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ABSTRACT

The use of fundus images for the early screening of eye diseases is of great clinical importance. Due to its powerful performance,
deep learning is becoming more and more popular in related applications, such as lesion segmentation, biomarkers segmentation,
disease diagnosis and image synthesis. Therefore, it is very necessary to summarize the recent developments in deep learning
for fundus images with a review paper. In this review, we introduce 143 application papers with a carefully designed hierarchy.
Moreover, 33 publicly available datasets are presented. Summaries and analyses are provided for each task. Finally, limitations
common to all tasks are revealed and possible solutions are given. We will also release and regularly update the state-of-the-art
results and newly-released datasets at https://github.com/nkicsl/Fundus_Review to adapt to the rapid development of this field.

1. Introduction

According to the World Vision Reporﬂ released by the
World Health Organization in October 2019, more than 418
million people worldwide suffer from glaucoma, diabetic
retinopathy (DR), age-related macular degeneration (AMD)
or other eye diseases which can cause blindness. Patients with
eye diseases are often unaware of the aggravation of asymp-
tomatic conditions 2003), so early screening and
treatment of eye diseases is particularly important.

A fundus image is a projection of the fundus captured by
a monocular camera on a 2D plane. Unlike other eye scans,
such as OCT images and angiographs, fundus images can be
acquired in a non-invasive and cost-effective manner, mak-

ing them more suitable for large-scale screening
2018). An example of a fundus image is presented in
Fig.[1]

Many important biomarkers can be seen in the fundus im-
age, such as optic disc (OD), optic cup (OC), macula, fovea,
blood vessel, and some DR related lesions, such as microa-
neurysms (MAs), hemorrhages (HEs), hard exudates (EXs),
and soft exudates (SEs). Fundus images can be used to diag-
nose a variety of eye diseases, including glaucoma, DR, AMD,
cataract, retinopathy of prematurity (ROP), and diabetic mac-
ular edema (DME).

Recently, data-driven deep learning has been widely ap-
plied to ophthalmic disease diagnosis based on fundus im-
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Fig. 1. A fundus image from the IDRiD dataset illustrating important
biomarkers and lesions.

ages. Compared to traditional methods that use manually de-
signed features, deep learning models can achieve better per-
formance by automatically optimizing the features in an end-
to-end manner. Most applications of deep learning in fundus
images can be coarsely divided into classification, segmenta-
tion and synthesis tasks. For brevity, we only list widely used
backbones in fundus image applications. Diagnosis and grad-
ing of ophthalmic diseases are two examples of classification
tasks, VGG-Net (Simonyan and Zisserman|, 2015)), Inception
(Szegedy et alll POTS| 2016| 2017), ResNet
and DenseNet (Huang et all, 2017) are the most widely used
classification backbone networks. In terms of segmentation
tasks, identifying lesions and biomarkers is of great impor-
tance in the diagnosis of diseases. In addition to those used
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Fig. 2. Number of papers on fundus images and deep learning in recent
years.

for classification, other networks widely used for segmenta-

tion in fundus images include FCN 2015), Seg-
Net (Badrinarayanan et al., 2017), U-Net (Ronneberger et al
2015), MaskRCNN and DeeplabV3+
2018). Finally, in the field of fundus image synthe-

sis, generative adversarial network (GANs)
2014) are the dominant architecture.

Motivation. The results in Fig. 2] show that the number of
papers on fundus images and deep learning are increasing year
by year. While several review papers already exist for these,
they are all different from our review. For instance,
let al| (2010) and [Zhang et al. (2014)) only focus on classical
machine learning methods; [Salamat et al.| (2019)), [Kanse and
[Yadav| (2019) and Moccia et al.| (2018)) only consider specific
individual diseases, such as DR or glaucoma; and
[Erfurth et al.|(2018)), Rahimy and Ehsan|(2018)) and [Ting et al.|
do not discuss specific deep learning methods

or structures, but instead simply use “a deep learning method”
and similar terms to refer to all methods. Therefore, it is nec-
essary to provide a high-quality review that analyzes the trends
and highlights the future directions for the applications of deep
learning in fundus images.

Data. In this review, we focus on the successful application
of deep learning methods in fundus images from January 2016
to August 2020. We collected 143 papers from the DBLFEL
ScienceDirecﬂ JAMA Network El, Investigative Ophthalmol-
ogy & Visual Scienceﬂ and Web of Scienceﬁ databases using
the following keywords: retina, fundus, diabetes retinopathy,
glaucoma, age-related macular degeneration, cataract, reti-
nal vessel, optic disc / disk / cup, fundus / retinal + lesion /
abnormal, hemorrhage, microaneurysm, exudate, neovascu-
larization, drusen, fundus / retinal + synthesis / enhance, fun-
dus / retinal + hypertension / stroke, fundus / retinal + kidney
/ brain / heart, and fundus / retinal + cardiovascular / cere-

Zhttps://dblp.uni-trier.de/db/
3httpS2//WWWASCiCIlCCdiI‘CCt.C0H1/
4https://jamanetwork.com/
Shttp:/fiovs.arvojournals.org/
Ohttp://apps.webofknowledge.com/
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Fig. 3. The distribution of papers per task.

brovascular.

The conference sources include CVPR, AAAI, MICCAI,
ISBI, ICMLA, and ICIP, and the journal sources include /EEE
TIP, IEEE TMI, MIA, JAMA, JAMA Ophthalmology, Ophthal-
mology, Investigative Ophthalmology & Visual Science, Di-
abetes Care, Nature Biomedical Engineering, IEEE TBME,
IEEE JBHI, Pattern Recognition, Neural Networks, Informa-
tion Science, Knowledge Based Systems, Expert Systems with
Applications, Neurocomputing and Future Generation Com-
puter Systems. The distribution of papers per task is shown in
Fig. 3] Distributions of papers per year/source are shown in
Fig. @

Two recent reviews, Badar et al.| (2020) and [Sengupta et al
(2020), are similar to ours in terms of view (fundus image,
not ophthalmology), style (technical, not clinical), and method
(deep learning, not artificial intelligence or machine learning).
However, only 34 papers and 62 papers are reviewed in each,
respectively, while we review 143 papers. Further, as shown in
Fig. [5] the scopes are also different. Finally, as shown in Fig.
[6 this review utilizes a carefully designed multi-layer hierar-
chy to organize the related works in a more intuitive manner.

Contributions. First, we give a comprehensive review of
the applications of deep learning in fundus images. Compared
to recent works, this review covers more recent papers, more
eye diseases and more challenging tasks, especially including
image synthesis and several interesting applications in Section
[l Second, we carefully design the taxonomy of our paper. A
knowledge graph is summarized in Fig. [6 The lookup table
for the references in the knowledge graph is presented in the
Appendix. This can help readers to quickly find content of
interest. Third, summaries and analyses are provided for each
task. Limitations that are common to current approaches are
also described and possible solutions given in Section[7] This
may provide inspiring ideas for researchers in this field.

2. Lesion detection/segmentation

In this section we will review how deep learning meth-
ods have been applied to lesion detection/segmentation. The
widely used datasets for this task are shown in Tab. [} The
availability column is linkable in the soft copy. Because of
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Fig. 5. Comparison with two recent reviews similar in view, style and year.

the correlation between lesion detection/segmentation and DR
diagnosis, there is an overlap between datasets used for the
two. The DIARETDBO dataset (Kauppi et al.} 2006) consists
of 130 images, of which 110 contain signs of DR (EXs, SEs,
MAs, HEs and neovascularization) and 20 are normal. DI-
ARETDBI1 (Kauppi et all 2007) consists of 89 images, of
which 84 contain at least mild non-proliferative signs of DR
(MA) and five are normal. The RC-RGB-MA dataset
[bozorg et al.}[2018)) contains 250 images. MAs were annotated
by two experts at bounding-box level. Images in the RC-SLO-
MA dataset (Dashtbozorg et al, 2018) were captured using
scanning laser ophthalmoscopy (SLO). The dataset contains
58 images with MA labels. The Retinopathy Online Chal-
lenge (ROC) dataset (Niemeijer et al.l 2010) consists of 100
images that have been divided into a training set and a test
set, both containing 50 images. Center locations of MAs are
labeled by experts. The e-ophtha dataset can be divided into
two subsets, namely e-ophtha EX and e-ophtha MA. E-ophtha

EX (Decenciere et al.} 2013)) provides pixel-level labels for EX
segmentation. It consists of 47 images with exudates and 35

3

with no lesions. E-ophtha MA (Decenciere et al.} [2013)) con-
sists of 148 images with MAs or small HEs and 233 healthy

images. The Messidor dataset (Decenciere et al, 2014) con-
sists of 1,200 images obtained from three ophthalmologic de-
partments. 540 images are normal and 660 images are ab-
normal. Messidor is divided into three sets, one per depart-
ment, with different resolutions. 800 images were acquired
with pupil dilation and 400 without. Messidor-2
extended Messidor to 1,748 images. Unlike Mes-
sidor, images of Messidor-2 are all in pairs. The CLEOPA-
TRA dataset (Sivaprasad et al.} [2014) consists of 298 images
obtained from 15 hospitals in the UK. It was acquired by dif-
ferent fundus cameras. Therefore, the images have different
resolutions. Two experts were invited to annotate the ground
truths for EXs, HEs and MAs. The first expert marked all im-
ages and the second marked 135 images. CLEOPATRA is not
available online. The two names Kaggle and EyePACS
[fornia Healthcare Foundationl, [2015)) refer to the same dataset
which was provided by EyePACS and used in the “Diabetic
Retinopathy Detection—Identify signs of diabetic retinopathy
in eye images” Kaggle competition. Kaggle dataset consists
of 35,126 training images graded into five DR stages and
53,576 test images of undisclosed stages. Images in the Kag-
gle dataset were obtained using multiple fundus cameras with
differnt fileds of view. The IDRiD dataset (Porwal et al.|[2018))
was used in the “Diabetic Retinopathy: Segmentation and
Grading Challenge” held by ISBI in 2018. It consists of three
tasks, namely segmentation, disease grading and localization,
with official training and test sets provided. The segmenta-
tion task consists of 81 images with ground truths provided
for lesions (MAs, HEs, EXs, SEs) and OD areas. The dis-
ease grading task consists of 516 images with severity grade
for DR and DME. The localization task also consists of 516
images, with annotations for OD and fovea center localiza-
tion. Note that images in IDRiD have relatively high resolu-
tion. The DDR dataset consists of 13,673
images which were obtained from 147 hospitals, covering 23
provinces in China. Image level annotations with five classes
of DR severity are provided for all images. In addition, 757
images are provided with pixel-level and bounding-box-level
annotations for lesions (MAs, EXs, SEs and HEs).

Experimental results for lesion segmentation on the various
datasets introduced in this section are provided in Tab. 2] 3 4]
and[3]

2.1. Hemorrhages

Hemorrhages (HEs) are one of the visible pathological
signs of DR. Accurate detection or segmentation of HEs is
important for DR diagnosis. In the task of lesion detec-
tion/segmentation, patch-based methods are quite popular be-
cause of the limited number of images in datasets and the need
to reduce computational costs. Patch-based methods can gen-
erate tens of thousands of patches with only dozens of images,
which can help improve performance and alleviate the prob-
lem of overfitting. However, HEs (as well as other lesions) are
typically relatively small in size, with their pixels only mak-
ing up a small proportion of the whole image. This leads to
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Table 1. Widely used datasets of lesion detection/segmentation and DR diagnosis/grading

Dataset name Number of images Resolution Camera Availability
DIARETDBO 130 (110 DR, 20 Normal) - digital fundus cameras with unknown |available online
camera settings, FVO 50°
DIARETDB1 89 (84 DR, 5 Normal) 15001152 ZEISS FF 450plus fundus camera with  available online
Nikon F5 digital camera, FOV 50°
Retinopathy Online 100 - a Topcon NW 100, a Topcon NW 200, lavailable on registra-
Challenge or a CanonCR5-45NM, 2 differently [tion’
shaped FOVs
RC-RGB-MA 250 2595x1944 a DRS non-mydriatic fundus camera, |available online?
FOV45°
RC-SLO-MA 58 1024x1024 an EasyScan camera (i-Optics Inc., the lavailable online?
Netherlands), FOV45°
IDRiD 516 4288x2848 a Kowa VX-10 alpha digital fundus |available online?
camera, FOV 50°
Messidor 1200 1440x960, a color video 3CCD camera on a Top- available on registra-i
2240x1488, con TRC NW6 non-mydriatic retino- tion|
2304x1536 graph with FOV 45°
Messidor-2 1748 1440x960, a Topcon TRC NW6 non-mydriatic |available on registra-
2240% 1488, fundus camera with FOV 45° tion®
2304x1536
e-ophtha EX 47 with 12,278 exudates, ranging from - available on registra-|
35 healthy 1440%x960 to tion]
2544x1696
e-ophtha MA 148 with 1306 MA, 233 ranging from - available on registra-|
healthy 1440%x960 to tion°
2544x1696
DDR 13,673 mixed 42 types of fundus cameras with a lavailable online
45°FOV
Kaggle/EyePACS 35,126 train, 53,576 test - multiple fundus cameras and different |available on registra-
fields of views tion
CLEOPATRA 298 - multiple fundus cameras not available online

'https://www.it lut.fi/project/imageret/
Zhttps://www.it.lut.fi/project/imageret/
3http://webeye.ophth.uiowa.edu/ROC/
#http://www.retinacheck.org/datasets
Shttp://www.retinacheck.org/datasets
Shttps://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
Thttp://www.adcis.net/en/third-party/messidor/
8http://www.adcis.net/en/third-party/messidor2/
http://www.adcis.net/en/third-party/e-ophtha/
1Ohttp://www.adcis.net/en/third-party/e-ophtha/
https://github.com/nkicsl/DDR-dataset
2https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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https://github.com/nkicsl/DDR-dataset
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
http://webeye.ophth.uiowa.edu/ROC/
http://www.retinacheck.org/datasets
http://www.retinacheck.org/datasets
http://www.adcis.net/en/third-party/messidor/
http://www.adcis.net/en/third-party/messidor2/
http://www.adcis.net/en/third-party/e-ophtha/
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Table 2. Summary of several results for lesion detection/segmentation on IDRiD dataset

Reference Backbone Loss PR/% SE/% SP/% ACC/% AUPR/% AUC/% F1/%
Hemorrhage detection/segmentation

"|Guo et al. i2019:» FCN Top-k loss, Bin loss - - - - - 67.34 -
Yan et al.|(2019a) U-Net weighted CE - - - - 70.3 - -

B ) Microaneurysms detection/segmentation

“ISarhan et all FCN Dice loss, CE and Triplet loss 61.128 28.07 - - 41.96 - 38.4877
(2019)(geometric)
Guo et al.|(2019) FCN Top-k loss, Bin loss - - - - - 46.27 -
Yan et al.|(2019a) U-Net weighted CE - - - - 52.5 - -
Xue et al.|{(2019) Mask-RCNN  log loss, regression loss, CE loss - 764 998 99.7 - - -

B ) Hard exudate detection/segmentation

|Guo et al.[(2020a) HED Top-k loss, Bin loss - 95.74 - - - 98.71 95.57
Guo et al.|(2019) FCN Top-k loss, Bin loss - - - - - 7945 -
Yan et al.|(2019a) U-Net weighted CE - - - - 88.9 - -
Xue et al.|{(2019) Mask-RCNN  log loss, regression loss, CE loss - 779 99.6 99.2 - - -

B ) Soft exudate detection/segmentation

|Guoetal.[(2019)  FCN Top-k loss, Bin loss - - - - - 7113 -
Yan et al.|(2019a) U-Net weighted CE - - - - 67.9 - -

Table 3. Summary of several results for lesion detection/segmentation on E-ophtha dataset

Reference Task Backbone Loss PR/% SE/% SP/% ACC/% AUPR/% AUC/% F1/%
“|Carson et al.[(2018)  MA classification CNN - - - - - 86 94 -
"IGuo et al. (20 19) MA segmentation FCN Top-k loss, Bin loss - - - - - 16.87 -

Xue et al.|(2019) MA segmentation Mask-RCNN  log loss, regression - 67.2 998 99.7 - - -

loss and CE loss
“|Carson et al.[(2018]  Exudates classification CNN - - - - - 64 95 -
“|Guo et al. i2020a) EX detection HED Top-k loss, Bin loss - 86.44 - - - 91.84 87.01
Guo et al.|(2019) EX segmentation FCN Top-k loss, Bin loss - - - - - 41.71 -
Xue et al.|(2019) EX segmentation Mask-RCNN  log loss, regression - 84.6 988 984 - - -
loss and CE loss
“IPlayout et al.[(2019)  Bright Lesion segmenta- U-Net loss based on Co- 78.50 80.02 99.88 99.77 - - 79.25
tion hen’s coefficient
“|Playout et al.[(2019)  Red Lesion segmentation  U-Net loss based on Co- 7526 75.62 99.99 99.88 - - 75.44
hen’s coefficient
Table 4. Summary of several results for lesion detection/segmentation on DiaretDB1 dataset

Reference Task Backbone Loss PR/% SE/% SP/% ACC/% AUC/% F1/%

Dai et al.|(2018) MA detection CNN - 99.7 878 - 96.1 934 -

" |Adem|(2018) Exudate detection CNN - - 99.2 9797 - - -
“|Playout et al.|[(2018)  Bright lesion segmentation  U-Net loss based on Cohen’s coefficient - 75.35 99.86 - - -

Playout et al.|(2019)  Bright lesion segmentation =~ U-Net loss based on Cohen’s coefficient  81.70 88.29 99.93 99.89 - 84.87
“Playout et al.|(2018)  Red lesion segmentation U-Net loss based on Cohen’s coefficient - 6691 99.82 - - -

Playout et al.|(2019)  Red lesion segmentation U-Net loss based on Cohen’s coefficient 78.96 85.18 99.89 99.83 - 81.95




Table 5. Summary of several results for lesion detection/segmentation on other datasets

Reference Task Dataset Backbone Loss SE/% SP/% AUC/% mAP/%
van Grinsven et al.| HE detection Kaggle CNN CE 83.7 851 894 -
(2016)
" Ivan Grinsven et al.l HE detection Messidor CNN CE 919 914 972 -
(2016)
" [Huang et al.[(2020)  HE segmentation private CNN MSE, IoU, GIoU - - - 52.20
“|Yan et al. (2(518a) Drusen segmenta- STARE, Encoder-decoder - 92.02 97.30 - -
tion DRIVE Network
Adem|(2018) Exudate detection DiaretDB0 CNN - 100 98.41 - -
“|Adem|(2018) Exudate detection  DrimDB CNN - 100 9844 - -
“Tan et al. 12017) EX detection CLEOPATRA CNN log-likelihood function 87.58 98.73 - -
“Tan et al. 12017) HE detection CLEOPATRA CNN log-likelihood function 62.57 98.93 - -
" |Tan et al.[(2017) MA detection CLEOPATRA CNN log-likelihood function  46.06 97.99 - -
"|Guo et al. (2019) EX segmentation DDR FCN Top-k loss, Bin loss - - 55.46 -
" |Guo et al.|(2019) SE segmentation DDR FCN Top-k loss, Bin loss - - 2648 -
" |Guo et al.|(2019) HE segmentation DDR FCN Top-k loss, Bin loss - - 35.86 -
" |Guo et al.|(2019) MA segmentation ~ DDR FCN Top-k loss, Bin loss - - 10.52 -

an imbalance problem, where only a few patches contain le-
sions and a large number do not contribute much to the le-
sion detection/segmentation task. Imbalance is also common
in other lesion detection/segmentation tasks in this section,
details of which will not be repeated for brevity. There are
two main directions in the improvement of hemorrhage detec-
tion/segmentation; namely selective sampling and performing
segmentation on coarsely-annotated datasets.

Selective sampling. |van Grinsven et al| (2016) proposed
a method called selective sampling to reduce the use of re-
dundant data and speed up CNN training. They invited three
experts to relabel the Messidor dataset and a subset of Kaggle.
During the training process, weights of samples were dynam-
ically adjusted according to the current iteration’s classifica-
tion results, so that the informative samples were more likely
to be included in the next training iteration. Inspired by VGG,
they designed a nine-layer CNN as the classifier. On the Kag-
gle competition and Messidor datasets, experimental results
showed that the CNN with selective sampling (SeS) outper-
formed the CNN without selective sampling (NSeS), and SeS
reduced the number of training epochs from 170 to 60.

Segmentation on coarsely-annotated datasets. Huang
et al.|(2020) proposed a bounding box refining network (BBR-
Net) which can generate more accurate bounding box annota-
tions for coarsely-annotated data. Then they utilized a Reti-
naNet (Lin et al.,|2017) to detect hemorrhage. Rather than us-
ing the finely annotated IDRiD dataset, they performed hem-
orrhage detection on a private dataset with coarsely annotated
bounding box. They first established a dataset containing im-
age pairs. For each pair, one image was taken from IDRiD
and the other was obtained by simulating coarsely-annotated
bounding boxes. BBR-Net took coarsely annotated patches as
input and finely annotated patches as target. After training,
the authors introduced their private data to obtain more accu-
rate bounding box annotations, and then sent the results to the
RetinaNet for hemorrhage detection.

Discussion. The selective sampling method alleviates the
problem of data imbalance. Selective sampling is also used
in other applications, which will be introduced in the follow-
ing sections. The explorations made by [Huang et al.| (2020)
also offer a promising direction. The generation of more accu-
rate bounding box annotations can be seen as image synthesis,
which will be discusses in more detail in Section

However, there are still some limitations in the current HEs
detection applications. First, the imbalance problem needs to
be further studied. Second, compared to other lesions, less
research has focused on HEs. More attention needs to be paid
to this area for its importance in DR diagnosis. Third, pixel-
level segmentation and detection are required. More datasets
that provide pixel-level labels for HEs, like DDR, still need to
be explored.

2.2. Microaneurysms

MAs are the earliest clinical sign of DR and have thus cap-
tured more research interests. There are several barriers af-
fecting the segmentation of MAs, including the existence of
other lesions with similar color, extremely low contrast, and
variation in image lighting, clarity and background texture.
Two-stage multiscale architectures and guidance from clinical
reports are some successful strategies for MAs detection.

Two-stage multiscale networks. [Sarhan et al.|(2019) pro-
posed a two-stage deep learning approach embedding a triplet
loss for microaneurysm segmentation. The first stage is called
the hypothesis generation network (HGN), in which multi-
scale FCNs are employed to generate a region of interest
(ROI). The second stage is known as the patch-wise refine-
ment network (PRN), in which patches extracted from around
ROIs are passed to a modified ResNet-50 for classification.
The authors introduced the triplet loss into the PRN to extract
discriminative features. Further, the previously mentioned se-
lective sampling method (van Grinsven et al.,[2016) is utilized
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to reduce the computational cost and solve the data imbalance
problem.

Clinical report guided CNNs. |Dai et al.| (2018]) proposed a
clinical report guided multi-sieving convolutional neural net-
work (MS-CNN) for the detection of MAs. They first trained
a weak image-to-text model from clinical reports and fundus
images to generate a rough segmentation of microaneurysms.
Then the proposed MS-CNN was used to generate final high-
quality segmentation using the rough segmentation as guid-
ance. In order to tackle the data imbalance problem, MS-CNN
adopts a method similar to boosting. Specifically, MS-CNN is
composed of multiple CNNs, where the false positives from
the previous CNN are fed into the following CNN as negative
examples.

Discussion. Several effective methods have been employed
in MA segmentation, including multiscale networks, guidance
from clinical reports and utilization of the triplet loss. The
extraction of ROIs and cascaded architecture adopted in MS-
CNN alleviate the imbalance problem. However, the two-
stage architecture and cascaded architecture of MS-CNN lack
efficiency. They use multiple base networks, leading to a huge
number of parameters to be trained. Thus, one promising di-
rection in MA segmentation would be to reduce complexity of
the networks while maintaining high performance.

2.3. Exudates

Soft and hard exudates are usually the basis for the diagno-
sis of DR. Accurate detection of SEs and EXs are thus crucial
for timely treatment. Like other lesion detection/segmentation
tasks, there are several challenges. The barriers include low
contrast, varied sizes and similarity to other lesions. There
are several approaches for exudate detection, most of which
can be divided into CNN with circular Hough conversion and
modifications to the loss function.

CNN with circular Hough conversion. [Adem| (2018)) in-
troduced a three-layer CNN architecture for the binary clas-
sification of exudated and exudate-free fundus images. Dur-
ing pre-processing, the OD region was removed by applying
several methods, including adaptive histogram equalization,
Canny edge detection and circular Hough conversion.

Modification to loss function. Guo et al.[(2020a) proposed
a top-k loss and a bin loss to enhance performance for exu-
date segmentation. The class balanced cross entropy (CBCE)
loss (Xie and Tul [2015)) solved the class imbalance problem
to some extent. However, this introduced the new problem of
loss imbalance, where background similar to exudate tends to
be misclassified. The main reason is that with the different
weights for background and foreground pixels in CBCE loss,
the loss for misclassifying a background pixel is much smaller
than that for misclassifying a hard exudate pixel. To solve this
loss imbalance problem, top-k loss is proposed, which consid-
ers all hard exudate pixels but only top-k background pixels
with the larger loss. They also proposed a fast version of top-
k loss named bin loss with consideration of efficiency.

Discussion. In exudate detection, some works have fo-
cused on modifying the loss function. The top-k loss and
bin loss solved the loss imbalance problem caused by the

use of CBCE. However, the misclassification problem still re-
mains. Moreover, only baseline models have been tested and
no innovative architecture has been proposed. |Adem| (2018)’s
work is based on a CNN. Several more recent models, such
as encoder-decoder networks, need to be utilized in exudate
detection.

2.4. Drusen

Drusen, the main manifestations of the disease, can be used
to assist in the diagnosis of AMD. There are four main chal-
lenges to drusen segmentation: their yellowish-white color is
similar to the fundus image and OD; uneven brightness and
interference from other biomarkers, such as blood vessels, is
common; the drusen often have irregular shapes; and bound-
aries may be blurred.

Deep random walk. [Yan et al.| (2018a) proposed a deep
random walk method to successfully segment drusen from
fundus images. The proposed architecture is composed of
three main parts. Fundus images are first passed into a deep
feature extraction module, which consists of two branches: a
SegNet-like network capturing deep semantic features and a
three-layer CNN capturing low-level features. Then the cap-
tured features are fused together and passed into a named affin-
ity learning module to obtain pixel-pixel affinities for formu-
lating the transition matrix of the random walk. Finally, a
deep random walk module is applied to propagate manual la-
bels. This model achieved state-of-the-art performance on the
STARE and DRIVE datasets.

Discussion. As can be seen, only one effective approach has
been introduced so far. Other architectures and methods need
to be explored. Further, the segmentation of drusen is closely
related to the diagnosis of AMD. Therefore, one of the future
works can be extending the original drusen segmentation to
serve as an evidence for AMD diagnosis.

2.5. Multiple lesions

Most previous works only segment/detect one type of le-
sion or treat all lesions as a single group (usually red le-
sions or bright lesions). However, segmenting multiple le-
sions simultaneously is of more practical value. More and
more researchers are thus focusing on multi-lesion segmen-
tation/detection. The challenges found in the individual lesion
detection/segmentation tasks, including imbalance, contrast,
illumination, etc, still exist. Further the inter-class similar-
ity for different lesions, such as HEs and MAs becomes more
prominent. All these factors make multi-lesion segmentation
a challenging task.

2.5.1. Approaches using a CNN backbone

Tan et al.| (2017) conducted the first work to segment mul-
tiple lesions, including exudates, haemorrhages and microa-
neurysms, automatically and simultaneously using a 10-layer
CNN, with the outputs evaluated at the pixel level. Their work
demonstrated that it is possible to segment several lesions si-
multaneously using a single CNN architecture. |Carson et al.
(2018)) used a CNN to perform five-class classification on im-
age patches. The five classes consist of 1) normal, 2) mi-
croaneurysms, 3) dot-blot hemorrhages, 4) exudates or cotton



wool spots, and 5) high-risk lesions such as neovasculariza-
tion, venous beading, scarring, and so forth. They invited two
ophthalmologists to verify and relabel a subset of the Kaggle
dataset containing 243 images. The image patching method
was used, proving that good performance can be obtained us-
ing such a method, even with limited training samples.

2.5.2. Approaches using an FCN backbone

Multiscale networks are important models that have been
applied to many fields. |Guo et al.|(2019) proposed a small ob-
ject segmentation network (L-Seg) which can segment four
kinds of lesions, including microaneurysms, soft exudates,
hard exudates and hemorrhages, simultaneously. The back-
bone network is a VGG-16, which has five groups of convo-
lution layers and three fully connected (FC) layers. They re-
moved all the FC layers and the fifth pooling layer and added a
side extraction layer which consists of a X1 conv and upsam-
pling to every conv group (except the first one) with deep su-
pervision. The final output is obtained by multiscale weighted
fusion of the side extraction layers, instead of simple element-
wise sum. The bin loss (Guo et al., [2020a) was also used to
solve the problem of class imbalance and loss imbalance.

2.5.3. Approaches using U-Net-like architecture as the back-
bone

There are two main directions explored in this section,
namely dual-decoders and multiscale networks.

Dual-decoders. Playout et al.|(2018) proposed an exten-
sion to U-Net which is capable of segmenting red and bright
lesions simultaneously. They are the first to use fully convolu-
tional approaches for joint lesion segmentation. Several novel
developments were used in their decoder, including residual
connections, global convolutions and mixed-pooling. They
used two identical decoders, each specialized for one lesion
category. Near the end of training, they also added two fully
connected conditional random fields (CRFs) (Krahenbiihl and
Koltun,|2011)). In their subsequent work, Playout et al.[{(2019),
made several modifications. They proposed a novel unsuper-
vised method to enhance segmentation performance by train-
ing the network at image-level labels when pixel-level anno-
tations are limited. They introduced an exchange layer which
aims to share parameters between two decoders softly, instead
of employing hard parameter sharing as previously (Playout
et al., 2018).

Multiscale networks. [Yan et al.| (2019a) combined local
and global features to segment microaneurysms, soft exudates,
hard exudates and hemorrhages. A GlobalNet was used to
capture more context features, taking a downsampled version
of original images as input. They also employed a LocalNet
which takes cropped image patches as input, aiming to capture
more detailed information. GlobalNet and LocalNet both use
a U-Net-like encoder-decoder architecture as their backbone.

2.5.4. Approaches using Mask-RCNN as the backbone

Xue et al.|(2019) proposed a deep membrane system for si-
multaneous MAs, EXs and OD segmentation. A hybrid struc-
ture, consisting of a dynamic membrane system and commu-
nication channels between cells, was designed. Three types of
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rules, i.e. T-rules, G-rules and D-rules were proposed for the
computation and communication of the system, solving com-
plex real applications in paralle]l. Mask-RCNN served as the
computational cell of the membrane system.

2.5.5. Discussion

In this subsection, we have seen that various base net-
works have been applied to multi-lesion detection, including
recent models like U-Net and Mask-RCNN. Multiscale meth-
ods have also been explored, and have been proven quite suit-
able for this task. Architectures modifications have also been
introduced, with the dual-decoder being one notable example.
Such a framework may work well on other similar scenarios.
The proposed deep membrane system is quite innovative in
fundus image analysis and is expected to be further explored.

However, there are still some limitations. First, compared to
other segmentation and detection tasks like blood vessel seg-
mentation and OD/OC segmentation, the performance, and in
particular sensitivity of lesion segmentation/detection needs to
be further improved. Second, there are still several works that
focus on red or bright lesion segmentation instead of individ-
ual lesions. However, the specific segmentation and detection
of individual lesions is more practical. Third, pixel-wise seg-
mentation should be emphasized, and datasets with pixel-level
lesion annotations deserve more attention.

3. Biomarker segmentation

3.1. Vessel segmentation

Segmentation of retinal blood vessels is of paramount im-
portance in the diagnosis of various ophthalmic diseases in-
cluding diabetic retinopathy and glaucoma (Abramoff et al.,
2010). With the use of powerful deep learning techniques
such as CNNs, FCNs and recently U-Net, excellent perfor-
mance has been achieved. However, there still remain some
factors making retinal blood vessel segmentation a challeng-
ing task. These factors include varying contrast and inten-
sity among different datasets, inter-vessel differences between
thick and thin vessels, the presence of optic disc and lesions,
limited annotated data and so on. We will discuss how these
problems were addressed in the following subsections.

The most commonly used datasets in retinal blood ves-
sel segmentation include DRIVE, STARE, CHASE_DB1 and
HREF. The DRIVE dataset (Staal et al.| [2004) consists of 40
images, seven of which show signs of mild early DR. DRIVE
is officially divided into a training set and a test set, both con-
taining 20 images. A single manual segmentation of vessels
is provided in the training set and two manual segmentations
are provided in the test set. Border masks are also available
for all images. The STARE dataset (Hoover et al., |2000)
consists of 400 images, 20 of which have two manual blood
vessel segmentations annotated by two experts. Ten of the
images contain pathologies. Coarsely annotated centerline-
level artery/vein labels of 10 images are also provided. The
CHASE_DBI1 dataset (Owen et al., [2009) consists of 28 im-
ages, obtained from both eyes of 14 multi-ethnic school chil-
dren. The HRF dataset (Budai et al.,|2013) consists of 45 im-
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ages, of which 15 are healthy, 15 have DR and 15 are glau-
comatous. Compared to the other three datasets, images from
HREF have a higher resolution (3504x2336). More details are
shown in Tab. [6] Experimental results on different datasets are

shown in Tab. [7} [8} [9] and [T0}

3.1.1. Early explorations based on CNNs

Before fully convolutional networks were widely used, ves-
sel segmentation was regarded as a pixel-by-pixel classifi-
cation task and structured prediction was still a problem to
be solved. The usual approach was to crop the images into
patches as input, and uses CNNs whose last few layers are
fully connected to predict the label of the center pixel of each
patch. The approach proposed by |Khalaf et al.[(2016) is a typ-
ical one. They used a CNN containing three conv layers to
perform vessel segmentation. The last FC layer of the pro-
posed CNN contains three neurons, representing the probabil-
ity of central pixels being large vessels, small vessels or back-
ground, respectively. |Yu et al.|(2020) also used a CNN whose
last layers are FC layers for vessel segmentation. And they
conducted further research based on the segmentation results.
They first extracted vascular trees from the segmented ves-
sels using a graph-based method. Then two algorithms were
proposed for the hierarchical division of retinal vascular net-
works.

Structured prediction has been explored by several re-
searchers. [Liskowski and Krawiec| (2016) used a CNN for
segmentation. Their FC layer comprises two neurons rep-
resenting the vessel and background. They also explored a
structured prediction scheme, which can simultaneously pre-
dict labels of all pixels in an sxs window of an nxn patch.
Their approach was to set the number of the last FC layer’s
neurons to sxs. Each neuron represents one pixel in the win-
dow, and the output is a set of two-dimensional vectors instead
of scalars.

3.1.2. FCN based approaches

Fully convolutional networks provide an end-to-end solu-
tion, addressing the issue of structured prediction. Hence, they
were quickly applied to vessel segmentation. Fu et al.|(2016)
proposed a fully convolutional network called DeepVessel.
They employed a side-output layer to help the network learn
multiscale features. At the end of the net, a CRF layer was
used to further model non-local pixel correlations. [Dasguptal
and Singh|(2017) also proposed a fully convolutional network.
Their network contains six conv layers, one downsampling
layer and one upsampling layer. [Feng et al.|(2017) proposed
a fully convolutional network which can be considered as a
simplified version of U-Net. Their network only upsamples
and downsamples twice. In order to solve the class imbalance
between background and blood vessels, they defined an en-
tropy which measures the proportion of vessel pixels in the
patch. During the training process, half of the patches are se-
lected from the patches with the highest entropy, and the other
half are randomly selected. |Oliveira et al.| (2018) proposed an
FCN architecture which is similar to that of [Feng et al.| (2017).
In the pre-processing phase, they utilized a stationary wavelet

transform (SWT) to obtain additional channels for the input
images. Hu et al.| (2018)) proposed a multiscale network in-
spired by RCF (L1u et al.| 2017), which merges feature maps
of every middle layer with the output. Similar to |Guo et al.
(2019), they also removed all the FC layers of VGG-16 as
their backbone network. At the end of their net, fully con-
nected CRFs are employed. An improved cross-entropy loss
was also proposed to focus on hard examples.

3.1.3. Approaches using encoder-decoder architectures

Because of their excellent ability to extract features and ex-
traordinary performance in practice, encoder-decoder archi-
tectures, especially U-Net, are still the most popular segmen-
tation frameworks applied to fundus images up to now. There
are many directions for improvement in this area, as will be
discussed next.

Treating thick and thin vessels differently. In order to
improve performance on capillaries, one possible solution is
to treat thick and thin vessels differently. [Zhang and Chung
(2018)) proposed a multi-label architecture. They used open-
ing and dilation operations to expand the original vessel and
background into five classes, namely O (other background pix-
els), 1 (background near thick vessels), 2 (background near
thin vessels), 3 (thick vessels) and 4 (thin vessels). The pro-
posed architecture uses a U-Net with residual connection as
the backbone. A side-output layer was also introduced to cap-
ture multiscale features. [He et al.|(2018])) introduced an opera-
tion named local de-regression (LODESS) to get additional la-
bels. After the LODESS, the original binary labels (vessel and
background) were further divided into five classes, specifically
0 (the center of big vessels), 1 (the edge of big vessels), 2 (the
center and edge of small vessels), 3 (the center of background)
and 4 (edge of background). |Yan et al. (2018b) introduced a
segment-level loss which assigns different weights to different
segments according to their thickness. They first obtained ves-
sel segments from the whole vessel tree based on skeletoniza-
tion and then estimated the relative thickness of each segment.
Then a weight assigning strategy was designed to give thin-
ner segments higher weights. [Yan et al.| (2019b)) proposed a
three-stage model for vessel segmentation. They first applied
a skeletonization method to extract the skeletons. For each
skeleton pixel, the diameter of the maximum inscribed circle
that is completely covered by vessel pixels is considered the
thickness. A ThickSegmenter and a ThinSegmenter were uti-
lized for thick and thin vessel segmentation respectively. Note
that, when calculating the loss, only thick vessel pixels were
counted for the ThickSegmenter and thin vessels for the Thin-
Segmenter. Finally, the results of the two segmenters were
passed to a FusionSegmenter to get the final result.

Coarse-to-fine segmentation. This is another approach
that employs two branches: the first takes fundus images as in-
put to get a preliminary result and the second further refines it.
Wau et al.[(2018)) proposed a multiscale network followed net-
work (MS-NFN) to improve performance on capillaries. Input
images are passed into two different branches, namely the ‘up-
pool’ NFN and ‘pool-up” NFN. The two branches both have
identical U-Net-like structures. The first network converts in-



Table 6. Widely used datasets for vessel segmentation
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Dataset name  Number of images Resolution Camera Availability
DRIVE 40 (33 healthy, 7 mild early DR) 768x584 a Canon CR5 non-mydriatic |available on registra-|
3CCD camera, FOV 45° tion
STARE 400 (vessel segmentation labeling 700 x 605 a TopCon TRV-50 fundus cam- |available online?
of 40, A/V labeling of 10) era, FOV35°
CHASE DB1 28 1280% 960 - available online?
HRF 45, 15 each of healthy, DR and 3504 x 2336 a Canon CR-1 fundus camera |available online?

glaucomatous

with FOV 45°

Thttps://drive.grand-challenge.org/Download/
Zhttp://cecas.clemson.edu/~ahoover/stare/
3https://blogs.kingston.ac.uk/retinal/chasedb1/
4http://www5.cs.fau.de/research/data/fundus-images/

Table 7. Summary of several results for vessel segmentation on DRIVE dataset

Reference Backbone Loss SE/% SP/% ACC/% AUC/% Fl1/%
" [Khalaf et al.[(2016) CNN - 8397 9562 9456 - -
“ILiskowski and Krawiec/] CNN CE 91.60 92.41 92.30 97.38 -
(2016)
[Yu et al.[(2020) CNN - 76.43 9803 9524 9723 -
~[Fu et al.|(2016) FCN CBCE 76.03 - 9523 - -
[Dasgupta and  Singh| FCN CE 7691 9801 9533 9744 -
(2017)
~ [Feng et al.|[(2017) FCN CBCE 7811 9839 9560 97.92 -
" |Oliveira et al. (2018) FCN categorical CE 80.39 98.04 95.76 98.21 -
" |Zhang and Chung|(2018)  U-Net CE 8723  96.18 95.04  97.99
“[Heetal.[(2018) U-Net Focal loss 7761 9792 9519 - 81.29
~ [Yan et al.|(2018b}) U-Net Proposed segment-level loss  76.53 98.18 95.42 97.52 -
" [Yan et al.|(2019b) U-Net CE 7631 9820 9538 9750 -
~ Wu et al.[(2018) U-Net CE 7844  98.19 9567 98.07 -
~ [Wu et al.|(2020) U-Net CE 7996  98.13 9582 9830 -
~ |Wang et al.|(2020) U-Net CE 78.49  98.13  95.67 97.88  82.4I
“Hu et al. (2018) FCN improved CE 77.72 97.93 95.33 97.59 -
~ Wu et al.[(2019) U-Net CE 80.38  98.02 9578 9821 -
" |Soomro et al.[(2019) SegNet CBCE 87 98.5 95.6 98.6 -
~ [Zhang et al.|[(2019a) U-Net - 81.00 9848 9692 9856 -
7Wang et al.|(2019a) U-Net CE and Jaccard loss 79.40 98.16 95.67 97.72 82.70
“Maet al.[(2019) U-Net CE 79.16  98.11 9570  98.10 -
" [Zhao et al. (2020a) Dense U-Net global pixel loss, local mat-  83.29 97.67 - - 82.29
ting loss
Mishra et al.[(2020) U-Net CE 89.16 96.01 9540 97.24 -
~ [Feng et al.|(2020) FCN MSE 7625 9809 9528 9678 -
~ |Cherukuri et al.[(2020}) Residual FCN MSE 8425 9849 9723 9870 -
~ [Kromm and Rohr[(2020)  CapsNet margin loss 7651  98.18 9547 9750 -
“Liu et al.[(2019a) No-reference net MSE 80.72 97.80 95.59 97.79 82.25



https://drive.grand-challenge.org/Download/
https://drive.grand-challenge.org/Download/
http://cecas.clemson.edu/~ahoover/stare/
https://blogs.kingston.ac.uk/retinal/chasedb1/
http://www5.cs.fau.de/research/data/fundus-images/
http://cecas.clemson.edu/~ahoover/stare/
http://www5.cs.fau.de/research/data/fundus-images/

Table 8. Summary of several results for vessel segmentation on STARE dataset

Reference Backbone Loss SE/% SP/% ACC/% AUC/% Fl1/%
“[Liskowski and Krawied CNN CE 93.07 93.04 93.09 98.20 -
(2016)
~[Yu et al[(2020) CNN - 7837 9822 9613  97.87 -
“Fu et al./(2016) FCN CBCE 7412 - 9585 - -
~ |Otiveira et al./ (2018) FCN categorical CE 83.15 9858 9694  99.05 -
" [Zhang and Chung/(2018)  U-Net CE 76.73 99.01 97.12 98.82 -
" He et al.[(2018) U-Net Focal loss 8120 9895 97.04 - 85.53
" [Yan et al.| (2018b) U-Net Proposed segment-level loss ~ 75.81 98.46 96.12 98.01 -
" [Yan et al.|(2019b) U-Net CE 77.35 98.57 96.38 98.33 -
~ [Wu et al.|(2020) U-Net CE 79.63  98.63 9672 9875 -
~ |Wang et al(2020) U-Net CE 90.24 9934 9849  99.60  91.84
" [Hu et a1/ (2018) FCN improved CE 75.43 98.14 96.32 97.51 -
~ |Feng et al.[(2020) FCN MSE 77.09 98.48 96.33 97 -
" |Soomro et al.|(2019) SegNet CBCE 84.8 98.6 96.8 98.8 -
" |Cherukuri et al.|(2020) Residual FCN MSE 86.64 98.95 98.03 99.35 -
~ |Zhao et al[(2020a) Dense U-Net global pixel loss, local mat-  84.33 98.57 - - 83.51
ting loss
~ Mishra et al[(2020) U-Net CE 8771 9634 9571 9742 -
“ILiu et al.| (20194) No-reference net MSE 71.71 98.43 96.23 97.93 80.36
Table 9. Summary of several results for vessel segmentation on CHASE DB1 dataset
Reference Backbone Loss SE/% SP/% ACC/% AUC/% F1/%
Fu et al.|[(2016) FCN CBCE 71.30 - 94.89 - -
" |Oliveira et al.[(2018) FCN categorical CE 77.79 98.64 96.53 98.55 -
" [Zhang and Chung|(2018)  U-Net CE 76.70 99.09 97.70 99.00 -
~[Yan et al.[(2018b) U-Net Proposed segment-level loss 7633 98.09  96.10  97.81 -
" [Yan et al.|(2019b) U-Net CE 76.41 98.06 96.07 97.76 -
“[Wu et al.|(2018) U-Net CE 7538 9847 9637 9825 -
~ |Wu et al.|(2020) U-Net CE 80.03 9880  96.88  98.94 -
7Wang et al.|(2020) U-Net CE 79.48 98.42 96.48 98.47 82.20
~ Wu et al.[(2019) U-Net CE 81.32 98.14 96.61 98.60 -
" |Soomro et al.|(2019) SegNet CBCE 88.6 98.2 97.6 98.5 -
7Zhang et al.|(2019a) U-Net 81.86 98.48 97.43 98.63 -
" |Cherukuri et al.|[(2020}) Residual FCN MSE 80.17 99.08 97.88 98.64 -
~ [Wang et al.|[(2019a) U-Net CE and Jaccard loss 80.74 98.21 96.61 98.12 80.37
~ Mishra et al.[(2020) U-Net CE 88.05 96.51 96.01 97.63 -
“[Liu et al. (2019a) No-reference net MSE 87.69 98.43 97.42 99.05 85.98
Table 10. Summary of several results for vessel segmentation on HRF dataset
Reference Backbone Loss SE/% SP/% ACC/% AUC/% F1/%
Soomro et al.|{(2019) SegNet CBCE 82.9 96.1 96.2 98.5 -
" [Zhao et al.[(2020a) Dense U-Net  global pixel loss, local matting loss ~ 78.09 98.18 - - 78.13




put patches into a probability map, and the second performs
further refinement. The difference between the two NFNs
is that the ‘up-pool’ NFN upsamples before downsampling,
and ‘pool-up’ is the opposite. Finally, probability maps of
the two NFNs are averaged to generate the final prediction.
In their subsequent work (Wu et al., [2020), they added some
modifications to NFN to form a new network named NFN+.
Compared to NFN, the main extensions include: introducing
inter-network connections between the preceding and follow-
ing networks; replacing the ‘up-pool’ and ‘pool-up’ networks
with an identical U-Net-like architecture; and removing the
ensemble operation. Wang et al.| (2020) proposed a coarse-to-
fine supervision network (CTF-Net) for vessel segmentation.
Their CTF-Net consists of two U-shaped networks, namely
the coarse segNet producing preliminary predicted map and
the fine segNet further enhancing performance. They also pro-
posed a feature augmentation module (FAM-residual block) to
improve the ability of the network to extract features.

Mutliscale networks. This is another important direction
that has been explored. Wu et al.[(2019) proposed Vessel-Net,
which is based on the multiscale method. They first imple-
mented an Inception-Residual (IR) block inspired by Incep-
tion and ResNet that can be embedded into U-Net. Four su-
pervision paths were introduced to the net, including: a tra-
ditional supervision path; a richer feature supervision path,
which resizes all stages of the encoder’s output to the same
size as the input patches (48x48) and then concatenates them;
and two multiscale supervision paths, where feature maps gen-
erated by the encoder with size 12x12 and 24x24 are passed
into a 1x1 conv layer with Relu and softmax. |Feng et al.
(2020) proposed a cross-connected convolutional neural net-
work (CcNet) for vessel segmentation, which also utilizes the
multiscale method. The CcNet had two paths. The first is the
primary path, which has more convolutional kernels than the
other path to extract more features. The other is called the sec-
ondary path. Each conv layer of the primary path is connected
to all conv layers of the secondary path to learn multiscale
features.

Improvements to sampling operation. The downsam-
pling and upsampling operations will change the resolution of
the feature maps, which is not ideal for the segmentation task.
Several works thus tried to improve or replace these two oper-
ations. |Soomro et al.|(2019)) proposed a strided-CNN model to
improve the sensitivity. They first performed pre-processing
including morphological mappings and principal component
analysis (PCA). Then the processed images were passed to a
SegNet-like encoder-decoder architecture. The pooling oper-
ation was replaced with a strided-conv inspired by |Springen-
berg et al.| (2015)). [Zhang et al.| (2019a) proposed the Atten-
tion Guided Network (AG-Net) for vessel segmentation. An
attention guided filter inspired by He et al. (2013) was pro-
posed. Specifically, it takes high-resolution feature maps from
the encoder and low-resolution feature maps from the lower
stage of the decoder as input and produces high-resolution fea-
ture maps as output. The attention guided filter can preserve
edge and structural information. Note that AG-Net can also
perform OD/OC segmentation.
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Dual-encoder. [Wang et al.| (2019a) proposed the Dual En-
coding U-Net (DEU-Net). DEU-Net consists of two encoders.
The first, inspired by the global convolutional network (Peng
et al., 2017), has a spatial path with larger kernels to capture
more spatial information. The second, inpired by Inception,
has a context path with multiple kernels to get more context
features. A feature fusion module was proposed to fuse the
features extracted by the two encoders at the top stage. Chan-
nel attention was used to replace the skip-connection in the
original U-Net.

Data-aware deep supervision. Mishra et al.|(2020) added
a data-aware deep supervision path to a U-Net-like network.
Based on the concept of effective receptive field (EFT) pro-
posed by |Luo et al.|(2016), where the output-affecting region
is actually smaller than the theoretical receptive field (RF),
they proposed the concept of layer-wise effective receptive
fields (LERFs), which are calculated by the gradient of the loss
function using back-propagation. The average vessel width
was taken as the target object size. The convolutional layer
with the smallest absolute difference between its LERF and
vessel width was selected as the target layer, and considered
as the preeminent layer. Deep supervision was used in the tar-
get layer.

Spatial activation using a Gaussian function. Ma et al.
(2019) proposed a multitask network which can perform ves-
sel segmentation and A/V classification simultaneously. In
view of the observation that the value of capillary vessels and
boundary vessels in a probability map is close to 0.5, they pro-
posed a spatial activation module that assigns higher weights
to the thin vessels by a Gaussian function. Deep supervision
was also utilized.

3.1.4. Other methods

Several other methods have been proposed to improve
model performance. They not only achieve good experimental
performance, but are also inspiring.

Image matting method. [Zhao et al. (2020a)) transformed
the segmentation problem to a related matting problem. A
trimap was first obtained using a bi-level thresholding of the
score map. Then the retinal images and corresponding trimaps
were sent to an end-to-end matting network to get the fore-
ground matte. They proposed a local matting loss together
with a global pixel loss for training. The final segmentation
map was obtained by applying a threshold to all pixels of the
matte.

Inception capsule network. |Kromm and Rohr| (2020)
combined the Capsule network (Sabour et al., 2017) with the
Inception architecture for vessel segmentation and centerline
extraction. Their Inception Capsule network has a shallow ar-
chitecture with fewer parameters and does not need data aug-
mentation.

Ensemble learning. |Liu et al. (2019a) proposed a novel
and simple unsupervised ensemble strategy for vessel segmen-
tation. They multiplied the output results of the best perform-
ing recent networks by the weights to obtain a result. The
weights of results were then trained and they finally obtained
better results than a single network.
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Regularization under geometric priors. Cherukuri et al.
(2020) proposed a domain enriched deep network for vessel
segmentation. A representation network was first employed.
Two geometrical regularizers, including an orientation diver-
sity regularizer and a data adaptive noise regularizer, were
added to the loss function to learn specific geometric fea-
tures. After that they introduced a network containing resid-
ual blocks with no downsampling/upsampling steps, instead
of using U-Net-like most other works.

Performing segmentation on RIM-ONE. Nasery et al.
(2020) performed vessel segmentation on the RIM-ONE
dataset. Compared to the DRIVE dataset, RIM-ONE is of a
lower quality and does not have any vessel annotations. In-
stead of performing image synthesis to get high-quality im-
ages, they transformed high-quality images with expert labels
from the DRIVE dataset to resemble poor-quality target im-
ages. To accomplish this, substantial vignetting masks were
used. Then a U-Net was trained using the resulting images
and their corresponding labels. Once trained, the net could
be used to obtain vessel masks of images from the RIM-ONE
dataset.

3.1.5. Discussion

From the model discussed in this section, we can see the
development of base networks used, for vessel segmentation,
from CNNs to FCNs to U-Net-like architectures. The use of
CNNs and FCNs has become less common recently, while U-
Net-like architectures are very popular. However, the feature
extraction ability of U-Net is inadequate. U-Net only has 10
convolution operations in the encoder, which is even less than
that in VGG-16. Therefore, several works have focused on
how to improve the feature extraction ability. Alternatives in-
clude Dense U-Net, Residual U-Net, and a dual-encoder net-
work. Another disadvantage of U-Net is that there are four
paired sampling operations (downsampling and upsampling),
which is not ideal for the segmentation task. Several studies
have tried to alleviate this problem by, for instance, using a
shallower version of U-Net that has two or three paired sam-
pling operations. Multiscale methods can also be utilized to
improve the performance of the segmentation task. Low-level
spatial features and high-level semantic features can both be
focused on by the network. In order to solve the problem
of poor performance on thin and edge vessels, method for
treating thick and thin vessels differently have been explored.
It is worth noting that there are several other inspiring and
also interesting studies, including data-aware deep supervi-
sion, spatial activation, image matting, using a Inception cap-
sule network, ensemble learning and performing segmentation
on RIM-ONE.

However, there are still several limitations. First, there is
still room for improvement in thin and edge vessels segmen-
tation. Specifically, sensitivity and accuracy need to be fur-
ther improved while maintaining specificity and AUC. Sec-
ond, there are only three commonly used datasets for ves-
sel segmentation, namely DRIVE, STARE and CHASE_DBI.
And they contain fewer images than datasets for other tasks.
On the one hand, more experiments need to be carried on the

high-resolution HRF dataset. On the other hand, more images
should be collected and annotated. Researchers can also em-
ploy image synthesis methods. Third, the imbalance problem
also exists in the vessel segmentation task and it is even more
challenging to solve than in other tasks like lesion and OD/OC
segmentation for the irregular shape of blood vessels. The typ-
ical approach is to use a class-balancing loss. It is worth noting
that a selective sampling method based on entropy could be ef-
fective. More attention should thus be paid to the imbalance
problem.

3.2. OD/OC Segmentation

Cup-to-Disc ratio (CDR) is a widely accepted and used
standard for the diagnosis of glaucoma. It is calculated as the
ratio of vertical cup diameter (VCD) and vertical disc diame-
ter (VDD) (Phene et al.| [2019). The segmentation of the op-
tic cup (OC) and optic disc (OD) is therefore very important
for the diagnosis of glaucoma. Compared to OD segmenta-
tion, OC segmentation is a more challenging task for its subtle
boundaries. Further, there is an imbalance problem for OC, as
the OC region only accounts for a low proportion of extracted
ROIs.

The datasets used in this field are shown in Tab. [[1l Similar
to lesion segmentation/detection, there is also an overlap be-
tween datasets used in OD/OC segmentation and glaucoma
diagnosis. The ONHSD dataset (Lowell et al., 2004) con-
sists of 99 images obtained from 50 patients of various eth-
nic backgrounds. Further, 96 images have discernable ONH.
The Drions-DB dataset (Carmona et al.| 2008)) consists of 110
images, belonging to 55 patients with glaucoma (23.1%) and
eye hypertension (76.9%). The images were obtained from a
hospital in Spain. The ORIGA dataset (Zhang et al., |2010)
consists of 650 images, of which 168 are glaucomatous and
482 are normal. The boundaries of OD and OC, CDR value
and a label indicating whether glaucoma exists or not are pro-
vided for each image. The RIM-ONE-r3 dataset (Fumero
et al., 2011) consists of 169 ONH images, of which 118 are
normal, 11 have ocular hypertension (OHT) and 40 are glau-
comatous. Five-class labels were provided by five experts.
The ACHIKO-K dataset (Zhang et al.| [2013)) consists of 258
images, which were obtained from 67 glaucomatous patients
from Korea. 144 images are of glaucomatous eyes and 114
are normal. The Drishti-GS dataset (Sivaswamy et al., 2014)
contains 101 images, which are officially divided into 50 train-
ing images and 51 test images. Images were obtained from a
hospital in India. The SCES dataset (Baskaran et al., [2015)
consists of 1,676 images, each from a single subject, which
only provide clinical diagnoses. 46 images of SCES are glau-
comatous. The RIGA dataset (Almazroa et al., 2018) is made
up of three parts, namely 460 images from MESSIDOR, 195
images from the Bin Rushed Ophthalmic Center and 95 im-
ages from the Magrabi Eye Center, making the total number
of images 750. Each image was manually annotated by six
ophthalmologists. The LAG dataset (Li et al.l 2020b) con-
tains 11,760 images, of which 6,882 do not have glaucoma
and 4,878 are suspicious. 5,824 images were further anno-
tated with attention labels, in which 2,392 display glaucoma
and the remaining 3,432 do not.



Experimental results are shown in Tab. and

“A” in the tables means balanced accuracy,“E” is the
widely used overlapping error, and 6 denotes absolute CDR
error.

3.2.1. Approaches based on FCN

Similar to blood vessel segmentation, fully convolutional
networks were widely used in early OD/OC segmentation.
Edupuganti et al.| (2018) used FCN-8s to perform OD/OC seg-
mentation. They also explored various strategies, such as as-
signing higher weights to edges in the loss function, for further
improvement.

Using atrous convolutions is quite common in this field.
Mohan et al.| (2018) proposed a structure named Fine-Net
which has a symmetrical encoder-decoder architecture. In-
spired by full-resolution residual networks (FRRNs) (Pohlen
et al., [2017), they used several full-resolution residual units
(FRRU) in Fine-Net. An atrous convolution was also intro-
duced to alleviate the memory cost while ensuring reliable per-
formance at the same time. In their subsequent work, Mohan
et al.| (2019) proposed P-Net. P-Net is used to obtain prelimi-
nary segmentation results by taking downscaled images as in-
put. The output of P-Net is upscaled and then sent to Fine-Net
as guidance for further segmentation. DenseBlock and atrous
convolution are combined as the dense atrous block (DB) to
formulate P-Net. DBs with different dilation rates are used
to capture multiscale features, inspired by atrous spatial pyra-
mid pooling (ASPP) (Chen et al., [2017). |Liu et al.| (2019¢)
proposed a spatial-aware neural network which adopts a mul-
tiscale method. First, an atrous CNN model is used to extract
spatially denser feature maps. Then, the extracted features are
fed to a pyramid filtering module to obtain multiscale features.
Finally, the multiscale features are passed to a spatial-aware
segmentation network to get the final result.

3.2.2. Approaches based on U-Net

There are also several works using U-Net as the baseline.
Fu et al.| (2018a) proposed M-Net for OD/OC segmentation.
M-Net contains a multiscale input layer. Images are down-
sampled to form an image pyramid as U-Net’s input, to obtain
a multi-level receptive field. In order to segment OD and OC
simultaneously, the authors proposed a multi-label loss based
on the dice loss, which is intended to solve the problem of
multi-label and data imbalance. Moreover, a polar transfor-
mation was introduced to obtain spatial consistency and in-
crease the proportion of the OD/OC in a patch. Their approach
greatly inspired subsequent work.

Shah et al.|(2019) proposed two different methods named
the Parameter-Shared Branched Network (PSBN) and Weak
Region of Interest Model-based segmentation (WRoIM). With
fewer parameters, they obtained comparable performance to
state-of-the-art approaches. PSBN has two branches, which
are used to generate masks for the OD and OC, respectively.
Encoders of the two branches share parameters, and the OC
branch uses cropped activations from the OD branch. WRoIM
first obtains a coarse OD area through a small U-Net structure
(one conv block for downsampling and one conv block for
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upsampling), and uses the extracted ROI as another U-Net’s
input to perform fine segmentation.

Guidance from depth estimation task can boost perfor-
mance of OD/OC segmentation. |Shankaranarayana et al.
(2019) proposed a fully convolutional network for retinal
depth estimation and used the results to guide OD/OC seg-
mentation. They proposed a Dilated Residual Inception (DRI)
module utilizing convolution kernels with different dilation
rates in the way of an Inception Block to extract multiscale
features. In order to ensure that the retinal depth estimation
branch guides OD/OC segmentation, they proposed a multi-
modal feature fusion module to fuse feature maps from the
depth estimation branch and the OD/OC segmentation branch.

Pixel-wise deep regression is a novel direction under ex-
ploration. Meyer et al.[(2018) reformulated the segmentation
task as a pixel-wise regression task to perform OD and fovea
detection simultaneously. A bi-distance map is first obtained,
illustrating the distance between every pixel and its nearest
landmarker, namely OD and fovea. Then a U-Net-like deep
network is utilized for distance regression and obtaining a
globally consistent prediction map.

3.2.3. Approaches based on RPN

The RPN method from Faster-RCNN (Ren et al.l [2015)
and Mask R-CNN (He et al 2017) has also been applied in
the segmentation of OD/OC. Inspired by RPN, Wang et al.
(20191) proposed the Ellipse Proposal Network (EPN) to de-
tect ellipse regions. They used {Xy, Yy, F1, F»} as parameters
of elliptical anchors, where (Xy, Y) denotes the center coor-
dinate of the ellipse and F, F;, denote the major and minor
axis, respectively. Two EPN branches were used to detect
OD and OC. In addition, a spatial attention path was intro-
duced between the OD to OC branches to guide the detection
of OC. |Yin et al|(2019) proposed a PM-Net, which is also
inspired by RPN. They introduced a segmentation branch to
RPN to provide more accurate proposals for localization of the
optic nerve head (ONH) area. A pyramid RolAlign module
was also proposed to capture multiscale features. |Jiang et al.
(2020) proposed JointRCNN for OD and OC segmentation.
An atrous-VGG16 is first used for feature extraction. The ex-
tracted features are passed to two parallel branches, i.e., a disc
proposal network (DPN) and a cup proposal network (CPN),
for OD and OC region proposal. A disc attention module is
employed between the DPN and CPN to determine where the
OC is located based on the result of the DPN.

3.2.4. Domain adaptation studies based on GANs

Domain adaptation is another direction that has been ex-
plored. Wang et al.| (2019c)) proposed the patch-based Out-
put Space Adversarial Learning (pOSAL) framework. Im-
ages from the source and target domains are first passed into a
lightweight network to extract ROIs. The extraction network
is based on Deeplabv3+ (Chen et al.l [2018) but utilizes Mo-
bileNetV2 (Sandler et al., [2018]) as the backbone. The authors
also designed a morphology-aware segmentation loss for the
network. Then the ROIs extracted are passed to a patch dis-
criminator (Patch GAN) for adversarial learning, which can



Table 11. Widely used datasets for OD/OC segmentation and glaucoma diagnosis/grading

Dataset name Number of images Resolution Camera Availability
ONHSD 100 640x480 a Canon CR6 45MNf fundus cam-  |available online]
era, FOV 45°
Drishti-GS 101 2896x1944 a fundus camera with FOV 30° available online?
Drions-DB 110 600x400 a colour analogical fundus camera  |available online’
ORIGA 650 (168 glaucomatous, 3072x2048 - not available online
482 normal)
RIGA 750 ranging from 2240x1488  multiple fundus cameras with dif- available online?
to 2743x1936 ferent FOV
RIM-ONE 169 ONH - a fundus camera Nidek AFC-210 not available online
with a body of a Canon EOS 5D
Mark II of 21.1 megapixels
ACHIKO-K 258 (144 glaucomatic) 640x480; 2144x1424; NIKON D80, NIKON D90 available online’
3216x2136, etc
SEED 235 (43 glaucoma) - - not available online
REFUGE 1200 21242056, 1634x1634 a Zeiss Visucam 500 fundus cam- |available online?
era and a Canon CR-2 device
SCES 1676 3072x2048 - not available online
SINDI 5783 3072x2048 - not available online
LAG 11,760 (6882 glaucoma)  ranging from 582x597 to 3 types of devices: Topcon, Canon  available online/
3456x5184 and Carl Zeiss

Ihttp://www.aldiri.info/Image%20Datasets/ONHSD.aspx
Zhttp://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
3https://www.researchgate.net/publication/326460478_Glaucoma_dataset_-_ DRIONS-DB
“https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z/
Shttps://oar.a-star.%20edu.sg/jspui/handle/123456789/1080?mode=full
Shttps://refuge.grand-challenge.org/
https://github.com/smilell/AG-CNN

Table 12. Summary of several results for OD/OC segmentation on Drishiti-GS dataset

Reference Backbone Loss OD oC 0
Dice/% 1oU/%  Dice/% 1oU/%

" [Edupuganti et al.[(2018) FCN weighted CE - 69.58 - 8122 -
Mohan et al.|(2018) FCN bootstrapped CE and Dice loss  96.4 - - - -
Mohan et al.|(2019) FCN bootstrapped CE and Dice loss ~ 97.13 - - - -

Liu et al.|(2019¢) FCN spatial-aware error function 98 - 89 - -

Shankaranarayana et al.| Encoder-decoder net  multi-class CE 96.3 - 84.8 - 0.1045

(2019)

Shah et al.|(2019)(PSBN) U-Net logarithmic dice loss 95 91 88 80 -

Shah et al.|(2019)(WRoIM)  U-Net logarithmic dice loss 96 93 89 80 -

Wang et al.|(2019c¢) Deeplab, GAN dice coefficient loss, smooth- 97.4 - 90.1 - 0.048
ness loss and adversarial loss

Wang et al.|(2019b) DeeplabV3+, GAN CE, MSE, Adversarial loss 96.1 - 86.2 - -



http://www.aldiri.info/Image%20Datasets/ONHSD.aspx
http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
https://www.researchgate.net/publication/326460478_Glaucoma_dataset_-_DRIONS-DB
https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z
https://oar.a-star.%20edu.sg/jspui/handle/123456789/1080?mode=full
https://refuge.grand-challenge.org/
https://github.com/smilell/AG-CNN
http://www.aldiri.info/Image
http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php

Table 13. Summary of several results for OD/OC segmentation on ORIGA dataset
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Reference Backbone loss OD oC Rim o
A/% E A/% E A/% E

Liu et al.|(2019¢) FCN spatial-aware error function - 0.059 - 0.208 - 0.215 -

Fu et al.|(2018a) U-Net proposed multi-label loss 983 0.071 93.0 0.230 94.1 0.233 0.071

Shankaranarayana et al., Encoder-decoder net multi-class CE 974 0.051 928 0212 - - 0.067

(2019)

Yin et al.|(2019) RPN Multi-label CE 98.6 0.066 94.2 0.208 949 0.224 0.065

Jiang et al.|(2020) atrous CNN and RPN Smooth L; loss and BCE - 0.063 - 0.209 - - 0.068

Table 14. Summary of several results for OD/OC segmentation on RIM-ONE-r3 dataset

Reference Backbone loss OD oC o
A/% E Dice/% 10U/% A/% E Dice/% 1oU/%

" |[Shankaranarayana Encoder-decoder net  multi-class CE 97.5 0.058 97.0 - 92.0 0.284 87.6 - 0.066
et al.|(2019)

Shah et al.] U-Net logarithmic dice loss - - 91 84 - - 75 60 -
(2019)(PSBN)
Shah et al.| U-Net logarithmic dice loss - - 94 90 - - 82 71 -
(2019)(WRoIM)
Wang et al.| Deeplab, GAN dice coefficient loss, smooth- - - 96.8 - - - 85.6 - 0.049
(2019¢) ness loss, adversarial loss
Wang et al. DeeplabV3+, GAN CE, MSE, Adversarial loss - - 89.8 - - - 81.0 - -
(2019b)

Table 15. Summary of several results for OD/OC segmentation on REFUGE dataset
Reference Backbone Loss OD oC Rim 0

A/% E Dice/% A/% E Dice/% A/% E

~[Wang et al.[(2019f) RPN Weighted CE, regression loss - - 95.3 - - 87.2 - - 0.047

~|Yin et al.[(2019) RPN Multi-label CE 97.9  0.088 - 98.0 0223 - 93.6 0.204 0.043

" [Wang etal.[(2019c) Deeplab,  dice coefficient loss, smooth- - - 96.02 - - 88.26 - - 0.0450

GAN ness loss and adversarial loss
“Livetal|[(2019d)  GAN dice segmentation loss, ad- - - 94.16 - - 8627 - - 0.0481
versarial loss and MSE loss
Table 16. Summary of several results for OD/OC segmentation on other datasets
Reference Dataset Backbone Loss OD oC o
E Dice/% E Dice/%

" [Mohan et al. i2018) DrionsDB FCN bootstrapped CE, Dice loss - 95.5 - - -
Mohan et al.|(2019) DrionsDB FCN bootstrapped CE, Dice loss - 96.6 - - -
Mohan et al.|(2018) MESSIDOR FCN bootstrapped CE, Dice loss - 95.7 - - -
Mohan et al.|(2019) MESSIDOR FCN bootstrapped CE, Dice loss - 96.8 - - -

7Jiang et al.|(2020) SCES atrous CNN, RPN Smooth L, loss, BCE 0.063 - 0.209 - 0.068

[Sedai et al.|(2017a) EyePACS  VAE negative KL-divergence, BCE - - - - 0.80
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learn abstract spatial and shape features from the label distri-
bution of the source domain. In their following work, |[Wang
et al.| (2019b) proposed an unsupervised domain adaptation
network named Boundary and Entropy-Driven Adversarial
Learning (BEAL). Based on the observation that predictions
in the target domain made by the network trained on the source
domain tend to contain ambiguous and inaccurate boundaries
and the corresponding entropy map is noisy with high-entropy
outputs, they introduced two segmentation branches focused
on the boundary and entropy map, respectively. An adver-
sarial learning method was introduced to encourage predic-
tions of the two branches to be domain-invariant. |Liu et al.
(2019d) proposed an unsupervised domain adaptation archi-
tecture named Collaborative Feature Ensembling Adaptation
(CFEA). Their framework consists of three parts; namely, the
source domain network (SN), which learns from the source
domain with labels, the target domain student network (TSN)
and the target domain teacher network (TTN), which learn
from target domains without labels. Adversarial learning was
introduced between SN and TSN, where the supervised SN
enables the segmentation network obtain more precise predic-
tion, and the unsupervised TSN introduces a perturbation to
the training of the network. The MSE between TSN and TTN
was calculated to help the student network’s learning.

3.2.5. Other approaches

There are serveral other approaches for addressing vessel
and OD segmentation using a variational autoencoder (VAE)
as the backbone, tackling a novel task named optic disc quan-
tification and using a single net.

Approaches based on a variational autoencoder. Note
that some works were built on VAE. Sedai et al.|(2017a)) pro-
posed a semi-supervised method to perform OC segmentation
using limited labeled training samples. First, a generative vari-
ational autoencoder (GVAE) is trained using a large amout of
unlabeled data to learn the feature embedding. Then a seg-
mentation variational autoencoder (SVAE) is used to predict
the OC mask by leveraging the feature embedding provided
by the GVAE.

OD quantification based on multitask ensemble learning
framework. Unlike traditional OD/OC segmentation, optic
disk quantification refers to the simultaneous quantification of
a series of medical indicators, namely two vertical diameters
(0D, OC), two complete regions (Disc, Rim), and 16 local
regions (Garway-Heath and Hitchings| |1998). Accurate op-
tic disc quantification provides effective help in the diagnosis
and treatment of many eye diseases such as chronic glaucoma
(Maninis et al., 2016)). Zhao et al.| (2019c) proposed a multi-
task ensemble learning framework (DMTFs) to perform optic
disc quantification. To the best of our knowledge, they were
the first to use deep learning to accomplish this task. In their
following work (Zhao and Li, 2020)), they made several mod-
ifications to their original model, including incorporating a
conduct feature interaction module for highly correlated tasks.

Vessel and OD segmentation using a single net. Mani-
nis et al.| (2016) proposed Deep Retinal Image Understanding
(DRIU) for vessel and OD segmentation. They used VGG-

16 as “base network” and removed its FC layers. The feature
maps of different levels from the base network are resized and
fused to form two task-specific “specialized” layers, which are
used to perform vessel segmentation and OD segmentation si-
multaneously.

3.2.6. Discussion

Compared to other segmentation tasks like vessel or lesion
segmentation, the segmentation of the OD/OC is more similar
to natural image segmentation due to its ellipse shape. There-
fore, several architectures taken from natural image segmen-
tation are used in this task, including Deeplabv3+ and Mask-
RCNN. Such networks are rarely seen in vessel segmentation
or lesion segmentation. Further, compared to the other two
segmentation tasks, the research on OD/OC segmentation is
the most complete. Architectures of FCN, U-Net, Deeplabv3+
and Mask-RCNN have been used, and methods like multiscale
and polar transformations have been tried.

Future work on OD/OC segmentation may lie in the fol-
lowing directions. First, the more accurate task of OD quan-
tification may be promising. Second, the problems of domain
shift and poor generation performance still exist. Therefore,
domain adaption should be paid more attention to. It is also
worth noting that the REFUGE2 challenge is ongoing. Re-
searchers can follow the competition to see the latest methods
and research directions.

3.3. Fovea segmentation

The fovea is one of the most significant landmarks in fun-
dus images. Segmenting the fovea can help define the risk of
a particular lesion in retinal diagnosis. However, due to the
lack of publicly-available datasets, few works focus on fovea
segmentation.

Sedai et al.| (2017b) proposed a two-stage framework for
fovea segmentation, using a subset of EyePACS as training
data. The first stage is a coarse network, which performs
coarse segmentation to localize the fovea region. The authors
discarded the FC layers of VGG-16 to make it a fully convolu-
tional network. Feature maps at different levels are upsampled
to the same size as the input images and fused together to get
the output. The second stage is a fine network, which takes
the ROI regions obtained by the coarse network to generate
the final result. The only difference between the fine network
and coarse network is that the fine network only uses the last
two blocks of VGG-16 to get the segmentation output.

It is clear that only one remarkable work has been intro-
duced for fovea segmentation. More researches are thus called
for to obtain better performance on fovea segmentation. More-
over, the framework used by |Sedai et al.|(2017b)) is a two-stage
architecture. More architectures need to be explored.

3.4. A)V classification

Subdividing the blood vessels in fundus images into arter-
ies and veins is of vital importance for the early diagnosis of
many diseases. For example, a low ratio between arteriolar
and venular width (AVR) can predict diabetes and many car-
diovascular diseases (Niemeijer et al.,2011). The widely used



datasets for this task are as follows. Compared to the DRIVE
dataset used in vessel segmentation, the DRIVE-AV dataset
(Hu et al, [2013) further provides pixel-level artery/vein la-
bels. As mentioned before, it has 20 images in the training set
and 20 images in the test set. DRIVE-AV is also called RITE
in some papers. The LES-AV datase (Orlando et al., 2018)
consists of 22 images with pixel-level labels. The INSIPRE-
AVR dataselﬂ (Dashtbozorg et al.,2014)) consists of 40 images
with only centerline-level annotation. The private IOSTAR
dataset (Abbasi-Sureshjani et al.l 2015)) consists of 24 images
annotated by two experts.

Galdran et al.[(2019) regarded the A/V classification task as
a four-class segmentation problem, with categories including
background, artery, vein and uncertain. They used a U-Net-
like structure to classify the arteries and veins directly without
segmenting the vessel tree first. To the best of our knowledge,
they are the first to focus on pixel-level uncertainty in the task
of vascular segmentation and classification. Raj et al.| (2020)
proposed an Artery-Vein Net (AV-Net) for A/V classification.
The backbone network is ResNet-50 and squeeze-excitation
(SE) blocks are used. Feature maps of different scales are up-
sampled and fused to the same size as the input image to get
the segmentation map. AV-Net does need a segmented vas-
culature map as input, instead only requiring a single wave-
length, color fundus image. Finally, as introduced previously,
Ma et al.|(2019) performed A/V classification while segment-
ing blood vessels.

Discussion. From the above methods we can see that A/V
classification is a promising direction. The general tendency is
to directly perform A/V classification without performing ves-
sel segmentation first. However, A/V classification is an even
more challenging task than vessel segmentation. Further in
existing works, there is still the problem of arteries and veins
appearing in a single vessel segment, which is not common in
reality.

4. Disease diagnosis/grading

4.1. Diabetic retinopathy

Diabetic retinopathy (DR) is a vascular disease that affects
normal blood vessels in the eye and is the leading cause of pre-
ventable blindness worldwide (Wilkinson et al., 2003)). There
is a unified standard for DR classification, namely the Interna-
tional Clinical Diabetic Retinopathy Scale (ICDRS). Accord-
ing to this standard, the severity of DR can be graded into five
classes, namely O (no apparent DR), 1 (mild DR), 2 (moderate
DR), 3 (severe DR), 4 (poliferative DR). The most commonly
used datasets are shown in Tab. [II All of them have been in-
troduced in Section [2| The experimental results are shown in

Tab. [T

4.1.1. Clinical style papers
There are several clinical style papers, usually found in clin-
ical journals such as JAMA and Diabetic Care. These papers

Thttps://ignaciorlando.github.io/#publications_selected
8http://www.retinacheck.org/datasets
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usually pay more attention to actual clinical meaning rather
than network architecture improvements. Most of the training
datasets were collected by the authors, rather than using public
datasets.

David et al| (2016) proposed a system that can automat-
ically detect DR, called IDx-DR X2.1. It applies a set of
CNN-based detectors for each image in the detection. Their
CNN structure is inspired by AlexNet and VGG and is able
to predict four labels, namely negative (no or mild DR), refer-
able DR (rDR), vision-threatening DR (vtDR), and low exam
quality (protocol errors or low-quality images). CNN-based
anatomy detectors can further detect hemorrhages, exudates,
and other lesions. (Gargeya and Leng|(2017) also used a CNN
to perform DR binary classification. They used a CNN con-
taining five residual blocks to extract image features. The fea-
tures extracted by the deep CNN and metadata information
were fed into a decision tree model for binary classification.
Li et al.|(2018b)) used a deep learning algorithm (DLA) for the
detection of referable DR. For the training and validation set,
they collected 71,043 images from a website named LabelMe
and invited 27 ophthalmologists to annotate them. They used
four Inception-v3 networks for different tasks, namely 1) clas-
sification of vision-threatening referable DR, 2) classification
of DME, 3) evaluation of image quality for DR, and 4) assess-
ment of image quality and of the availability of the macular
region of DME.

Ensemble strategies are commonly used in this area. |Gul-
shan et al| (2016) used a CNN for binary classification of
with/without DR. They used a dataset of 128,175 images,
which were annotated three to seven times by 54 experts. The
specific network uses the structure of Inception-v3, and an
ensemble of ten networks trained with the same data. The
final result is the average of all network outputs. Krause
et al.| (2017) used a CNN for the five-class classification of
DR. Their improvements over (Gulshan et al.| (2016) include:
using Inception-v4 instead of Inception-v3, using a larger
dataset during training, and using higher-resolution input im-
ages. Their network structure is also an ensemble of ten net-
works. Zhang et al.|(2019b) established a high-quality labeled
dataset, and adopted an ensemble strategy to perform two-
class and four-class classifications. Features extracted from
different CNN models are passed through the corresponding
SDNN modules, which are defined as component classifiers.
Then, the features are fused and fed into a FC layer to generate
the final results.

4.1.2. Approaches combining lesion detection

Considering the internal correlation between the diagnosis
of DR and detection of hemorrhages, exudates and other le-
sions, many works also generate heatmaps of lesions while
performing DR diagnostic grading. These methods consist
of: generating lesion heatmaps, lesion segmentation, attention
method and two benchmark works.

Generating lesion heatmaps. [Yang et al.| (2017) proposed
a two-stage DCNN that can simultaneously delineate the le-
sions and perform DR severity grading. The first stage is a
local network, which extracts local features for lesion detec-
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Table 17. Summary of several results for DR diagnosis/grading

Reference Dataset Category Backbone Loss SE/% SP/% AUC/% Kappa/%
~|David et al.[(2016) Messidor-2 4 CNN - 968 87.0 98.0 -

Gulshan et al.|(2016)  Messidor-2 2 Inception-v3 - 87.0 985 99.0 -

Gargeya and Leng| Messidor-2 2 CNN 2-class categorical CE 93 87 94 -

(2017)

" [Wang et al.[(2017) Messidor 5 CNN - - - 95.7 -
Lin et al.|(2018) Messidor 5 CNN - - - 96.8 -

" |Gulshan et al.[(2016)  EyePACS 2 Inception-v3 - 903 981 99.1 -
Gargeya and Leng| EyePACS 2 CNN 2-class categorical CE 94 98 97 -
(2017)

“|Gargeya and Leng| E-Ophtha 2 CNN 2-class categorical CE 90 94 95 -
(2017)

Quellec et al.|(2017)  E-Ophtha 2 CNN - - - 94.9 -

" [Wang et al.[(2017) Kaggle 5 CNN - - - 854 -
Lin et al.|(2018) Kaggle 5 CNN - - - - 85.9
Roy et al.|(2017) Kaggle 5 CNN - - - - 86
Yang et al.|(2017) Kaggle 4 CNN - - - 95.90 -
Quellec et al.|(2017)  Kaggle 2 CNN - - - 95.5 -

“|Gondal et al.[(2017) ~ DiaretDB1 2 CNN - 93.6 976 954 -

~[Foo et al.[(2020) SiDRP14-15  5(NoDRhere)  U-Net, VGG16  binary CE - - 78.56 -

~|Foo et al.[(2020) IDRiD 5(No DR here)  U-Net, VGG16  binary CE - - 99.00 -

“[Lin et al.[(2018) private 5 CNN - - - - 87.5

" [Krause et al.[(2017) private 5 (moderate or Inception-v4 - 971 923 98.6 84

worse DR here)

|Lietal.[(2018b) private 2 Inception-v3 - 925 985 955 -

" [Zhang et al.[(2019b)  private 2 CNN CE 975 977 917 -
Zhang et al.|(2019b)  private 4 CNN CE 98.1 989 - -

" |Gulshan et al. (2019)  hospital in 2 CNN - 921 952 98.0 -

Sankara
Gulshan et al.|(2019)  hospitals in 2 CNN - 889 922 96.3 -

Aravind




tion. The second stage is a global network for the grading of
DR. A weighted lesion map is obtained from the local net-
work and the original fundus images. An imbalanced weight-
ing scheme was introduced to pay more attention to lesion
patches while performing DR grading. |Gondal et al.| (2017)
adopted unsupervised learning to perform DR grading and
generate lesion heatmaps using only image-level labels. Their
main network uses the 0_O solution (Mathis Antony, 2015),
replacing the last dense layer with a global average pooling
(GAP) layer. Their way of generating heatmaps was mainly
inspired by |Zhou et al.|(2016). |Quellec et al.|(2017) proposed
a solution to generate a heatmap that shows what roles the
pixels in an image play in image-level prediction. They can
detect both image-level referable DR and pixel-level biomark-
ers. Their network’s baseline is also the 0_O solution, and a
method called backward-forward propagation was proposed
to optimize the parameters.

Performing lesion segmentation at the same time. Foo
et al.[ (2020) used an encoder-decoder network for DR grad-
ing and lesion segmentation. They replaced the encoder of
U-Net with VGG-16, which has five groups of conv layers.
Correspondingly, the decoder is modified as a mirror of the
encoder. This architecture can perform lesion segmentation
naturally. Then, for DR grading, they attached a GAP layer to
the saddle layer of the network for classification. They further
proposed a semi-supervised approach to increase the number
of training images.

Attention methods. Attention mechanisms are also com-
monly used in DR diagnosis and grading. [Wang et al.| (2017)
proposed a Zoom-in-Net that can simultaneously perform five-
class DR grading and generate attention maps highlighting le-
sions. Zoom-in-Net consists of three parts, namely a main
net (M-Net) using Inception-Resnet as the backbone, which
aims to extract features and can output diagnostic results; an
A-Net, which can generate attention maps using only image-
level supervision; and a C-Net, which simulates the zoom-
in operation when clinicians examine images. |Lin et al.
(2018) proposed a framework based on anti-noise detection
and attention-based fusion which can perform five-class DR
grading. They first extract the features using a CNN, then
feed them into a designed center-sample detector to generate
lesion maps. Lesion maps and original images are sent to the
proposed attention fusion network (AFN), which can learn the
weights of the original images and lesion maps to reduce the
influence of unnecessary information.

Benchmark works. Although, according to priori knowl-
edge, detecting related lesions is helpful for the diagno-
sis/grading of DR, lesion detection is actually a complex and
difficult task, and there exists a trade-off between lesion detec-
tion and DR grading.

Li et al. (2019b) built a dataset called DDR. DDR is the
only dataset considering both DR and lesion detection; it is the
largest dataset for lesion detection and second largest for DR
grading. The authors evaluated ten state-of-the-art deep learn-
ing models on this dataset, including five classification mod-
els, two segmentation models, and three detection models. Al-
though these methods achieved a maximum acc of 0.8284 in
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DR grading, their performance in lesion segmentation and de-
tection was particularly poor, indicating that the detection or
segmentation of lesions is a very challenging task. |Ahmad
et al| (2019) performed a benchmark work on Messidor-2.
They evaluated eight state-of-the-art deep learning classifica-
tion models and generated class activation maps (CAMs) of
lesions at the same time. The results showed that there is a
trade-off between classification and localization. As the net-
works’ depth and parameters increased, they performed better
in classification, while performing worse in localization.

4.1.3. Other approaches

There are several other approaches for DR grading, includ-
ing a bi-linear strategy, a hybrid method and the IDRiD chal-
lenge.

Bi-linear strategy with attention mechanism. Zhao et al.
(2019¢)) proposed a BiRA-Net to perform DR grading. In the
introduced RA-Net, features extracted from ResNet were fed
to a proposed attention net to pay more attention to the deci-
sive areas for grading. A bilinear strategy was adopted to train
two RA-Nets for more fine-grained classification.

Hybrid method combined with manually designed fea-
tures. [Roy et al.| (2017) proposed a strategy that combines
CNN and dictionary-based strategies for DR severity assess-
ment. The activation value of the second fully connected layer
(FC2) of the CNN was converted to a discriminative pathology
histogram (DPH) and generative pathology histogram (GPH),
which consist of manually designed features with specific con-
cerns. The two histogram feature vectors and the original-size
image were fused with the CNN’s FC2 response, and finally a
decision tree classifier was used to obtain the final result.

Smartphone-based diagnosis. Natarajan et al.|(2019) pro-
posed an offline DR screening system on a smartphone to de-
tect referable DR. Users can download the app and get DR
diagnosis results instantly. It is unbelievable to imagine that
the diagnosis of DR can be performed by such a low-cost de-
vice in such a convenient way. Such an offline system is of
great significance to areas with limited medical resources.

IDRIiD challenge. Porwal et al.|(2020) described the IDRiD
dataset and outlined the setup of the challenge “Diabetic
Retinopathy Segmentation and Grading” held at ISBI2018.
They also discussed a variety of deep learning models that
were outstanding in the competition, as well as lessons learned
from analyzing of the submissions.

4.1.4. Discussion

The diagnosis/grading of DR has been widely studied.
There are several clinical style papers in this field. In these
works, a large number of images were typically collected and
labeled and the significance of using deep learning in actual
clinical diagnosis was assessed. From a technical point of
view, the diagnosis/grading of DR is a classification task. All
we need to do is to predict a number indicating the stage
of DR. However, only providing a single number may con-
fuse clinicians. They also need to know why the network
makes certain decisions, and what are deemed decisive re-
gions. Therefore, many works have focused on generating
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heatmaps or performing lesion segmentation at the same time.
Other effective methods like attention mechanisms and hybrid
methods have also been explored. It is also worth noting that
a remarkable smartphone-based offline diagnosis system has
been created.

However, the existing researches still face several short-
comings. Rather than fine segmentation, the heatmap is typ-
ically generated coarsely and cannot provide lesion labels.
Therefore, performing lesion segmentation and DR diagno-
sis/grading at the same time is a promising direction. How-
ever, as discussed previously, there is a trade-off between DR
diagnosis/grading and lesion segmentation. This is mainly be-
cause the high-level semantic features needed for the classifi-
cation task tend to lack the spatial information required for
segmentation. Reaching this trade-off is important for this
multi-task problem.

4.2. Glaucoma

Glaucoma is one of the major causes of blindness world-
wide. The number of glaucoma infections is expected to grow
to 112 million by 2040. Because of its irreversibility, early
screening of glaucoma is extremely important (Bourne et al.,
2013 Tham et al.l [2014). The datasets used in this field are
shown in Tab. [T} The SINDI, REFUGE and SEED datasets
were not introduced in Section The SINDI dataset (Fu
et al., 2018b) was established to assess the risk factors of vi-
sual impairment in the Singapore-Indian community. It con-
sists of 5,783 images, of which 5,670 are normal and 113 are
glaucomatous. The REFUGE dataset (Orlando et al.l 2020)
was used in the REFUGE challenge. It contains 1,200 fundus
images with segmentation ground truth and clinical glaucoma
labels. The SEED study (Zheng et al.,|2013) was conducted in
southwestern Singapore between 2004 and 2011. The popula-
tion included 3,353 Chinese, 3,280 Malays and 3,400 Indian
adults aged 40 and older. Experimental results are shown in

Tab. [T8]

4.2.1. Clinical style papers

Similar to DR, there are several clinical applications of
glaucoma diagnosis. [Raghavendra et al.|(2018) utilized an 18-
layer CNN containing five conv layers to perform glaucoma
classification. They obtained 1,426 images from Kasturba
Medical College, Manipal, India. |L1u et al.|(2019c¢)) proposed a
deep learning system (DLS) named Glaucoma Diagnosis with
Convoluted Neural Networks (GD-CNN), based on ResNet.
They established a dataset named FIGD consisting of 241,032
images. They further proposed an online deep learning (ODL)
system to improve the generalization ability of GD-CNN.

Glaucomatous Optic Neuropathy (GON) diagnosis is
also widely studied. [Li et al.| (2018a) used deep learning
to perform binary classification of GON. They downloaded
70,000 fundus images from the online dataset LabelMeE]>
and selected 48,116 images for annotation. They invited 27
qualified ophthalmologists for labeling and used Inception-v3

()http://www.labelme.org/

as the classification network. |[Phene et al.| (2019) collected
86,618 images from several sources, including EyePACS, In-
oveoﬂ AREDS, UK BiobankE] and three hospitals in India.
They invited 43 graders to perform image-level and feature-
level labeling. They also used Inception-v3 and trained an
ensemble of 10 networks. Their network can predict referable
GON and the presence/absence of various ONH features at the
same time.

4.2.2. Approaches considering OD/OC area

Based on the priori knowledge that the OD and OC area
can be helpful to diagnose glaucoma, many methods have paid
attention to these two areas. Applications can be subdivided
into OD/OC segmentation and direct CDR estimation.

OD/OC segmentation. [dos Santos Ferreira et al.|(2018)) de-
signed a texture descriptor with a CNN to diagnose glaucoma.
They first used a U-Net to segment the OD area, then in-
spired by the domain knowledge of biology, designed a mod-
ule called phylogenetic diversity indexes to extract semantic
features, and finally used a CNN-based classifier for the di-
agnosis of glaucoma. [Pal et al|(2018) designed a G-EyeNet
for the classification of glaucoma, which performs particularly
well when the dataset is small. They first perform OD segmen-
tation, then the extracted ROIs are fed to a U-Net-like archi-
tecture for image reconstruction. Finally, an FC layer followed
by a softmax classifier were incorporated into to the encoder
for glaucoma classification.

Direct CDR estimation. Zhao et al. (2020b) abandoned
the intermediate step of segmenting the OD and OC area and
decided to directly estimate CDR from fundus images. In the
proposed MFPPNet, fundus images are passed through three
DenseBlocks, and then the extracted features go through a fea-
ture pyramid pooling module and a fully connected feature
fusion module to learn and fuse multiscale features. Finally,
random forest regression is used to perform CDR regression.

4.2.3. Approaches built on multi-branched methods
Multi-branched methods are also widely explored for glau-
coma diagnosis. The results of multiple networks with dif-
ferent focuses are fused together to achieve higher accuracy.
Fu et al| (2018b)) proposed the Disc-aware Ensemble Net-
work (DENet) which contains four branches. The global im-
age stream learns the image-level global features, employing
a ResNet-50 as the backbone and using the original images
as input. The second stream is a segmentation-guided net-
work using a U-Net to segment the OD area as guidance for
the other two branches. FC layers are connected to the saddle
layer of U-Net to output classification results. The local disc
region stream and the disc polar transformation stream both
take ResNet-50 as the classifier, with the former taking the
disc region crop as input and the other take polar transformed
version. |Chai et al.|(2018)) designed a multi-branch neural net-
work (MB-NN) combining domain knowledge. MB-NN takes
three branches as input. The first is a set of original images.

10http://www.inoveon.com/
1 https://www.ukbiobank.ac.uk/aboutbiobankuk
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Table 18. Summary of several results for glaucoma diagnosis/grading

Reference Dataset Backbone Loss SE/% SP/% ACC/% BACC/% AUC/%
“ILi et al.[(2019a)/Li RIM-ONE CNN K-L divergence 84.8 855 852 - 91.6
et al.|(2020Db) function and CE
dos Santos Ferreiraa RIM-ONE, U-Net, CNN - 100 100 100 - 100
et al.|(2018) DRISHTI-GS
|Zhao et al.[(2019d)  ORIGA CNN contrastive loss - - - - 92
and hinge loss
Liao et al.|(2020) ORIGA CNN - - - - - 88
“|Lietal.[(2019a) LAG CNN K-L divergence 954 952 953 - 97.5
function and CE
Li et al.|(2020b) LAG CNN K-L divergence 954 96.7 96.2 - 98.3
function and CE
Pal et al.|(2018) DRIONS-DB  Encoder-decoder network Reconstruction - - - - 92.3
loss and CE
" [Fu et al.[(2018b) SCES U-Net, ResNet50 Dice coefficient 84.78 83.80 - 84.29 91.83
loss and CE
“[Fuetal. Z2018b) SINDI U-Net, ResNet50 Dice coefficient 78.76 71.15 - 74.95 81.73
loss and CE
Raghavendra et al.| Private CNN - 98.00 98.30 98.13 - -
2018)
“[Lietal[(2018a) Private Inception-v3 - 95.6 920 - - 98.6
~ |Phene et al.[(2019) Private Inception-v3 - - - - - 94.5
~ |Chai et al.[(2018) Private FCN, CNN, Faster-RCNN  CE 92.33 9090 91.51 - -
" Liu et al.[(2019¢) Private FIGD ResNet CE 962 977 - - 99.6

The second branch is the optical disc region generated by
Faster-RCNN. The third branch contains domain knowledge
features, which include image features such as CDR and PPA
size, and non-image features such as age, intraocular pressure
and eye sight.

4.2.4. Generating evidence maps

There are also some inspiring studies that generate evidence
maps when performing glaucoma diagnosis. The approaches
include a weakly supervised method, using a LAG dataset
containing evidence label and a multiscale method.

Weakly supervised method. [Zhao et al.[|(2019d) proposed
a weakly-supervised multi-task Learning method (WSMTL)
to perform accurate evidence identification, optic disc seg-
mentation and automated glaucoma diagnosis simultaneously.
First a skip and densely connected CNN is used to capture
multiscale features. Then, the extracted features are fed to
the proposed pyramid integration structure to generate high-
resolution evidence maps. These evidence maps are passed
to a constrained clustering branch which clusters pixels with
relational constraints. The evidence maps are also fed to a
fully-connected discriminator to diagnose glaucoma.

Using dataset containing evidence map label. |Li et al.
(2019a) established a large-scale attention-based glaucoma
(LAG) dataset. LAG contains 5,824 fundus images and at-
tention maps provided by ophthalmologists. They also pro-
posed an AG-CNN to diagnose glaucoma. First, an attention
prediction subnet was introduced to generate attention maps.
In this subnet, multiscale and channel attention methods are

utilized. Then, a pathological area localization subnet was de-
signed to locate the pathological area, in which attention maps
are embedded to feature maps at each stage. Finally, the lo-
cated pathological areas and predicted attention maps are con-
catenated together and fed to a glaucoma classification subnet
to predict the binary label of glaucoma. In their subsequent
work (L1 et al., 2020b), they extended their LAG dataset to
11,760 fundus images. They also proposed a weakly super-
vised learning strategy for AG-CNN.

Multiscale networks. |Liao et al.| (2020) introduced a clin-
ically interpretable ConvNet architecture (EAMNet) for glau-
coma diagnosis. They first used a CNN as backbone network
with several residual blocks to extract useful features. Then a
method named Multi-Layers Average Pooling (M-LAP) was
proposed to bridge the gap between low-level localization in-
formation and high-level semantic information. Moreover, ev-
idence activation maps (EAMs) were obtained by weighted
summation of feature maps.

4.2.5. Discussion

Like in DR grading, there are several glaucoma diagnosis
papers that care more about clinical applications, as discussed
in Section Further, Sections [4.2.2] [#.2.3] and #.2.4] can
all be regarded as focusing on the OC area from different as-
pects. Section [4.2.2] describes methods that perform OD/OC
segmentation or CDR estimation and glaucoma diagnosis si-
multaneously. In Section .2.3] OD/OC segmentation serves
as a branch to guide the glaucoma diagnosis task. Finally, in
Section4.2.4] heatmaps are generated to highlight decisive re-
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gions for glaucoma diagnosis.

However, there is still room for improvement in the diag-
nosis of glaucoma. First, just like in DR diagnosis, while
heatmaps can be used to provide guidance for diagnosis, the
more accurate task of OD/OC segmentation should be empha-
sized. Second, the diagnosis of glaucoma does not only lie in
CDR estimation; there are several other factors that can affect
the result, such as age, race and family history. However, few
works focus on these factors.

4.3. AMD

Age-related macular degeneration (AMD) is the leading
cause of vision loss among people aged 50 and above. 6.2
million people worldwide suffered from AMD in 2015 (Vos
et al., 2016). The datasets used in this field are shown in Tab.
[[9] AREDS is widely used in AMD diagnosis. The AREDS
dataset (The Age-Related Eye Disease Study Research Group),
1999) consists of over 206,500 images acquired from 5,208
participants. iChallenge-AMD was used as the dataset of the
iChallenge competition. It consists of 1,200 images, of which
77% are from non-AMD subjects and 23% are from AMD pa-
tients. Labels for AMD/non-AMD, disc boundaries and fovea
locations and lesion boundaries are provided. The KORA
dataset (Brandl et al.l |2016) was acquired from 2,840 indi-
viduals aged 25 to 74 years old from South Germany. Experi-
mental results are shown in Tab.

4.3.1. Methods based on a hybrid architecture

Burlina et al.| (2016) are one of the very first to use deep
learning for AMD diagnosis. They used a pre-trained Over-
Feat DCNN to map original images into a 4,096-dimensional
feature vector. Then the vectors were passed through a linear
SVM classifier to output accurate AMD binary classification
results, namely disease-free/early stages and referable inter-
mediate/advanced stages. In their following work (Burlina
et al., 2017), they expanded the previous method by using
datasets about 10 to 20 times larger. [Horta et al.|(2017) made
several modifications to Burlina et al.| (2016). They added
some side channel features such as sunlight, education and
gender. Further, they used two inscribed rectangles of fundus
images at different scales as input, and thus obtained 8,192-
dimensional feature vectors. However, the dimension of the
side channel features was much smaller than 8,192 dimen-
sions. In order to alleviate this imbalance, they used PCA for
dimension reduction. These features were then fused together
to train a random forest classifier for final AMD classification.

4.3.2. Approaches based on CNNs

Govindaiah et al.| (2018) evaluated the performance of
deep learning networks in two-class (no or early AMD and
intermediate or advanced AMD) and four-class (no AMD,
early AMD, intermediate AMD and advanced AMD) classi-
fication for AMD. The networks evaluated include VGG-16
with transfer learning, VGG-16 without transfer learning, and
ResNet-50. The experimental results showed that, whether on

two-class or four-class classifications, VGG-16 without trans-
fer learning performs best. [Tan et al.| (2018)) designed a 14-
layer CNN for early AMD diagnosis. Their data was ob-
tained from the Ophthalmology Department of Kasturba Med-
ical College (KMC), included 402 normal images, 583 retinal
images with early, intermediate AMD, or GA and 125 reti-
nal images with evidence of wet AMD. |Burlina et al.| (2018)
used deep learning for detailed severity characterization and
estimation of five-year risk among patients with AMD. The
classification network used was ResNet-50. For AMD sever-
ity scales, they employed four-step and nine-step scales, re-
spectively. For the estimation of five-year risk of progression
to advanced AMD, they evaluated three deep learning-based
strategies, namely Soft Prediction, Hard Prediction and Re-
gressed Prediction.

Ensemble strategies have also been used in AMD diagno-
sis. |(Grassmann et al.|(2018]) used an ensemble network for 13-
class AMD classification. The pre-processed images were in-
dependently trained using six different CNNs (AlexNet, VGG-
16, GoogLeNet, Inception-v3, ResNet, Inception-ResNet-v2).
The results of the six networks were fused using random
forests.

Guidance from lesion detection is helpful to AMD diag-
nosis. |[Peng et al.| (2018) proposed a DeepSeeNet to grade
the severity of AMD (0-5). Their network consists of three
parts, Drusen Net (D-Net) for detecting drusen in 3 sizes
(none/small, medium and large), Pigment-Net (P-Net) for de-
tecting pigment abnormalities (hypopigmentary or hyperpig-
mentary) and Late AMD-Net (LA-Net) to detect the presence
of late AMD (neovascular AMD or central GA). The three
subnetworks all use an Inception-v3 structure.

4.3.3. Discussion

In this section, we have discussed approaches for AMD di-
agnosis. All of them are based on a CNN architecture. Hy-
brid methods, ensemble strategies and guidance from lesion
detection have also been explored. However, there are still
several limitations. First, the attention paid to AMD does not
match its prevalence and severity. There is much less research
on AMD diagnosis than on DR and glaucoma. Second, the
datasets and the number of images used for AMD diagnosis
are far fewer than those for DR and glaucoma. Finally, the
actual amount of data in the website is inconsistent with what
is claimed in the original paper.

4.4. DME

Diabetic macular edema (DME) is the most common com-
plication of DR and may cause severe vision loss (Ciulla et al.}
2003). Two approaches addressing this task use a two-stage
architecture and multiscale method respectively.

Two-stage architecture. Mo et al.| (2018) proposed the
cascaded deep residual networks for DME diagnosis. The
datasets used include e-ophtha EX and Hamilton Eye In-
stitute Macular Edema Dataset (HEI-MED). The HEI-MED
dataselE] (Giancardo et al., [2012) consists of 169 images, of

2http://www.vibot.u-bourgogne.fr/luca/heimed.php
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Table 19. Widely used datasets for AMD diagnosis/grading

Availability

- available online

- available on registration?

Dataset name Number of images Resolution Camera
AREDS Over 206,500 images

iChallenge-AMD 1200

KORA images from 2840 individuals

- available online’

Thttps://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study _id=phs000001.v3.p1

Zhttp://ai.baidu.com/broad/introduction?dataset=amd
3https://epi.helmholtz-muenchen.de/

Table 20. Summary of several results for AMD diagnosis/grading

Reference Dataset Backbone Loss Category  SE/% SP/% ACC/% AUC/% Kappa/%

" [Burlina et al.[(2016) AREDS CNN with SVM - 2(1vs.3,4) 934 95.6 95.0 - -
Burlina et al.|(2017) AREDS CNN with SVM - 2 - - 88.4~91.6 94~96 -
Horta et al.|(2017) AREDS  CNN with RF - 2 66.34 88.95 79.04 84.76 -
Govindaiah et al.|(2018) AREDS CNN - 2 - - 92.5 - -
Govindaiah et al.|(2018) AREDS CNN - - - 83 - -
Burlina et al.|(2018) AREDS  ResNet50 Regression loss 4 - - 75.7 - -
Peng et al.|(2018) AREDS  Inception-v3 - 6 59.0 93.0 67.1 - 55.8
Burlina et al.|(2018) AREDS  ResNet50 Regression loss 9 - - 59.1 - -
Grassmann et al.|(2018) AREDS, CNN weighted k metric 13 - - 63.3 - -

KORA
“[Tan et al.[(2018] Collected CNN - 2 9643 9375 9545 - -
which 115 are healthy and 54 contain exudates. Their frame- 4.5. ROP

work consists of two stages. The first stage is an exudate seg-
mentation network adopting a deep fully convolutional resid-
ual network (FCRN). Then a fixed-size region is cropped,
where the center pixel has the maximal probability value. The
cropped region is fed to the second stage, which is a deep
residual network performing binary classification.

Multiscale networks. He et al.| (2019) proposed a DME-
Net based on the multiscale method for DME classification.
They used IDRiD and MESSIDOR as their datasets. They first
passed fundus images through a U-Net to generate fovea and
hard exudate region masks. Then a multiscale feature extrac-
tion module using VGG-16 as the backbone was designed, in
which a GAP operation was applied to feature maps of each
stage. Then the features were concatenated to obtain multi-
scale features. They passed the original fundus images, ob-
tained fovea and hard exudate region masks, and the macular
region cropped from fundus images through the proposed mul-
tiscale feature extraction modules respectively. The features
were fused together and fed to a XGBoost classifier (Chen
and Guestrin, [2016)) to output the final results.

Discussion. The two approaches introduced above both de-
tect exudates as guidance for the DME diagnosis task. There-
fore, the architectures used are both multi-stage. Possible fu-
ture work for this task may be to design a more lightweight ar-
chitecture and decrease the parameters to be trained. Another
promising direction is to detect DME and DR at the same time.
Such works can be seen in Section [4.71

Retinopathy of prematurity (ROP) is an eye disease that of-
ten occurs in infants with low birth weight or premature birth.
It is the main cause of childhood blindness (Tasman et al.|
2006). Brown et al.|(2018)) used deep CNNs to diagnose plus
disease in ROP. The plus disease is defined as arterial tortu-
osity and venous dilation of the posterior retinal vessels that
is greater than or equal to that found in a standard published
retinal photograph (for Retinopathy of Prematurity Cooper-
ative Group), |1988)). The presence of plus disease is the most
critical feature of severe, treatment-requiring ROP. Their train-
ing dataset contains 5,511 images, and formed part of the mul-
ticenter Imaging and Informatics in Retinopathy of Prematu-
rity (i-ROP) cohort study. They first used a U-Net for prepro-
cessing, then an Inception-v1 architecture was employed to
diagnose plus disease. Experimental results showed that the
deep CNNs outperformed six of eight ROP experts invited.
Taylor et al.|(2019) used deep learning to objectively monitor
ROP progression. Their data was also from the i-ROP study.
In their work, a quantitative ROP vascular severity score was
developed using previous work (Brown et al.|[2018). Tracking
the quantitative severity score may be an effective method for
identifying patients at risk of disease progression.

Three-stage architectures have been shown to be suitable
frameworks for ROP diagnosis. |Hu et al,| (2019) used deep
learning to classify ROP. To solve the problem of insufficient
labeled data, they collected 2,668 examinations obtained from
720 infants. Each examination consists of several fundus im-
ages from different views. Because only a few of the n images
in one ROP examination may contain features that can diag-


https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
http://ai.baidu.com/broad/introduction?dataset=amd
https://epi.helmholtz-muenchen.de/
http://ai.baidu.com/broad/introduction?dataset=amd
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nose ROP, it is necessary to extract features from all the im-
ages in one ROP examination and fuse these features. To this
end, they designed a three-stage network which is divided into
three parts: feature extraction, feature fusion and classifica-
tion. In the feature extraction stage, there are a total of n CNN
networks with identical structures, which are used to extract
features from the n images in one examination. In the fea-
ture fusion stage, they considered two ways of max and mean,
to fuse the n hxwxc features from the feature extraction stage
into one hxwxc feature map. The final classification stage has
a convolutional layer and a GAP layer for the final binary clas-
sification of ROP. For the network structure, they considered
VGG-16, Inception-v2 and ResNet-50, and also experimented
with different image resolutions.

Discussion. From Hu et al.| (2019)’s work we can see that
only a few images of a ROP examination contain useful fea-
tures. This situation is similar to MRI and CT image process-
ing. Researchers can thus borrow some inspiration from these
tasks. However, publicly available datasets are still limited in
number. More finely-annotated datasets are called for.

4.6. Cataracts

Cataracts can cause severe vision loss and are one of the
most serious eye diseases that can cause blindness. |[Zhou
et al.| (2020) used deep learning for cataract diagnosis (non-
cataract/cataract) and cataract grading (non-cataract, mild
cataract, moderate cataract and severe cataract). They first
established a dataset containing 1,335 images from Beijing
Tongren hospital, China. 433 images of the dataset are non-
cataract and 922 images have cataracts. They proposed dis-
crete state transition (DST) and empirical DST (EDST) strate-
gies. In the DST strategy, the weights and activation values
were restricted in a unified discrete space, while in EDST
they were restricted in an exponential discrete space. DST
and EDST can reduce the networks’ energy consumption and
prevent overfitting. When using priori knowledge, they ex-
tracted the improved Haar wavelet features and visible struc-
ture features from fundus image as the input of DST-MLP
and EDST-MLP. When not using priori knowledge, they used
DST-ResNet and EDST-ResNet as classification networks. Xu
et al.| (2020) introduced a hybrid global-local representation
CNN for cataract grading. They established a dataset consist-
ing of 8,030 images, which were manually annotated by oph-
thalmologists. They first used AlexNet to learn global features
and then used a deconvolutional network (DN) in each CNN
layer to analyze which pixel contributes most to the classifi-
cation, and explain the misclassification cases. Then a hybrid
model which is an ensemble of several AlexNets, was em-
ployed combining global and local features.

Discussion. Cataract diagnosis using fundus images is a
promising direction. However, there are several limitations
remaining. First, there are no publicly available datasets. Sec-
ond, there is no unified grading standard like in DR diagnosis.
There limitations make it difficult to compare different works.

4.7. Diagnosis of multiple diseases
The diagnoses of different eye diseases may affect each
other. For example, for a patient who has both glaucoma and

cataracts, it may be difficult to diagnose the glaucoma because
of the unclear biomarkers caused by the cataracts. Therefore,
the diagnosis of multiple diseases may be a possible solution
to this problem. Moreover, the diagnosis of multiple diseases
simultaneously is more convenient and helpful to clinicians.
The diagnosis of multiple diseases can be divided into simul-
taneous DR and DME diagnosis, simultaneous DR, glaucoma
and AMD diagnosis, the diagnosis of eight diseases using
paired CFPs, the diagnosis of 36 diseases and rare pathologies
detection.

Simultaneous DR and DME diagnosis. |Li et al.[ (2020c)
proposed a cross-disease attention network (CANet), which
can simultaneously diagnose DR and DME. CANet contains
two different types of attention modules. Disease-specific
attention module is used to selectively learn useful features
for diagnosing the specific disease. Disease-dependent at-
tention module can further learn the internal relationship be-
tween the two diseases. Features extracted from ResNet-50
are passed through two disease-specific attention modules and
two disease-dependent attention modules successively. They
used IDRiD and MESSIDOR as their datasets. The diagnosis
of the two diseases can be mutually enhanced. Tu et al.[(2020)
proposed a multi-task network named feature Separation and
Union Network (SUNet) for simultaneous DR and DME grad-
ing. Experiments were carried on the IDRiD dataset. They
first used ResNet-34 to extract features for all tasks. Then
a feature blending block was proposed, which contains a se-
quence of feature separation and feature union layers. The
feature separation layers learn task-specific features, i.e., di-
agnosis features for the multi-disease diagnosis block (MD-
Block) and lesion features for lesion regularize net (LR-Net).
The feature union layers are able to learn useful union features
for both branches. Finally, the MD-Block is used to predict re-
sults of DR and DME grading.

Simultaneous DR, glaucoma, and AMD diagnosis. |Ting
et al.| (2017) used a CNN network to perform referable DR,
vision-threatening DR, possible referable glaucoma and refer-
able AMD diagnosis simultaneously. Their dataset contains
494,661 retinal images, which were obtained from the ongo-
ing Singapore National Diabetic Retinopathy Screening Pro-
gram (SIDRP) (Nguyen et al., 2016). The backbone network
used is VGG-Net.

Diagnosis of eight diseases using paired CFPs. [Li et al.
(2020a) proposed a Dense Correlation Network (DCNet) to di-
agnose eight diseases using paired color fundus photographs
(CTF) from the ODIR dataseiEl The ODIR dataset consists
of 10,000 paired images from 5,000 Chinese patients. Eight
kinds of labels denoting the stages of specific diseases are pro-
vided for each image. Here, paired refers to images of the left
eye and the right eye from the same patient. DCNet consists
of a shared CNN feature extractor for paired CFPs, ResNet
in this case, a spatial correlation module (SCM) and a final
classifier. The SCM is utilized to capture dense correlations
between extracted features and fuse relevant ones.

Diagnosis of 36 diseases. Wang et al.[(2019d) used multi-

Bhttps://github.com/nkicsl/OIA-ODIR



task learning to diagnose 36 diseases simultaneously. To
achieve this, they collected and relabeled 200,817 images with
36 categories, of which 17,385 images have more than one
label. Their proposed network structure is divided into two
stages. The first stage has a modified YOLO-v3 (Redmon
and Farhadi, 2018) as the main structure, which is used to de-
tect the macula and the OD/OC area. The second level has
three branches, namely the general task stream, macular task
stream, and optic-disc task stream, which use original images,
the macula area, and the OD and OC area as inputs, respec-
tively. The general task stream uses Inception-ResNet-v2 as
the backbone network to detect general retinal diseases, fus-
ing features from the other two streams. The macular task
stream is used to detect macular diseases. It uses Inception-v3
as the backbone network and fuses features from the general
task stream. The optic-disc task stream also uses Inception-v3
as the backbone network, but it is independent and does not
fuse features from the other branches.

Rare pathologies detection based on few-shot learning.
Quellec et al.| (2020) used few-shot learning to perform rare
pathologies detection. They used the OPHDIAT dataset for
training. This dataset (Massin et al., [2008)) consists of 763,848
images acquired from the Ile-de-France area. DR grading is
provided for every image. Moreover, the ophthalmologists
also indicated his or her findings in free-form text. The im-
ages contain 41 conditions, some of which are rare patholo-
gies. Based on the observation that CNNs trained to detect
frequent conditions, such as DR, also cluster many other un-
related conditions in the feature space, the authors trained a
CNN classifier and derived several simple probabilistic mod-
els from its feature space to detect rare conditions, solving the
few-shot learning problem.

Discussion. The diagnosis of multiple diseases is very sig-
nificance in clinical practice. In this subsection, we first dis-
cussed the simultaneous diagnosis of DR and DME and the di-
agnosis of three different diseases. Then we introduced three
works that focus on multiple disease diagnosis for up to 41
classes. The methods used vary but are all inspiring. In con-
clusion, this developing direction is very promising and de-
serves more attention, since more comprehensive systems are
needed in practice. Therefore, more experiments should be
carried on newly built datasets such as ODIR.

5. Image synthesis

As mentioned before, the training datasets for medical
imaging often consist of a fewer number of images than in
other deep learning tasks. Further, high-quality annotated
datasets are often costly to obtain. One possible solution is
image synthesis. Image synthesis can increase the number of
fundus images, help us to better understand the images and
improve model performance.

Synthesis for glaucoma. |Deshmukh and Sivaswamy
(2019) proposed a deep learning based method to synthesize
the ONH region of fundus images. Given the OD, OC, and
blood vessel segmentation masks from arbitrary fundus im-
ages, their method can generate high-quality images with ves-
sels bending at the edges of the OC, like in real images. The
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generator contains four U-Nets. Three parallel branches take
an OC, OD and vessel mask as input, respectively, and the
outputs are jointly passed through another U-Net to generate
RGB images. The synthetic and original images along with
their corresponding OC, OD and vessel masks compose the
input of the discriminator, which employs a five-layer FCN
as the backbone. For the datasets, they used Drishti-GS and
DRIVE. |Diaz-Pinto et al.[{(2019) used deep convolutional gen-
erative adversarial networks (DCGANS) to obtain a fundus im-
age synthesizer and used a semi-supervised method for glau-
coma assessment. Their system can not only generate syn-
thetic images, but also provide labels automatically. They col-
lected 14 datasets as the training set, including an unprece-
dented 86,926 images. Their two systems, DCGAN and SS-
DCGAN, have similar structures, and both contain a genera-
tor and a discriminator. The difference between them is that
the DCGAN only performs image synthesis, while the SS-
DCGAN can predict glaucoma by changing the final output
layer of the discriminator of DCGAN. Wang et al| (2019¢)
proposed a pathology-aware visualization strategy for glau-
coma classification and a pathology-based GAN (Patho-GAN)
for image synthesis. For brevity, the pathology-aware visual-
ization net will not be described here. Different from the usual
GAN network, the synthetic images generated by the genera-
tor and the original images are passed through the pathology-
aware visualization net and the pathological loss is calculated.
Specific pathological areas can be enhanced by optimizing the
pathological loss. They used LAG as their dataset.

Synthesis for vessel segmentation. (Costa et al.|(2018) uti-
lized a GAN to perform retinal image synthesis. An adver-
sarial autoencoder is first trained to reconstruct vessel maps
and learn a latent space associated with a normal distribution.
Then the generated vessel maps are passed to a GAN. The
generator of GAN is used to generate synthetic retinal im-
ages that can fool the discriminator. Synthetic pairs and the
real pairs are then passed to the discriminator. Once trained,
a synthetic retinal image can be generated using decoder of
the adversarial autoencoder and generator of the GAN, using
a normal distribution as input. In their implementation, the
vessel annotation-free dataset Messidor-1 and DRIVE dataset
were used. Zhao et al.|(2018)) proposed a Tub-GAN and a Tub-
sGAN for retinal and neuronal image synthesis, which work
well on small datasets. They aimed to learn a mapping from
a tubular structured annotation to a synthetic image. In Tub-
GAN, a GAN is employed with a vessel map ground truth
and random noise as input. In their Tub-sGAN, style trans-
fer is incorporated using VGG-Net learning style features and
content features. In Zhao et al.’s following work (Zhao et al.,
2019a)), they proposed a R-sGAN to perform image synthesis
for further segmentation of unannotated fundus images. Their
framework consists of two stages. In the first stage, vessel
maps from finely-annotated datasets and retinal images from
unannotated images are passed to R-sGAN as input to gener-
ate retinal images that have the same style as the unannotated
datasets. R-sGAN is a non-linear variant of GRU (Chung
et al., 2014). Then, image pairs of vessel maps and gener-
ated retinal images are passed to a segmentation network for
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training. Once trained, the segmentation network can perform
segmentation of unannotated images. Both works used the
DRIVE, STARE and HRF datasets.

Synthesis for DR. [Zhou et al.| (2019) proposed a diabetic
retinopathy generative adversarial network (DR-GAN). It can
generate high-resolution images given arbitrary DR grading
and lesion information. They designed a generator condi-
tioned on vessel and lesion masks to generate high-resolution
images. They introduced a fine-grained design which aims to
learn better and more realistic local details. A multiscale dis-
criminators framework was also employed, containing three
identical discriminators. The only difference between the dis-
criminators is the resolution of input images. For the dataset,
they used EyePACS, IDRiD and DRIVE.

Synthesis for AMD. Burlina et al.| (2019) utilized a GAN
to perform image synthesis for AMD. The GAN model was
trained using 133,821 fundus images from AREDS as input.
They invited two ophthalmologists to diagnose AMD on real
images and synthetic images. The results obtained are simi-
lar for real and synthetic images. Moreover, a classification
network trained only on the synthetic images showed similar
performance to the network trained only on real images.

Smartphone camera image synthesis. It is relatively easy
as well as cost-effective to collect fundus images using a
smartphone camera (SC). However, the images are often low-
quality, have uneven illumination and other problems. [V and
Sivaswamy| (2019) proposed a ResCycleGAN for image syn-
thesis using SC images. Their modifications over CycleGAN
(Zhu et al,, 2017) are two-fold; namely, they introduced a
residual connection and proposed a structure similarity based
loss function. The dataset used consists of 540 images ac-
quired using an iPhone®6.

Multimodal image reconstruction. Different modalities
provide complementary views of the same real-world object.
Image reconstruction from one modality to another is a self-
supervised task. On the one hand, important general features
can be learned in the reconstruction process. On the other
hand, images which are obtained invasively in practice can
be obtained using non-invasive modal images. Hervella et al.
(2018) employed U-Net to perform image reconstruction from
retinography to angiography. They used the publicly available
Isfahan MISP datasetE] (Alipour et al.| 2012)), which contains
59 retinography/angiography pairs.

Image super resolution (ISR). ISR takes low-resolution
images as input and outputs super-resolved (SR) images. This
is useful to several downstream, such as small or blurred lesion
and biomarker detection. Mahapatra et al.|(2017)) proposed an
ISR method based on GANSs. A local saliency map is obtained
by combining abstraction, element distribution and unique-
ness. Then a local saliency loss is calculated and added to the
cost function. Entropy filtering is performed to highlight com-
pact regions. They used DRIVE, STARE and CHASE_DBI1 as
their datasets.

Discussion. Image synthesis based on deep learning is a rel-
atively new task in fundus image processing. Synthetic images

4https://misp.mui.ac.ir/data/eye-images.html

can be used to help training, which can improve performance
and alleviate overfitting. In terms of architecture, nearly all
approaches used GANs. The latest powerful variant, Cycle-
GAN, can also be seen in some applications. Image synthesis
will likely be a very popular direction in the near future. It
is hard to imagine what kinds of explorations could be done
using GANS.

6. Other applications

6.1. Ophthalmic disease diagnosis

There are several works focusing on rare pathologies, such
as pathological myopia and refractive error.

Pathological myopia is a common disease that can cause
loss of vision. |Guo et al.| (2020b) introduced a lesion-aware
segmentation network (LSN) to perform atrophy and detach-
ment segmentation, which is related to pathological myopia.
The architecture is a U-Net-like encoder-decoder network.
The authors added a classification branch to the saddle layer
to predict the existence of lesions. A feature fusion module
is used in the decoder, which is designed as a multiscale net-
work. To further boost the sensitivity to lesion edges, they
added a loss function named edge overlap rate (EOR). The
training set used was taken from from PALM challengeE] in
ISBI 2019, consisting of 400 images.

Refractive error is one of the leading causes of visual im-
pairment. |Varadarajan et al.| (2017)) used deep learning to di-
agnose this. They used UK Biobank and AREDS as their
datasets. The architecture is a combination of ResNet and soft
attention (Xu et al.| |2015). Their network can also generate
attention maps. Results showed that the foveal region is one
of the most import regions for making predictions.

Discussion. It is good to see that these diseases have re-
ceived some attention, despite not being as prevalent as other
diseases like DR, glaucoma, etc. Diagnoses of rare patholo-
gies are also important. It is expected that the successful ex-
periences in other diseases can easily be well extended to the
rare pathologies diagnoses. Current challenges lie in the lack
of data.

6.2. Systemic diseases

As shown in previous studies, the condition of the retina
may reflect other diseases. In fact, many ophthalmolo-
gists have used ophthalmoscopes to diagnose systemic dis-
eases such as hypertension, sarcoidosis and CMV infection.
(Schmidt-Erfurth et al., | 2018). We thus discuss studies on sys-
temic disease diagnosis as follows.

Cardiovascular risk factors. |[Poplin et al.| (2018) used
a deep learning method to predict multiple cardiovascular
risk factors including age, gender, smoking, systolic pressure
(SBP) and so on. Their training dataset includes the data of
284,335 patients, and was collected from the UK Biobank and

Shttps://palm.grand-challenge.org/



EyePACS. Inception-v3 was used as their classification net-
work. Moreover, to help clinicians better understand the de-
cision process of the CNN network, they used a mechanism
named soft attention to generate heatmaps, which can high-
light decisive regions in the process of CNN classification.

Ischemic strokes. [Lim et al. (2019) utilized deep learning
methods to predict strokes from fundus images. Images posi-
tive for ischemic stroke were obtained from the MCRS study
(Silva et al., 2009) while negative images were taken from
five other fundus image datasets. Their classification network
is VGG-16. They also adopted the feature isolation method.
First, a U-Net was used to segment the vessel tree from origi-
nal images. Then, vascular maps were used as the input of the
classification network, providing additional information.

Annotation-free cardiac vessel segmentation. [Yu et al.
(2019) proposed a knowledge transfer based shape-consistent
generative adversarial network (SC-GAN) and a simpler Add
U-Net for cardiac vessel segmentation. In SC-GAN, an aver-
age fundus image and digital subtraction angiography (DSA)
image were passed to a generator to obtain a synthetic image
that had both retinal vessels and coronary arteries. A shape-
consistent loss was proposed to ensure shape-consistency. A
discriminator was then trained using synthetic images and real
DSA images as input. Finally, a U-Net was trained using
synthetic DSA images with synthetic labels for cardiac ves-
sel segmentation. In Add U-Net, a U-Net was trained using an
average fundus image and DSA image as input and a combina-
tion of fundus image annotations and the Frangi segmentation
(Frangi et al., [1998) results of DSA images as labels. They
used DRIVE as the source domain and collected 1,092 coro-
nary angiographies (DSA) with no annotations.

Biological age estimation. Biological age (BA) is a widely
used aging biomarker. |Liu et al.| (2019b)) developed a CNN
classifier to estimate BA based on retinal images. Two datasets
named the Yangxi Dataset and Shenzhen Dataset were col-
lected, containing 5,825 and 2,911 adults aged 50 years or
older, respectively. They employed a detail manipulation
method to enhance the global details of the non-specific global
anatomical and physiological features related to aging. Then
a VGG-19 network was used to estimate BA. They also pro-
posed a joint loss to boost performance. Results showed that
their method outperforms existing ‘brain age’ models.

Discussion. The diagnosis of systemic diseases using fun-
dus images is an encouraging direction. With the successful
studies using multi-disease and smartphone-based offline di-
agnosis systems, there is promise of predicting systematic dis-
eases in a remote, non-invasive, offline, convenient way.

6.3. Image processing

Here we discuss approaches for two aspects of image pro-
cessing, namely image registration and image quality assess-
ment. Both of these are important for the processing and se-
lection of images.

Image registration. Zou et al.| (2020) proposed an unsu-
pervised architecture for non-rigid retinal image registration.
They formulated the image registration task as a parameter-
ized deformation function. Thus, the aim is to regress the non-
linear spatial correspondence between a pair of images. For
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this regression task, they proposed the Structure-Driven Re-
gression Network (SDRN) framework, which utilizes a mul-
tiscale method to focus on global and local features simul-
taneously. They used the publicly available Fundus Image
Registration (FIRE) datasetE] (Hernandez-Matas et al., [2017),
which consists of 129 retinal images forming 134 image pairs.

Image enhancement. Image enhancement is another way
to improve performance on existing datasets. |[Zhao et al.
(2019b) proposed a data-driven strategy to enhance blurred
fundus images in a weakly supervised manner. Their strat-
egy uses two unpaired datasets for training. Their method is
the first end-to-end deep generative model for blurred retinal
image enhancement. They designed two generators with the
same structure; one to enhance low-quality images to high-
quality ones, and the other to convert high-quality images to
low-quality ones for training reference. Similarly, they de-
signed two corresponding discriminators with the same struc-
ture. They also introduced a dynamic retinal image feature
limit to guide the generator to improve performance and avoid
the over-enhancement of extremely blurred areas. They used
a private dataset which consists of 550 blurry images and 550
high-quality images for training and 60 blurry images for test-
ing. The blurry images are from cataract patients and the high-
quality ones are from normal people.

Image quality assessment. Retinal image quality assess-
ment (RIQA) is important for ensuring the quality of images
used by clinicians and deep learning systems. [Fu et al.|(2019)
proposed the Multiple Color-space Fusion Network (MCF-
Net) for RIQA. They first re-annotated an Eye-Quality (EyeQ)
dataset with 28,792 images from EyePACS. Compared with
other datasets, they extended binary labels (‘Accept’ and ‘Re-
ject’) to ternary labels (‘Good’, ‘Usable’ and ‘Reject’). For
the model architecture, they first transferred the original RGB
color-space to HSV and LAB color-space. Then, retinal im-
ages with different color-spaces were passed to their corre-
sponding base network to extract features. Feature fusion was
performed at a feature level and prediction level. |Shen et al.
(2020) proposed a domain-invariant interpretable fundus IQA
system. In order to improve the interpretability, they added
three clinically accepted aspects (artifact, clarity and field defi-
nition) to the output and a visual feedback. A coarse-to-fine ar-
chitecture was introduced to locate landmarks, including OD
and fovea, for robustness. In order to generalize well on differ-
ent datasets, they adopted a semi-tied adversarial discrimina-
tive domain adaption model. They collected their dataset from
patients who participated in the Shanghai Diabetic Retinopa-
thy Screening Program (SDRSP).

Discussion. The above three directions are all significant
in supporting other tasks. And the use of deep learning make
these image processings effective. Shen et al.| (2020)’s work
is particularly inspiring. Domain invariance and visualization,
which are useful for clinicians, are also goals common to al-
most all other tasks. It is clear that deep learning is on the fron-
tier of research, and more architectures and methods should be
explored.

16https://projects.ics.fonh. gr/cvrl/fire/
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7. Conclusions and Discussions

7.1. Conclusions

As demonstrated in Sections2]to[5] the performance of deep
learning for fundus image diagnostic tasks is quite impressive.
In fact, deep learning methods have even achieved better per-
formance than experienced humans in some cases. Specifi-
cally, deep learning can provide helpful suggestions for oph-
thalmologists. It can detect and segment important biomark-
ers, such as lesions, blood vessels, OD/OC, and provide ev-
idence for physicians to diagnose specific diseases. It can
also directly predict whether a patient has an ophthalmic dis-
ease, and can serve as a powerful assistant for physicians in
the screening of glaucoma, DR, AMD and other ophthalmic
diseases. |Gulshan et al.| (2019) compared the performance
of deep learning with that of a human expert and a trained
grader in DR diagnosis in two hospitals in India. Their results
showed that the deep learning system is well generalized to
the actual data of India. Further, for the first time in ophthal-
mology, it was verified in practice rather than on datasets that
deep learning achieves comparable or even better performance
than human experts. The excellent performance of deep learn-
ing makes it a promising replacement for traditional computer-
aided diagnostic systems (CADs). In fact, IDx (David et al.|
2016) has already been approved by the US FDA for practical
use. We believe that more deep learning methods will further
be deployed as stable, efficient, and robust diagnostic systems
for practical clinical diagnosis.

In terms of network structure, the classification back-
bone network has evolved from VGG and Inception-vl to
Inception-v2, Inception-v3, ResNet and DenseNet, while the
segmentation backbone network has evolved from manually
designed CNNs to FCNs and then to U-Net, Mask-RCNN,
DeeplabV3+, etc. However, using deep learning in fundus im-
age analysis is more than simply applying the backbone net-
works to specific tasks. There are many practical problems
emerging. For example, the number of pixels of biomarkers
such as lesions, OD/OC, and blood vessels is much smaller
than that of the background. Further, the number of pixels of
the unique curved structure of blood vessels, especially capil-
laries, makes it a hard sample problem. To solve these prob-
lems, specific methods are required according to the charac-
teristics of each task. Advances in methods range from simple
applications of deep learning to multi-branch, multiscale, and
coarse-to-fine networks, as well as attention mechanisms, and
so on. We have summarized the approaches in Sections [2]to 3]
according to tasks and methods, and provided an overall sum-
mary in Fig. [

7.2. Limitations and possible solutions

Although the application of deep learning in the field of fun-
dus image analysis has achieved gratifying performance, it is
worth noting that it still has limitations in many other aspects.
The problems which restrict the performance have not been
solved, and the inherent limitations of deep learning also re-
main unresolved. Studying how to solve these limitations will
be a key issue in the future of this field. We have discussed

limitations for specific tasks in each section. Thus, here we
will only list limitations which are common to all tasks, and
provide possible solutions to these.

7.2.1. Lack of high-quality labeled data

As mentioned previously, deep learning is data-driven.
There are many large-scale datasets in the field of natural im-
age processing. For instance, ImageNet (Deng et al., [2009)
has more than 14 million images. Fundus image datasets,
however, are quite limited, as with other medical fields. Un-
like natural images, the labeling of fundus images needs to
be completed by experts, and is very difficult. For example,
because of the lack of depth information, an expert typically
requires eight minutes to label a fundus image for OD/OC seg-
mentation and glaucoma diagnosis (Lim et al.| 2015). These
limitations have resulted in a lack of high-quality labeled fun-
dus images. The smaller the size of the dataset, the more likely
it will lead to lower accuracy and overfitting.

In addition to waiting for ophthalmologists to label more
data, researchers can also seek measures to help alleviate this
problem:

Weakly supervised learning. Weakly supervised learning
can solve the lack of high-quality labeled data to a certain ex-
tent. We saw in Sections [2] to [3] that weakly supervised meth-
ods have already been applied to the field of fundus images.
Weakly supervised learning can be divided into incomplete,
inexact and inaccurate supervision. Incomplete supervision
means that part of the data is labeled, while the other part
is not; that is, the labels are incomplete. Active and semi-
supervised learning can be used to solve this. Inexact super-
vision means the granularity of the annotation does not match
the problem to be solved. Multi-instance learning can be used
to address this. Inaccurate supervision means that the anno-
tation is not completely accurate, so there are samples with
incorrect annotations. One can consider learning with noisy
labels to solve this. For specific relevant methods please refer
to|Zhoul (2018)).

Image synthesis and enhancement. Unlike weakly super-
vised learning, which addresses the lack of high-quality an-
notations, image enhancement can improve the quality of the
image, while image synthesis can directly generate realistic
images, even with labels. The excellent performance of im-
age generation is due to the use of powerful GAN models. In
fact, GANs have become mainstream for many image genera-
tion problems, such as style transfer, image inpainting, super
resolution, and so on. Section[5]introduced several specific ex-
amples of GAN-based image synthesis. We believe that as the
quality of the generated images improves, there will be more
approaches that use these for training, and there will be in turn
more research to further improve the quality of the synthesized
images.

Federated learning. Creating a high-quality annotated
dataset involves more than simply inviting ophthalmologists
to annotate the data. It is a complicated matter, and there
are many other considerations, including data privacy, com-
petition in various research institutes and hospitals, and rel-
evant laws and regulations. Note that many of the fundus



image datasets are also private. How to achieve data shar-
ing while satisfying diverse research groups, complying with
regulations and not infringing upon user privacy is an urgent
problem to be solved. In 2016, Google proposed federated
learning to solve the “data islands” problem. Federated learn-
ing can be divided into horizontal federated learning, vertical
federated learning and federated transfer learning. Horizontal
federated learning means that the data features of two datasets
overlap more and users overlap less. Vertical federated learn-
ing means that the two datasets have more user overlap and
less user feature overlap. Federated transfer learning means
that both user and data features overlap little. Federated learn-
ing is still a relatively new field to be explored. Readers can
refer to |[Kairouz et al.| (2019) for more information about fed-
erated learning.

7.2.2. Imbalance

The imbalance in fundus images is mainly an imbalance
in foreground and background, or number of samples in dif-
ferent classes. A large portion of the methods introduced in
Sections [2] to [5| were proposed to solve this problem. For in-
stance, imbalance between foreground and background occurs
in many fundus image tasks, with the number of pixels in le-
sions, blood vessels, OD and OC, being much smaller than
the number of pixels in their respective backgrounds. This
imbalance will directly increase the difficulty of training. For
lesions and OD/OC, using the detection network to extract the
ROI as the input of the network can increase the proportion of
the foreground. Such an approach can be seen in |Chai et al.
(2018)), [Fu et al.| (2018b)), [Sarhan et al. (2019)), [Shah et al.
(2019) and |Wang et al.| (2019c). Using spatial attention, as
done by [Wang et al.| (2017)) and [Zhao et al.| (2019¢)), is also
very common and allows the network to focus on areas that are
more decisive for solving tasks. It is worth noting that|Fu et al.
(2018a) performed polar coordinate transformation to allevi-
ate the imbalance between foreground and background based
on the unique ellipse shape of the OD/OC region. An imbal-
ance in the number of samples in different classes is also very
common in fundus images. One solution is to use a class bal-
ance loss function, such as cross-entropy loss and focal loss.
Selective sampling is also a direction that has been explored.
It uses a carefully designed sampling strategy to maintain a
certain proportion of samples in different classes during each
training epoch, thereby avoiding imbalance. This strategy was
used in [van Grinsven et al.| (2016), |Gondal et al.| (2017), |Dai
et al.[|(2018)) and |Sarhan et al.| (2019)).

7.2.3. Poor generalization performance

There are certain differences between the various fundus
image datasets, including acquisition camera, resolution, light
source intensity, parameter settings, and so on. The differ-
ences between the datasets pose a challenge to the generaliza-
tion performance of deep learning models. In fact, even some
state-of-the-art models only perform well on certain datasets
and degrade on others. This problem is mainly caused by the
distribution difference between different datasets, that is, do-
main shift (Ghafoorian et al.l [2017). Domain adaption, intro-
duced in Section [3.2.4] can be used to enhance the model’s
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performance on the target domain and solve the problems
caused by the domain shift. This strategy was used in [Wang
et al.[ (2019b), 'Wang et al.| (2019c¢)), and |Liu et al.| (2019d)) to
enhance the generalization performance of the optic disc seg-
mentation model. Domain adaption is still an area being ex-
plored, and there are various diverse methods for it. Readers
can learn more from Wang and Deng|(2018]).

7.2.4. High consumption of deep learning

The excellent performance of deep learning comes at the
cost of very high consumption, since the size of the parame-
ters are much larger than those of traditional machine learning.
This not only means that the models require significant com-
putational resources and time during training, but also pre-
vents them from being deployed on portable devices, such
as binocular indirect ophthalmoscopes (Hajabdollahi et al.,
2018)). One direction to solve the high-consumption problem
of deep learning is to design more novel network structures
and explore operations or layers with low computational load
and low memory consumption. However, this is mainly the
work of basic network researchers. Researchers in this field
can directly apply or learn from mature models, for example
using a lightweight network to decrease complexity. For in-
stance, MobileNet (Sandler et al., 2018)) could be used instead
of ResNet as the backbone. The models could also be com-
pressed by quantizing the network weight to reduce the com-
plexity. One approach is to quantize the weight and activation
values in a CNN from a 32-bit float number to a low-bit num-
ber, or constrain the weights and activations to binary values
and so on. The model pruning method can also compress the
models. This strategy changes some parameters in the model
to zero and skips the calculation. In addition, there are meth-
ods such as Huffman coding for the weights of the model.
Some researchers have also explored how to reduce the con-
sumption of fundus image network models specifically. For
example,|[Hajabdollahi et al.|(2018)) used the method of quanti-
fying weights and pruning to reduce the complexity of a blood
vessel segmentation model.

7.2.5. Lack of interpretability

An important issue in the application of deep learning to
actual medical systems is to what extent doctors accept its
“black box”. This lack of interpretability is an inherent defect
in deep learning. Fortunately, several studies have focused on
this issue. Approaches for solving this can be divided into
generating heatmaps, clinical meaning of heatmaps and other
explorations.

Generating heatmaps. The basic idea of several studies is
to merge the feature maps of each layer of the deep network
to generate a heatmap, called a class activation map (CAM)
or evidence map. The generated heatmap shows which part of
the image the deep network referred to when making its final
judgment. Keel et al.|(2019) tried to generate heatmaps for DR
and GON diagnosis systems. They used a threshold strategy
when generating the final probability map to visualize decisive
regions for the prediction. The application of this idea can also
be seen in |Yang et al.| (2017), (Gondal et al.| (2017), |Quellec
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et al.[(2017), L1 et al.[|(2019a), |Zhao et al.[|(2019d) and L1 et al.
(2020b).

Clinical meaning of heatmaps. The heatmap generated
not only provides a cue that how deep learning makes deci-
sions, but also provides guidance and assistance to the diag-
nostic process. Meng et al.| (2020) explored how the process
of generating heatmaps can improve performance of disease
diagnosis and explainability of the net. They first generated
heatmaps using a gradient-based classification activation map
(Grad-CAM) (Selvaraju et al.,[2017)). Then the network was
fine-tuned by several designed losses and ophthalmologist in-
tervention. Experimental results on a private dataset showed
performance improvement for the classification task. Sayres
et al.| (2019) evaluated the role of deep learning in guiding di-
agnosis. They invited 10 experts to grade DR in 796 fundus
images. Each image had three forms: the original image with-
out auxiliary information, the image with only grading results
and the images with grading results and heatmaps. Images
were randomly assigned to different ophthalmologists. The
results showed that the assistance of deep learning diagnos-
tic results improves the accuracy and confidence of experts in
diagnosing DR, especially with heatmaps.

Other explorations. Note that there are several other
studies on the topic of interpretability. |Aradjo et al.
(2020) proposed a deep learning-based grading system named
DR|GRADUATE. In addition to the grading of DR, it can also
estimate how uncertain the prediction is. |de La Torre et al.
(2020) proposed a deep learning-based interpretable classifier
for DR grading. In their classifier, a score similar to the con-
cept of relevance was assigned to every point of the input and
hidden spaces. The scores indicated the contributions to the
final prediction. Niu et al.| (2019) explored interpretability in
the diagnosis of DR and borrowed some ideas from Koch’s
law in infectious diseases.
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