image-guided surgical applications can be found in (Peters, 2006). There
are two alternatives for minimally invasive ASD closure procedures: one using a catheter-based
closure, usually under contrast-enhanced fluoroscopy (Faella et al., 2003; Papadopoulou et al.,
2005); and another using rigid instruments through the chest wall (Suematsu et al., 2004),
demonstrated in animals. Although clinically available, the catheter-based procedure has major
disadvantages: it can only be used on a fraction of ASD (Patel et al., 2006), it excludes
procedures on small children (Paragios., 2003), and it is generally performed under a high X-
ray dose (Papademetris et al., 2003). ASD closure studies using rigid instruments showed the
feasibility of the procedures and highlighted their limitations (Downing et al., 2002; Suematsu
et al., 2005). Amongst the latter, the difficult visualization of surgical instruments, limited
spatial resolution of US imaging, and the large size of the US probe, make the clinical
applicability of beating heart surgery difficult. The reliable visualization of structures within
the heart remains another major challenge to successful minimally-invasive surgical
interventions (Cannon et al., 2003; Suematsu et al., 2004).

Recent advances in ultrasound (US) imaging make this visualization modality an ideal
candidate for image-guided interventions. 4D US is simple, cheap and fast, and allows the
surgeon to visualize cardiac structures and instruments through the blood pool. US also has
some major disadvantages, being extremely noisy with poor shape definition, which makes it
confusing and hard to interpret in the operation room. Tracking tissue in 3D US volumes is
particularly difficult due to the low spatial resolution caused by interpolation and resampling
in image reconstruction (Fenster et al., 2001). Therefore, the development of tracking methods
for volumetric data in 4D applications is necessary to assist clinical procedures. In ASD closure
procedures, ASD tracking in US images is desirable to guide either the rigid instruments or the
catheter.

A 3D image of an ASD and its position in the heart is shown in Figure 1. The US probe is
placed on the exterior wall of the right atrium, as exemplified in Figure 2. The dynamic nature
of ASD is primarily determined by the cardiac cycle with a mean area change of 61% between
end-diastolic and end-systolic (Maeno et al., 2000). The change in size is highly variable and
present measurements show subjectivity (Handke et al., 2001;Maeno et al., 2000;Podnar et al.,
2001). There is little to no correlation between the dynamic changes of ASD and its size, heart
rate or age of patient. The motion of the US transducer and the low image quality contribute
to the challenges of ASD tracking.

A number of approaches to estimate the motion of cardiac tissue have been tried. They could
be separated into two main classes: tracking and segmentation. Block matching is fast and
simple (Behar et al., 2004), but estimates velocities at low level and lacks robustness. Optical
flow has higher sensitivity and specificity, but is very slow and must find a good compromise
between local and global displacements (Boukerroui et al., 2003; Duan et al., 2005). The
majority of tracking applications are 2D. An interesting 3D cross-correlation-based approach
for speckle tracking on simulated data is proposed in (Chen et al., 2005). Some good examples
of temporal segmentation of cardiac US can be found in (Montagnat et al., 2003; Morsy and
von Ramm, 1999; Papademetris et al., 2003). Model-based segmentation employing simplex
meshes (Montagnat et al., 2003) or finite element models (FEM) (Papademetris et al., 2003)
have shown promising results, especially for the left ventricle. The processing speed remains
a major challenge. A more detailed overview of previous methods for cardiac motion estimation
is provided in the discussion at the end of the paper.
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In this paper, we present a 3D block flow approach adapted to ASD tracking that estimates
velocities for an entire block using the concept of voxel-based optical flow. The method is
aimed at assisting image-guided minimally-invasive beating-heart ASD closures. It provides
a fast and reliable ASD position guidance to potentially support the placement of a surgical
patch over the atrial septal opening in computer-aided interventions. The method is fast and
avoids the problems of traditional block matching, while exploiting the sensitivity of optical
flow. The computation is done volumetrically and the displacement optimizes a similarity
measure relative to both the previous and original frames. We compare the new results to those
obtained by classical implementations of block matching and optical flow.

Section 2 of the paper presents the methodology of the tracking algorithms. We mention block
matching, optical flow and similarity measures, and introduce the block flow technique.
Comparative results on 4D in-vivo and clinical cardiac US images are shown in Section 3, next
to quantitative evaluation on synthetic data.

2. METHODS
Our goal is to follow the motion of ASD across successive heart cycles to facilitate minimally
invasive cardiac surgery. In ASD closures using rigid instruments, when the surgical patch is
placed over the ASD, a distance of approximately 7mm between the ASD margin and the patch
edges is usually ensured (Figure 1). We aim to guide the correct placement of the patch over
the ASD surface. At this stage of the algorithm implementation, we assume the initialization
of the process is done manually by allowing the user to select a block centered on the ASD in
the first frame. This gives a first estimate of the ASD location and a template for the
computation of similarity scores, as shown later in the paper.

2.1 Block Matching
The first approach we considered was single block matching (Ourselin et al., 2000). This multi-
scale intensity-based method assumes that there is a global intensity relationship between two
images. We are simply interested in matching two blocks, instead of two images, which
simplifies the rationale of the algorithm. The principle of single block matching is shown in
Figure 3. Given a reference block in the previous frame, this is rotated and translated over a
search space in the current frame to find the best fit according to a similarity criterion.

During the acquisition of our 4D US images of the heart, the time-gain compensation settings
of the US machine are kept constant. However, homogenous objects appear heterogeneous in
US images due to attenuation factors. The change of speckle characteristics between frames
and the cardiac motion induce more changes in the tissue appearance. Hence, we normalize
image intensity before the computation of similarity.

We investigated three types of similarity measures suitable for images of the same modality.
First, an identity measure, the sum of squared differences (SSD) of normalized intensities, as
seen in

(1)

ref is the reference block from the previous frame, tar the target block in the current frame,
and n the number of voxels in a block. A linear measure, the inverse Pearson correlation
coefficient (PCC), is proposed in
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(2)

and a statistical measure, based on maximum likelihood (MLE), introduced in (Cohen and
Dinstein, 2002) and refined in (Boukerroui et al., 2003), is presented in

(3)

An overview of intensity similarity measures can be found in (Roche et al., 2000). For our data,
SSD does not cope with relative intensity. PCC minimizes the least square fitting to the original
data and is more robust than SSD. However, MLE seems to be the most robust similarity
measure for US data (Boukerroui et al., 2003). It assumes that US images are log compressed
with Rayleigh speckle noise (Thijssen, 2003), but no change of speckle noise between frames.
Minimizing the square error between blocks becomes minimizing the probability distribution
function of the additive noise between frames.

Our implementation uses two steps, from coarse to fine search space to find the block in the
target image that is most similar to the given block in the reference image. Typical difficulties
in search-space applications are found at margins. Padding at margins is often proposed as a
solution, but it influences the response of similarity measures. To avoid padding, we propose
reducing the size of the reference block to account for clipping at the edge in the target volume
(overflowing the edges). Hence, the similarity score is calculated using two smaller blocks.
The best-matched target block is then grown back, on the opposite side of the clipping, to the
original size of the reference, using data from the target volume (Figure 4). This element of
the algorithm ensures that the ASD is correctly tracked when it reaches or partially crosses the
image boundaries.

2.2 Optical Flow
Secondly, we tested the efficiency of region-based optical flow to track ASD. Optical flow is
used to compute motion vectors from spatio-temporal changes in the intensity field of an image.
We developed a 3D extension of the 2D method presented in (Boukerroui et al., 2003) and
based on (Singh and Allen, 1992). Velocity is computed as the physical shift corresponding to
the best match between image regions through time, in terms of minimum energy

(4)

where (Singh and Allen, 1992) proposes k=-ln(0.95)/(min(E(u,v,w))). At a first step, the
velocities are found weighting the similarity scores within the search space, as in

(5)

where x, y and z are the displacements in the three directions. The error of velocity estimation
is found from the eigenvalues of the inverse covariance matrix is
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(6)

At a second step, the velocities of voxels of the same object are linked by imposing
neighborhood constraints. The refinement of velocities is performed in a similar way to the
first step described above and is not detailed in this paper. Our main contribution to using
neighboring information was the extension of the algorithm to 3D. Please refer to (Singh and
Allen, 1992) for more information on the 2D approach.

There are other techniques to compute optical flow, such as the first-order differential method
(Lucas and Kanade, 1981). They are very sensitive to noise, which is high in US images, and
require spatial and temporal smoothing. In a real-time tracking application temporal smoothing
can only be performed backwards, as we do not know the data in the next frames. This
introduces a bias in the velocity estimation. Another class of optical flow is that of phase-based
techniques (Fleet and Jepson, 1990). Although robust to intensity scale, phase-based optical
flow requires an optimal search space. In cardiac images, velocities can vary considerably
between frames, which makes the estimation of a filter bandwidth difficult. A comparative
review of optical flow methods can be found in (Behar et al., 2004).

The major disadvantage of optical flow techniques is the computational load. While the
robustness of tracking anatomical structures can be improved by adding movement constraints,
smoothing factors and connectivity assumptions, the speed would be decreased and become
unsuitable for real-time applications. For a faster implementation, we employ a multi-scale
approach from coarse to fine, using MLE. Moreover, the optical flow is estimated only for the
contour voxels of ASD, extracted by thresholding, which are then wrapped in the resulting
block.

2.3 Block Matching-Optical Flow
We further propose another two-step multi-scale approach, this time using a combination of
block matching and optical flow. At both levels, we employed MLE as similarity measure.
First, the contour of the ASD is extracted in the first frame and then the velocity of the entire
block is estimated. Block matching gives the coarse velocity, common for all the contour
voxels. At the finer level, the optical flow is estimated for every contour voxel. The newly
estimated voxels in the target image are wrapped in the resulting block. This approach is
considerably faster than the multi-scale optical flow.

2.4 Block Flow
We introduce the notion of ‘block flow’, which uses the energy computation for velocity
estimation as for optical flow (Singh and Allen, 1992) (and extended to 3D in Section 2.2), but
for the entire block, instead of every voxel. For a given reference block ref, we define
empirically a maximum displacement md in the new image frame. Within the search space,
we compute the estimation error as

(7)

Minimizing the energy E is equivalent to minimizing the maximum error in similarity between
the target block tar and ref, and between tar and absref, where absref is the user-defined block
in the first frame of the 4D sequence. E becomes a value of worst match and obstructs velocities
u, v and w to grow in the directions of blocks that are not similar to both the previous frame
and the absolute reference. absref acts as a template ensuring that the solution does not diverge
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from the initial estimate or gold standard. Extending the computation to 3D in a similar manner
to (Boukerroui et al., 2003; Singh and Allen, 1992), we obtain the probability distribution R,
as in

(8)

where τ normalizes the probabilities. The estimate of the three-directional block velocity Vb is
presented as a weighted sum of displacements in the three directions in

(9)

The block flow algorithm does not use neighborhood information to smooth the block velocity,
as the displacement is unique for the entire block. This enforcement is valid for tracking an
object like ASD, as the defect remains a compact structure with margins moving together
throughout the heart motion. This is not applicable to tracking more complex objects. Once
the velocity is calculated, we verify if the new match is on the image margins, as in Figure 4.
If that is the case, we grow the block to ensure that it will propagate with the same size as
absref.

Compared to block matching, block flow estimates the velocity of the block from a probability
distribution function of energy terms corresponding to best matches between blocks. Unlike
optical flow, block flow reduces the similarity computations from a set of voxels to one block.
Instead of calculating maximum likelihood for every voxel of a contour in typical optical flow,
we speed up the computational costs by computing the energy term for only one block. The
other major difference between our method and previous approaches is the use of an additional
energy term from a predefined block, which can be a standard use of a reference for processing
repetitive data.

3. RESULTS
3.1 In Vivo Animal Results

To test the tracking algorithms, we used a database of eight 4D time sequences of porcine
beating hearts with artificially created ASD. Available clinical data is sparse; however, we
ensured a larger database for our study using animal data. Empirically, we found tracking in
animal data more difficult than in clinical studies. This is probably caused by the artificial
creation of ASDs when the septum is cut with an instrument in order to create a defect. Artificial
ASDs tend to have more jagged edges. Another strong incentive to use animal data is the need
for animal studies to design surgery.

The ASDs were created solely under real-time 3D echocardiographic guidance by balloon atrial
septectomy and subsequently enlarged by biting off the rim of the ASD with a Kerrison bone
punch. (Suematsu et al., 2005). The experimental protocol was approved by the Children’s
Hospital Boston Institutional Animal Care and Use Committee. The size of the septal defects
varied between 4.8 and 6.5 mm. All the US data were acquired in-vivo with a Sonos 7500 Live
3D Echo scanner (Philips Medical Systems, Andover, MA, USA). The image size is
80×80×176 voxels. For the acquisition of in-vivo data, images were acquired using a streaming
mode. The time of acquisition was of 2s/case at a frame rate of 25 volumes/s. We start the
search using a larger search space (coarse level) and compute similarity values every two voxels
in each direction. Once the best correspondence is found, we refine the search at every voxel
with a smaller search space (fine level). The search space is of 10 voxels in each direction,
giving a search window of 20×20×20 voxels. At this stage, the implementation of the four
tracking algorithms was done in Matlab 7 (The MathWorks, Inc.) We present results on a dual
2.4 GHz processor with 2.5 GB RAM for a block of size 18×18×11 voxels. We chose the
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smallest block around the ASD that includes its margins and is bigger than the maximum size
of ASD.

The performance of the block matching algorithm using two levels (coarse to fine) of combined
translation-rotation and MLE is shown on the top row of Figure 5. Each block shown in Figure
5 is a 3D entity visualized from the right atrium looking into the left atrium (from above the
block) using a 3D renderer and semi-transparency. In this particular view, a well-tracked ASD
will appear as a black hole in the middle of the block, where the surrounding tissue is part of
the septum. The rows present the absolute reference in frame 1 and tracking results after 20,
40 and 50 frames (50 frames correspond to 2s). Judging by the small rotations and the rounder
shape of ASD, we also tested block matching using only multi-scale translation. The results
are almost identical (with an error of maximum 2 voxels) and the speed reaches 0.06 s/frame
with PCC similarity criteria and 0.14 s/frame using SSD. Using MLE as similarity measure
gives more robustness to the algorithm, but it is more computationally expensive (0.47 s/frame).

The gold standard for our qualitative assessment of tracking is the expert’s visual judgment of
our off-line tracked images, as there is no approved streaming machine yet to be placed in the
operating room. Even when all tracking methods provide reasonable results, the ASD can be
off-center or only partially found in the tracked block.

The performance of the two level optical flow algorithm was visually more robust than that of
simple block matching. Using MLE as similarity criterion, the computational speed was of
25.7 s/frame. The second row in Figure 5 shows tracking results using optical flow. In block
matching-optical flow combination, we used some smoothing between neighboring points, but
no connectivity was enforced. The contours voxels are enfolded by the resulting block. The
speed was increased at 13.32 s/frame using a two level combination of block matching (the
coarse level) and optical flow (the fine level), although the technique remains too slow for real-
time applications. Results using the block matching-optical flow combination technique are
shown on the third row in Figure 5.

Finally, the bottom row in Figure 5 presents tracking results using the new block flow
algorithm. Using energy estimation at block level instead of voxel level, the block flow method
becomes much faster than optical flow, without losing accuracy. Its processing speed is 0.48
s/frame, comparable to that of single block matching, but with much more robust results. In
Figure 6, we present full 3D volumes (the entire frame) of the results obtained by block flow
shown in Figure 5.

The block flow technique outperforms both block matching and optical flow for tracking ASD.
Block matching is the fastest, but it computes a single similarity measure between successive
frames and it stores the best match, ignoring the results in the rest of the search space. Optical
flow is more robust, as velocities are computed using similarity measures from the entire search
space, but very slow. We tracked ASD contour voxels; without additional motion constrains,
the method lacks robustness after approximately one cardiac cycle. The results reported are
achieved using a basic implementation to reduce computation time. While more sophisticated
optical flow methods would perform better, this is beyond the purpose of this paper. The
superior results of the block flow method are due to the combination of measures from the
whole search space, as for optical flow, combined with the fast processing for the entire block
and the use of a reference block.

3.2 Error Propagation
For a careful characterization of the evolution of errors in time, we defined two components:
the absolute error abserr and the conservation error conserr
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(10)

abserr gives the error of resemblance to absref, as a measure of global variance or cumulative
deviation from the model, while conserr shows the energy conservation at every frame, a
measure of local variance.

Table 1 shows quantitative results for the compared tracking algorithms. Mean MLE scores
are computed for eight 4D image data using the four described methods. The score is
normalized between 0 and 100, where 0 corresponds to the perfect match. The block flow
algorithm had the conservation scores and in time reaches the best absolute scores as well. For
the first 25 frames, block matching has the smallest conservation error (as it minimizes
conserr), but block flow stays more robust over time and performs better for the last 25 frames.
Regarding the absolute error, block matching performs better than optical flow over the first
25 frames. However, the cumulative error in velocity estimation by block matching increases
at a faster pace in time. While being more accurate that optical flow in motion tracking, the
block flow method is also 27 times faster. The multi-scale combination of block matching and
optical flow starts better and faster than our optical flow implementation, but is the least robust
in time. The block flow algorithm performs better than the other techniques with better local
and global similarity and the smallest cumulative error.

Estimating abserr and conserr at every frame in a typical ASD 4D volume, we obtained the
results shown in Figure 7. Our data are ungated, but Figure 7 shows repeatability in the pattern
of error variation in time. Under the procedure, a typical porcine heart beats at 70 beat/min.
For a data set of 50 frames (2s), the heart goes through approximately two and a half cardiac
cycles. Note that each error measure has two peaks in its time evolution and that the peaks are
temporally related to each other, as shown by the two ellipses in Figure 7. abserr becomes
maximal at times when the ASD exhibits extreme changes of shape in a repetitive way with
the heart cycle. conserr shows peaks at sudden movements of the heart septum related to the
pumping of the heart. Comparing the error evolution with the cardiac 4D US data, the peaks
of abserr are related to the dilation of the left atrium during late diastole, and conserr becomes
maximal at the beginning of atrial contraction during systole. These observations are in full
agreement with the prevailing literature (Handke et al., 2001;Maeno et al., 2000). The errors
also show a small increase in time, a cumulative error that could be corrected using gating
information on the repetitiveness of the heart cycle.

We did not include average error values for the entire dataset, as without gating, different hearts
could be at various moments of their heart cycle. However, we compared the evolution of errors
in block matching, optical flow and block flow for the case exemplified in Figure 7. The block
matching and optical flow techniques do not include a constraint in similarity with absref.
Figure 8 shows the evolution of conserr. Block matching, as a technique based on minimizing
conserr, has the best local similarity in the first part of the time sequence. Nevertheless, block
flow leads on the second part of the sequence. Optical flow has poor local similarity due to the
individual migration of contour voxels between frames. Figure 9 shows the evolution of
absserr. Optical flow has a difficult initialization due to the migration of each contour voxel.
Once stabilized, its error becomes smaller than that of block matching, which has the most
rapid growth. The cyclic information contained in block flow is not reflected in the results of
the other techniques. The 3D cyclic motion of the block is further observed in Figure 10. The
maximum displacement appears on the z-axis, due to the heart contraction/dilation. The x and
y displacement from one cycle to the next is partly due to the free-hand probe motion.

The definition of errors may favor some of the compared methods, as they minimize either
abserr or conserr, or both. For instance, block matching minimizes conserr, while block flow
uses absref. However, abserr compares the absref with its replica (altered by noise and possible
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small errors in probe motion) at the end of each cycle. The values of absref after the first cycle
are 12.54 (BM), 6.79 (OF) and 2.67 (BF), and after the second cycle are 19.61 (BM), 9.92 (OF)
and 2.83 (BF).

We would not expect a significant difference between cardiac cycles, as confirmed both
visually and by clinical experts. For the animal sets, the image acquisition stopping criterion
is time=2s or 50 frames. Images are acquired by experienced interventional radiologists who
aimed at holding the US probe in a locked position relative to ASD. Probe sliding may occur,
inducing only minor drifts.

Our data is not ECG-gated, hence we approximate which is the moment when the next heart
cycle begins in multi-cycle images; this is a simple task for experienced clinicians. While the
ASD dilates/contracts and even changes shape slightly, in theory returns to the same shape and
size after one heart cycle. The only difference between heart cycles could appear in the position
of ASD, if the ultrasound probe moved. As results show, our algorithm retrieves correctly the
new location of the ASD at the end of the heart cycle even if the probe moved. This explains
why Figure 10 shows different coordinates for ASD after each cycle, but similar motion
patterns within the cycle.

3.3 Clinical Results
We used for clinical validation three clinical 4D US sequences of infant beating hearts with
ASD acquired intra-operationally. The US data were acquired in-vivo with a Sonos 7500 Live
3D Echo scanner (Philips Medical Systems, Andover, MA, USA). The times of acquisition
were of 15 and 17 frames/case, corresponding to one heart cycle at a frame rate of 25 volumes/
s. The image size is of 160×144×208 voxels. The clinical data has higher resolution than our
animal acquisitions. Since the images were acquired intra-operatively, the septum was not
orthogonal to the US beam and the ASD appears slanted. This slightly twisted position
amplifies the visual effect of change in ASD size, as heart contraction and blood pressure
modify the opening between atria. The dilation/contraction of the ASD is shown in Figure 11,
where we present tracking results in a clinical ASD case. We ensured that the block enfolding
the absolute reference in the first frame is large enough to accommodate the change of size of
the ASD. The results are consistent with those from the animal trial and the ASD is tracked as
a blood hole in the middle of the septal tissue. The mean errors for the three clinical 4D images
associated with the block flow algorithm are 7.09±2.77 for abserr and 4.40±2.14 for conserr.
The results are in the same range of values as those obtained in animal data and shown in Table
1, but slightly bigger, as there is a more substantial change of shape between frames in the
clinical ASDs when compared to the artificially created animal ASDs. Consistent with our
previous observations, abserr and conserr have synchronized peaks, associated with the heart
cycle, as in Figure 12. abserr has maximal value at frame 7, when the ASD is fully dilated (late
diastole) and furthest from absref (selected at early diastole). conserr is maximal at frame 10
(systole), when the contraction of left atrium changes fast the shape and size of ASD. The 3D
cyclic motion of the block is presented in Figure 13. Similar to the porcine cases, the maximum
displacement appears on the z axis, due to the heart contraction/dilation. The block is found
again at the start position at the end of the heart cycle.

An additional feature of the algorithm is a preliminary segmentation of ASD from tracked
blocks. An ample overview of segmentation technique for medical ultrasonic images can be
found in (Noble and Boukerroui, 2006). In clinical practice, the ASD is covered with a patch
often twice as large in diameter as the ASD. The segmentation that we propose at this stage is
basic and fast and aimed to potentially guide the eye of the expert to the position where the
real patch would be used to cover the ASD during surgery. The view is operation orientated.
The block containing the ASD is projected on the direction that the patch will be placed. We
add the intensity values of voxels at every location on the projection plane and the 2D result
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is thresholded. We correct segmentation errors by morphological closing and keep the
maximum connected component. Visually, we present a 2D area at the location and of the size
of the ASD to help guiding the placement of the patch and secure that the atrial communication
is fully covered, as in Figure 11. A 3D segmentation would provide a better characterization
of the 4D dynamic nature of ASD. This is not intended by our application.

3.4 Synthetic Data
It is difficult to evaluate quantitatively the results of ASD tracking without knowledge of the
precise 3D position of the anatomical ASD. While we aim to address the automatic 3D
segmentation in future work, the golden standard or expert 3D segmentation of ASD remains
a delicate task. For a first evaluation of the tracking algorithm, we created a synthetic ASD
with known controlled motion. This experiment allows us to obtain quantitative tracking results
by comparing the outcome of our algorithm with the known motion of the synthetic ASD block.

The synthetic ASD is designed to have similar characteristics to our real ASD data. For that
purpose, we carefully pondered the following parameters that describe the appearance and
motion of ASD: image intensity, ASD size, block size, ASD motion (translation and tilt), ASD
deformation (scaling), and noise model. The synthetic image is a parallelepiped of size shx x
shy x shz. In the center of image we create an artificial hole using the following formulation
for the value vh of each pixel

(11)

where xh, yh and zh are the x, y and z motions of the artificial ASD. Their directional motions
are controlled by parameters a, b and c, with t being the frame number or iteration and φ =
(0,t). vh has descending values toward the ASD center and a maximum of 100*π/2 = 157. A
Rayleigh noise component with the probability distribution function nh is added to the data.
rh is the radius of the artificial ASD and is regulated by parameters α and β. dh is the half width
of the septum or ASD membrane.

(12)

For a numerical example, we used dh=1.5, shx=shy=shz=100, a=b=c=5 (a motion of maximum
10 voxels on either x, y or z;) and α= 1.5 and β=3.5 for rh=(2, 5). The tilt τ is of maximum
10% in the z direction. Figure 14 shows variations in size and tilt of the synthetic ASD next to
clinical images at different stages of the heart cycle.
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The size of the ASD block is 20×20×10 voxels to resemble the size of blocks in in-vivo data
and the entire artificial image has 100×100×100 voxels. The motion is repeated periodically
over 200 frames corresponding to 8s of image data and 10 cycles, similar to the heart cycle
length in in-vivo data. The noise component is varied between 0 and 20%. Figure 15 shows
the synthetic ASD with 20% noise. Tracking results on the synthetic ASD are presented in
Figure 16. We show comparatively the real trajectory of the ASD in blue, near the tracked
position using block flow in red. For illustration, we present results on the z axis, the main
motion component of clinical ASDs. First, we use only a rigid component in the motion
(translation and tilt), and then we add scaling, and noise. The maximum digital error is one
voxel with mainly subvoxel values for the error in position tracking. Table 2 shows quantitative
errors on synthetic data for the compared tracking algorithms, similarly to Table 1.

For 50 frames, we estimated the error in position tracking in the z direction, the direction of
maximum motion of the ASD block, for the compared tracking methods. The average tracking
errors are of 4.04±1.93 (BM), 2.34±1.22 (OF), and 0.20±0.41 (BF) voxels. The errors in
position tracking after the first cycle are 4 (BF), 2 (OF) and 1 (BM) voxels, and after the second
cycle are 6 (BF), 3 (OF) and 1 (BM) voxels; values are rounded to the closest integer.

In our synthetic case, where the “heart cycle” is perfectly repeatable, the largest tracking errors
arise at the position when tar=absref. The value E of energy of block flow (a maximum value)
is larger due to identity between tar and absref, as it accounts only for the term MLE (ref,
tar), as in Equation (7). This is unlikely to happen in reality, where small differences between
tar and absref appear due to the US probe motion and position. Please also note the smoother
tracking curve in Figure 16.c compared to Figure 16.a and b, when noise is added. This effect
is explained by the use of an MLE function suited to Rayleigh noise distribution, as in Equation
(3).

Synthetic data is generated using a simplified noise model, based on US noise distribution
(Cohen and Dinstein, 2002; Thijssen, 2003) and on previous publications using Rayleigh
distribution models to generate US data (Meunier, 1995; Aysal, 2007). More sophisticated
techniques to simulate US data can be found in several recent publications (Duan et al.,
2007b; Jensen, 1999; Meunier, 1998; Yu et al., 2006) and will be investigated in future work.
One unknown factor is the preprocessing of data by the commercial US machines, which is
not accounted by the proposed methods.

4. DISCUSSION
We presented comparative results for the tracking of ASD in 4D echocardiographic images.
We introduced a block flow technique, which combines the velocity computation from optical
flow for an entire block with template matching. Enforcing similarity constraints to both the
previous and first frames, we ensure robust and unique solutions. Computing velocity at the
block level, our technique is much faster than optical flow and comparable in computation to
block matching. Results on in-vivo 4D datasets demonstrate that our technique is robust and
more stable than both optical flow and block matching in tracking ASD. Quantitative results
evaluated on synthetic data show maximum tracking errors of 1 voxel.

The absolute reference acts as a template that is used in our energy function to correct motion
estimates that drift too far from a repetitive motion pattern. In a similar way, the information
from each previous frame corrects for estimates that do not take into account the change in
shape of ASD. We chose the ASD in the first frame as absolute reference because it was the
first available datum in the image set; the ASD from any other frame could be used in the same
way, as every part of the heart cycle is repeated.
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The block flow tracking algorithm finds the 3D velocity of an entire block that enfolds the
object of interest. In this application, the object is an ASD with an approximate cylindrical
shape. The ASD can be extracted from every new block by simple and fast thresholding.
Compared to the basic block matching algorithm, our method has higher sensitivity in
computing displacements, which gives it more robustness in time. Optical flow is sensitive to
very localized changes, which also makes the method prone to errors. Interpolation, smoothing
and connectivity constraints improve the performance of optical flow, but also approximate
the results. Moreover, the block flow method is much faster than optical flow, finding the
tradeoff between accuracy and computational expense.

We first normalized the intensities to reduce the effect of noise and attenuation changes from
frame to frame. Then we compared the performance of several similarity measures and found
that statistical measures, such as maximum likelihood, are better for our application. A coarse
to fine approach is desirable for effectiveness and speed. We used a Rayleigh noise model in
the similarity measure (Thijssen, 2003). Although we did not smooth the data, the pre-
processing of the commercial ultrasound machines may alter the noise distribution. Our
assumption led to robust results, but other noise models may be studied.

The ideal speed of tracking should be equal to that of the US frame rate at 25 frames/s. However,
the human eye perceives a quasi-continuous motion at slower frame-rates, such as real-time
magnetic resonance images (MR) or real-time computed tomography (CT), which usually
display less than 10 frames/s. After visual validation by medical experts, our results have
sufficient tracking accuracy to guide the placement of the surgical patch over the ASD.

For research purposes, the implementation of the block flow algorithm was done in Matlab 7
(The MathWorks, Inc.). Its speed on a dual 2.4 GHz processor with 2.5 GB RAM is over 2Hz.
We are currently investigating a more speed-effective implementation of the block flow
algorithm in C++. Preliminary results indicate that the processing speed will be of 30 frames/
s after code optimization.

Processing speed for the robust tracking of cardiac tissues had been addressed in a number of
papers. An optical flow approach was proposed in (Duan et al., 2005). and to track endocardiac
surfaces. The data points are initialized manually and a finite element surface is fitted to the
points. More recently, the authors segment the endocardial borders at 5 frames/s (Duan et al.,
2007a). Boukerroui et al. (Boukerroui et al., 2003) use an adapted similarity measure
introduced in (Cohen and Dinstein, 2002) to compute region-based optical flow in US image
sequences. Their results, although faster, are 2D. The initialization is left out as a separate
subject and the authors propose a parameter optimization scheme (Boukerroui et al., 2003). A
knowledge-based parametric approach using level sets is proposed in (Paragios., 2003). 2D
segmentation and tracking are alternated using shape knowledge, visual information and
internal smoothness constraints. An interesting 3D cross-correlation-based approach for
speckle tracking on simulated data is proposed in (Chen et al., 2005). However, 3D speckle
tracking poses a series of difficulties, from optimization and computational costs, to speckle
decorrelation in time and space. A thorough study of decorrelation and the feasibility of
speckle-tracking are presented in (Yu et al., 2006) together with an analytical model of
echocardiographic imaging.

A different class of algorithms is that of sequential segmentation of echocardiographic images.
A good example is presented in (Maeno et al., 2000) combining 4D anisotropic filtering and
a model-based segmentation using simplex meshes. The 3D volumes are recreated from 2D
acquisitions, which give better in-plane lateral resolution than 3D US, but rely on heavy
interpolation between planes. As in the vast majority of cardiac applications, this method
segments the left ventricles and creates a model suited for diagnosis and not surgical
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interventions. The 3D left ventricular motion and tissue deformation from US images is also
analyzed in (Papademetris et al., 2003) with a dense Bayesian motion field. A biomechanical
model is used for strain information, but the finite element method (FEM) used to solve the
equations makes the process very slow. Finally, the trade off between accuracy and
computational expense is addressed in (Morsy and von Ramm, 1999) in a method combining
correlation search and feature tracking. The speed is increased, compared to conventional
correlation, but the feature detector slows down the algorithm for real-time applications (13.3
min/frame).

The dynamic nature of ASD is a subject of on-going interest. Rigid translational motion is an
important component of ASD movement, but the change in shape and size was equally noticed.
The main components of the motion are translation in the z direction (as in our view) and
dilation/contraction. In our animal data, we noticed a more pronounced change in shape,
although not pregnant, than in human data, where the change in size due to dilation/translation
is more prominent. The difference is most likely related to the artificial creation of animal
ASDs.

In closing ASDs with a catheter device it is extremely important to measure the size of the
ASD to choose the appropriate device. This is not as important in typical open-heart surgery,
but may be very important when aiming to close the ASD on the beating heart when trying to
precisely place anchors to close the defect. However, most published papers on the size of ASD
used 2D measuring tools, which do not account for the full 3D motion/deformation. Our
tracking algorithm, combined with the full 4D segmentation of ASD, will provide valuable
information for the full understanding of the dynamic morphology of ASD.

Our method obtained consistent results on in-vivo animal and clinical data. The method was
not sensitive to the size of ASD, the change in resolution or the motion of the US probe. An
interesting observation was the cyclic evolution of errors in ungated cardiac data. For future
work, we will investigate the use of the cardiac cycle for predictive estimation to minimize
errors. The automatic detection of the ASD absolute reference will be considered along with
more sophisticated and fast methods to segment the ASD in every frame. Other sources of
errors, such as free-hand movements will be examined. We will also investigate the consistency
constraints for better tracking by linear-elasticity image matching proposed in (Christensen,
1999). The algorithm implementation will be optimized to make it run in real-time and the
combination of ASD and instrument segmentation and tracking (Handke et al., 2001; Singh
and Allen, 1992) will be exploited for surgical interventions.
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Figure 1.
3D US image of a porcine beating-heart with ASD. The US probe is placed outside the right
atrium and the beam oriented toward the left atrium. (a) shows the entire 3D US volume, while
(b) presents a magnified view of the ASD. The patch must cover the entire ASD surface, as
seen in (c).
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Figure 2.
The US probe in relation with the heart. The probe is placed directly to the surface of the right
atrium and “looks” through the ASD into the left atrium.
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Figure 3.
The principle of single block matching. The reference block is first rotated, its coordinates are
changed, and then is translated over the search space of the target image to find the best fit.
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Figure 4.
Avoiding padding at image margins. The top row shows the change of block size during
translation and the bottom row during rotation. ref is shown in black and tar in gray.
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Figure 5.
The comparative performance of the four tracking algorithms. The top row shows results by
block matching (BM); the second row by optical flow (OF); the third row by a multi-scale
combination of block-matching and optical flow (BMOF); the bottom row by block flow (BF).
All blocks are shown equally sized. From left to right, the columns show 3D blocks at frames
1, 20, 40 and 50.
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Figure 6.
Tracking results in full 3D volume for the case shown in Figure 5. (a) presents the first frame
and the absolute reference marked as a block; (b) shows tracking results after 25 frames; and
(c) after 50 frames.
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Figure 7.
The evolution in time of the absolute and conservation errors. abserr has a mean value of 5.55
and a standard deviation of 2.32. conserr has a mean value of 3.34 and a standard deviation of
1.64. Each error measure has two peaks, which are temporally related to each other, as shown
by the two ellipses
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Figure 8.
The comparative evolution in time of conserr. BM - block matching; OF - optical flow; BF -
block flow.
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Figure 9.
The comparative evolution in time of abserr. BM - block matching; OF - optical flow; BF-
block flow.
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Figure 10.
The 3D motion of the block in a porcine case. Temporal frames start at blue and end at red.
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Figure 11.
Clinical ASD tracking. From left to right and top to bottom, the columns show 3D blocks
visualized from right atrium to left atrium every two frames between 1 and 15 (the frame
number is marked on the upper left corner). The segmented ASD is shown in light gray
ellipsoids.
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Figure 12.
The evolution in time of the absolute and conservation errors in clinical experiments. The peaks
of the two errors are synchronized, as shown the arrows.
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Figure 13.
The 3D motion of the block for a typical clinical case for one heart cycle. Temporal frames
start at blue and end at red. At the end of the heart cycle, the block is found at the same position
as at the start.
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Figure 14.
The synthetic ASD. (a), (b) and (c) show the 2D slices of 3D temporal images of a clinical
ASD. (d), (e) and (f) are 2D slices of 3D temporal images of the synthetic ASD; note the change
of size and tilt.
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Figure 15.
The synthetic ASD with 20% Rayleigh noise.
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Figure 16.
Tracking results on synthetic ASD over 200 frames and 10 cycles; in blue we show the real
ASD trajectory, while in red we present the tracked position of ASD; (a) the z component of
tracking when the ASD motion is characterized by rigid motion (translation and tilt) only; (b)
rigid motion and scaling; (c) rigid motion, scaling and 20% noise.
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Table 2
The mean MLE scores for synthetic data using four tracking techniques over 50 frames. Normalized MLE scores (0–
100) were calculated every 25 frames according to Equation (10): 0 for the perfect match to 100 for the worst. The best
results are shown in italic. Results are comparable to those in Table 1 for in-vivo data.

Mean/Std conserr Mean/Std abserr
Frames 1–25 Frames 26–50 Frames 1–25 Frames 26–50

Block Matching 2.12±0.19 3.29±0.49 6.91±5.28 7.94±5.06
Optical Flow 3.96±1.24 4.12±1.64 7.07±5.12 7.02±3.74
Block Matching - Optical Flow 5.64±2.60 6.03±3.43 7.18±4.96 8.39±4.23
Block Flow 2.53±0.11 2.52± 0.12 2.84±0.21 2.87±0.15
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