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Abstract

Deep learning models (with neural networks) have been widely used in chal-

lenging tasks such as computer-aided disease diagnosis based on medical im-

ages. Recent studies have shown deep diagnostic models may not be robust

in the inference process and may pose severe security concerns in clinical

practice. Among all the factors that make the model not robust, the most

serious one is adversarial examples. The so-called “adversarial example” is

a well-designed perturbation that is not easily perceived by humans but re-

sults in a false output of deep diagnostic models with high confidence. In this

paper, we evaluate the robustness of deep diagnostic models by adversarial

attack. Specifically, we have performed two types of adversarial attacks to

three deep diagnostic models in both single-label and multi-label classifica-

tion tasks, and found that these models are not reliable when attacked by
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adversarial example. We have further explored how adversarial examples

attack the models, by analyzing their quantitative classification results, in-

termediate features, discriminability of features and correlation of estimated

labels for both original/clean images and those adversarial ones. We have also

designed two new defense methods to handle adversarial examples in deep di-

agnostic models, i.e., Multi-Perturbations Adversarial Training (MPAdvT)

and Misclassification-Aware Adversarial Training (MAAdvT). The experi-

mental results have shown that the use of defense methods can significantly

improve the robustness of deep diagnostic models against adversarial attacks.
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1. Introduction

Deep learning algorithms, powered by advances in neural network struc-

tures and large amounts of data, have shown high performance (even exceed-

ing human potential) in healthcare applications. There are many impressive

examples of deep learning with excellent performances in medical tasks of ra-

diology (Gale et al., 2017; Rajpurkar et al., 2017), pathology (Bejnordi et al.,

2017), dermatology (Esteva et al., 2017) and ophthalmology (Gulshan et al.,

2016). Especially, deep learning models have attained state-of-the-art perfor-

mance in many challenges on medical image analysis, such as segmentation

of lesions in the brain (top ranked in BRATS and ISLES) (Ghafoorian et al.,

2016), prostate segmentation (top ranked in PROMISE challenge) (Zhou

et al., 2018), and disease diagnosis (Louis et al., 2016; Liu et al., 2018a,b;

Lian et al., 2018; Jie et al., 2020; Wang et al., 2020a; Zhang et al., 2020).

Besides, the U.S. Food and Drug Administration (FDA) has approved di-
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agnostic procedures using artificial intelligence (AI) technologies to detect

greater than moderate levels of diabetic retinopathy without requiring doc-

tors’ assistance (Finlayson et al., 2018).

However, a key problem that cannot be ignored in deep diagnostic models

is its robustness and reliability. Deep models often produce incomprehensi-

ble mistakes under noisy environments, thus leading to unexpected serious

consequences. Zheng et al. (Zheng et al., 2016) have illustrated that current

feature embeddings and class labels are not robust to a large class of small

perturbations. Recent studies have also shown that deep models are highly

vulnerable to adversarial examples, i.e., slightly perturbed images resembling

original images but maliciously designed to fool pre-trained models (Good-

fellow et al., 2014; Szegedy et al., 2013; Dong et al., 2018; Moosavi-Dezfooli

et al., 2017; Poursaeed et al., 2018; Finlayson et al., 2019).

Medical safety is paramount in clinical practice, and therefore the vulnera-

bilities of deep models and the security threats they pose from deploying these

algorithms in virtual and physical environments have attracted widespread

attention. If the doctor is not involved in the diagnosis process at all (which

now has legal sanction in at least one setting via FDA, with many more to

likely follow), we are forced to consider the question of how unreliable deep

diagnostic models are attacked by adversarial perturbations, as this problem

may lead to new opportunities for fraud and harm. For example, diagnostic

errors will make the disease worse for patients and harm the reputation of

healthcare departments. Even with a human in the loop, any clinical system

that leverages a machine learning algorithm for diagnosis, decision-making, or

reimbursement could be manipulated with adversarial examples (Finlayson
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et al., 2018).

Will deep diagnostic models still be reliable under adversarial

attack? What is the performance of these models when confronted

with adversarial perturbations? Whether the robustness of deep

diagnostic models can be improved?

To explore these questions, we evaluate the robustness of three represen-

tative deep diagnostic models with medical images, including (1) IPMI2019-

AttnMel for Melanoma (Yan et al., 2019; Esteva et al., 2017), (2) Inception v3

for Diabetic Retinopathy (with a dataset called Messidor) (Gulshan et al.,

2016; Sahlsten et al., 2019), and (3) CheXNet for 14 diseases on ChestX-

Ray (Wang et al., 2017; Huang et al., 2017; Baltruschat et al., 2019; Pasa

et al., 2019), by extending previous results on adversarial examples. In the

experiments, we evaluate the robustness of these three models with adversar-

ial attacks from four aspects. We first record the performance of these models

by analyzing the decrease of diagnostic accuracy (ACC)1, as well as the in-

crease in fooling ratio (FR)2. We further visualize the feature maps generated

by each model before and after adversarial attacks, and also explore the effec-

tiveness of adversarial perturbations on outputs of different network layers.

We further study the relationship between adversarial and original labels.

These results indicate that these representative deep diagnostic models are

vulnerable to adversarial perturbations in three tasks of binary, multi-class

and multi-label classification. This encourages us to think carefully before

1Accuracy indicates the percentage of images on which a trained model outputs its true
label.

2Fooling ratio indicates the percentage of images on which a trained model changes its
prediction label after the images are perturbed.
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deploying deep diagnostic models to the clinical systems and urges us to ex-

plore more robust medical models. Besides, we create a new dataset (called

Robust-Benchmark) to evaluate the robustness of deep diagnostic models

against common perturbations comprehensively. Considering the vulnera-

bility of deep diagnostic models attacked by adversarial examples, we have

designed two new defense methods to handle this problem in deep diagnostic

models, i.e., Multi-Perturbations Adversarial Training (MPAdvT)

and Misclassification-Aware Adversarial Training (MAAdvT). We

compared our proposed MPAdvT and MAAdvT with the conventional adver-

sarial training (Madry et al., 2017), and the results indicate that our methods

can significantly improve the robustness of deep diagnostic models.

The main contributions of this work are summarized as follows:

• We evaluated the robustness of three representative deep diagnostic

models in three tasks of binary, multi-class and multi-label classification

(i.e., IPMI2019-AttnMel for melanoma classification (Yan et al., 2019),

Inception v3 for detection of diabetic retinopathy (Gulshan et al., 2016),

and CheXNet for classification of 14 types of diseases on ChestX-

Ray (Huang et al., 2017)). To this end, we performed comprehensive

analysis from four perspectives: 1) quantitative classification results, 2)

intermediate features, 3) discriminability of features, and 4) correlation

of estimated labels.

• In addition to evaluating the robustness of deep diagnostic models

against adversarial attacks, we further evaluated the robustness of mod-

els against common perturbations by creating a new dataset (called

Robust-Benchmark) of medical images. This dataset can be used as a
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general dataset to evaluate the robustness of deep diagnostic models in

a standard way.

• We proposed two new defense methods to handle adversarial exam-

ples in deep diagnostic models, called Multi-Perturbations Adversarial

Training (MPAdvT) and Misclassification-Aware Adversarial Training

(MAAdvT), respectively. Experimental results have shown that the

proposed defense methods can effectively improve the robustness of

deep diagnostic models.

2. Related Work

In this section, we first briefly introduce recent development of deep learn-

ing in the field of medical image analysis and prior work on disease diagnosis.

We then review recent adversarial attack and defense methods on nature and

medical images.

2.1. Deep Diagnostic Models for Medical Image Analysis

Deep diagnostic classification frameworks have emerged for disease diag-

nosis over the past few years. Now we would like to introduce three successful

applications of deep learning models in medical image analysis.

Melanoma is one of the deadliest skin cancers in the world. However, ac-

curate diagnosis of melanoma is non-trivial and requires expert human knowl-

edge. Many automatic algorithms were proposed to classify melanoma from

dermoscopy images (Yan et al., 2019). Particularly, deep learning methods

have been used in top-performing approaches (Gutman et al., 2016; Codella

et al., 2018). A challenge at the International Symposium on Biomedical
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Imaging (ISBI) 2016, hosted by the International Skin Imaging Collabora-

tion (ISIC) is completed with 79 submissions from a group of 38 participants,

making this the largest standardized and comparative study for melanoma

diagnosis in dermoscopic images to date (Gutman et al., 2016). Esteva et

al. Esteva et al. (2017) collected a large dataset for this challenging task to

improve the generalization capability of medical practitioners and utilize an

inception v3 architecture for disease diagnosis with the ambition for low-cost

universal access to vital diagnostic care. Yan et al. (Yan et al., 2019) pro-

posed an attention-based method for melanoma recognition, which is the first

to introduce an end-to-end trainable attention module with regularization for

melanoma recognition.

Diabetic retinopathy (DR) is also a common disease, which is the lead-

ing cause of blindness in the working-age population of the developed world.

Automated grading of diabetic retinopathy has potential benefits such as

increased efficiency, reproducibility, and coverage of screening programs, re-

ducing barriers to access, and improving patient outcomes by providing early

detection and treatment. To maximize the clinical utility of automated grad-

ing, an algorithm to detect referable diabetic retinopathy is needed. Deep di-

agnostic model has been leveraged for a variety of classification tasks includ-

ing automated classification of diabetic retinopathy (Gulshan et al., 2016).

Furthermore, for the first time, the US Food and Drug Administration has

approved an artificial intelligence diagnostic device that does not need a

specialized doctor to interpret the results. The software program, called

IDx-DR, can detect a form of eye disease by looking at photos of the retina,
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on April, 20183. Gulshan et al. (Gulshan et al., 2016) presented a deep

learning algorithm that is capable of interpreting signs of DR in retinal pho-

tographs, potentially helping doctors screen more patients in settings with

limited resources.

The chest X-ray is among the most commonly accessible and cost-effective

medical imaging examinations in medical community (Organization et al.,

2001). It can be used for diagnosis of numerous lung ailments including

atelectasis, cardiomegaly, mass, effusion and et al. (Franquet, 2001). The

ChestX-ray14 dataset released by Wang et al. (Wang et al., 2017) collected

112,120 frontal-view chest X-ray images that are individually labeled, with

up to 14 different thoracic diseases of 30,805 unique patients. The availability

of this large scale dataset makes it feasible to apply deep learning technology

into this area without a need for data augmentation. Triggered by the work

of Wang et al. using convolution neural networks (CNNs) from the computer

vision domain, several research groups have applied CNNs for chest X-ray

classification. In (Yao et al., 2017), the authors presented a combination of

a CNN and a recurrent neural network to exploit label dependencies. As a

CNN backbone, they used a DenseNet (Huang et al., 2017) model which was

adapted and trained entirely on X-ray data. Li et al. (Li et al., 2018) pre-

sented a framework for pathology classification and localization using CNNs.

More recently, Rajpurkar et al. (Rajpurkar et al., 2017) proposed a transfer

learning strategy with fine tuning using DenseNet-121 (Huang et al., 2017),

and boost the multi-label classification performance on the ChestX-ray14

3https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-
artificial-intelligence-based-device-detect-certain-diabetes-related-eye
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dataset.

2.2. Adversarial Attack

Despite the successful application of deep neural networks to disease diag-

nosis in medical image, the discovery of so-called “adversarial examples” has

exposed vulnerability in even state-of-the-art learning systems in machine

learning community. Szegedy et al. (Szegedy et al., 2013) first discovered an

intriguing weakness of deep neural networks in the context of image classifi-

cation. They show that despite their high accuracies, modern deep models

are surprising susceptible to adversarial attacks in the form of slightly per-

turbed images resembling original images, but maliciously designed to fool

pre-trained models. Such attacks can cause a neural network classifier to

completely change its prediction for the image. Even worse, the attacked

models report high confidence on the wrong prediction. Moreover, the same

image perturbation can fool multiple network classifiers.

Since the first finding of Szegedy et al. (Szegedy et al., 2013), various ap-

proaches have been proposed for creating adversarial perturbations. Good-

fellow et al. (Goodfellow et al., 2014) proposed Fast Gradient Sign Method

(FGSM) to generate adversarial examples. It computes the gradient of the

loss function with respect to pixels, and moves a single step based on the

sign of the gradient. Based on this work, Madry et al. (Madry et al., 2017)

presents an iterative algorithm to compute the adversarial perturbations by

assuming that the loss function can be linearized around the current data

point in each iteration, named as Projected Gradient Descend (PGD). In

addition to these gradient-based attack methods, optimizing-based methods

such as (Poursaeed et al., 2018) defines a loss function based on the perturba-
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tion constrains and the pre-trained classification model’s loss. Then they use

the least likely class of each category as the training target with optimizer like

stochastic gradient descent (SGD) (Zhang, 2004) or adaptive moment estima-

tion (Adam) (Kingma and Ba, 2014) to create the perturbations. Different

from gradient-based methods, the latter approach has a good generalization

performance. We can use training data to learn the parameters of pertur-

bations’ distribution. During inference, we are capable of forwarding pass

from trained generative structure to generate adversarial perturbations for

test samples without optimization. Moreover, the same image perturbation

can fool multiple network classifiers. The profound implications of these re-

sults triggered a wide interest of researchers in adversarial attacks and their

defenses for deep learning in general.

Apart from the recent progress of adversarial attack on nature image area,

medical image domain has also concerned about this topic. (Paschali et al.,

2018) utilized adversarial examples to evaluate the robustness of Inception of

skin lesion classification and UNet of whole brain segmentation. Taghanaki

et al. (Taghanaki et al., 2018) presented several different adversarial attacks

on classification of chest X-ray images and investigated how two different

standard deep neural networks perform against adversarial perturbations.

(Finlayson et al., 2019) hopes to highlight these vulnerabilities in medical

community with the insight of healthcare domain, instead of technique do-

main. (Ma et al., 2020) analyzed the different performances of medical images

and natural images when attacked by adversarial perturbations, and found

that medical images are more vulnerable to attack and easier to detect.
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2.3. Adversarial Defense

Besides, several methods have also been proposed for defending against

adversarial attack (Cisse et al., 2017; Papernot et al., 2016; Alemi et al.,

2016), such as preprocessing techniques (Guo et al., 2017; Buckman et al.,

2018), detection algorithms (Metzen et al., 2017; Feinman et al., 2017), and

various theoretically motivated heuristics (Xiao et al., 2018; Croce et al.,

2018), but it is maybe an ill-matched games, so far no defense strategy is

safe enough. Fawzi et al. (Fawzi et al., 2018) derive fundamental upper

bounds on the robustness of any classifier to perturbations, which provides a

baseline to the maximal achievable robustness. When the latent space of the

data distribution is in high dimension, the analysis shows that any classifier

is vulnerable to very small perturbations. Their results further suggest the

existence of a tight relation between robustness and linearity of the classifier

in the latent space. Shafahi et al. (Shafahi et al., 2018) use well-known results

from high-dimensional geometry, specifically isoperimetric inequalities, to

provide bounds on the robustness of classifiers. These papers argue that

the high dimensionality of the input space can present fundamental barriers

on classifier robustness.

3. Materials

In this section, we introduce three representative deep diagnostic medical

models in detail as well as their datasets used in our study.

3.1. Datasets

Three public datasets are used in this study, including (1) the Interna-

tional Skin Imaging Collaboration (ISIC) dataset with dermoscopic image for
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Melanoma classification4; (2) the Messidor dataset with eye fundus color

numerical images of the posterior pole5, and (3) the ChestX-ray14 dataset

with X-ray images6.

3.2. Data Preparation

We preprocess the images of melanoma dataset by center-cropping the im-

ages to a squared size with the length of each side equal to 0.8 × min(Height,

Width), then resizing to 256 × 256 and center-cropping to 224 × 224.

Before inputting the images of ChestX-ray14 dataset into the network,

we downscale the images to 224 × 224 and normalize based on the mean and

standard deviation of images in the ImageNet training set. We also augment

the training data with random horizontal flipping.

All Messidor data are processed following a standard pipeline, including

resizing to 299 × 299, random rotating in 20, random horizontal flipping and

random vertical flipping.

3.3. Pre-trained Models

To explore the performance of classification models more comprehensive,

three types of disease diagnostic tasks are performed, including binary, multi-

class, and multi-label classification. We use representative deep diagnostic

models across three different medical image domains in this study. These

networks are pre-trained as follows.

(1) Pre-trained IPMI2019-AttnMel for melanoma detection (Yan et al.,

2019). This network is trained end-to-end for 50 epochs using stochastic

4https://www.isic-archive.com
5http://www.adcis.net/en/third-party/messidor
6https://www.kaggle.com/c/ccc-chestx-ray14-multi-label-classication/data
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gradient descent with momentum. The initial learning rate is 0.01 and is

decayed by 0.1 every 10 epochs. The code and pre-trained parameters are

provided online7.

(2) Pre-trained Inception v3 for detection of diabetic retinopathy (Gul-

shan et al., 2016). This network is trained for 50 epochs using adaptive

moment estimation (Adam) (Kingma and Ba, 2014) with β1 = 0.9 and

β2 = 0.99. The initial learning rate is 0.01 and is decayed by 0.1 every

10 epochs. Data augmentation (i.e., random cropping, rotation, and flip-

ping) is applied via PyTorch (Paszke et al., 2017) transform modules. The

source code can be found online8.

(3) Pre-trained CheXNet for classification of 14 types of diseases on

ChestX-Ray (Huang et al., 2017). This network are initialized by weights

from a model pre-trained on ImageNet (Deng et al., 2009), and fine-tuned

using Adam with standard parameters (β1 = 0.9 and β2 = 0.999) (Kingma

and Ba, 2014). We train the model using mini-batches of size 16. We use an

initial learning rate of 0.001 that is decayed by a factor of 10 each time the

validation loss plateaus after an epoch, and pick the model with the lowest

validation loss. The code and pre-trained parameters are available online9.

4. Proposed Method

In this part, we introduce in detail our method for evaluating deep di-

agnostic models against adversarial attacks, including the method to gen-

7https://github.com/SaoYan/IPMI2019-AttnMel
8https://github.com/mikevoets/jama16-retina-replication
9https://github.com/arnoweng/CheXNet
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Figure 1: Overview of the proposed pipeline for evaluating the robustness of deep diagnos-
tic models against adversarial attacks. Specifically, we first use adversarial attack methods
to generate adversarial images for three datasets (Part I). Then, we evaluate the robust-
ness of pre-trained deep diagnostic models by these adversarial images and four evaluation
metrics (Part II). We further proposed two defense methods to enhance the robustness of
these deep diagnostic models (Part III).

erate adversarial image (Section 4.1), a specific constraint on adversarial

image (Section 4.2), the metrics (Section 4.3) as well as the benchmark

(Section 4.4) we used to evaluate the robustness. We further develop two

new defense methods called Multi-Perturbations Adversarial Train-

ing (MPAdvT) and Misclassification-Aware Adversarial Training

(MAAdvT) to significantly improve the robustness of deep diagnostic mod-

els (Section 4.5). The pipeline of our method is shown in Figure 1.

4.1. Generating Adversarial Images

To evaluate the robustness of deep diagnostic models, we firstly need to

create a new dataset as input. Here we use two adversarial attacks for this

purpose, i.e. gradient-based method and optimizing-based method.

Gradient-based method generates perturbation by changing the gradient
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of pre-trained deep diagnostic models for each original input image. This

method has a better mathematical theoretical support but no generalization

performance.

Conversely, optimizing-based method attempts to learn the distribution

of perturbation with generative structure parameters. So the training data

can be used to learn the parameters of perturbations’ distribution. During

inference, we are capable of forwarding pass from trained generative structure

to generate adversarial perturbations for test samples.

4.2. Constraint on Adversarial Image

When generating the adversarial image, we need to add certain con-

straints to the perturbation so that adversarial image has invisible differ-

ence with the original one. It should be noted that the perturbation we

generated is carefully designed, not a random noise. Here we have different

constraint methods for gradient-based method and optimizing-based method

respectively.

4.2.1. Projected Gradient Descend

We use projected gradient descend method (Madry et al., 2017) as gradient-

based method in practice. Its constraint definition is as follows:

Definition 1. Let us consider a standard classification task with an under-

lying data distribution D over pairs of examples x ∈ Rd and corresponding

labels y ∈ {1, 2, · · · , k}. We also assume that we are given a suitable loss

function `(x, y, θ), for instance the cross-entropy loss for a neural network.

As usual, θ ∈ Rp is the set of model parameters. The Projected Gradient

Descent (PGD) on the negative loss function is defined as follows:
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Figure 2: Changes of loss function under projected gradient descent (PGD) attack. After
PGD attack, there is an adversarial example with a high loss value within the L∞ norm
constraint. Here, x1 and x2 represent the original and clean images with low loss values,
respectively, while x1

′ and x2
′ represent their corresponding adversarial images with high

loss values after projected gradient descent iterations, respectively.

x′0 = x+ Uniform(−ε,+ε) (1)

x′t+1 = Clipx,ε{x′t + α× sign(∇x`(x, y, θ))} (2)

where Uniform(·) is a uniform function, Clipx,ε{x′} is the function which

performs per-pixel clipping of the image x′, so the result will be in L∞ norm

ε-neighbourhood of the source image x. sign(·) is an odd mathematical

function that extracts the sign of a real number. α is step size for each

attack iteration. t is iteration number.

As shown in Figure 2, we perform the following steps in the PGD attack:

1) Starting from a random perturbation in the L∞ norm constraint around
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a sample x1; 2) taking a gradient iteration step in the positive direction of

greatest loss; 3) projecting perturbation back into L∞ norm constraint if

necessary; 4) repeating 2) - 3) until convergence. The iteration of sample

x1 describes that perturbation has reached the norm constraint but not con-

vergence. In this situation, the iteration stops and the adversarial image x1
′

with imperceptible changes is produced. The sample x2 shows the pertur-

bation has converged to the local maximum of the loss before reaching the

norm constraint.

4.2.2. Generative Adversarial Perturbations

We use Generative Adversarial Perturbations (GAP) method (Poursaeed

et al., 2018) as our optimizing-based method in practice, the training archi-

tecture of GAP attack is shown in Figure 3. Its constraint definition is as

follows:

Definition 2. Let D denote the distribution of input images x in Rd and

y ∈ {1, 2, · · · , k} denotes the corresponding labels, C be a pre-trained classi-

fication model achieving high accuracy on distribution D. The GAP attack

aims to construct a generator G(·) which can produce perturbation that

transforms the original image x to an adversarial image x′, so the generator

G(·) should satisfy:

∀x ∈ D, C(Gθ(x) + x) 6= C(x) s.t. Gθ(x) ≤ ε (3)

where θ is the parameter of generator G(·). We require that adversarial

image Gθ(x) + x looks similar to original image x. Hence, the upper bound

ε of Gθ(x) should be small enough. Note that for each image x ∈ D, there is
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Figure 3: Training architecture for generating adversarial perturbations. The generator
Gθ(x) outputs a perturbation u, which is scaled to satisfy a norm constraint. It is then
added to the original image, and clipped to produce the perturbed image x′. Finally,
we update the generator’s parameters with the loss function calculated by the outputs
of pre-trained classification model C. We use the U-Net architecture as generator, and
three models (i.e., IPMI2019-AttnMel, CheXNet and Inception v3) as the pre-trained
classification module in this work.

a corresponding perturbation in this case. After generator Gθ(x) outputting

a perturbation, we scale it to satisfy a norm constraint, more specifically, we

multiply it by min(1, ε
‖Gθ(x)‖p

) where ε is the upper bound of Lp norm, we

use L∞ norm in our study.

Then we add the original image x to the generated perturbation and

clip it for producing adversarial sample x′. We feed x′ to the pre-trained

network C where we use IPMI2019-AttnMel, CheXNet and Inception v3 to

obtain the output probability C(x′). Let O(y) denote as one-hot encoding

of label y and C(x′) as the output probability of adversarial sample x′. For

non-target attack that do not specify a network output label, the prediction
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of x′ is expected to be different from label y, so we define the loss function

as follows:

l(θ) =
1

m

m∑
i=1

k∑
j=1

Oj(yi)× log(Cj(x′i)) (4)

where θ denotes the parameters of generator, m is the number of samples, k is

the number of categories, yi is the corresponding label of xi, Cj(x′i) represents

the probability of sample x′i belonging to class j. That is, when l(θ) becomes

smaller during training, the output probability of sample x′ belonging to its

true label will also be smaller in order to attack the network.

4.3. Evaluation Metrics

After generating the adversarial images and constraining them, we input

them into the pre-trained classification models. We use binary, multi-class,

and multi-label models in our study to get a more comprehensive assessment

of the deep diagnostic models’ robustness.

The evaluation metrics could be divided into four components. The first

component we evaluate the models’ robustness by comparing the accuracy

and fooling ratio between adversarial image and original image. The sec-

ond component we visualize the intermediate feature changing of the model.

In the third component, we analyze the discriminability of learned features

with the increase of network layers. In the last component, we analyze the

correlation of labels between adversarial image and original one.

4.4. Benchmark for Common Perturbation Robustness Evaluation

In addition to evaluating the robustness of deep diagnostic models against

adversarial attack, we further evaluate the robustness of the model against
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Figure 4: Example frames from the beginning (n = 0) to end (n = 20) of some Tilt and
Snow perturbation sequences in the proposed Robust-Benchmark.

common perturbations. Models lacking in perturbation robustness produce

erratic predictions which undermines user trust. (Dan and Dietterich, 2019)

proposes new datasets called IMAGENET-C and IMAGENET-P which en-

able researchers to benchmark a classifier’s robustness to common natural

image corruptions and perturbations. These datasets have a connection with

adversarial distortions and play a key role in safety-critical applications and

are widely used nowadays. Following (Dan and Dietterich, 2019), we cre-

ate a new dataset (called Robust-Benchmark) of medical images to evaluate

the common perturbation robustness of deep diagnostic models in a stan-

dard way. We hope Robust-Benchmark will serve as a general dataset for

benchmarking robustness to image perturbations.

Design of Robust-Benchmark. The Robust-Benchmark consists of 14

diverse perturbations types (i.e., Brightness, Gaussian blur, Gaussian noise,

Motion blur, Rotate, Scale, Shear, Shot noise, Snow, Spatter, Speckle noise,

Tilt, Translate, Zoom blur) applied to test images of three datasets in our
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study. The perturbations are drawn from four main categories (i.e., noise,

blur, weather, and digital). Each perturbation type has five levels of sever-

ity since perturbations can manifest themselves at varying intensities. This

dataset is a variant of the original test set, containing a number of image

sequences. Specifically, each image sequence begins with the original clean

image, and the following frames are created by adding a type of perturba-

tion (e.g., noise, blur, weather or digital distortions) to the original image.

Examples are shown in Figure 4, we can observe that the following frame is

merely different with the former one for it just adding small perturbation. We

evaluate the perturbation robustness of three deep diagnostic models with

their Robust-Benchmark datasets, respectively. Note that networks should

be trained on their original datasets rather than Robust-Benchmark because

Robust-Benchmark dataset is just an evaluation benchmark.

Evaluation Metric. Then, we evaluate the robustness of three mod-

els to common perturbations on the Robust-Benchmark dataset. The Flip

Probability (FP) is used as an evaluation metric because it has been proven

to effectively measure the robustness of a model (Dan and Dietterich, 2019;

Xie et al., 2020b; Kamann and Rother, 2020; Xie et al., 2020a). Denote r

perturbation sequences as S = {(x(i)1 , x
(i)
2 , · · · , x

(i)
n )}ri=1. The FP value of a

network C on perturbation sequences S is defined as:

FP C =
1

r(n− 1)

r∑
i=1

n∑
j=2

I
(
C(x(i)j ) 6= C(x(i)j−1)

)
, (5)

where r is the number of perturbations, n is the number of frames of each

noise sequence. For noise perturbation sequences, which are not temporally

related, x
(i)
1 is clean and x

(i)
j (j>1) is perturbed image of x

(i)
1 . And I(·) is an

indicator function, where I(·) = 1 if C(x(i)j ) 6= C(x(i)j−1), and I(·) = 0 other-
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wise. With Equation (5), a larger FP value denotes that the corresponding

model is more vulnerable to noise perturbations, and vice versa.

4.5. Defense Method for Improving Robustness

Several defense techniques have been proposed to make deep neural net-

works (DNNs) more robust to adversarial examples, including defensive dis-

tillation (Papernot et al., 2016), gradient regularization (Gu and Rigazio,

2014; Papernot et al., 2017; Ross and Doshivelez, 2018), model compres-

sion (Liu et al., 2018c), adversarial denoising (Xie et al., 2019), among which

adversarial training has been demonstrated to be the most effective (Athalye

et al., 2018). Adversarial training can be regarded as a data augmentation

technique that trains DNNs on adversarial examples, and can be viewed as

solving the following min-max optimization problem (Madry et al., 2017):

min
θ

1

m

m∑
i=1

max
||x′i−xi||p≤ε

`(Cθ(x′i), yi) (6)

where m denotes the number of training examples, x′i is an adversarial ex-

ample of the original image xi, C(·) is the classification model and `(·) is the

classification loss function. The inner maximization is used to generate ad-

versarial images, which are employed as training set to train the robust classi-

fication model in outer minimization. Recently, adversarial training with ad-

versarial examples generated by Projected Gradient Descent (PGD) (Madry

et al., 2017) has been demonstrated to be the most effective method that can

train moderately robust DNNs without being fully attacked (Athalye et al.,

2018).

However, adversarial training attempts to minimize the maximum loss
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Algorithm 1: Multi-Perturbations Adversarial Training
(MPAdvT)

Input: Training data {xi, yi}mi=1, outer iteration epoch TO, inner
iteration step TI , maximum perturbation ε, step size for inner
optimization αI , step size for outer optimization αO

1 Initialize: Standard random initialization of Cθ
2 for s = 1, · · · , TO do

3 Uniformly sample a minibatch of training data B(s)

4 p← U(0, 1), where U is a uniform distribution
5 ε← U(0.01, 0.04)
6 TI ← U(1, 5)

7 for xi ∈ B(s) do
8 if p ≥ 0.5 then
9 xi = xi + U(−ε,+ε)

10 for t = 1, · · · , TI do
11 xi ← Clipxi,ε(xi + αI × sign(∇xi`(θ, xi, yi)))
12 end

13 end
14 x′i ← xi
15 θ ← θ − αO

∑
xi∈B(s) ∇θ`(θ, x′i, yi)

16 end

17 end
Output: Robustness classifier Cθ

within a fixed-size neighborhood of the training data generated by PGD at-

tack (Ding et al., 2018). Despite advancements made in recent years (Hendrycks

et al., 2019; Zhang et al., 2019a; Shafahi et al., 2019; Stanforth et al., 2019),

a fundamental problem in adversarial training is that the perturbation level

ε has to be set in advance and is fixed throughout the training process. If

ε is set too small, the resulting model lacks robustness, if too large, the

resulting model lacks accuracy. To remedy this problem, we propose Multi-

Perturbations Adversarial Training (MPAdvT) that trains deep diag-

nostic models with different perturbation levels ε and different iteration steps

23



t during the training process. The detailed training procedure of MPAdvT

is described in Algorithm 1.

Recall that the formal definition of an adversarial example is conditioned

on it being correctly classified (Carlini et al., 2019). From this perspective,

there is no definition on adversarial examples generated from misclassified

examples. Most recent adversarial training variants neglect this problem

and treat all examples equally in the adversarial training process. The in-

fluence of misclassified and correctly classified examples on the final robust-

ness of adversarial training has not been payed sufficient attention. Wang et

al. (Wang et al., 2020b) find that the manipulation on misclassified examples

has more impact on the final robustness, and the minimization techniques

are more crucial than maximization ones under the min-max optimization

framework in natural image field. Motivated by (Wang et al., 2020b), for a

k-class (k ≥ 2) classification task, we add a misclassification aware reg-

ularization to adversarial loss function. For these misclassified examples,

it is hard to minimize the standard adversarial loss directly, as themselves

cannot be classified correctly, even without any perturbations. So we use

Kullback–Leibler (KL) divergence to encourage the output of classifier to be

stable against misclassified adversarial examples. Let D denote the distribu-

tion of input images x in Rd and y ∈ {1, 2, · · · , k} denote the corresponding

labels, we have

KL(C(xi)||C(x′i)) =
k∑
j=1

Cj(xi)log
Cj(xi)
Cj(x′i)

(7)

where x′i is the adversarial image of original image xi, Cj(xi) represents
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the probability of xi belonging to class j outputted by classification model

C. It reflects the different output distribution between adversarial image and

original image. Then the regularization term is defined as follows:

Ri(θ) = KL(C(xi)||C(x′i))× (1− Cyi(xi)) (8)

1 − Cyi(xi) emphasizes learning on misclassified examples, this will be large

for misclassified examples and small for correctly classified examples.

Based on this misclassification aware regularization, we further propose

the Misclassification-Aware Adversarial Training (MAAdvT) with

the loss function

LMAAdvT (θ) =
1

m

m∑
i=1

`(xi, yi, θ) (9)

where `(xi, yi, θ) is defined as

`(xi, yi, θ) := CE(C(x′i), yi) + λRi(θ) (10)

CE(·) is the Cross-Entropy loss, λ is a tunable scaling parameter that bal-

ances the two parts of the final loss, and is fixed for all training examples.

The detailed training procedure of MAAdvT is described in Algorithm 2.

5. Experiment

In this section, we first introduce experimental settings (Section 5.1) in-

cluding the parameters we used in the experiments. Then we present the

experimental results of three models under adversarial attacks from two as-

pects. The first part (Section 5.2) is based on single-label classification prob-
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Algorithm 2: Misclassification-Aware Adversarial Training
(MAAdvT)

Input: Training data {xi, yi}mi=1, outer iteration epoch TO, inner
iteration step TI , maximum perturbation ε, step size for inner
optimization αI , step size for outer optimization αO, tunable
scaling parameter λ

1 Initialize: Standard random initialization of Cθ
2 for s = 1, · · · , TO do

3 Uniformly sample a minibatch of training data B(s)

for xi ∈ B(s) do
4 x′i ← PGD(xi, yi, ε, αI , TI) # PGD(·) is PGD attack
5 Ri(θ)← KL(C(xi)||C(x′i))× (1− Cyi(xi))
6 LMAAdvT

i (θ)← CE(C(x′i), yi) + λRi(θ)
7 θ ← θ − αO

∑
xi∈B(s) ∇θLMAAdvT

i (θ)

8 end

9 end
Output: Robust classifier Cθ

lems (with each image only annotated by one single label) and two deep

diagnostic models (i.e., IPMI2019-AttnMel for binary classification and In-

ception v3 for multi-class classification). We analyze the change of classifi-

cation results and intermediate results of feature extraction of two models

under adversarial attacks. The second part (Section 5.3) is based on multi-

label classification problems (with each image annotated by multiple class

labels) and the CheXNet model. We also show the Flip Probability (FP)

of three models when evaluated by Robust-Benchmark datasets respectively

(Section 5.4). Finally, we compare the robustness between natural model and

defense model trained with our MPAdvT and MAAdvT, the results indicate

that the robustness of deep diagnostic models against adversarial attacks can

be significantly improved by the use of defense methods (Section 5.5). The
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code and trained models can be found online10.

5.1. Experimental Setting

As for PGD attack, in Component 1, the perturbation level ε are set to

2.0/255 and 4.0/255 with the iteration steps to 1.0 and 4.0, respectively. In

Component 2, the ε is 5.0/255 and the iteration step is 40.0. In Component

3, ε constraint and iteration step are 10/255 and 60. In Component 4, the

ε constraint is 4.0/255 and the iteration step is 4.0. With larger ε and more

iterations, we will obtain more obvious attack effect.

For GAP attack, we use U-Net architecture (Ronneberger et al., 2015) as

our perturbation generator G. For parameter setting, in Component 1, the

L∞ norm are set to 7 and 11. In Component 2, the L∞ norm constraint is

set to 13.

5.2. Single-label Classification

Component 1: Quantitative Results

First, we present our evaluation results by showing numerical changes in

classification results. The adversarial examples are generated by projected

gradient descent (PGD) (Madry et al., 2017) and generative adversarial per-

turbations (GAP) (Poursaeed et al., 2018) attacks for IPMI2019-AttnMel

and Inception v3, respectively.

(1) Results under PGD Attack. As shown in Table 1, the sharp de-

crease of accuracy (ACC) and area under receiver operating characteristic

(AUC) of two models indicate that these models are vulnerable to adver-

sarial perturbations. For example, with the perturbation level ε = 4.0 and

10https://github.com/MengtingXu1203/EvaluatingRobustness
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Table 1: The change of numerical results achieved by IPMI2019-AttnMel for Melanoma
classification and Inception v3 for Messidor identification. They are both attacked by
PGD attack and GAP attack. ACC: accuracy; AUC: area under receiver operating char-
acteristic; FR: fooling rate. X: training set; val: validation set; ε: perturbation level; t:
iteration steps.

Model Original/Clean Images
Images with PGD Attack Images with GAP Attack

ε = 2.0/255 ε = 4.0/255 L∞ = 7 L∞ = 11
t = 1.0 t = 4.0 X val. X val.

IPMI2019-AttnMel
ACC 87.5% 10.8% 0.0% 31.1% 30.1% 21.7% 21.9%

AUC 0.744 0.067 0.000 0.558 0.539 0.514 0.493

FR - 74.7% 85.5% 68.9% 71.2% 78.3% 80.5%

Inception v3
ACC 89.0% 19.0% 0.0% 37.7% 29.5% 20.7% 23.0%

AUC 0.971 0.715 0.263 0.663 0.540 0.594 0.487

FR - 71.5% 90.5% 62.3% 69.0% 79.6% 77.0%

iteration step t = 4.0 for IPMI2019-AttnMel, the ACC value of identifying

Melanoma drops from 87.5% to 0.0%. Also, under the PGD attack, the AUC

of Inception v3 in identifying Diabetic Retinopathy decreases from 0.971 to

0.263. These results indicate that the performance of these two deep diag-

nostic models is poor when facing the adversarial perturbations. Besides, we

show two adversarial examples of Melanoma and Messidor in Figure 5(a).

This figure suggests, even though only a small perturbation is added to the

original image, the probability scores output by IPMI2019-AttnMel and In-

ception v3 change greatly.

(2) Results under GAP Attack. For two models under the GAP

attack, we can get the same conclusion that the ACC and AUC results change

significantly, as shown in Table 1 and Figure 5(b). Besides, in terms of

fooling rate (FR), it can be seen that perturbation has a greater impact

on the single-class classifier (i.e., IPMI2019-AttnMel) than the multi-class

model (i.e., Inception v3). For instance, with the upper bound L∞ = 7 ,
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(a) Projected Gradient Descend (b) Generative Adversarial Perturbations

Figure 5: Visualization of original images and their corresponding adversarial examples
with Melanoma (1st row) and Messidor (2nd row). The images in (a) are attacked by
the projected gradient descent (PGD) perturbations, and the images in (b) are attacked
by the generative adversarial perturbations (GAP). In each sub-figure, the first column
shows the original image and its probability score output by a specific diagnostic model,
the second column shows the adversarial perturbations, and the third column denotes the
corresponding adversarial image and the output probability score of the diagnostic model.
Green denotes the correct label with its probability score for the original image and red
is the probability for the attacked image with its probability score. The perturbations are
rescaled to [0, 255] for visualization.

the FR of IPMI2019-AttnMel in binary classification of Melanoma images

on the validation set is 71.2%, which is much higher than that (69.0%) of

Inception v3 in multi-class classification of Messidor images. It is also obvious

that two models become more unreliable (with higher FR values) with the

increasing of L∞ norm. Two adversarial examples of Melanoma and Messidor

with the GAP attack are shown in Figure 5(b), from which we can see that

even if the perturbations are not visible to the human eye, the probability

scores generated by two networks change greatly. This suggests that two

deep diagnostic models are not robust to both PGD and GAP attacks.

Component 2: Change of Intermediate Features

In Component 1, we show that deep diagnostic models dramatically change

their outputs when attacked by adversarial perturbations. To understand
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(a) Images (b) Feature map (c) Saliency map (d) Atten_1 map (e) Atten_2 map

Figure 6: Visualization of intermediate features learned by the IPMI2019-AttnMel model
for an original/clean image and two adversarial images. (a) shows the original/clean
Melanoma image (top) and adversarial images attacked by PGD (middle) and GAP (bot-
tom). (b) shows the feature maps at the ‘feature(13) relu’ layer of the network. (c) shows
the saliency maps. The attention maps derived from the ‘attention module1’ and ‘attention
module2’ layers of the network are illustrated in (d) and (e), respectively.

why they produce different outputs under perturbations, we further study the

intermediate features derived from inner layers of each network by visualizing

their feature maps, saliency maps, and attention maps.

(1) Feature Maps. The feature map is a mapping of where a certain kind

of feature is found in the image. A high activation in a feature map means

a certain feature is found/extracted from the input image. In Figure 6(a),

we show an original/clean Melanoma image (top) and its adversarial images

attacked by PGD (middle) and GAP (bottom). We further visualize their fea-

ture maps derived from the ‘feature(13) relu’ layer in IPMI2019-AttnMel in

Figure 6(b). From Figure 6(a)-(b), one can observe that the learned features
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for the clean image focus on semantically informative regions (represented in

red), while the features of the two adversarial images are activated globally

(without any specific focus).

(2) Saliency Maps. The saliency map of an input image highlights re-

gions that cause the model output to change the most, based on the gradients

of the classification loss with respect to the input. For each pixel in the input

image, this gradient tells us how correctly the score changes when the pixel

changes slightly. That is, the saliency map is a visualization technique to cap-

ture the pixels which the classification model really be guided by (Simonyan

et al., 2013). In Figure 6(c), we show the saliency maps of IPMI2019-AttnMel

for the clean image (top) and two adversarial images with PGD (middle) and

GAP (bottom). Figure 6(c) suggests that the saliency maps of the two ad-

versarial images are different from that of the original/clean image. The

possible reason is that adversarial perturbations can easily change the gra-

dients of the loss function for network training, thus guiding the network to

focus on those regions that are not useful for the classification task.

(3) Attention Maps. The attention modules of IPMI2019-AttnMel,

which are learned together with other network parameters, estimate atten-

tion maps that highlight image regions of interest that are relevant to lesion

classification. These attention maps provide a more interpretable output as

opposed to only outputting a class label. For example, when diagnosing

melanoma, dermatologists mainly focus more on the lesion rather than irrel-

evant areas such as background or hair. To imitate this visual exploration

pattern, two attention modules are used in IPMI2019-AttnMel to estimate a

spatial (pixel-wise) attention map (Yan et al., 2019). Then we can efficiently
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utilize prior information via regularizing the attention maps with regions of

interest (ROIs). With prior information, the learned attention maps are re-

fined and the classification performance is improved. So the attention map is

a training mechanism to make the classification model have higher accuracy.

In Figure 6(d)-(e), we visualize attention maps of two different attention

modules in IPMI2019-AttnMel for a clean image (top) and two adversarial

image with PGD (middle) and GAP (bottom). From these figures, we can

observe the most discriminative regions derived by IPMI2019-AttnMel on the

clean image are heavily disrupted by adversarial perturbations. Specifically,

the attentions are shifted from the lesion regions (see those denoted as red

in the top of Figure 6(e)) to regions that are completely irrelevant to the

lesion diagnosis (see those denoted as red in the middle and bottom of Fig-

ure 6(e)). This could imply that subtle perturbations to medical images can

result in fundamentally different deep features and easily change the output

probabilities of a deep diagnostic model.

Discussion: According to the changes of saliency maps that display the

gradients, it may be necessary to add a regularization to smooth the loss

function for robust defenses against adversarial attack. What’s more, even

though networks with attention modules could bring better prediction per-

formance, they are more vulnerable to adversarial attacks. This reminds us

that when constructing deep diagnostic models, we should seriously consider

the tradeoff between accuracy and robustness.

Component 3: Discriminability of Learned Features

Through the above two components, we studied the performance of the deep

diagnostic models under adversarial attacks. We have found that these net-
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(a) ‘feature(33)_relu’ layer (b) ‘feature(43)_relu’ layer (c) ‘attention module’ layer

Figure 7: Visualization of 2D embeddings of features derived from IPMI2019-AttenMel
for training images, original/clean test images and their corresponding adversarial test
images with the PGD attack via t-SNE (Maaten and Hinton, 2008). Feature are extracted
form (a) ‘feature(33) relu’ layer, (b) ‘feature(43) relu’ layer, and (c) ‘attention module’
layer of IPMI2019-AttenMel. The first row shows the original test data and the second
row denotes the adversarial test data. The ‘•’ and ‘•’ represent training data with benign
and malignant respectively, which act as a control group of feature distribution. The ‘x’
and ‘x’ represent the distributions of original test data with label of benign and malignant
respectively in the first row. The ‘+’ and ‘+’ represent the distributions of adversarial
test data with label of benign and malignant respectively in the second row.

works are prone to output erroneous results, and also the feature represen-

tations produced by their internal layers have changed (even if there is a

mechanism of attention). We now study how adversarial perturbations work

at different layers of the network, by investigating the discriminative power

of their learned features.

Using t-SNE (Maaten and Hinton, 2008), we visualize the 2D embeddings

of the features learned by different layers in IPMI2019-AttenMel. In Figure 7,

the original training data acts as the control group in our study in order

to explore the discriminability of learned features between clean test data
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and adversarial test data. From the first row of Figure 7, which are the

feature distributions of original training and test data of ‘feature(33) relu’

layer, ‘feature(43) relu’ layer, and ‘attention module’ layer, respectively. we

can observe that with the increasing of network layer and the using of the

attention mechanism, the feature distributions of the original test data and

the training data are gradually approaching, and the accuracy of the model

also rises, for example, from the 77.6% to 85.2%, which indicates the model

learns the characteristic of the data well and classify it. However, from the

feature distributions of adversarial test data in second row we can identity,

with the increasing of network layer, their feature distributions are completely

opposite to the original testing set, indicating that all features are classified

incorrectly. As the dimension rises, the pre-trained classifier has a worse

discriminative effectiveness on the adversarial image, which indicates that

the perturbation information is more pronounced in the higher dimension

than in the low dimension.

Discussion: In deep diagnostic models, it is a common practice to use

more network layers to achieve better prediction performance. However,

according to the analyses in Component 3, the adversarial perturbation in-

formation is more pronounced in higher dimensions. This reminds us that

adding more network layers may not help. Besides, it is necessary to perform

robust defense to avoid perturbation representations in high dimensions, and

use adversarial training strategies to learn these perturbed representations.

5.3. Multi-label Classification

In the above three components, we present the performance of two mod-

els (i.e., IPMI2019-AttnMel and Inception v3) under adversarial attacks for
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single-label classification. Now we investigate the performance of CheXNet

under adversarial perturbations in a more challenging task, i.e., multi-label

classification (with each image annotated by multiple labels).

Component 4: Label Correlation Analysis

Proposing methods for evaluating the robustness of multi-label classifiers

is a rarely touched and challenging task (Song et al., 2018). In our study, we

attempt to evaluate the robustness of deep diagnostic model in multi-label

classification from two aspects: (1) showing the quantitative classification

results achieved by a deep network under adversarial perturbations; (2) vi-

sualizing the correlation of labels estimate for both original and adversarial

images.

(1) Quantitative Results. We apply both PGD attack and GAP attack

to the CheXNet model, and report the results of multi-label classification

in Table 2. This table shows that both ACC and AUC values yielded by

CheXNet decrease greatly when faced with PGD and GAP attacks, indi-

cating that CheXNet is not robust to adversarial perturbations. To better

illustrate the impact of adversarial perturbations on the multi-label classi-

fication problem, we show a chest X-ray image in Figure 8(a). The labels

of this image are “Effusion”, “Cardiomegaly”, and “Atelectasis”, with the

probabilities of 95.02%, 97.16%, 72.56%, respectively. With both “Hernia”

and “Mass” as the target labels, we use the PGD attack to produce ad-

versarial image shown in Figure 8(c), while the perturbation is shown in

Figure 8(d). We can see that even a slightly perturbed image can cause

the multi-label CheXNet classifier to output wrong labels with high prob-

abilities (e.g., 92.33% for “Hernia” and 97.51% for “Mass”). Besides, the
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Table 2: Numerical results on ChestX-Ray dataset by PGD attack and GAP attack,
respectively. The clearn ACC, AUC, and FR represent the input of original images. ACC
and AUC are decreasing sharply under attacks while FR is increasing.

Clean
PGD Attack GAP Attack

ε = 2.0/255 ε = 4.0/255 L∞ = 7 L∞ = 11
t = 1.0 t = 4.0 X val. X val.

ACC. 86.5% 64.1% 45.5% 56.4% 58.0% 44.6% 39.5%

AUC. 0.807 0.562 0.308 0.798 0.736 0.729 0.748

FR. - 23.6% 43.2% 29.7% 33.1% 42.7% 51.4%

probabilities of original true labels drop sharply to 0.02% for “Effusion”,

0.52% for “Cardiomegaly”, and 2.29% for “Atelectasis”. This reveals that

despite the excellent diagnostic performance, the multi-label classification

model CheXNet has low robust performance under adversarial attacks.

(2) Visualization of Label Correlation. In order to show our results

more clearly, we use the chord diagram to compare the correlation of labels

estimated for the original images and the adversarial images. A chord di-

agram is a graphical method of displaying the inter-relationships between

entities in a matrix. The data is arranged radially around a circle with the

relationships between the data points typically drawn as arcs connecting the

data. Here, such a diagram is based on the co-occurrence matrix of estimated

labels, with each element in the matrix denoting the frequency of two labels

simultaneously appears in an image. We calculate the co-occurrence matrix

on 22, 433 test images in the ChestX-ray14 dataset. In order to show our

results more clearly, we use elements with values greater than 3, 000 in the

co-occurrence matrix. We show the chord diagrams of estimated labels for

the original and adversarial images in Figure 8(e)-(f), respectively. From Fig-
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(a) Original Image (b) Label Change (c) Adversarial Image (d) Perturbations

(e) Chord diagram of the original labels (f) Chord diagram of the adversarial labels

Figure 8: Correlation of labels estimated by CheXNet for the original image and its
adversarial image under PGD attack. (a) The original image as the input of CheXNet.
(b) Labels estimated for the original and adversarial images. (c) The adversarial image
attacked by PGD. (d) The small perturbation added to the original image. (e) The chord
diagram of labels for the original images in the ChestX-ray14 dataset. (d) The chord
diagram of labels for the adversarial images.

ure 8(e)-(f), one can observe that the number of occurrences of disease labels

has changed dramatically. For instance, the original label of “Infiltration”

appears 38, 000 times while the adversarial one appears 210, 000 times. Also,

the correlation between labels is more tight for adversarial images, compared

with that for original images. The possible reason is that, during the at-

tacking process, the classifier’s loss function is encouraged to become smaller

toward irrelevant labels in order to make the classifier output wrong results.

37



Table 3: Flip probability (FP) of three deep diagnostic models on the Robust-Benchmark
dataset, respectively.

Model IPMI2019-AttnMel Inception v3 CheXNet

FP 9.52% 12.36% 38.09%

The most obvious finding from the analysis is that even if it is difficult to

coordinate multiple labels, adversarial perturbations can easily change the

relationship between labels and even establish new connections that never

exist between labels.

Discussion: The label correlation of multi-label problems becomes closer

after attack, which may make the model more likely to output wrong labels

(because the probability of each label is similar). To this end, we can use a

specially designed training strategy, that is, adding regularization terms to

assign different weights to different labels. In this way, the model will pay

more attention to those more important (e.g., with high weights) labels to

improve robustness.

5.4. Benchmark Results

The FP values of three deep diagnostic models on the Robust-Benchmark

dataset are reported in Table 3, respectively. As can be seen from Table 3, on

perturbed inputs, three models are not robust. For example, the CheXNet

on the Scale perturbation sequences have a 38.09% probability of flipping

between adjacent frames (i.e., FPCheXNet = 38.09%).

To validate the effectiveness of FP and our proposed robust-benchmark

datasets, we calculate the Relative Flip Probability (RFP) values of VGG19,

ResNet50, ResNet101, ResNet152, and Inception v3 of melanoma robust-
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Table 4: The Relative Flip Probability (RFP) of models on melanoma Robust-Benchmark
dataset. Taking IPMI2019-AttnMel model as the benchmark model, the higher the RFP
value, the lower perturbation robustness of the model. Ori ACC: accuracy with original
test dataset; Adv ACC: accuracy with adversarial dataset by ε = 4.0/255, t = 4.0 PGD
attack; RFP: relative flip probability with robust-benchmark dataset.

Ori ACC Adv ACC RFP

IPMI2019-AttnMel 87.50% 0.00% 1.00
VGG19 83.38% 52.79% 0.03

ResNet50 83.64% 36.15% 0.12
ResNet101 84.43% 25.33% 0.21
ResNet152 85.49% 15.30% 0.49

Inception v3 82.32% 15.83% 0.69

benchmark dataset in Table 4. The Relative Flip Probability (RFP) value

represents the FP value of other models compared with the benchmark model

(i.e., IPMI2019-AttnMel used in this experiment). The RFP of VGG19 can

be calculated as RFP V GG19 = FP V GG19/FP IPMI2019−AttnMel. The higher the

RFP value, the lower perturbation robustness of the model. From Table 4, we

can have the following observations. First, the original accuracy of model on

clean dataset increases as the network gets larger (i.e., Ori ACC=83.64% of

ResNet50 and Ori ACC=85.49% of ResNet152), while the accuracy on adver-

sarial dataset decreases as the network gets larger (i.e., Adv ACC=36.15%

of ResNet50 and Adv ACC=15.30% of ResNet152). It implies that a rela-

tively large (e.g., with more layers and network parameters) network would

have less robustness against adversarial attacks. Besides, it can be seen from

Table 4 that the results of RFP have a similar trend. For example, the RFP

of ResNet50 is 0.12 with the original accuracy of 83.64%, while the RFP

of ResNet152 is 0.49 with the original accuracy of 85.49%. These results

suggest that as the network complexity and the original accuracy results in-
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crease, the common perturbation robustness of the deep diagnosis model will

become worse. This is consistent with results of adversarial robustness, while

the accuracy-robustness trade-off has been proved to exist in predictive mod-

els when training robust models (Tsipras et al., 2018; Zhang et al., 2019b).

Furthermore, the RFP of the IPMI2019-AttnMel model is much higher than

that of other models. This reminds us that when constructing a medical

diagnostic model, we should not blindly increase the layers of a network or

add assistance modules, since they may lead to a decrease in the robustness

of the model. Through the above analyses, we hope our robust-benchmark

datasets can serve as the benchmark to evaluate the common perturbation

robustness of deep diagnostic models in a standard manner.

5.5. Robustness After Defense

We evaluate the robustness of all three deep diagnostic models trained

with defense methods against PGD attack. The accuracy of three models are

reported in Table 5, where “None” denotes the accuracy on natural models

without attack or defense, “Attack” denotes natural models with PGD at-

tack (4-step PGD with ε = 4.0/255), and “Standard” denotes conventional

adversarial training (Madry et al., 2017). From Table 5, one can observe that

the classification results of three attacked models have been significantly im-

proved after using the MPAdvT and MAAdvT. For example, for binary-class

melanoma classification task, the defense accuracy of MPAdvT is 82.4% while

standard adversarial training is 80.2% which is much better than the result

(i.e., 0.0%) obtained when the model receives the adversarial attack, and

even is comparable with that without any attack. We can get the same con-

clusion in multi-label classifier CheXNet for 83.9% of MPAdvT while 81.6%
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Table 5: Defense accuracy of three deep diagnostic models on three datasets. “None”
represents natural models without any attack or defense, “Attack” means natural models
with PGD attack, “Standard” is natural models with standard adversarial training (Madry
et al., 2017) which has fixed perturbation and iteration step during training process. “At-
tack”, “Standard”, “MPAdvT” and“MAAdvT” are tested with adversarial images while
“None” tested with original images. Note that MAAdvT is only for single-label classifica-
tion.

Model IPMI2019-AttnMel Inception v3 CheXNet

None 87.5% 89.0% 86.5%
Attack 0.0% 0.0% 45.0%

Standard 80.2% 25.0% 81.6%
MPAdvT 82.4% 31.1% 83.9%
MAAdvT 82.8% 34.0% -

of standard adversarial training. We also evaluate the effectiveness of our

proposed MAAdvT in Inception v3, for the defense accuracy of MAAdvT is

34.0% which is higher than MPAdvT (31.1%) and Standard (25.0%). We also

use the Robust-Benchmark to evaluate the robustness of these models after

defense training, the flip probabilities of IPMI2019-AttnMel, Inception v3,

and CheXNet with MPAdvT method are 0.0%, 0.0% and 0.3%, respectively,

which dramatically decrease compared with the original ones. These re-

sults demonstrate the robustness of deep diagnostic models can be improved

when trained by defense method. Besides, we can observe that our pro-

posed MPAdvT and MAAdvT are more effective than standard adversarial

training.

6. Discussion

In this section, we first summarize the performance of three represen-

tative deep diagnostic models under adversarial attacks. Considering the

importance of medical safety, we also analyze whether the robustness of deep
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diagnostic models can be improved by using defense methods.

6.1. Model Performance under Adversarial Attacks

In order to explore whether deep diagnostic models are still reliable under

adversarial perturbations, we present four components to show their perfor-

mance in three types of tasks (i.e., binary, multi-class and multi-label classifi-

cation) in the experiments. Specifically, the numerical results change greatly

between original images and adversarial ones, which indicate these models

are vulnerable to adversarial perturbations. We can also see that adversarial

attacks not only change the network outputs, but also change the response

area and extraction of features within the network. More terrible, as the

data dimension increases, the effectiveness of adversarial perturbations is

more strong, the response of the model to the error area is more obvious. As

for multi-label classifier, we also analyze the change of label correlation. Even

if it is harder to attack than the single-label classifier, we can clearly see that

the label correlation during the attacking process have changed dramatically.

When evaluating the common robustness of three deep diagnostic models by

Robust-Benchmark datasets respectively, we can find the FP scores of these

models are extremely high, indicating that the robustness of these models is

poor.

It is so terrible to find that three types of deep diagnostic models are all

unstable under adversarial perturbations. This can lead to a huge disaster

in clinical medical diagnosis. For the proposed Robust-Benchmark dataset,

we hope that it can be the benchmark for subsequent efforts to improve the

robustness of deep learning models for computer-aided disease diagnosis.
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6.2. Diagnosis Performance After Defense

The robustness of deep models is closely related to medical safety which

is essential in clinical practice. Therefore, avoiding or at least reducing the

vulnerability of deep diagnostic models is highly desired. To this end, we

design two defense methods (i.e., MPAdvT and MAAdvT) aiming to improve

the robustness of deep diagnostic models on three datasets. Preliminary

results on the IPMI2019-AttnMel, Inception v3 and CheXNet trained by our

defense methods and standard adversarial training are shown in Table 5.

From Table 5, one can observe that our defense methods are more effective

than standard one. Besides, the classification results of three attacked models

have been significantly improved after using the defense method. However,

how to effectively improve the robustness of deep diagnostic model so that

it can resist more powerful attacks is still a difficult problem. As shown

in Table 5, even if we add the misclassification aware regularization (i.e.,

MAAdvT) to train the Inception v3, there is still a certain gap between

the defense accuracy (i.e., 34.0%) and the original accuracy (i.e., 89.0%).

Making network ”provably” defend from perturbations is a new direction

in adversarial robustness (Cohen et al., 2019; Salman et al., 2019; Lecuyer

et al., 2019). In the future, we could investigate the effectiveness of differen-

tiation of correctly classified/misclassified training examples in the recently

proposed certified/provable robustness framework and explore the potential

improvements brought by the differentiation of training examples.
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7. Conclusion

In this work, we evaluated the robustness of deep diagnostic models by

adversarial attack. Specifically, we have performed two types of adversarial

attacks to three deep diagnostic models in both single-label and multi-label

classification tasks, and found that these models are not reliable when at-

tacked by adversarial example. We have further explored how adversarial

examples attack the models, by analyzing their quantitative classification

results, intermediate features, discriminability of features and correlation of

estimated labels for original/clean images and those adversarial ones.

To evaluate robustness of deep diagnostic models in a standard way, we

created a new dataset called Robust-Benchmark and calculated flip probabil-

ity of all these models, we hope that it can be the benchmark for subsequent

efforts to improve the robustness of deep learning models for computer-aided

disease diagnosis. We have also shown through experiments that the use

of our proposed defense methods (i.e., MPAdvT and MAAdvT) can signifi-

cantly improve the robustness of deep diagnostic models against adversarial

attacks, which will guide our future work to explore more robust diagnostic

models.
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