arXiv:1905.05498v5 [cs.LG] 7 Mar 2021

Highlights

Bias-Reduced Hindsight Experience Replay with Virtual Goal Prioritization
B Manela,A Biess

e Novel technique for virtual goal prioritization provides better value function estimation.

e Bias-reduction by filtering misleading samples leads to improved learning over vanilla Hindsight Experience Replay
(HER).

e Introduction of new environments for complex manipulation tasks with sparse feedback.

Bias-Reduced Hindsight Experience Replay with Virtual Goal

Prioritization®

B Manela?, A Biess®*

“Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel

ARTICLE INFO

Keywords:

Multi-goal reinforcement learning
Hindsight Experience Replay
Sparse reward function

Virtual goals

ABSTRACT

Hindsight Experience Replay (HER) is a multi-goal reinforcement learning algorithm for sparse re-
ward functions. The algorithm treats every failure as a success for an alternative (virtual) goal that
has been achieved in the episode. Virtual goals are randomly selected, irrespective of which are
most instructive for the agent. In this paper, we present two improvements over the existing HER
algorithm. First, we prioritize virtual goals from which the agent will learn more valuable informa-
tion. We call this property the instructiveness of the virtual goal and define it by a heuristic mea-
sure, which expresses how well the agent will be able to generalize from that virtual goal to actual
goals. Secondly, we reduce existing bias in HER by the removal of misleading samples. To test
our algorithms, we built three challenging environments with sparse reward functions. Our empirical
results in both environments show vast improvement in the final success rate and sample efficiency
when compared to the original HER algorithm. A video showing experimental results is available at

https://youtu.be/xjAiwJiSeLc.

1. Introduction

Deep reinforcement learning, the combination of rein-
forcement learning [1] with deep learning [2] has led to many
breakthroughs in recent years in generating goal-directed be-
havior in artificial agents ranging from playing Atari games
without prior knowledge and human guidance [3], to teach-
ing an animated humanoid agent to walk [4, 5, 6], and de-
feating the best GO player in the world [7], just to name a
few. All reinforcement learning problems are based on the
reward hypothesis, stating that any goal-directed task can be
formulated in terms of a reward function. However, the engi-
neering of such a reward function is often challenging. The
difficulties in shaping suitable reward functions limit the ap-
plication of reinforcement learning to real-world tasks, for
example, in robotics [8]. One way to overcome the problem
of reward shaping has been presented in Hindsight Experi-
ence Replay (HER) [9], which uses sparse reward signals to
indicate whether a task has been completed or not. The algo-
rithm uses failures to learn how to achieve alternative goals
that have been achieved in the episode and uses the latter to
generalize to actual goals. HER selects these virtual goals
randomly in every episode.

Our contributions in this paper consists of two improve-
ments over the original HER algorithm for the selection of
virtual goals. First, we argue that the learning process will
be more efficient if the algorithm will take into account that
some virtual goals may be more instructive than others and

*This research was supported in part by the Helmsley Charitable Trust
through the Agricultural, Biological and Cognitive Robotics Initiative and
by the Marcus Endowment Fund both at Ben-Gurion University of the
Negev. This research was supported by the Israel Science Foundation (grant
no. 1627/17)

*Corresponding author

%94 manelab@post.bgu.ac.il (B. Manela); abiess@bgu.ac.il (A. Biess)
& www.armin-biess.net (A. Biess)
ORCID(S): 0000-0002-0087-3675 (A. Biess)

will prioritize them accordingly. Towards this objective, we
present a heuristic measure, which quantifies the instruc-
tiveness of each possible virtual goal. We call this method
an Instructional-Based Strategy (IBS). Our strategy for se-
lecting virtual goals will be applicable to environments for
which the initial state distribution is not within the goal dis-
tribution. These conditions are given, for example, in robotic
manipulators, where objects need to be moved between two
different locations in a workspace. Our second contribution
consists of the removal of misleading virtual goals by pro-
viding a filtered version of HER (Filtered HER). HER as-
sumes that the achieved goals are the outcome of actions.
However, this is not always the case. Consider, for example,
a soccer player that misses the ball in a penalty kick. Here,
the ball is not affected by the action, and thus, the achieved
goal is the outcome of the initial state rather than the action.
These samples will induce bias and may hinder learning. A
filtering process can be applied to remove these misleading
samples. To the best of our knowledge, we present the first
method to identify and remove biased transitions produced
by HER. Finally, we introduce three challenging manipula-
tion tasks to benchmark the performance of our algorithms.

2. Background

In this section we provide the background information
for reinforcement learning and hindsight experience replay.

2.1. Reinforcement Learning

Reinforcement learning consists of an agent learning how
to solve a task via interaction with an environment [1]. We
assume that the environment is fully observable and defined
by a set of states s € S, set of actions a € .A(s), initial
state distribution P(s;), reward functionr : S XA - R
and a discount factor y € [0, 1]. These components define a
Markov Decision Process (MDP). The decisions of the agent
are described by a policy z that maps states s to actions a.

B Manela et al.: Preprint submitted to Elsevier

Page 1 of 14

https://youtu.be/xjAiwJiSeLc
www.armin-biess.net

Bias-reduced HER

At the beginning of each episode, an initial state s is sam-
pled from the distribution p(sg). Atevery timestep, the agent
chooses an action a, using policy 7(s,), performs this action
and receives a reward and the next state. The episode is ter-
minated when the agent reaches a terminal state or exceeds
the maximum number of timesteps. The agent’s goal is to
find the policy that maximizes expected return, i.e., cumula-
tive future discounted reward R, = Y. ° y'~'r;.

2.2. Deep Deterministic Policy Gradient (DDPG)

RL algorithms can be implemented using temporal-differ-
ence learning, policy gradient or a combination of both in
actor-critic methods. One of the most prominent actor-critic
algorithms for continuous state- and action spaces is Deep
Deterministic Policy Gradient (DDPG) [5].

The DDPG architecture consists of two neural networks:
an actor, which takes the state s, as input and outputs the
chosen action a,, and a critic, which approximates the Q-
function, Q(s,,a,), for the chosen action. The critic net-
work is trained using temporal-difference with loss function
L, = % Zi(yi - 0(s;, ﬂ(s,»)))2 with action a = n(s;) gen-
erated by the actor and target y; = r; + yQ' (541, 7' (5;41))s
where Q', z/ are provided by the target networks. The actor
is trained using gradient descent on the loss
L,= —[Ep(S)Q(s,Jr(s)).

2.3. Hindsight Experience Replay (HER)

DDPG can be extended to multi-goal tasks using Univer-
sal Value Function Approximators (UVFA) [10]. The key
idea behind UVFA is to augment action-value functions and
policies by goal states, and thus, every transition contains
also the desired goal. This enables generalization not only
over states but also over goals when using neural networks
as function approximators. In multi-goal tasks with sparse
rewards, it is challenging to learn the task and achieve any
progress. HER addresses this problem by taking failure as
a success to an alternative (or virtual) goal. HER applies
UVFA and includes additional transitions with virtual goals
- alternative goals that the agent achieved in the trajectory.
Thus, the agent can learn from failures through generaliza-
tion to actual goals. It has been demonstrated that HER sig-
nificantly improves the performances in various challenging
simulated robotic environments [9]. Our algorithms - like
HER - can only be used in combination with off-policy al-
gorithms since replacing the goal with a virtual-goal may
lead to a different policy than the one which generated the
trajectory.

3. Method

In this section we present two algorithms: a novel strat-
egy for virtual goal selection, which we call an Instructional-
Based Strategy (IBS) and a Filtered-HER algorithm, which
is a method to remove misleading samples in HER.

3.1. Instructional-Based Strategy (IBS)
In this section we present the Instructional-Based Strat-
egy for virtual goal selection and provide pseudo-code for

the implementation.

3.1.1. Motivation

HER is based on generalizing from previous failures to
the desired target. In this paper, we address the question of
how these failures should be taken into consideration in the
learning process. Is every failure equally instructive as any
other as has been proposed by the original HER algorithm?
To analyze this question, consider the following soccer sce-
nario: a player takes two penalty kicks. In a first kick, the
goal was missed by a small distance to the right, whereas in a
second kick the goal was missed by far to the left. The ques-
tion arises which of these experiences is more instructive to
the soccer player for learning the task of hitting the goal. It
seems that nearly missing the goal is more instructive for
achieving the goal. However, it might be that the player has
experienced many kicks of the first type whereas none of the
second. In this case, the latter kick may be more instructive
for learning the task. On this Instructional-Based Strategy
(IBS), we based our heuristic approach towards virtual goal
prioritization.

3.1.2. Definitions

Prioritizing virtual goals is guided by three heuristic prin-
ciples, which define (i) what the agent needs to learn (ii) what
the agent can learn from an individual virtual goal and (iii)
what is unknown to the agent. These three principles define
the instructivness of the virtual goal.

What the agent needs to learn: The task of the agent is to
learn the behavior which achieves the actual goals. The goals
are described by a goal distribution density g(x), where
Pr(x € G) = fG g(x)dx for any measurable set G € R".
The goal distribution density is an input to the algorithm and
can be described in most cases by a uniform distribution over
the distribution’s support G, i.e.,

2(x) = {const, ifxeg 0

0, otherwise .

The goals can also be chosen from a non-uniform or non-
stationary distribution g(x) as we discuss in Appendix A.

What can be learned from a virtual goal: The selection
of a virtual goal g (coordinates of a specific goal) teaches
the agent of how to reach this goal (g) as well as other goals
that are in the near surrounding of g. The latter is due to the
generalization capabilities of the underlying neural networks
[10, 11]. To approximate the relevance of the virtual goal g
to other neighboring goals ', we use a Gaussian radial basis
function (RBF) kernel
- 2

_le-2]|) , @

k(g’g/|0-) = eXp(262

where ||-|| is the L,-norm. Thus, the relevance of virtual
goal g to point g’ is defined by the Mahalanobis distance.

B Manela et al.: Preprint submitted to Elsevier

Page 2 of 14

Bias-reduced HER

We set in (2) £ = o21, where the variance o is a hyper-

parameter. Using kernel regression we score virtual goals
using the goal distribution

u(glo) = / k(g &' |0)g(8)dg’ . 3
gleRn
For a uniform goal distribution equation (3) simplifies to

H(glo) = const-/ k(g 8'lo)dg’ . “)

g'eg

Thus, virtual goals that are located near the distribution’s
edges receive a lower score. For this reason this strategy
will not work for environments where the initial state distri-
butions is within the goal distribution, because initial states
will get the highest scores. Scores can be turned into a prob-
ability distribution over the possible virtual goals by normal-
ization, resulting in the target distribution ¢* of virtual goals

u(glo)

—EL ®)
Sy HElO)dE

q*(&lo) =

where G denotes the range of all virtual goals.

What is unknown to the agent: The agent’s current knowl-
edge about the goal distribution is represented by the pro-
posal distribution g(g) of virtual goals and is initialized with
zero. The mismatch between the proposal and target distri-
bution is calculated using the clipped local difference, which
is bounded from below by zero, and given by

w(g) = max[q*(g) — q(8).0] . (6)

Normalization leads to the probability used for prioritization
w(g)

Zg’ eC I/U(g/) ’

where G denotes the set of virtual goals. In practice, we find
it useful to clip the weights to some small value (we used
0.002) instead of zero, so all virtual goals have some prob-
ability of getting sampled. This trick makes learning more
stable.

p(@) = vged, @)

3.1.3. Implementation

For the implementation of the algorithm we discretize
the range of virtual goals G = S into M X N grid cells and
approximate the target and proposal distributions of virtual
goals over the grid cells as

. u(Gi-)lo)

¢EG=Gplo) = — e ®)
I wG o)

0E=Gj) = o YIEEcl)) ©)

geR

fori =1,...,M,j = 1,...,N, where (i, j) denotes the
center of the grid cells, [-] is the indicator function and R
the replay buffer of virtual goals with size |R|. To stabilize

the learning, we initialize the hyper-parameter 62 to a high
value (2) and gradually decrease it to its final value (0.2) by
a decreasing factor of 0.9 after every 50 training cycles. The
weight of the virtual goal g is the weight of its bin

max [¢*(bin(g)|o) — q(bin(g)), 0], (10)

and the prioritization probability is defined as in equation
(7). See Alg.1 for a pseudo-code of the algorithm.

w(@ =

Algorithm 1 Instructional-Based HER

Require:
e an off-policy RL algorithm A, > e.g. DQN, DDPG
e areward function: SX A XG> R, >e.g.
r(s,a, g) = —1 if fail, O if success
e a goal distribution density g(x)
e std o for the target distribution g*

Note: Il denotes concatenation of vectors
1: Initialize A
2: Initialize replay buffer R, |R| < 0
Initialize proposal distribution ¢ >
q; =0 Vi,je[l..M],[l...N]

w

4: Calculate g* > Using equation (8)
5: while True do
6: for Episode < 1, M do
7: Sample a goal g and an initial state s
8: fort < 0,7 —1do
9: Sample an action a, < (s,||g)
10: Execute a, and observe a new state s,
11: fort < 0,7 —1do > IBS
12: Calculate the priority p(g;) via equation (7)
13: fort < 0,7 —1do
14: ry i =r(5,0:8)
15: Store the transition (s;||g, a;, r;, S;4111g) in R
> standard experience replay
16: Sample a set of virtual goals G for replay
from the future state based on priority p*(g)
17: for g € G do
18: F=r(s;,a,,F)
19: Store (s,||g. a;, 7, 5,41118) in R > HER
20: |R| < |R]+1
21: Update ¢q
22: fort < 1, N do
23: Sample a minibatch B from the replay buffer R
24: Perform one step of optimization using A and

minibatch B

3.1.4. Comparison to Reward Shaping

At a first look, IBS may seem similar to reward shap-
ing, which we aimed to avoid from the beginning. However,
these two concepts are fundamentally different. While the
objective of reward shaping is to find a feedback signal that
describes how close the agent is to task goal completion [12],
IBS relies on the same assumption as in UVFA, namely, that
one goal can be generalized to another by using the general-

B Manela et al.: Preprint submitted to Elsevier

Page 3 of 14

Bias-reduced HER

ization capabilities of neural networks. Under this assump-
tion, IBS can be applied to any task with no further modifi-
cations.

3.2. Filtered-HER

In this section we identify a problem in the existing HER
algorithm and provide a second improvement over the vanilla-
HER algorithm by the removal of misleading samples, re-
sulting in the Filtered-HER algorithm.

3.2.1. Bias in HER

In this section, we discuss a fundamental problem within
the original HER algorithm. A more mathematical explana-
tion is provided in Appendix B. As mentioned in [13], HER
may induce bias in the learning process. Using the achieved-
goal as a virtual goal may lead in some cases to situations
in which the agent performs poorly, even though it repeat-
edly receiving rewards indicating that it should continue to
act in this way. Consider the bit-flipping environment, in-
troduced in [9] with few modifications. In the bit-flipping
environment, the state- and action spaces are S = {0, 1}"
and A = {0,1,...,n — 1}, respectively, for some length n.
Executing the i-th action flips the i-th bit of the state. The
initial and target states are sampled uniformly at the begin-
ning of each episode. Each step has a cost of —1. To il-
lustrate HER’s problem, we add a new action, which has no
effect on the bits and then terminates the game. Although
this action is useless, the agent may think otherwise. As
the state remains the same, this state’s virtual goal will al-
ways be the state itself; thus, the virtual reward of this ac-
tion will always be positive (zero). As a result, the agent
may assume this action is desired. This scenario frequently
happens in manipulation tasks, such as in the Push task of
OpenAl Gym. In this environment, a manipulator needs to
push a box to the desired location. If the manipulator does
not touch the box, the achieved-goal (i.e., the box position)
will not change. Hence, when virtual goals for experience
replay are sampled, they all will be the same and identical to
all the achieved-goals, resulting in misleading positive vir-
tual rewards. This drawback of HER is similar to the role of
terminal states in bootstrapping, in which the values of all
states are gradually updated except for terminal states. Ter-
minal states are, by definition, states for which the achieved
goal is identical to the desired goal. However, no actions are
assigned to terminal states in bootstrapping, nor is any next-
state observed (i.e., a tuple S, A, R, S"), because assigning
actions to terminal states will disturb the learning process.

3.2.2. Method

To resolve this problem, we apply a filter to remove mis-
leading samples. Before storing the virtual sample in the
replay buffer, the filter checks if the virtual goal has been al-
ready achieved in the current state. If so, the sample will be
deleted, and the next virtual goal will be generated. See Alg.
2 for the pseudo-code of the Filtered-HER algorithm.

Algorithm 2 Filtered-HER

Require:
e an off-policy RL algorithm A, > e.g. DQN, DDPG
e areward function: SX A XGC - R, >e.g.
r(s,a, g) = —1 if fail, 0 if success

Note: Il denotes concatenation of vectors

1: Initialize A
2: Initialize replay buffer R
3: while True do
4: for Episode <« 1, M do
5: Sample a goal g and an initial state s.
6: fort < 0,7 —1do
7 Sample an action a, < #z(s,||g)
8: Execute a, and observe a new state s,
9: fort < 0,7 —1do
ry i=r(s;,0:8)

—_ =
- o

Store the transition (s;||g, a;, 7;, S;4111g) in R
> standard experience replay

12: Sample a set of virtual goals G for replay
G := S(current episode)

13: for g € G do

14: F=r(s;,0;,8)

15: if r(s;,_1,a,_,8) = 0 then

16: Skip transition > Filtered-HER

17: Store (s,||8. a;, 7, s,41118) in R > HER

18: forr < 1,N do

19: Sample a minibatch B from the replay buffer R

20: Perform one step of optimization using A and

minibatch B

4. Experiments

Our algorithms were implemented and validated in three
ball-throwing environments with different levels of complex-
ity, which we describe next.

4.1. Environments

The original HER algorithm was tested on three envi-
ronments (OpenAl-Gym), consisting of the following fetch
tasks [13, 14]: Push, Slide and Pick and Place. The fetch
environments include a manipulator and the agent, which
controls the end-effector position. The manipulator’s state-
space is contained within the goal-space, and thus, is in-
compatible with our condition of having separated goal- and
initial-state distributions. We have therefore built three new
environments in Python using Pygame [15], which are more
complex in terms of control than the ones proposed by Open-
Al

1. Hand: In this task, the hand needs to pick up the ball
and throw it at the target (Fig.1a).

2. Hand-Wall: Same as the Hand task, but in addition,
a wall is placed in-between the agent’s workspace and
the target. The agent needs to throw the ball above the
wall (Fig.1b).

B Manela et al.: Preprint submitted to Elsevier

Page 4 of 14

Bias-reduced HER

[J [)

O 7 @®

(a) Hand Environment

(b) Hand-Wall Environment

(c) Robot Environment

Figure 1: Environments: (a) The agent needs to pick up the ball and throw it towards the black-hole. (b) The agent needs to
pick up the ball and throw it above the wall towards the black-hole. (c) The agent needs to pick the ball with the end-effector by
controlling joint velocities and throw it towards the black-hole. The red and black bounding boxes indicate the workspace of the
hand and the region of possible target locations, respectively. The objects’ dimensions were enlarged for visualization purposes.

3. Robot: In this task, a manipulator needs to pick up the
ball and throw it at the target (Fig.1c). The agent con-
trols the end-effector via the joint velocities, similar to
real-world scenarios.

Similar to the OpenAl environments, in both, the Hand and
Hand-Wall tasks, the agent controls the end-effector posi-
tion. However, in all our environments, the agent must learn
to throw the ball in the right moment with the right velocity.
For the full description of the environments, see Appendix
C.

4.2. Algorithms Performances

Training is performed using the DDPG algorithm [5], in
which the actor and the critic were represented using multi-
layer perceptrons (MLPs). See Appendix D for more details
regarding network architecture and hyperparameters. In or-
der to test the performance of the algorithms, we ran on each
environment all four combinations: (I) HER, (I) Filtered-
HER, (III) HER with IBS and (IV) Filtered-HER with IBS.
In all algorithms we used prioritized experience replay (PER)
[16]. The results of the algorithms are evaluated using the
following criteria: (I) Virtual goal distributions, (II) Suc-
cess rate, (III) Distance-to-goal and (IV) Q-function estima-
tion. The first criterion analyzes the differences in virtual
goal selection for the different algorithms, the second and
third evaluate the performances of the agent and the fourth
represents the agent’s bias.

4.2.1. Virtual Goal Distributions

We compare the virtual goals distributions, resulting from
the different algorithms, with the target distribution g* de-
rived in (5) and visualized in (Fig.2). The comparison is
performed, both, visually by plotting the distributions, and
analytically by using the Kullback-Leibler (KL) divergence.
The KL divergence is defined by

KL(PlIO) = Y P(v) log <@>

11
ot ”

and measures the difference between two probability distri-
butions, P and O, which correspond in our case to the target
and proposed distributions, respectively.

0.008
0.007
0.006
0.005
1 0.004
0.003

0.002

Figure 2: Target Distribution. The target distribution is cal-
culated for o = 0.2 (screen size is 1 X 1 in dimensionless units)
and minimum value clipped to 0.002. Brighter colors indicate
greater ratio of virtual goals.

Table 1 shows the effect of different virtual goal selec-
tion strategies and the resulting distributions. The virtual
goal distribution generated by Filtered-HER-IBS is the clos-
est to the target distribution as indicated by the KL distance
in Table 2. As shown in Table 1 Filtered-HER reduces dra-
matically the number of samples on the floor (y = 0) by
removing misleading samples.

4.2.2. Success Rate and Distance from Goal

As shown in Fig.3a and 3b, the vanilla-HER algorithm
fails to solve these tasks with nearly zero success rate and al-
most no improvements in the distance-to-goal measure. With-
out using Filtered-HER, the agent observes too many mis-
leading samples and fails to learn. Although Filtered-HER
improved the success rates in all tasks, the performances can
be further increased by using IBS for virtual goal selection.
Moreover, IBS leads to more robust performances, as indi-
cated by the reduced range of the 33rd to 67th percentile.
Performances are mainly affected by two factors: the com-
plexity to affect the achieved goal (e.g., moving the ball) and
the complexity to reach the goal (e.g., throwing the ball to-
wards the target).

Filtered-HER will have more significant impact on tasks,
where it is difficult to affect the achieved goal, while IBS will

B Manela et al.: Preprint submitted to Elsevier

Page 5 of 14

Bias-reduced HER

HER-IBS

Filtered-HER Filtered-HER-IBS

Hand

0.008

0.007

Hand-Wall

0.006

0.005

0.004

Robot

0.003

0.002

Table 1 Proposal distributions of virtual goals. Brighter colors indicate greater ratio
of virtual goals.

HER HER-IBS Filtered-HER Filtered-HER-IBS
Hand 2.0317 1.6623 0.3436 0.2272
Hand-Wall 5.0574 4.6005 0.9606 0.5971
Robot 2.3201 1.9909 0.8609 0.3113

Table 2 KL Distance

be helpful for tasks, where it is difficult to reach the target.
For example, in the Robot task, unlike the Hand tasks, ap-
plying a constant velocity will not result in the hand to get
stuck at walls, but rather help to reach almost every possible
location in workspace. Therefore, it is simpler to reach the
ball in the Robot task than in the Hand tasks, and thus, Fil-
tered HER is not as effective for the Robot task as it is for
the Hand tasks. After reaching the ball, the agent tries to
throw the ball towards the target. For the Hand-Wall task, it
is harder to reach the goal, and thus, the agent does not see
as many instructive samples. In this case, IBS is especially
important as it exploits as much information as possible.

4.2.3. Estimated Q-value

Misleading samples lead to optimistic estimates of the
action-value function, i.e., the agent overestimates its perfor-
mance. To demonstrate the bias, Fig.4 compares the agent’s
evaluation for the Q-value of the initial state and action. Note
that the unfiltered versions, although performing poorly as
shown in Fig.3a, led to higher Q-value estimates than the
better performing filtered versions (except for the Hand-task,
where the FilteredHER_IBS performed so much better than
the unfiltered versions that its O-value estimate exceeded the
biased estimations). Thus, the filter reduces the bias consis-
tently and leads to more accurate evaluation of future returns
(Appendix B).

5. Related Work

Prioritizing samples over their relevance to the learning
has been used in several previous papers, such as Priori-
tized Experience Replay (PER) [16], Energy-Based Hind-
sight Experience Prioritization (EBP) [17], Hindsight Ex-
perience Replay With Experience Ranking (HER+ER) [18]
and Curriculum-guided Hindsight Experience Replay (CHER)
[19]. Similar to our algorithm, PER gives higher priority to
samples that are unknown to the agent. However, unlike IBS,
PER uses the TD-Error of the sample to measure the agent’s
knowledge (i.e., a smaller error implies more acquaintance).
PER receives the buffer as a given input set and prioritizes
when sampling from it for experience replay. In contrast,
IBS prioritizes when building the buffer during experiences.
In addtion, unlike IBS, PER only prioritizes over unfamil-
iar samples and does not take into consideration that some
samples might be better towards task completion than others.
EBP applies a different prioritization scheme by calculating
the amount of (translational and rotational) kinetic energy
transferred to the object during an episode. Trajectories as-
sociated with a larger kinetic energy transfer are therefore
preferred, assuming that the agent can learn more from tra-
jectories in which the object moved significantly. EBR does
not differentiate between movement directions and is thus
applicable for cases where all directions are equally infor-
mative for learning. Similar to PER, EBP receives the buffer
as a given input set and prioritizes when sampling from it
for experience replay. Since PER and EBP prioritize during

B Manela et al.: Preprint submitted to Elsevier

Page 6 of 14

Bias-reduced HER

Hand Hand-wall Robot
— FilteredHER — FilteredHER — FilteredHER
— FilteredHRE_IBS —— FilteredHER_IBS —— FilteredHER_IBS
081 — HERIBS 08 —— HER_IBS 08 — HER_IBS
—— vanilla HER —— vanilla HER —— vanilla HER
06 0.6 06
¥ ® @
€ g e
i
g 04 Soa g oa
H a @
4
0.2 0.2 0.2
0.0 00 L 0.0
0 500 1000 1500 0 1000 2000 3000 4000 5000 6000 7000 0 500 1000 1500 2000 2500 3000
cycle cycle cycle
(a) Success rate
Hand Hand-wall Robot
—— FilteredHER —— FilteredHER —— FilteredHER
— FilteredHRE_IBS — FilteredHER_IBS —— FilteredHER_IBS
600 —— HER_IBS 600 —— HER_IBS 600 —— HER_IBS
— vanilla HER —— vanilla HER —— vanilla HER
500 500 500
Iy
400 400 400
y o M
g 4 g
5 & 5
k3 B k]
< o o
300 300 300
200 200 200
100 100 100
o 500 1000 1500 0 1000 2000 3000 4000 5000 6000 7000 o 500 1000 1500 2000 2500 3000
cycle cycle cycle

(b) Distance to goal

Figure 3: Learning curves for multi-goal manipulation tasks - Hand, Hand-wall, Robot: (a) Success rate. (b) Distance to goal.
Results are shown over 15 independent runs. The bold line shows the median and the light area indicates the range between the
33th to 67th percentile.

Hand Hand-wall Robot
o — FilteredHER 0 —— FilteredHER o —— FilteredHER

— filteredHRE_IBS —— FilteredHER_IBS —— FilteredHER_IBS
—— HER_IBS —— HER_IBS —— HER_IBS
—— vanilla HER —— vanilla HER —— vanilla HER

-5 =5

-10 -10

-15 -15

o o

=20 =20

-25 -25 -25 1

-30 -30 -30

=35 -35 =35

o 500 1000 1500 0 1000 2000 3000 4000 5000 6000 7000 o 500 1000 1500 2000 2500 3000
cycle cycle cycle

Figure 4: Bias evaluation using the Q-values of the initial state and action. Results are shown over 15 independent runs. The
bold line shows the median, and the light area indicates the range between the 33rd to 67th percentile.

B Manela et al.: Preprint submitted to Elsevier Page 7 of 14

Bias-reduced HER

experience replay, both methods can be applied with IBS.
As in our work, both HER+ER and CHER prioritizes vir-
tual goals, enabling the agent to learn better how to achieve
real goals. Yet, there is a fundamental difference between
these and our methods. When prioritizing, HER+ER and
CHER only considers the similarity between the proposed
virtual goals and the desired goal of this specific episode,
instead of taking the entire goal distribution into considera-
tion. Therefore, the algorithm may skip virtual goals, which
are instructive for other possible goals. Furthermore, when
prioritizing, HER+ER only takes the similarity to the real
goal into consideration and ignores, whether the agent has
already learned a certain region of state space, resulting in
an overflow of samples from that location. Although CHER
considers the sparsity of virtual goals, a weighting between
exploration (sparsity) and exploitation (relevance) must be
specified, whereas in our method it is embedded by introduc-
ing a single importance measure (the instructiveness), which
combines both aspects. In addition, our method takes all
previous virtual goal distributions into considerations, when
assigning scores to new potential virtual goals. The bias in-
duced by HER has been already recognized in [13], and a so-
lution was suggested in Aggressive Rewards to Counter Bias
in Hindsight Experience Replay (ARCHER) [20]. To reduce
bias, ARCHER multiplies all virtual rewards by a decreasing
factor. Thus, ARCHER does not distinguish between biased
and unbiased virtual samples and applies a bias reduction to
all virtual samples. In Filtered HER bias-inducing samples
are removed a-priori.

6. Conclusion

In this paper we have introduced two novel techniques:
an Instructional-Based Strategy (IBS) for virtual goal se-
lection and a Filtered-HER for the removal of misleading
samples. IBS is used for prioritizing more instructive vir-
tual goals when collecting experiences while Filtered-HER
is used to reduce bias that may occur when using HER. Both
methods showed significant improvements in performances
and sample efficiency when compared to vanilla-HER in the
tested environments. Like HER, our methods can be applied
using any off-policy RL algorithm, such as DDPG. More-
over, the presented methods can be easily combined with
any experience replay prioritization technique as we have
demonstrated in our experiments using PER.

B Manela et al.: Preprint submitted to Elsevier

Page 8 of 14

Bias-reduced HER

A. Spatio-temporal goal distributions

In this appendix we consider non-uniform and non-stationary goal distributions.

A.1. Non-uniform goal distributions

Our approach can be extended to non-uniform goal distributions g(x). It is sufficient to assume that the goal distribution
is provided in terms of samples. We can then represent the goal distribution g(x) as a Gaussian mixture model (GMM) given
by

N N
gx) = Y NG, Yp=1, 0<p <1 (12)
i=1 i=1

and use Expectation Maximization (EM) to estimate the parameters of the GMM model. After estimating the parameters,
the integral (3) with Gaussian kernel (2) can be performed since the product of two Gaussians is again a (un-normalized)
Gaussian. Generally, it is

K 1 K

2rX|2 1 _ _
[[VGuz0 = z-NanD., z=—22 _op l§<uT2 'u- Zuiﬁklukﬂ (13)
k=1 [1Y, 122212 k=1

with X = (Z,’;l 2‘.;1)_1 and p = X(Ele E;lyk). Using (12), (13), the goal distribution (3) can be evaluated leading
to

N

N
u(glo) = / k(g x|0)g(x)dx = (21)"/?|Z4|'/? / D b N Gl ZON (x18. Bg)dx = 2a)"?|Zg |2 Y piZ,, (14)
x i=1

x =1

where

1

27X|2 1 — - ~ 1~

Zi= = e lz(ﬂTE - nE —gTEg‘gﬂ =
275, 2 +[27E, |2

with = (£ +X;') ™ and p = X(Z; ' g, +2;'5).

Alternatively, the integral can be evaluated using Monte Carlo integration: Let Q € R" and V' = fQ dx be the game’s
domain. Given N uniform samples, X, ---, X 5y ~ U(2), we can approximate the goal distribution as

N
u(@lo) ~ iglo) = % ;ac(g, X,l0)g(X,). (16)

Due to the law of large numbers, itis limy _, o, f#(g|6) = u(g|o). Although the true value is obtained for large NV, the induced
variance may be significant. To reduce variance, importance sampling can be applied. Instead of sampling X, ---, X from
a uniform distribution, one can sample from a chosen distribution A(x). It can be shown that Var(ji(g|c)) is minimized when
sampling X |, ---, X 5y from A(x) such that h(x) « u(g|o), which is unknown (see [21]). A good candidate for the sampling
distribution A(x) is the normalized RBF kernel, which is the Gaussian distribution N'(x|g,). A second option may be a
Uniform distribution within the domain of the goal distribution. Yet, the goal distribution’s range may be very large or even
go to infinity (for example, if the goal distribution is an exponential distribution). For these cases, it is recommended to use
the Gaussian distribution for sampling. Although Monte Carlo integration is computationally costly, the algorithm requires to
evaluate the integral only once per o value used in training, which can be performed off-line.

A.2. Non-stationary goal distributions

Our method was not developed for non-stationary goal distributions, yet in most cases, it should still work fine. As
explained in section 3.1.3, we change the value of o overtime to stabilize training. Changing the ¢ hyper-parameter over time
has a similar effect to changing the goal distribution. As long as the target distribution of virtual goals is updated to the new
goal distribution, our algorithms are able to adapt. Performance may be affected in extreme cases, where the goal distribution
changes drastically. For example, IBS may end up with an almost useless virtual-goal distribution, yet should recover quickly
due to its higher prioritization for the most instructive virtual goals.

B Manela et al.: Preprint submitted to Elsevier Page 9 of 14

Bias-reduced HER

B. Mathematical motivation for Filtered-HER

In this appendix, we provide a more mathematical motivation for Filtered-HER.
In value-function based RL algorithms (e.g., Q-learning, DQN, DDPG, etc.), a Q-function Q(s, a) is evaluated for every
transition, using the Bellman Equations [1] (we can generalize these algorithms to multi-goal tasks by evaluating Q(s, a, g)
[10]). To scale RL algorithms, we use deep neural networks and sample past transitions from a replay buffer [3]. We can
formalize the evaluation objective using Importance Sampling. If we denote the distribution of real transitions as 7, the
distribution in the replay buffer as /3 and the (s, a, g) tuple as x, then the expectation of the Q-function is given by

P P
E,plQ®)] = Y PD)OX) = Y Bx) [%Q(X)] = Eqp [%Q(X)] : (17)

In deep reinforcement learning without HER, the replay buffer is sampled directly from the real distribution P, and the
buffer size is restricted, thus, mostly containing transitions from recent policies. Therefore, the correction factor P(x)/B(x)
is close to 1, and thus, E, »[Q(x)] = E,_g[O(x)]. However, when using HER, this assumption no longer holds. By
adding synthetic virtual transitions to the buffer, the distribution may be changed. Since P is unknown, we cannot apply the
correction factor P(x)/B(x) to the transitions and our estimation may be biased. In most cases, the effect over the distribution
will be minor, and consequently, it will not hinder learning. However, as discussed in section 3.2.1 and shown in Table 1,
in the absence of a filter, the replay buffer may get overflowed with useless, impossible transitions x’ = (s, a, g"), where the
agent already achieved the goal g’ in the previous state s (#(s, g’) = 0). Since these transitions always have a non-negative
reward, the agent converges to a local optimum between the real and fake transitions. As the agent will never encounter the
impossible transitions, while interacting with the environment, the local optimum results in biased, optimistic estimation of
the O-function (see section 4.2.3 and Fig.4). For these specific transitions, we know that the real distribution is P(x’) = 0
since we can never encounter these samples in real episodes. Therefore, to reduce bias, we can apply a correction factor equal
to 0 on these transitions, which is equivalent to filtering them out.

B Manela et al.: Preprint submitted to Elsevier Page 10 of 14

Bias-reduced HER

C. Environments

In this appendix we describe the environments used for the validation of the algorithms. The environments were built
in Python using Pygame. All environments are fully observable, thus, the agents has perfect knowledge of the state of the
environment

C.1. Hand throwing tasks
These tasks include a hand, a ball and a target. The goal in these tasks is to get the ball close enough to the target

C.1.1. Hand
In this game, the ball is initialized on the ground with probability 0.5 and within the hand otherwise. The agent needs to
learn how to pick the ball and throw it towards the target (see Fig.1a).

C.1.2. Hand-Wall
This game is like the Hand task, but there is also a wall and the agent needs to throw the ball above the wall (see Fig.1b).

C.1.3. Observations

Table 3: Hand_throw observations

H Num ‘ Observation Type H

0 hand x position continuous
1 hand y position continuous
2 hand x velocity continuous
3 hand y velocity continuous
4 hand state (open/close) binary

5 ball x position continuous
6 ball y position continuous
7 ball x velocity continuous
8 ball y velocity continuous

C.1.4. Actions

Table 4: Hand_throw action

H Num ‘ Action Type H
0 hand x velocity continuous
1 hand y velocity continuous
2 hand state (open/close) binary

C.1.5. Goal
Table 5: Hand_throw goal

H Num ‘ Goal Type H

0 black-hole x position | continuous
1 black-hole x position | continuous

C.1.6. Reward function
The reward is binary: 0 if the target is achieved and —1 otherwise:

RGs,) = 0, ||goalpos - ballposl| <e
! —1, otherwise

B Manela et al.: Preprint submitted to Elsevier Page 11 of 14

Bias-reduced HER

C.2. Robot throwing tasks

The Robot task includes a manipulator, a ball and a target. The goal in this task is to get the ball close enough to the
target by controlling the joints velocities of the robotic arm. The ball is initialized within the manipulator’s reachable area
with probability 0.5 and within the end-effector otherwise. The agent needs to learn how to pick the ball and throw it towards

the target (see Fig.1c).

Table 6: Robot_throw observation

Num Observation Type

0-1%* 6 (joint’s angles) continuous
2 end-effector x position continuous
3 end-effector y position continuous

4-5 6 (joint’s velocity) continuous
6 end-effector x velocity continuous
7 end-effector y velocity continuous
8 end-effector state (open/close) binary
9 ball x position continuous
10 ball y position continuous
11 ball x velocity continuous
12 ball y velocity continuous

* After scaling, 6 is represented by (cos 6, sin).

C.2.1. Actions
Table 7: Robot_throw action

H Num ‘ Action ‘ Type H
0-1 0 (joint’s velocity) continuous
2 end-effector state (open/close) binary

Table 8: Robot_throw goal
H Num ‘ Goal ‘ Type H

0 black-hole x position | continuous
1 black-hole x position | continuous

C.2.2. Reward function
The reward is binary, i.e., 0 if the target is achieved and —1 otherwise:

RGs,) = 0, llgoal ,,s — ball || < e
! 1, otherwise

B Manela et al.: Preprint submitted to Elsevier

Page 12 of 14

Bias-reduced HER

D. Experiment Details

In this appendix we provide a description of the experimental details, including networks’ architectures and hyper-

parameters.

D.1. Training algorithm
All the training was done using the DDPG algorithm with the following parameters:

H hyper-parameters ‘ value H
discount factor (y) 0.98
target-networks smoothing () 7
buffer size le6
€ initial value 1
€ decay rate 0.95
€ final value 0.05

For exploration we used a decaying epsilon-greedy policy:

3k

a with probability 1 — €
a=4a*+ N(0, I o) withprobability 0.8 ¢ ,
rand(a) with probability 0.2 - €

where 0 = 0.05 - action_range and e decays at the beginning of every epoch.
For experience replay we used prioritize experience replay [16].

D.2. Neural networks
We used the same neural network layout for all the experiments:

D.2.1. Actor:
H layer size ‘ type ‘ activation ‘ BN ‘ additional info H
input input dim | Input relu No No
hidden 1 64 FC relu No No
hidden 2 64 FC relu No No
hidden 3 64 FC relu No No
output | actiondim | FC tanh No No
H hyper-parameter ‘ value H
learning rate 0.001
gradient clipping 3
batch size 64
D.2.2. Critic:
H layer size ‘ type ‘ activation ‘ BN ‘ additional info H
input input dim | Input relu Yes No
hidden 1 64 FC relu Yes | concat the layer to the action
hidden 2 64 FC relu Yes No
hidden 3 64 FC relu Yes No
output 1 FC linear Yes No

H hyper-parameter ‘ value H

learning rate 0.001
gradient clipping 3
batch size 64

B Manela et al.: Preprint submitted to Elsevier

Page 13 of 14

Bias-reduced HER

References

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.

MIT press, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,

Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-

ing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics

engine for model-based control. In 2012 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 5026-5033. IEEE,

2012.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas

Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.

Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv

preprint arXiv:1707.06347, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis

Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent

Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforce-

ment learning algorithm that masters chess, shogi, and go through

self-play. Science, 362(6419):1140-1144, 2018.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learn-

ing in robotics: A survey. The International Journal of Robotics Re-

search, 32(11):1238-1274, 2013.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider,

Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Ope-

nAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-

play. In Advances in Neural Information Processing Systems, pages

5048-5058, 2017.

[10] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Uni-
versal value function approximators. In International Conference on
Machine Learning, pages 1312-1320, 2015.

[11] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gen-
eralization. arXiv preprint arXiv:1611.03530, 2016.

[12] Daniel Dewey. Reinforcement learning and the reward engineering
principle. In 2014 AAAI Spring Symposium Series, 2014.

[13] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew,
Bowen Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek
Chociej, Peter Welinder, Wojciech Zaremba Kumar, Vikash Kumar,
and Wojciech Zaremba. Multi-goal reinforcement learning: Chal-
lenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[15] Pete Shinners. Pygame. http://pygame.org/, 2011.

[16] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Pri-
oritized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[17] Rui Zhao and Volker Tresp. Energy-based hindsight experience pri-
oritization. arXiv preprint arXiv:1810.01363, 2018.

[18] Hai Nguyen, Hung Manh La, and Matthew Deans. Hindsight expe-
rience replay with experience ranking. In 2019 Joint IEEE 9th Inter-
national Conference on Development and Learning and Epigenetic
Robotics (ICDL-EpiRob), pages 1-6. IEEE, 2019.

[19] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang.
Curriculum-guided hindsight experience replay. In Advances in Neu-
ral Information Processing Systems, pages 12623-12634, 2019.

[20] Sameera Lanka and Tianfu Wu. Archer: Aggressive rewards
to counter bias in hindsight experience replay. arXiv preprint
arXiv:1809.02070, 2018.

[21] Art B Owen. Importance sampling. Monte Carlo theory, methods
and examples..: http://statweb. stanford. edu/~ owen/mc/Ch-var-is.
pdf, 2013.

2

—

[3

[t

[4

=

[5

=

[6

=

[7

—

[8

=

[9

—

B Manela et al.: Preprint submitted to Elsevier Page 14 of 14

http://pygame.org/

