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Abstract

Differential privacy is widely used in data analysis. State-of-the-art k-means

clustering algorithms with differential privacy typically add an equal amount of

noise to centroids for each iterative computation. In this paper, we propose a

novel differentially private k-means clustering algorithm, DP-KCCM, that sig-

nificantly improves the utility of clustering by adding adaptive noise and merging

clusters. Specifically, to obtain k clusters with differential privacy, the algorithm

first generates n × k initial centroids, adds adaptive noise for each iteration to

get n×k clusters, and finally merges these clusters into k ones. We theoretically

prove the differential privacy of the proposed algorithm. Surprisingly, extensive

experimental results show that: 1) cluster merging with equal amounts of noise

improves the utility somewhat; 2) although adding adaptive noise only does not

improve the utility, combining both cluster merging and adaptive noise further

improves the utility significantly.

Keywords: K-means, Cluster, Differential Privacy

1. Introduction

With the rapid development of Internet technology, third-party applications

have produced a large amount of user data. The correct use of these data is

able to create incalculable value for governments, companies and individuals.

How to extract useful information from user data is currently a hot research
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direction [1, 2]. Clustering algorithms are widely used to complete this task in

the field of data analysis [3, 4]. The goal of clustering is to divide elements of a

dataset into different groups so that the elements in the same group have high

similarity. There are a large number of clustering algorithms [5, 6, 7, 8, 9, 10].

Among them, the k-means clustering is one of the most popular methods for

numeric data.

Recently, many applications adopted the k-means clustering algorithm. Javadi

et al. [11] classified aquifer vulnerability using k-means cluster analysis. Han et

al. [12] factored out k-means cluster-based location privacy protection scheme

for Internet of Things. Shakeel et al. [13] used k-means clustering to diagnosis of

diabetes mellitus. Wu et al. [14] used k-means in the compressing convolutions

of convolutional neural network. Reza et al. [15] adopted k-means clustering

with graph-cut segmentation to estimate rice yield. Omrani et al. [16] presented

the artificial neural network-based land transformation model, which uses the

k-means clustering algorithm implemented within the Spark high-performance

compute environment. However, most of these applications fail to consider dis-

closure of sensitive information, which might bring immeasurable threats to

users [17, 18].

To solve the privacy problem, differential privacy [19, 20] is proposed as a

powerful privacy protection technique and has been extensively used [21, 22, 23].

Recently, several state-of-the-art k-means clustering algorithms with differential

privacy have been proposed. For example, Yu et al. [24] presented a differen-

tially private k-means clustering scheme and improved its utility by selecting

initial centroids with the distribution density of elements. Su et al. [25] ana-

lyzed several existing differentially private k-means clustering algorithms and

improved one of them by selecting initial centroids based on the concept of

sphere packing. However, these algorithms still suffer the issue of lacking high

utility due to adding large amounts of noise. Thus, how to improve the utility

of differentially private k-means clustering remains as a key question.

In this paper, to address the above-mentioned utility issue, we propose a

novel differentially private k-means clustering algorithm based on cluster merg-
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ing (DP-KCCM). DP-KCCM first partitions the data into n × k clusters with

differential privacy, and then merges these clusters into required k ones. The

main idea is that the Laplace noises added to cluster centroids are random, and

cluster merging would cancel the noises each other, and thus improve the utility.

More interestingly, we find that combining cluster merging with adaptive noise

is able to further improve the cluster utility.

The main contributions of this paper are as follows: 1) We propose a utility-

efficient, differentially private k-means clustering algorithm based on cluster

merging. 2) We design a privacy budget (i.e., the privacy parameter of differen-

tial privacy, cf. Definition 1) allocation to work with cluster merging to further

improve the cluster utility. 3) Extensive experimental results show that our

algorithm is superior to the state-of-the-art ones.

The rest of this paper is organized as follows. In Section 2, we introduce the

background knowledge of this paper. Section 3 describes our algorithm in detail

and establishes that the algorithm satisfies differential privacy. In Section 4, we

carry out extensive experiments, and compare the utility of our algorithm with

those of the existing algorithms. We conclude in Section 5.

2. Background

In this section, we first introduce the notion of differential privacy and the

algorithms of K-means clustering, we then present the problem statement. Some

notations used in this paper are described in Table 1.

2.1. Differential Privacy

The notion of differential privacy requires that the outputs of a data anal-

ysis mechanism should be similar over any two adjacent datasets. The formal

definition is as follows.

Definition 1. (ε-Differential Privacy [19]). A randomized algorithm M sat-

isfies ε-differential privacy (ε-DP), if and only if for any pair of neighboring
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Table 1: Notations and descriptions

Notations Descriptions

D dataset

N the number of data points in the dataset

d the dimension of the dataset

xi i-th data point in the dataset and ranging from [−r, r]d

k the number of the clusters

C the set of the centroids

Cj j-th centroid

Cij i-th dimension of j-th centroid

cj j-th noisy centroid

cij i-th dimension of j-th noisy centroid

C∗j j-th cluster

ε the privacy budget

sum(·) the sum of data point values in a cluster

sum′(·) sum′(·) is sum(·) with noise

num(·) the number of data points in a cluster

num′(·) num′(·) is num(·) with noise

dist(x, y) the distance between data points x and y

∆ the global sensitivity of an iteration

iter the number of iterations

datasets D and D′, and any S ⊆ Range(M), we have

Pr[M(D) = S] ≤ eε · Pr[M(D′) = S] (1)

In this definition, D’s neighboring dataset D′ can be obtained by adding an

element to or removing an element from D, and they can be denoted by D ' D′.

The Range(M) represents the set of all possible outputs of the algorithm M.

It is worth noting that the parameter ε is called privacy budget, which indi-

cates the privacy level. A smaller ε value means more similar outputs resulted
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from neighboring datasets due to Eq. (1), and thus represents stronger privacy

achieved. On the other hand, the greater the ε value is, the weaker the privacy

is preserved. In the extreme, when there is no differential privacy protection, it

is equivalent that the ε is infinitely large, and thus the privacy may be easily

disclosed.

Differential privacy has good properties in composition of multiple algo-

rithms, which are described in Lemmas 1, 2 and 3.

Lemma 1 (Parallel Composition [26]). If there are algorithms M1, · · · ,Mk

satisfying ε1, · · · , εk -DP, respectively, then for disjoint datasets D1, D2, · · · , Dk,

composition algorithmM(M1(D1), · · · ,Mk(Dk)) provides (maxi∈{1,..,k} εi)-DP.

Lemma 1 shows that if the input datasets are disjoint, the privacy level

provided by a parallel composition depends on the algorithm with the lowest

privacy level, namely the one with the largest privacy budget.

Lemma 2 (Sequential Composition [27, 26]). If there are algorithms M1 satis-

fying ε1-DP, and M2 satisfying ε2-DP, then M(D) =M1(M2(D), D) satisfies

(ε1 + ε2)-DP.

Lemma 2 implies that if multiple algorithms are applied to the same data set

sequentially, the resulted privacy budget is the sum of these algorithms’ privacy

budgets.

Lemma 3 (Post-processing [27]). If there is an algorithm M1(·) satisfying ε-

DP, then for any algorithm M2(·), M2(M1(·)) satisfies ε-DP.

Lemma 3 shows the post-processing property of differential privacy, namely,

if an algorithm takes as input the output of another algorithm that satisfies

ε-differential privacy, then the resulted algorithm still satisfies ε-differential pri-

vacy.

In this paper, we use the Laplace mechanism [20] to design algorithms. The

Laplace mechanism preserves differential privacy by adding random noise satis-

fying the Laplace distribution to any query function f (e.g., count query) over
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D. The magnitude of noise depends on the sensitivity of f , ∆f , which rep-

resents the maximum deviation of the query result on any adjacent datasets.

For instance, ∆f = 1 for count query. The idea of Laplace mechanism is to

add smallest but sufficient noise to any query result of f , such that the query

results of any neighboring datasets (only differing in an element) are indistin-

guishable, and thus the personal privacy (i.e., any single element information)

cannot be inferred from query results. The Laplace mechanism Mf is given in

Definition 2, and its differential privacy is guaranteed by Lemma 4

Definition 2. (Laplace Mechanism [20]) The Laplace mechanism is defined as:

ML(D, f, ε) = f(D) + (Y1, Y2, · · · , Yd) (2)

where f(D) is a given query function f(D) : D → Rd with sensitivity

∆f = max
(D,D′):D'D′

‖f(D)− f(D′)‖1 (3)

and Yi(1 ≤ i ≤ d) are i.i.d. random variables drawn from Lap(∆f
ε ).

The probability density function of Laplace distribution is as follows:

Lap(b) = Lap(x|b) =
1

2b
e−|x|/b (4)

where for the Laplace mechanism, b = ∆f/ε.

Lemma 4. [27, 26] The Laplace mechanism preserves ε-DP.

2.2. K-means Clustering Algorithms

The k-means clustering divides a set of data points into different subsets. In

the clustering, there are typically two following steps.

2.2.1. Initial Centroid Selection

Given a value a > 0, paper [25] randomly selects k initial centroids one by

one. Each selection of a centroid must follow two principles: 1) the distance

between any centroid and the boundary of the domain is at least a. 2) the

distance between any two centroids is at least 2a. If a randomly selected centroid
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does not satisfy the above two conditions, it is discarded and another centroid is

reselected until k initial centroids are obtained. When it fails to get k centroids

several times, it may be that the given value a is too large, and then a smaller a

is tried again. The initial value of a can be determined according to the domain

size of data points. In our context, since the data is normalized into [−1, 1], the

initial value of a is set to 0.5. During the experiment, the optimal value of a can

be obtained by the binary search or it is simply set by experience. The above

process of selecting the initial centroids only depends on the domain of data

points rather than the data points themselves, so this process does not impact

the privacy, and it can be applied directly in the privacy-preserving algorithms.

2.2.2. K-means Clustering

For a dataset D = {x1, x2, · · · , xN}, xi ∈ Rd, the standard k-means clus-

tering aims at partitioning data into k disjoint subsets (C∗1 , C
∗
2 , · · · , C∗k). The

evaluation metric of clustering results called the Normalized Intra-Cluster Vari-

ance (NICV)[25] is as follows.

1

N

k∑
j=1

∑
xi∈C∗j

‖xi − Cj‖2 (5)

where Cj is the centroid of the cluster C∗j , and the smaller the NICV value, the

better the clustering result.

Specifically, the algorithm selects k data points as the initial centroids by

initial centroids selection algorithm, then the quality of the centroids is improved

iteratively until the centroids do not change. In each iteration, the algorithm

traverses all the data points of the dataset and assigns the data points to the

nearest cluster, then updates the centroid of each cluster.

Ctj =

∑
xi∈C∗j

xti

|C∗j |
,∀t ∈ {1, .., d} (6)

where Ctj is the t-th dimension of j-th centroid and xti is the t-th dimension of

xi.
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2.3. Problem Statement

We focus on the privacy problem for data analysis as follows. A trustable

data holder (e.g., a government agency) collects personal records from a great

number of users, analyzes these data with certain machine learning algorithms

(e.g., in our context K-means clustering algorithm), and publishes the analytic

results to dishonest third parties, which make use of these results for some statis-

tical purpose. However, the privacy problem is that the dishonest third parties

may also infer the personal privacy through exploiting the analytic results, be-

yond the legitimate use, if there is no appropriate privacy protection measures,

as shown in Figure 1. This results in the disclosure of individual privacy.

Submit Publishes

Analyzesy

Data Holder

Infer Privacy
Third PartiesUsers

Infer Privacy

Figure 1: Problem Model

We use the notion of differential privacy to solve the privacy problem de-

scribed above. As described in Section 2.1, differential privacy ensures that the

analytic results of any two neighboring datasets are similar by adding appro-

priate noise to the results. This means that the differentially private analytic

result of a dataset remains roughly the same when any personal record opts

into or out of the dataset. Conversely, the inference of any personal record (i.e.,

individual privacy) from the differentially private analytic results is thus hard.

In our context, we design a K-means clustering algorithm with ε-differential

privacy to protect individual privacy (i.e., any data point) from being inferred

from the clustering results by dishonest third parties. A proper ε value can be

chosen to ensure a certain level of privacy, e.g., ε = 1 (Note that the smaller
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ε, the stronger the privacy). Furthermore, since ε-differential privacy requires

that noise be added to the clustering process, we aim to add as little noise as

possible while preserving ε-differential privacy, to improve the clustering utility.

3. DP-KCCM Algorithm

In this section, we propose our differentially private k-means clustering al-

gorithm (DP-KCCM) and prove its privacy in detail.

Considering previous works on k-means clustering with differential privacy,

such as DPLloyd [28, 29] and DPLloyd-Impr [25], they all added equal amounts

of noise to the centroids of each iteration in the clustering process. Moreover,

it is implicitly suggested that privacy budget should be divided equally across

the iterations of the clustering [25]. It seems hard to improve the cluster utility

merely through the privacy budget allocation. Our idea is that we may reduce

the amounts of noise added by merging some noisy clusters and canceling the

amounts of noise. Additionally, we may combine cluster merging with privacy

budget allocation to further improve the utility.

Therefore, we are going into two questions: 1) Can we add noise adaptively

in the process of iteration to improve the utility? 2) Can we merge adjacent

clusters to reduce the noise added, and hence improve the utility? We describe

these two aspects in detail.

3.1. Idea 1

In our differentially private k-means clustering algorithm, initial centroids

are first selected using the initial centroids selection algorithm [25] (cf. Section

2.2.1), which ensures that the initial centroids are separated as much as possible.

Then, these centroids are iteratively updated. Intuitively, in the first several

iterations of the algorithm, the centroids change greatly, and we could inject

relatively more noise. As the number of iterations increases, the changes of

cluster centroids become less, and we could add a small amount of noise to

ensure better clustering results. Since the noise volume is controlled by ε, we

introduce the partition of ε as follows.
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According to the previous analysis, we know that as the number of iterations

increases, the clustering centroids tends to be stable, and hence the noise added

should become smaller, and ε should become bigger. Thus, our privacy budget

allocation policy is to increase ε share gradually as the cluster centroids are

updated iteratively.

We do a lot of experiments based on this allocation policy, and find that the

increase of the ε share should be relatively slow. Otherwise, the first several

ε shares would become too small that the cluster result deteriorates severely.

Finally we settled on the following division. The clustering algorithm in this

paper has carried out 12 iterations, and we set ε share for each iteration as

follows: the values of ε shares for 1st to 4th iterations are 1
24ε, those for 5th to

8th iterations are 1
12ε, and those for 9th to 12th iterations are 1

8ε.

3.2. Idea 2

We know that the noise added to each centroid is random. Can we reduce

the influence of noise on the centroid by merging adjacent clusters? For k-means

clustering algorithm, we can divide dataset into n×k clusters. After clustering,

we merge n × k clusters into k ones. By merging multiple clusters, the noises

added to clusters were empirically proved to cancel each other out.

We describe this idea with the example as shown in Figure 2. Suppose there

are four points A, B, C and D, which are probably clustered into the same

category in a differentially private clustering. There are two ways to do this.

The first way is to cluster these points into a category one shot without cluster

merging, and get its noisy clustering centroid C?ABCD. The second way is to

first cluster the points into two clusters, with A, B in one and C, D in the other,

compute their respective cluster centroids C?AB and D?
CD, and then merge the

two clusters to get the final cluster centroid C??ABCD. As long as the noises added

to centroids C?AB , C?CD and C?ABCD are roughly the same, namely the distances

from the noiseless centroids CAB , CCD and CABCD to the noisy counterparts

are approximately equal, the merged cluster centroid C??ABCD is probably less

noisy the the centroid C?ABCD, and thus this likely leads to a better clustering
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utility.

ABC

CDC

A

B

CD

*
ABC

ABCDC

*
CDC

*
ABCDC**

ABCDC

Figure 2: An example for cluster merging.

3.3. Algorithm DP-KCCM

We combine idea 1 with idea 2 to design the algorithm DP-KCCM, which

can be described with the following steps.

(1) Obtain n× k initial centroids by initial centroids selection algorithm.

(2) Divide data points into n× k clusters.

(3) Recalculate the centroids.

(4) Add adaptive noise according to the number of iterations (cf. Section 3.1).

(5) Repeat Steps (2), (3) and (4) until the maximum number of iterations is

reached.

(6) Merge n× k clusters into k clusters.

The formal description of the algorithm is shown in Algorithm 1. We also detail

the key steps in the following.

3.3.1. Divide Data Points into n× k Clusters

For a data point, we set two variables min dist and cent. The former rep-

resents the distance from this data point to its centroid, and the latter is the

index of the cluster (i.e., cent ∈ [1, n × k]) containing the data point. Firstly,

we traverse all the data points in the dataset and calculate the distances of
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Algorithm 1 DP-KCCM

Input: dataset D, cluster number k, clustering number max clustering = 12,

global sensitivity ∆ = d · r + 1, privacy budget ε =
∑max clustering
i=1 εi.

Output: The k centroids.

initialize C = n× k centroids by initial centroid selection

for iter ← 1 to max clustering do

Get n× k clusters through the standard k-means algorithm

Recalculate the centroid of each cluster

for j ← 1 to n× k do

for i← 1 to d do

sum′(C∗j )[i] = sum(C∗j )[i] + Lap( ∆
εiter

)

end for

num′(C∗j ) = num(C∗j ) + Lap( ∆
εiter

)

cj =
sum′(C∗j )

num′(C∗j )

end for

end for

C num = |C|

while C num > k do

Find the two nearest cluster C∗p , C∗q and combine them into cluster C∗o :

for i← 1 to d do

cio = min(cip, c
i
q) + |cip − ciq| ·

num′(C∗m)
num′(C∗p )+num′(C∗q )

end for

C num = C num− 1

end while

Get k centroids

each data point to all centroids, then each data point is assigned to the clus-

ter determined by the corresponding minimum distance. Furthermore, we save

the minimum distance value of each data point into min dist and record the

index of the corresponding centroid into cent. The distance from xi to the j-th
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centroid Cj is computed as follow:

dist(xi, Cj) = ‖xi − Cj‖2. (7)

where each dimension of data points xi is normalized to [−r, r], and we choose

r = 1 in our context for simplicity.

3.3.2. Add Noise to Centroids

When all data points are divided, we obtain n× k clusters. Then we recal-

culate the centroid of each cluster to get n × k new centroids. The calculation

of the centroid is as follows:

Cj =
sum(C∗j )

num(C∗j )
,∀j ∈ {1, · · · , n× k} (8)

where sum(C∗j ) =
∑
xi∈C∗j

xi, num(C∗j ) = |C∗j |.

In order to protect the information of data points, we need to add a certain

amount of Laplace noise to both d-dimension sum of data points and the number

of data points during the above calculation. And then we get n × k noisy

centroids after noise addition. The function for calculating noisy centroid j is

cj =
sum′(C∗j )

num′(C∗j )
. (9)

with

sum′(C∗j ) = sum(C∗j ) + (Y1, · · · , Yd) (10)

num′(C∗j ) = num(C∗j ) + Yd+1 (11)

where Yi (for 1 ≤ i ≤ d+1) are i.i.d. random variables drawn from Lap(∆/εiter),

∆ = d · r + 1, r is the maximum absolute value of each dimension, and εiter is

the privacy budget for the current iteration iter.

Note that the global sensitivity ∆ can be computed as follows. For each

iteration, each data point is involved in answering d sum queries and one count

query. Moreover, each dimension of data points is normalized to [−r, r]. Thus,

the global sensitivity ∆ = d · r + 1.
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3.3.3. Merge n× k Clusters into k Clusters

After the number of iterations reaches the specified value, we can obtain n×k

clusters. And then we merge the two nearest clusters iteratively. We merge two

clusters using their noisy centroids and noisy cluster sizes. Note that, to achieve

differential privacy, cluster sizes are needed to add Laplace noise, and the noisy

sizes does not represent real counts of elements in clusters, but are only used

for computing merged centroids. After merging of cluster C∗p and cluster C∗q ,

the i-th dimension of the centroid of the new cluster C∗o is

cio = min(cip, c
i
q) + |cip − ciq| ·

num′(C∗m)

num′(C∗p ) + num′(C∗q )
(12)

where m = arg max(cip, c
i
q), namely, m = p if cip ≥ ciq, and m = q otherwise.

3.4. Privacy Analysis

Theorem 1 states that the DP-KCCM algorithm achieves ε-differential pri-

vacy. We mainly prove the theorem below.

Theorem 1. The DP-KCCM algorithm preserves ε-differential privacy.

Proof. We prove the theorem in the following three parts.

First, the initial centroid selection is independent of the data, so the privacy

is not impacted in this step.

Second, we show that the algorithm achieves εiter-differential privacy for

iteration iter, and achieves ε-differential privacy for all iterations due to the

sequential composition property (cf. Lemma 2).

For iteration iter, each data point is involved in d sum queries and one count

query. Conversely, each iteration queries the function f : Dd → Dd × N over

each cluster, with the global sensitivity ∆f = ∆ = d · r + 1. Specifically, let D

and D′ = D − {x}, for any point x ∈ D, be neighboring datasets. Let D be

divided into disjoint clusters C∗1 , C
∗
2 , · · · , C∗n·k. Then, the neighboring dataset

D′ is correspondingly divided into disjoint clusters C∗1
′, C∗2

′, · · · , C∗n·k
′, satisfy-

ing that there exists an J , such that C∗J
′ = C∗J − {x}, and C∗j

′ = C∗j for j 6= J .
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Therefore, each iteration can be regarded as the parallel composition of mech-

anisms querying function f(.) over n × k disjoint clusters (cf. Lemma 1), and

differential privacy achievement is determined by the mechanism over cluster

C∗J (since mechanisms over other clusters C∗j achieve 0-differential privacy for

C∗j = C∗j
′).

Let p(.) and p′(.) denote the probability density functions of the mechanism

over cluster C∗J . For any point v ∈ Dd×N , the probability density ratio between

the cases of C∗J and C∗J
′ are as follows.

p(v)

p′(v)
=

exp(− εiter||f(C∗J )−v||1
∆f )

exp(− εiter||f(C∗J
′)−v||1

∆f )

= exp(
εiter(||f(C∗J

′)− v||1 − ||f(C∗J)− v||1)

∆f
)

≤ exp(εiter · ||f(C∗J)− f(C∗J
′)||1

∆f
)

≤ exp(εiter)

Symmetrically, we have p(v)
p′(v) ≥ exp(−εiter). The mechanism over C∗J achieves

εiter-differential privacy, and thus the iteration mechanismDP − IT ER achieves

εiter-differential privacy according to the parallel composition property (cf. Lemma 1).

Since the computation of noisy centroids cj is a post-process of iteration

mechanism DP − IT ER, iteration iter achieves εiter-differential privacy due to

the post-processing property (cf. Lemma 3).

For all iterations, the sequential composition property (cf. Lemma 2) is

applied, and the resulted mechanism satisfies the ε-differential privacy, where

ε = ε1 + ε2 + · · ·+ εmax clustering.

Finally, merging n×k clusters into k ones involves only the noisy cluster cen-

troids and noisy cluster sizes, and it is actually a post-process of the composition

of iterations, impacting nothing on the differential privacy achieved.

Therefore, we conclude that the DP-KCCM algorithm preserves ε-differential

privacy.
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4. Performance Evaluation

4.1. Methodology

We implement the proposed differentially private k-means clustering algo-

rithm, DP-KCCM, and do experiments to evaluate the algorithm based on six

datasets. The detailed description of these six datasets is as Table 2. The

data attributes contained in these six datasets are all of numerical type. We

normalize the domain of each attribute to the range of [−1, 1].

Table 2: Description of the Datasets.

Dataset tuples dims cluster description

Blood 748 5 4

The dataset records individual

blood donations, and is taken from

the Blood Transfusion Service Cen-

ter.

Adult 32561 6 5
This is a census dataset that records

personal information.

Tripadvisor-

review

980 10 4

The dataset is the reviews on desti-

nations in 10 categories mentioned

across East Asia.

Electrical 10000 13 5

The dataset is the simulated data

for the local stability analysis of the

4-node star system (electricity pro-

ducer is in the center) implementing

Decentral Smart Grid Control con-

cept.

Review-

ratings

5454 24 4

The dataset contains google reviews

on attractions from 24 categories

across Europe.

Credit-card 30000 24 5
The dataset contains customer de-

fault payments in Taiwan.

All datasets are downloaded from website http://archive.ics.uci.edu/ml/datasets.php
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We mainly focus on comparisons of algorithm performances from the follow-

ing two aspects:

• Comparing the effect of different algorithms with a fix k value under dif-

ferent ε values.

• Comparing the effect of different algorithms with a fix ε value under dif-

ferent k values.

We compare the following four differentially private k-means clustering al-

gorithms.

• average k : k initial centroids are generated by the initial centroid selec-

tion algorithm, and the average noise is added to all centroids during each

iteration.

• allocation k : k initial centroids are generated by the initial centroid se-

lection algorithm, and adaptive noise is added to all centroids during each

iteration.

• average nk : n × k initial centroids are generated by the initial centroid

selection algorithm, and average noise is added to all centroids in the

process of each iteration. When the clustering is stable, n× k clusters are

combined into k clusters.

• allocation nk : n×k initial centroids are generated by the initial centroid

selection algorithm, and adaptive noise is added to all centroids during

each iteration. When the clustering is stable, n× k clusters are combined

into k clusters.

The average k algorithm is in fact the state-of-the-art algorithm, DPLloyd-

Impr, which is reported to be the best one overall among several existing differ-

entially private k-means clustering algorithms [25]. Thus, in our experiments,

we use it a benchmark algorithm for the performance comparisons. Then, on

the basis of average k algorithm, the two ideas are introduced separately, gen-

erating algorithms allocation k and average nk, respectively. Finally, the two
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ideas are combined into the algorithm allocation nk, which is the proposed

DP-KCCM algorithm. We compare these four algorithms in the experiments to

demonstrate the effectiveness of the two ideas.

The above algorithms all output k centroids C = {C1, C2, · · · , Ck}. The

quality of clustering are assessed by Normalized Intra-Cluster Variance (NICV).

For all algorithms, we apply the initial centroid selection algorithm to get the

initial centroids. In our experiments, we first adopt the initial centroid selec-

tion algorithm to generate 20 sets of initial centroids. Then, we run 50 times

on each set of initial centroids. So we take the average of NICV in 1000 ex-

periments. Through a lot of experiments, we make the following settings for

some parameters in the process of cluster with each dataset. We found that the

clustering tends to be stable after the number of iterations reaches 10, so we

set max clustering = 12. The experimental results obtained by merging n× k

clustering into k clusters when n is set to 3 are relatively ideal.

Note that in this paper, we measure the clustering utility with NICV through

extensive experiments. The underlying reason is that NICV is the objective

function. NICV is directly effected by the differentially private clustering. To

some extent, we can regard NICV value as the utility of the differentially private

algorithm, and NICV can reflect straightforwardly how the noise addition for

achieving differential privacy impacts the clustering result. By using multiple

datasets and averaging a great number of independently random runs, we ex-

pect NICV to measure the clustering utility reasonably. In the future, other

reasonable measures can be investigated for fully evaluating the clustering util-

ity.

4.2. Experimental Results.

We now show two groups of experimental results, and make corresponding

discussions.

(1) Performance Comparison in term of ε

Figures 3 to 8 show the influence of different ε values on the clustering results

for different datasets. The k values are fixed at 4 or 5. The six figures can be
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divided into three groups: Figures 3 and 6, Figures 4 and 7, Figures 5 and 8.

The dataset dimensionality values for the first group are in the range [1..10],

those of the second group are in the range [11..20], and those of the third group

are in the range [21..30].

From these 6 figures, we make the following observations. 1) For all cases,

allocation k performs worse than average k, which illustrates that the average

allocation of privacy budget seems to be the best choice for differentially pri-

vate k-means clustering algorithms without cluster merging. 2) Nearly for all

cases, average nk performs better than average k, which indicates that cluster

merging indeed improves the clustering utility. 3) For all cases, allocation nk

performs significantly better than average nk, demonstrating the surprising re-

sult that combining both cluster merging and adaptive privacy budget allocation

is able to further improve the clustering utility. 4) The performances of all al-

gorithms become better in a similar way as the ε value increases, which shows

the stability of the improvement over clustering utility. 5) It seems that the

dimensionality values have no obvious impact on the utility improvement, and

some datasets seems have more effect than others of utility improvement maybe

due to their data characteristics.

(2) Performance Comparison in term of k

Figures 9 to 14 show the influence of different k values on the clustering

results for different datasets when the ε value is fixed. From these figures, we

make observations as follows. 1) The result of performance comparisons between

these four algorithms is similar to that of Figures 3 to 8, and the ranking of the

algorithms in decreasing order of the performance is allocation nk, average nk,

average k, and allocation k. 2) For each figure, there is a point of certain k

value that has the most effect in utility improvement, which seems to show that

this k is the most appropriate number of clusters for the corresponding dataset.

Based on the experimental analysis above, we can conclude that the pro-

posed algorithm combining both cluster merging and adaptive privacy budget

allocation improves the clustering utility significantly, and it is superior to the

state-of-the-art algorithms.
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Figure 3: Blood (k = 4)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.3

0.4

0.5

0.6

0.7

0.8

NI
CV

average_k
allocation_k
average_nk
allocation_nk

Figure 4: Tripadvisor-review (k = 4)
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Figure 5: Travel-review (k = 4)
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Figure 6: Adult (k = 5)
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Figure 7: Electrical (k = 5)
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Figure 8: Credit-card (k = 5)
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Figure 9: Blood (ε = 0.6)
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Figure 10: Tripadvisor-review (ε = 0.6)
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Figure 11: Travel-review (ε = 0.2)
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Figure 12: Adult (ε = 0.2)
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Figure 13: Electrical (ε = 0.2)
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Figure 14: Credit-card (ε = 0.2)
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We can explain our experimental results with the stability theory by David et

al. [30]. According to the definition, given a clustering algorithm, the stability

is mainly determined by the probability distribution of the data. Specifically, if

the data distribution is of some non-trivial symmetry structure, the algorithm

would be unstable; otherwise, it would be stable. When adding differential

privacy to the clustering algorithm, the data distribution is flattened. This

makes the distribution is more symmetry, and the clustering becomes more

unstable. In the extreme, when ε = 0, the distribution is uniformly symmetry,

and the clustering is completely unstable. Thus, adding differential privacy

deteriorates the clustering. When merging the nearest clusters, the clustering

algorithm makes the clusters more asymmetry by canceling out noises added,

and the clustering becomes more stable. So, we can see that merging clusters

improves the clustering utility. Furthermore, in the context of merging clusters,

the privacy budget allocation works well. The underlying reason may be that

the cluster merging allows more unstability in the first several iterations, while

allows less in the last ones.

5. CONCLUSION

In this paper, we have proposed a differentially private k-means clustering

algorithm based on cluster merging. This algorithm improves the utility of k-

means clustering by first partitioning the data into more clusters than required,

and then merging the clusters into required number of clusters. It is shown that

this cluster merging improves the clustering utility, and when combined with

privacy budget allocation, it can further improves the utility. Extensive ex-

periments show that our algorithm outperforms the state-of-the-art algorithms

significantly. Besides, we only consider numerical data, without taking into

account the non-numerical and mixed data. The future work is to design differ-

entially private k-means clustering algorithms for more types of data.
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