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Abstract

Physics-informed extreme learning machine (PIELM) has recently received significant attention as

a rapid version of physics-informed neural network (PINN) for solving partial differential equa-

tions (PDEs). The key characteristic is to fix the input layer weights with random values and

use Moore–Penrose generalized inverse for the output layer weights. The framework is effective,

but it easily suffers from overfitting noisy data and lacks uncertainty quantification for the solu-

tion under noise scenarios. To this end, we develop Bayesian physics-informed extreme learning

machine (BPIELM) to solve both forward and inverse linear PDE problems with noisy data in a

unified framework. In our framework, a prior probability distribution is introduced in the output

layer for extreme learning machine with physic laws and the Bayesian method is used to estimate

the posterior of parameters. Besides, for inverse PDE problems, problem parameters considered

as new output layer weights are unified in a framework with forward PDE problems. Finally, we

demonstrate BPIELM considering both forward problems, including Poisson, advection, and dif-

fusion equations, as well as inverse problems, where unknown problem parameters are estimated.

The results show that, compared with PIELM, BPIELM quantifies uncertainty arising from noisy

data and provides more accurate predictions. In addition, BPIELM is considerably cheaper than

PINN in terms of the computational cost.
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1. Introduction

How to leverage the existing data to accurately model and predict PDE-based systems remains

an important issue, especially for solving ill-posed problems, e.g., with unknown parameters and

boundary conditions, for alleviating the influence by noisy data collected from different sensors,

and for reducing the computational cost [1, 2]. Recently, physics-informed machine learning, as a

powerful tool, has attracted increasing attention to addressing those challenges [3]. In particular,

physics-informed neural network (PINN), a general framework for solving both forward and inverse

PDE problems, encodes the underlying physics laws into loss function to constrain the space of

admissible solutions and makes predictions for unknown terms given limited data [4, 5, 6]. PINN

has been successfully used for solving PDEs or complex PDE-based physics problems in various

domains, such as materialogy [7], medical diagnosis [8] and hidden fluid mechanics [9], etc.

Quantifying prediction uncertainty associated with, such as noisy data and unknown terms, is

important for neural network (NN) based inference [10, 11]. However, PINN without the built-

in uncertainty quantification (UQ) may restrict physical and biological applications that require

high reliability. For some UQ problems, generating distributions of output predictions is more

important than point estimates of the solution [12]. In this regard, Yang et al. [13, 14] quantify and

propagate uncertainty in systems by combining generative adversarial network (GAN) and physics-

based loss function. The latent variable models are constructed as probabilistic representations

and the adversarial inference procedure is utilized to train models. While physics laws of systems

are encoded into the loss function instead of the discriminator. To exploit the full potential of the

adversarial inference procedure, Daw et al. [15] propose a GAN framework based on a physics-

informed discriminator, where the physics laws are incorporated into the learning of both the

generator and the discriminator model. In addition, the Bayesian method achieves many successful

research efforts about UQ in deep learning [16, 17, 18]. Yang et al. [19] combine the Bayesian neural

network and PINN to provide predictions and quantify the uncertainty given noisy data. Prior

probability distributions are placed over weights and the inference is then performed on weights,

while the inference is not tractable in general. Therefore, variational inference is often used to

approximate the inference and these models require more parameters and more computational cost

to converge. To this end, dropout is utilized to estimate the uncertainty in [20], where arbitrary

polynomial chaos is combined with PINN to solve stochastic PDE problems. In current researches,

GAN, Bayesian method or dropout is integrated with PINN to quantify prediction uncertainty,
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where PINN is the basic network structure. PINN is particularly promising for ill-posed forward and

inverse problems, while traditional numerical methods, such as finite element methods [21] and finite

difference methods [22], require well-defined initial and boundary conditions, which is unavailable

in most applications. However, PINN is much slower than traditional numerical methods [23].

Therefore, how to combine the advantages of PINN and achieve numerical equivalent computational

costs to quantification uncertainty is a critical challenge for solving PDE-based problems.

Recently, a novel NN called extreme learning machine (ELM) has received great attention owing

to its low computational cost and simplicity [24, 25]. The most peculiar property of the ELM is that

its input layer weights are pre-set random values and fixed throughout the training process, and

output layer weights are training parameters. Spirited by ELM and PINN, Dwivedi et al. [26, 27]

develop an ELM-based PDE solver called physic-informed extreme learning machine (PIELM) as a

rapid version of PINN to solve the linear PDE problems efficiently. The PDE problem is transformed

into a linear least squares problem by incorporating physics laws into the ELM as the cost function.

Subsequently, the input layer weights are set randomly from a range according to the number of

neurons, which is effective to solve elliptic PDEs with sharp gradients [28]. Besides, for nonlinear

PDE problems, ELM-based PDE solvers transform the PDE problems into nonlinear least squares

problems [29, 30], where the NN is also trained by a nonlinear least squares computation, not

by gradients-based algorithms. The ELM-based PDE solver as a data-driven technology inevitably

faces noise scenarios in real-life applications. The ELM-based PDE solver, however, has two evident

drawbacks for ill-posed problems with noisy data:

1. For linear PDE problems, the output weights solved by Moore–Penrose generalized inverse easily

suffer from overfitting noisy data and the accuracy of the solver is drastically sensitive to the

number of hidden neurons under noise scenarios.

2. The ELM-based PDE solvers are not equipped with the built-in uncertainty quantification at

current works, which may restrict their real applications.

In this paper, we propose a novel Bayesian physics-informed extreme learning machine (BPIELM)

to solve both forward and inverse PDE problems with noisy data, see Fig.1, where the Bayesian

method is used to quantify the uncertainty from the scattered noisy data. The Bayesian framework

naturally quantifies the uncertainty arising from noisy data [31]. BPIELM consists of two parts:

the prior for the extreme learning machine with physics laws and the Bayesian method for esti-
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mating posterior distributions of parameters. The first part is to incorporate physics laws into the

ELM as the cost function and introduce a prior distribution in the output layer weights, then the

PDE problem is transformed into a linear least squares problem. In particular, for some inverse

problems, the PDE problem parameters are considered as new output layer weights. The second

part is to estimate posterior distributions of parameters and quantify the prediction uncertainty for

the solution. We demonstrate the BPIELM method over a range of forward as well as inverse PDE

problems and conduct a systematic comparison with PIELM and PINN. In summary, the followings

are main benefits of BPIELM,

1. BPIELM is equipped with the built-in uncertainty quantification, which provides more accurate

predictions than PIELM under noise scenarios and has lower computational costs than PINN.

2. Compared to PIELM, BPIELM avoids overfitting by estimating the probability distribution of

output values instead of fitting noisy data, and hence is not drastically sensitive to the number

of hidden neurons.

3. BPIELM is also used for some inverse problems in a unified framework, which achieves a com-

petitive prediction accuracy with PIELM and PINN under noise scenarios.

The rest of the paper is structured as follows. Problem statement is presented in section 2. In

section 3, we first briefly review PINN and PIELM, and then present the BPIELM method in detail.

Numerical analysis is conducted in section 4, where we discuss the results of BPIELM, PIELM and

PINN for forward and inverse PDE problems. The conclusions of the paper are in section 5.

2. Problem Setup

Suppose we have a linear partial differential equation (PDE) describing a physical system as

follows:

Lu = fλ(x, y), (x, y) ∈ Ω,

B[u(x, y)] = b(x, y), (x, y) ∈ ∂Ω,
(1)

where L is a linear differential operator, B is a boundary/initial condition operator acting on the

boundary ∂Ω, while u(x, y) and fλ(x, y) are prescribed the solution and source terms parameterized

by the problem parameter λ, respectively.
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In this work, we consider two types of data-driven problems, as summarized in Table 1 and

delineated below (refer to [1] for more problems). The first scenario pertains to a forward PDE

problem, where L and B are known. The problem parameter λ is also known and the solution

u(x, y) is unknown. Given noisy data of b sampled on ∂Ω, our quantity of interest is to infer the

solution u(x, y) at every (x, y) ∈ Ω and quantify its uncertainty. Assume we only have Nb sensors

on the boundary (including sensors of initial condition for simplification) and the dataset in this

scenario is described as D = {Db}, Db =
{

(x
(i)
b , y

(i)
b ), b̄(i)

}Nb

i=1
. Assume that the measurements are

independently Gaussian distributed centered at the hidden real value as follows:

b̄(i) = b
(
x
(i)
b , y

(i)
b

)
+ ε

(i)
b , i = 1, 2 . . . Nb, (2)

where ε
(i)
b is independent Gaussian noises with zero mean. Assume that the fidelity of each sensor

is known and the standard deviation of ε
(i)
b is known to be σ

(i)
b .

The second scenario pertains to an inverse PDE problem, where L and B are known. The

problem parameter λ is unknown, while u(x, y) is partially known and some extra measurements

on u(x, y) are available. Given noisy data of u in Ω as well as noisy data of b, our quantity of interest

is to infer not only the solution u(x, y) at every (x, y) ∈ Ω but the problem parameter λ, and quantify

its uncertainty. Assume we have Nu sensors in the domain Ω and Nb sensors on the boundary ∂Ω.

The dataset in this scenario is described as D = {Du,Db}, where Du =
{

(x
(i)
u , y

(i)
u ), ū(i)

}Nu

i=1
and

Db =
{

(x
(i)
b , y

(i)
b ), b̄(i)

}Nb

i=1
. Similarly, the measurements from Du and Db are represented as

ū(i) = u
(
x
(i)
u , y

(i)
u

)
+ ε

(i)
u , i = 1, 2 . . . Nu,

b̄(i) = b
(
x
(i)
b , y

(i)
b

)
+ ε

(i)
b , i = 1, 2 . . . Nb,

(3)

where ε
(i)
u is also the independent Gaussian noise with zero mean. Assume that the fidelity of each

sensor is known and the standard deviation of ε
(i)
u is known to be σ

(i)
u .

3. Method

3.1. A primer in physics-informed neural network and physics-informed extreme learning machine

PIELM is considered as a rapid version of PINN, while BPIELM is the combination of PIELM

and the Bayesian methods. Therefore, in this subsection, we briefly review PINN and PIELM.
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Table 1
Problem considered in this paper.

Considered data-driven problem corresponding to following equation
Lu = fλ(x, y), (x, y) ∈ Ω, and B[u(x, y)] = b(x, y), (x, y) ∈ ∂Ω

Forward PDE problem
L,B known
fλ,b noisy data

u(x, y) unknown
λ known

Dataset D = {Db},where

Db =
{

(x
(i)
b , y

(i)
b ), b̄(i)

}Nb

i=1
Objective u(x, y), uncertainty

Inverse PDE problem
L,B known
fλ, b noisy data

u(x, y) partially known
λ unknown

Dataset D = {Du,Db},where

Du =
{

(x
(i)
u , y

(i)
u ), ūi

}Nu

i=1
,Db =

{
(x

(i)
b , y

(i)
b ), b̄i

}Nb

i=1

Objective λ, u(x, y), uncertainty

3.1.1. Physics-informed neural network

PINN proposed by Raissi et al. [5] is utilized to solve forward and inverse PDE problems.

The key idea of PINN is to encode the physic laws into loss function by adding a penalty term

to constrain the space of admissible solutions and then the problem of solving PDEs in Eq.(1) is

transformed into an optimization problem of minimizing the loss function. Concretely, a multi-

layer perception with the activation function is first constructed. Then, to measure the difference

between the NN and physics laws, the loss function is defined as

L(θ) = wfLf (θ; Tf ) + wbLb (θ; Tb) + wuLu (θ; Tu ) , (4)

where

Lf (θ; Tf ) =
1

|Tf |
∑
x∈Tf

‖f(t,x)‖2,

Lb (θ; Tb) =
1

|Tb|
∑
x∈Tb

‖B(x)− b‖2,

Lu (θ; Tu ) =
1

|Tu |
∑

x∈Tu

‖û(x)− u(x)‖2.

(5)
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wf , wb as well as wu are hyper-parameters of weights. f represents the PDE residual in Eq.(1). θ

represents weights and bias of the NN. Tf , Tb, and Tu denote training points from PDE residual,

boundary and data constraints, respectively. In other word, the loss function of PINN is a weighted

sum of multiple terms, including PDE, boundary and data constraints.

Finally the NN is trained to search for the best parameters θ by minimizing the loss function,

where automatic differentiation is used to minimize the loss function.

3.1.2. Physics-informed extreme learning machine

Spirited by PINN, Dwivedi et al. [26] propose a rapid version of PINN called PIELM, which

can be applied to stationary and time-dependent linear PDEs. The most peculiar property is that

PIELM is a single-layer feed-forward NN, where its input layer weights are fixed with random values

and only output layer weights are training parameters. Then, the physics laws are incorporated

into the NN as the cost function. In particular, the linear nature of linear PDEs and the physics

laws in Eq.(1) are combined to solve a linear equation as follows:

Hc = T, (6)

where c is the unknown output layer weights and H as well as T are known matrices that contain

physic laws (PDE, boundary and data constraints). Finally, the predictions of c come from linear

least squares solution by

cpred = H†T, (7)

where H† =
(
HTH

)−1
HT represents the Moore–Penrose generalized inverse matrix of H.

3.2. Bayesian physics-informed extreme learning machine

BPIELM is an ELM-based PDE solver that combines two ideas from PIELM and the Bayesian

method. The first idea, coming from PIELM, is to incorporate the physics laws into ELM as the cost

function, making linear PDE problems transformed into a linear least squares problem. The other

one, coming from Bayesian ELM [32, 33], is combining the Bayesian method with ELM to naturally

quantify the uncertainty for regression and classification tasks. The output layer parameters are

defined as a prior distribution and are optimized by the Bayesian method, not by the Moore–Penrose

generalized inverse. Since PIELM is not equipped with the built-in uncertainty quantification and is
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prone to overfit noisy data, we resolve two drawbacks by combining characteristics between PIELM

and the Bayesian framework. In addition, we also unify the forward and inverse PDE problems in

the one framework. BPIELM consists of two parts: the prior for extreme learning machine with

physics laws and the Bayesian method for estimating posterior distributions of parameters. The

first part is incorporating physics laws into the NN as the cost function and introducing a prior in

the output layer weights, then the PDE problem is transformed into a linear least squares problem.

The second part is to estimate posterior distributions of parameters and quantify the prediction

uncertainty. Fig.1 shows the conceptual flow of the BPIELM method and the detailed descriptions

are provided in the following sections.

Fig. 1. Conceptual flow of the BPIELM method with noisy data. p(ω | η) is the prior for the output layer weights as
well as problem parameters, p

(
Y | ω, σ2

)
represents the likelihood of measurements, and p

(
ω | Y, η, σ2

)
represents

the posterior.

3.2.1. The prior for extreme learning machine with physics laws

We consider a single-layer NN with N neurons in Fig.1. The key of the ELM is to pre-set the

input layer weights randomly, which are fixed throughout the training process. The parameters

of the input layer are defined as χ = [x, y, 1]T , α = [α1, α2, · · · , αn]T , β = [β1, β2, · · · , βn]T ,

γ = [γ1, γ2, · · · , γn]T , where α, β and γ are input layer weights. The nonlinear activation function

is ϕ = tanh and the output layer weights are ω = [ω1, ω2, · · · , ωn]T . Then the output of kth hidden
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neuron is represented by ϕ (zk), where zk = [αk, βk, γk]χ. The output of the NN is written as

û(χ) = ϕ (z)ω. (8)

Given û(χ), the partial derivatives of Eq.(8), with respect to the independent variables, are

∂kû
∂xk =

∑n
j=1 ωjα

k
j
∂kϕ
∂zk

,

∂kû
∂yk

=
∑n
j=1 ωjβ

k
j
∂kϕ
∂zk

,
(9)

where k refers to the kth order derivative.

Therefore, according to Eq.(1), (2) and (3), the physics laws are incorporated into the NN by

introducing physics-based training errors, ξf , ξb. The training errors ξf , ξb are defined as errors in

approximating PDE and boundary/initial condition, respectively,

ξf = Lϕ (z)ω − fλ(x, y) = 0,

ξb = B[ϕ (z)ω]− b̄(x, y) = 0.
(10)

For the forward problems, Eq.(10) leads to a linear equation, which is represented as

Hω = Y, (11)

where H ∈ RN∗×N , N∗ = Nf + Nb, N is equal to the neuron number. H and Y are matrices

determined by L and B. The output layer weight w is the training parameters.

In particular, for some inverse PDE problems in this work, we consider the type of PDEs and

its training errors in approximating the PDE can be written by separating variables as

ξf = Lϕ (z)ω +
∑m
j=1 φjλj − f̃ = 0, (12)

where φj and f̃ are determined by separating variables. Under noisy data in Eq.(3), the training

9



errors in approximating the boundary/initial condition and data constraints are represented by

ξb = (Hb, 0)

 ω,

λ,

− b̄(x, y) = 0,

ξu = (Hu, 0)

 ω

λ

− ū(x, y) = 0.

(13)

For the inverse problems, Eq.(12) and (13) also lead to a linear system,

H̃ω̃ = Ỹ, (14)

where ω̃ = [ω,λ]T , H̃ ∈ RN∗×N , N∗ = Nf +Nb +Nu as well as Ỹ, are matrices determined by the

L and B. The problem parameters are also considered as output layer weights.

In summary, physics laws are encoded into the linear system by using the linear nature of linear

PDEs. To simplify the following representation, the linear system for forward or inverse problems is

written as Hω = Y, where ω is the training parameters. In most applications of Bayesian theory,

a commonly used prior for ω is that each component of ω is an independent Gaussian distribution

with zero mean, which is represented by

p(ω | η) = N
(
0; η−1I

)
, (15)

where I is the identity matrix and η is a hyperparameter, which will be optimized the following

steps.

3.2.2. The Bayesian method for estimating posterior distributions of parameters

In this subsection, the Bayesian method is used to estimate posterior distributions of parame-

ters, which improves the over-fitting problem of ELM-based solvers and quantifies the prediction

uncertainty. According to wide application of Bayesian theory, most models are divided into two

steps:

1. Inference of the posterior distribution of model parameters. Suppose ω is the set of parameters

and D is the dataset. The posterior distribution is proportional to the product of the prior
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distribution and the likelihood function,

P (ω | D) ∝ P (ω)P (D | ω). (16)

2. The output Ynew can be given by the integral of the posterior distribution of ω for input

instances of χnew,

P (Ynew | χnew,D) =

∫
P (Ynew | χnew,ω)P (ω |D)dω. (17)

Suppose the linear system follows the relationship,

Y = Hω + ε, (18)

where ε follows a Gaussian distribution N
(
0;σ2

)
. The probability model and likelihood function

are then derived as

P
(
Y | ω, σ2

)
=

(
1

2πσ2

)N∗
2

exp

(
−‖Y −Hω‖2

σ2

)
, (19)

where N∗ is the dimension number of H.

Under the assumption that the prior distribution and the likelihood function follow Gaussian

distributions, the posterior can be derived as

p
(
ω | Y, η, σ2

)
=
p
(
Y | ω, σ2

)
p(ω | η)

p (Y | η, σ2)
, (20)

which also follows a Gaussian distribution with a mean value of µ and a variance of Σ [34],

µ = σ−2ΣHTY,

Σ =
(
ηI + σ−2HTH

)−1
.

(21)

Then the optimal values of hyper-parameters, η and σ, are obtained by Evidence Procedure
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[35]. The optimal conditions are iteratively calculated by

η ← N−η·trace[µ]
ΣT Σ

,

σ2 ← ‖Y−Hω‖2
N∗−N+η·trace[µ] ,

(22)

where N∗ is the dimension number of H and N is the number of parameters. The iterative process

stops when µ falls below a given threshold.

Finally, given a χnew, the posterior distributions of the parameters are used by Eq.(17) to

obtain the output Ynew. Besides, the output follows a distribution,

p
(
Ynew | Y, η, σ2

)
= N

(
Hnewω;σ2 (χnew)

)
, (23)

where Hnew = ϕ([α,β,γ]χnew) and the variance is calculated by

σ2 (χnew) = σ2 + χTnewΣχTnew. (24)

4. Numerical result

In this section, we will first consider solving forward and inverse PDE problems by BPIELM

over PIELM and PINN. The forward PDE problem including Poisson, advection and diffusion

equations. The inverse PDE problem includes Poisson and Helmholtz equations, where noisy data

is used to solve the solution and identify the unknown problem parameters. All the experiments are

conducted the very common machine with a 2.8-GHz Intel(R) Xeon(R) Gold 6242 CPU, 128-GB

memory, and NVIDIA GeForce RTX 3090 GPU.

4.1. Poisson equation

The two dimensional (2D) Poisson equation is given by

uxx + uyy =
(
16x2 + 64y2 − 12

)
e−(2x2+4y2), (x, y) ∈ Ω, (25)

where the solution is u = 1
2 + e−(2x2+4y2), Ω = {(x, y) | x = 0.55ρ(θ) cos(θ), y = 0.75ρ(θ) sin(θ)},

and ρ(θ) = 1 + cos(θ) sin(4θ), 0 ≤ θ ≤ 2π. Assuming that the boundary condition is unknown, we

only have Nb sensors on the boundary, which are equidistantly distributed on ∂Ω, and consider the

Gaussian noise in the measurements.
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Fig. 2. Poisson equation: The first row represents the exact solution, the PIELM solution and its absolute error,
respectively. The second row represents the standard deviations for u using BPIELM, the BPIELM solution and its
absolute error, respectively. The noise scale on the boundary is εb ∼ N

(
0, 0.012

)
, the number of neurons is N = 100,

and the number of training points is Nf = 400 and Nb = 38. Black circles represent the positions of sensors.

To solve the Poisson equation in the BPIELM framework, we encode governing equations in

Eq.(25) and sensor measurements on the boundary into the linear system. Then, we use the

Bayesian method to estimate the output layer weights, where the hyperparameters are η = 2e− 1

and β = 1 (the default setting in the following tests). In this case, the number of neurons is

N = 100 and the number of training points is Nf = 400 and Nb = 38. The noise scale on the

boundary is εb ∼ N
(
0, 0.012

)
. Fig.2 shows the results of PIELM and BPIELM, where BPIELM

provides more accurate predictions for the solution and gives the uncertainty quantification for the

solution. In BPIELM, the standard deviation for the case is large on the boundary even though

there are some sensors on the boundary. Besides, the area with a large error has a relatively

large standard deviation. The mean absolute errors (MAEs) of PIELM and BPIELM are 0.029

and 0.019, respectively. The areas with large errors are mainly concentrated in the areas without

sensors, while BPIELM gives predicted means closer to the exact solutions on the right-wing of the

butterfly than PIELM. Fig.3 provides further comparisons between PIELM and BPIELM under

two different noise scales, i.e., εb ∼ N
(
0, 0.012

)
and εb ∼ N

(
0, 0.12

)
. BPIELM provides predictions
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closer to the exact solution than PIELM under two noise scales, and the errors of BPIELM are

mostly bounded by two standard deviations, which increase as the noise scale increases. Moreover,

the errors between predictions and the exact solution increase with the increasing noise scale.

Fig. 3. Poisson equation: The columns (from left to right) represent comparisons between BPIELM and PIELM
at y = −0.3, y = 0 and y = 0.4, where N = 100, Nf = 400 and Nb = 41 are used. The row (from top to down)
represents two noise scales on the boundary, εb ∼ N

(
0, 0.012

)
and εb ∼ N

(
0, 0.12

)
.

The effect of the different number of sensors on the boundary for PIELM and BPIELM is

illustrated in Fig.4. In this test, the number of neurons is N = 100, the number of training points is

Nf = 200, and the noise scale is εb ∼ N
(
0, 0.012

)
. In the first column, we compare the maximum

absolute error on the whole domain (Max-AE) and the MAE of PIELM and BPIELM. BPIELM

achieves much better MAEs than PIELM with a smaller number of sensors. Besides, BPIELM

achieves smaller Max-AEs than PIELM at the same number of sensors. This is because the pseudo-

inverse operation is used in PIELM so as to be prone to overfit noisy data (sensor measurements on

the boundary), causing the abnormal predictions at some points, but BPIELM alleviates overfitting

to decrease the Max-AE. Especially, the results of PIELM and BPIELM with 19 sensors are shown

in the last two columns. The errors of PIELM on the two wings of the butterfly tend to exceed 9,

but BPIELM reduces the error to be less than 0.1. In summary, the above results show that the

number of sensors has a stronger effect for PIELM on the predictive accuracy than BPIELM.
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Fig. 4. Poisson equation: The first column represents the Max-AE and the MAE under different number of sensors
on the boundary, where εb ∼ N

(
0, 0.012

)
, N = 100 and Nf = 200 are used. The second and third columns represent

the predictions at Nb = 19 and its absolute error. The rows (from top to down) represent the results of PIELM and
BPIELM. Black circles represent the positions of sensors.

Fig. 5. Poisson equation: The columns (from left to right) represent the MAE comparisons between BPIELM and
PIELM at Nbc = 21, Nbc = 42 and Nbc = 63, where εb ∼ N

(
0, 0.012

)
and Nf = 400 are used.

PIELM is unstable for the neuron number and is easily affected by noisy data. To this end,

we compare the effect of the different neuron number for a fixed number of training points in

PIELM and BPIELM on the predictive accuracy. The results are shown in Fig.5. Under noise

scenarios, PIELM hardly achieves the best MAE when the number of neurons is equal to or close

to the number of constraints, i.e., N = Nf + Nb. The solution accuracy of PIELM is sensitive to

the number of neurons. Under the small neuron number, MAEs between PIELM and BPIELM
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Table 2
Poisson equation: The comparisons of PINN, PIELM and BPIELM under three noise scales, i.e., εb ∼ N

(
0, 0.012

)
,

εb ∼ N
(
0, 0.052

)
and εb ∼ N

(
0, 0.12

)
. The number of training points is Nf = 400, Nb = 19 and the number of

neurons is N = 100. PINN has four hidden layers with 100 neurons in each layer and the epoch is 3,000.

Noise
scale

0.01 0.05 0.1
Max-AE MAE Time/s Max-AE MAE Time/s Max-AE MAE Time/s

PINN 0.165 0.043 142.30 0.251 0.055 141.02 0.327 0.072 143.32
PIELM 0.447 0.029 1.21 0.998 0.065 1.22 1.41 0.092 1.22

BPIELM 0.232 0.019 2.05 0.516 0.047 2.67 0.759 0.067 2.65

are close. It means that a shallow NN architecture both for PIELM and BPIELM can not learn

enough physics information to depict the whole solution. As the neuron number increases, MAEs

of PIELM increase after reaching the minimum value in a certain range, while MAEs of BPIELM

converge to a small value and fluctuate in a small range. It indicates that an unusually large neuron

number in PIELM causes overfitting noisy data, but BPIELM alleviates the overfitting. Especially

for N > N∗, BPIELM gives much better predictions for the solution than PIELM.

Table 2 is a further comparison of PINN, PIELM and BPIELM under three noise scales, i.e.,

εb ∼ N
(
0, 0.012

)
, εb ∼ N

(
0, 0.052

)
and εb ∼ N

(
0, 0.12

)
. In terms of the computational cost (the

network training time), PINN takes around 140 seconds to train with Adam [36]. In contrast,

the training times of PIELM and BPIELM are on the order of a second and on the order of two

seconds, respectively. For the accuracy of the solution, BPIELM provides more accurate predictions

than PIELM. The MAE of BPIELM is better than PINN, while PINN is superior to BPIELM in

terms of the Max-AE. In a word, BPIELM is not only much more accurate than PIELM but also

considerably cheaper than PINN in terms of the computational cost.

4.2. Advection equation

The advection equation in one and two spatial dimensions (plus time) is given by

∂u
∂t − c

∂u
∂x = 0, (x, t) ∈ Ω,

u (x1, t) = u (x2, t) , u(x, 0) = h(x),
(26)

where u(x, t) is the solution, the constant c = −2 is the wave speed, x1 = 0 as well as x2 = 1 are

the boundary points, and Ω = {(x, t) | x ∈ [0, 1], t ∈ [0, 1]}. The exact solution is considered as

u(x, t) = 2 sech

[
3

(
−1

2
+ ξ

)]
, (27)
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Fig. 6. Advection equation: The first row represents the exact solution, the PIELM solution and its absolute error,
respectively. The second row represents standard deviations for u using BPIELM, the BPIELM solution and its
absolute error. The data noise scale on the boundary is εb ∼ N

(
0, 0.12

)
, the number of neurons is N = 150 and the

number of training points is Nf = 400 and Nb = 28. Black circles represent the positions of sensors.

where

ξ = mod

(
x− x0 + ct+

L

2
, L

)
, L = x2 − x1, x0 = 0.5. (28)

Assuming that the boundary conditions (u(x1, t), u(x2, t) and h(x)) are unknown, we only have

Nb sensors on the boundary, which are equidistantly distributed on ∂Ω, and consider the Gaussian

noise in the measurements.

To employ BPIELM for solving the advection equation, we encode the governing equations and

sensor measurements on the boundary into the linear system, and then use the Bayesian method

to estimate the output layer weights. In this simulation, the number of neurons is N = 150 and

the number of training points is Nf = 400 and Nb = 28. The noise scale on the boundary is

εb ∼ N
(
0, 0.12

)
. The results of PIELM and BPIELM are illustrated in Fig.6, where the data noise

scale on the boundary is εb ∼ N
(
0, 0.12

)
. Under the large noise scale, BPIELM provides better

predictions for the solution than PIELM and gives the uncertainty quantification for the solution.

Concretely, MAEs of PIELM and BPIELM are 0.070 and 0.066, respectively. For BPIELM, the

area with large errors corresponds to relatively large standard deviations. Furthermore, according
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to three temporal snapshots t = 0, 0.5, 1, Fig.7 provides the comparisons between PIELM and

BPIELM under two different noise scales, i.e., εb ∼ N
(
0, 0.012

)
and εb ∼ N

(
0, 0.12

)
. The errors of

BPIELM are mostly bounded by two standard deviations, and the errors between predictions and

the exact solution increase with the increasing noise scale. Under the small noise scale, BPIELM

and PIELM provide predictions close to the exact solution. When the noise scale is large, BPIELM

gives much better predictions than PIELM, especially for the area near the boundary.

Fig. 7. Advection equation: The columns (from left to right) represent comparisons between BPIELM and PIELM
at t = 0, t = 0.1 and t = 1, where N = 150, Nf = 400 and Nb = 28 are used. The rows (from top to down) represent
two noise scales on the boundary, εb ∼ N

(
0, 0.012

)
and εb ∼ N

(
0, 0.12

)
.

Fig.8 illustrates the effect of the different number of sensors on the boundary for PIELM and

BPIELM. In this test, the number of neurons is N = 150, the number of training points is Nf = 400,

and the noise scale is εb ∼ N
(
0, 0.12

)
. In the first column, we compare Max-AEs and MAEs of

PIELM and BPIELM. Max-AEs and MAEs of PIELM are much worse than BPIELM at the same

number of sensors, especially for the scenario with the small number of sensors. In particular, the

last two columns show the predictions of PIELM and BPIELM with 19 sensors. The Max-AE

of PIELM is extremely large, but BPIELM reduces the Max-AE to be less than 0.4. In a word,

BPIELM outperforms PIELM at the same number of sensors in terms of Max-AEs and MAEs.

To further study the impact of the different neuron number on PIELM and BPIELM, we choose

three scenarios with Nbc = 16, 28, 37. The results are shown in Fig.9. Under the noise scenario,
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Fig. 8. Advection equation: The first column represents the maximum error and MAE under different number of
sensors on the boundary, where εb ∼ N

(
0, 0.12

)
, N = 150 and Nf = 400 are used. The second and third columns

represent the prediction at Nb = 19 and its absolute error. The rows (from top to down) represent the results of
PIELM and BPIELM. Black circles represent the positions of sensors.

Fig. 9. Advection equation: The columns (from left to right) represent comparisons of MAEs between BPIELM
and PIELM at Nbc = 16, Nbc = 28 and Nbc = 37, where εb ∼ N

(
0, 0.12

)
and Nf = 400 are used.

PIELM hardly achieves the best MAE when the number of neurons is equal to or close to the

number of constraints, i.e., N = Nf +Nb. Obviously, the solution accuracy of PIELM is sensitive

to the number of neurons, while BPIELM gives much better predictions when the neuron number

is larger enough. Moreover, as shown in the figure (from left to right), when the number of noisy

measurements increases, MAEs of PIELM and BPIELM decreases and the fluctuation amplitude

of the curve increases. However, the fluctuation amplitude of the curve using BPIELM is much
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smaller than that using PIELM, which shows that BPIELM alleviates overfitting noisy data.

Table 3 presents further comparisons of PINN, PIELM and BPIELM with regard to the accuracy

and computational cost under three noise scales. In terms of MAEs, BPIELM is much more accurate

than PIELM and PINN, while Max-AEs of BPIELM are close to PINN. For PINN, PIELM and

BPIELM, Max-AEs and MAEs increase as the noise increase. Besides, PIELM and BPIELM are

dramatically faster to train PINN (by two orders of magnitude).

Table 3
Advection equation: The comparisons of PINN, PIELM and BPIELM under three noise scales. The number of
training points is Nf = 400, Nb = 28 and the number of neurons is N = 150. PINN has four hidden layers with 100
neurons in each layer and the epoch is 4,000.

Noise
scale

0.01 0.05 0.1
Max-AE MAE Time/s Max-AE MAE Time/s Max-AE MAE Time/s

PINN 0.162 0.033 153 0.183 0.055 151 0.223 0.082 153
PIELM 0.442 0.037 0.98 0.541 0.047 1.01 0.670 0.070 1.22

BPIELM 0.170 0.027 1.12 0.209 0.039 1.18 0.224 0.066 1.30

4.3. Diffusion equation

The diffusion equation in one and two spatial dimensions (plus time) is given by

∂u
∂t − v

∂2u
∂x2 = f(x, t), (x, t) ∈ Ω,

u (x1, t) = b1(t), u (x2, t) = b2(t),

u(x, 0) = h(x),

(29)

where f(x, t) is a source term, the constant v = 0.01 is the diffusion coefficient, and Ω = {(x, t) |

x ∈ [0, 1], t ∈ [0, 2]}. The expression for f(x, t) is constructed by choosing the following the exact

solution,

u(x, t) =

[
2 cos

(
πx+

π

5

)
+

3

2
cos

(
2πx− 3π

5

)][
2 cos

(
πt+

π

5

)
+

3

2
cos

(
2πt− 3π

5

)]
. (30)

Assuming that the boundary conditions (b1(t), b2(t) and h(x)) are unknown, we only have Nb

sensors on the boundary, which are equidistantly distributed on ∂Ω, and consider the Gaussian

noise in the measurements.

We approximate the solution using BPIELM to solve the diffusion equation. Concretely, the

governing equations and the sensor measurements on the boundary are encoded into the linear
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Fig. 10. Diffusion equation: The first row represents the exact solution, the PIELM solution and its absolute error,
respectively. The second row represents the standard deviations for u using BPIELM, the BPIELM solution and its
absolute error, respectively. The data noise scales on the boundary is εb ∼ N

(
0, 0.12

)
, the number of neurons is

N = 180 and the number of training points is Nf = 400 and Nb = 28. Black circles represent positions of sensors.

system, and then the Bayesian method is used to estimate the output layer weights. In this test,

the number of neurons is N = 180 and the number of training points is Nf = 400 and Nb = 28.

The noise scale on the boundary is εb ∼ N
(
0, 0.12

)
. Fig.10 illustrates the results of PIELM and

BPIELM, where the data noise scale on the boundary is εb ∼ N
(
0, 0.12

)
. BPIELM makes more

accurate predictions for the solution than PIELM and gives the uncertainty quantification for the

solution. More concretely, MAEs of PIELM and BPIELM are 0.0787 and 0.0186, respectively.

The absolute errors are concentrated over the area near t = 0 but also spread all over the spatial-

temporal domain. Similarly, for BPIELM, the area near t = 0 has a relatively large standard

deviation. To compare two different noise scales, i.e., εb ∼ N
(
0, 0.12

)
and εb ∼ N

(
0, 0.52

)
, Fig.11

provides the results between PIELM and BPIELM at three temporal snapshots t = 0.25, 1, 2. As

we can see in the figure, the errors of BPIELM are mostly bounded by two standard deviations,

and the errors between predictions and the exact solution increases with the increasing noise scale.

In particular, when it comes to the large noise scale, the performance of PIELM is much worse than

BPIELM.

To study the effect of the different number of sensors on the boundary for PIELM and BPIELM,
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Fig. 11. Diffusion equation: The columns (from left to right) represent the comparisons between BPIELM and
PIELM at t = −0.25, t = 0.1 and t = 2, where N = 180, Nf = 400 and Nb = 30 are used. The rows (from top to
down) represent two noise scales on the boundary, εb ∼ N

(
0, 0.12

)
and εb ∼ N

(
0, 0.52

)
.

Fig. 12. Diffusion equation: The first column represents the maximum error and MAE under different number of
measuring points on the boundary, where εb ∼ N

(
0, 0.12

)
, n = 180 and Nf = 400 are used. The second and third

columns represent the predictions at Nb = 16 and its absolute error. The rows (from top to down) represent the
results of PIELM and BPIELM. Black circles represent the positions of sensors.
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Fig. 13. Diffusion equation: The columns (from left to right) represent the MAE comparisons between BPIELM
and PIELM at Nbc = 42, Nbc = 62 and Nbc = 92, where εb ∼ N

(
0, 0.12

)
and Nf = 400 are used.

Table 4
Diffusion equation: The comparisons of PINN, PIELM and BPIELM under three noise scales. The number of training
points is Nf = 400, Nb = 28 and the number of neurons is N = 180. PINN has four hidden layers with 100 neurons
in each layer and the epoch is 4,000.

Noise
scale

0.01 0.05 0.1
Max-AE MAE Time/s Max-AE MAE Time/s Max-AE MAE Time/s

PINN 0.082 0.019 181 0.138 0.032 182 0.182 0.033 182
PIELM 0.163 0.025 0.84 0.179 0.040 0.93 0.226 0.079 0.91

BPIELM 0.033 0.007 1.67 0.115 0.021 1.76 0.118 0.019 1.68

we compare the results in Fig.12. In this test, the number of neurons is N = 180, the number

of training points is Nf = 400, and the noise scale is εb ∼ N
(
0, 0.12

)
. As the first column

shows, BPIELM outperforms PIELM in terms of Max-AEs and MAEs under the same number of

sensors. Max-AEs and MAEs of PIELM and BPIELM are both worse when the number of sensors

is extremely small, while MAEs of BPIELM tend to be less than 10−1 when the number of sensors

is more than 13. In particular, the results of PIELM and BPIELM with 16 sensors are shown in

the last two columns, where BPIELM provides much more predictions than PIELM.

Fig.13 illustrates the effect of the different neuron number for a fixed number of training points

in PIELM and BPIELM on the predictive accuracy. As the figure shows, the MAE curve of PIELM

is growing up when N > 200, while the MAE curve of BPIELM converges to a small value and

fluctuates in a small range when the neuron number is large enough. It indicates that the solution

accuracy of PIELM is more sensitive to the number of neurons than that of BPIELM.

In Table 4, we provide further comparisons of PINN, PIELM and BPIELM in terms of the

accuracy and the computational cost under three noise scales. The computational cost of BPIELM

and PIELM is comparable, while BPIELM are more accurate than PIELM. Besides, compared to

PINN, the training time of BPIELM and PIELM has been reduced by two orders of magnitude.
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4.4. Inverse problem

In this subsection, we consider quickly identifying unknown problem parameters in the PDEs by

BPIELM. In current research works, PIELM has not been extended to inverse PDE problems, but

PIELM can also consider problem parameters as the output layer weights like BPIELM and then

uses Moore–Penrose generalized inverse to solve the output layer weights for inverse PDE problems.

4.4.1. Poisson equation

As the first inverse problem test, we consider the following linear Poisson equation,

uxx = −λ1 · sin(0.7x)− λ2 · cos(1.5x), x ∈ Ω,

u (x1) = b1, u (x2) = b2,
(31)

where problem parameters (λ1 and λ2) are unknown, x1 and x2 are boundary points, and Ω = {x |

x ∈ [−10, 10]}. The exact solution is considered in this problem,

u = sin(0.7x) + cos(1.5x)− 0.1x. (32)

Assuming that the exact solution is unknown, we have Nu sensors for u, which are equidistantly

distributed in Ω. Besides, two sensors are placed at x = −10 and x = 10 to provide the boundary

conditions. The Gaussian noises in the measurements are considered, i.e., εu and εb.

Let us compare BPIELM with PIELM and PINN for solving the Poisson equation. Fig.14

compares the solution using BPIELM, PIELM and PINN under two data noise scales. In the

setting of PINN, the NN has three hidden layers with 50 neurons in each layer and the tanh

activation function is used. The training epoch with Adam is 4,000. For PIELM and BPIELM,

the neuron number is N = 100 and the number of training points is Nf = 100 and Nb = 2. As

shown in the figure, BPIELM gives the uncertainty quantity and provides accurate predictions.

The errors of BPIELM are mostly bounded by two standard deviations, which increase as the

noise scale increases. Besides, the predictions of PINN are close to BPIELM, which are better

than PIELM. Under noise scenarios, PIELM using Moore–Penrose generalized inverse with limited

sensor measurements is prone to overfit noisy data, causing worse predictions. The columns from

left to right in the figure represent the predictions with Nu = 13, 18, 23. The predictions with more

sensor measurements are better than those with fewer sensor measurements. Besides, the larger
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Fig. 14. Poisson equation - inverse problem: The comparisons of PINN, PIELM and BPIELM with Nu = 13, 18, 23
under two noise scales. The number of neurons is N = 100 and the number of training points is Nf = 100 and
Nb = 2. Black circles represent the positions of sensors.

Table 5
1D Poisson equation - inverse problem: The comparisons of PINN, PIELM and BPIELM under two noise scales.
The number of neurons is N = 100 and the number of training points is Nf = 100, Nu = 18, Nb = 2. The exact
solutions for λ1 and λ2 are 0.49 and 2.25, respectively.

Method
εu, εb ∈ 0.05 εu, εb ∈ 0.1

λ1 λ2 Max-AE MAE Time/s λ1 λ2 Max-AE MAE Time/s
PINN 0.491 2.307 0.073 0.027 225.30 0.488 2.370 0.160 0.068 240.12

PIELM 0.484 2.390 1.808 0.081 0.71 0.477 2.280 3.619 0.168 0.77
BPIELM 0.490 2.300 0.076 0.027 2.51 0.480 2.300 0.155 0.054 2.53

noise in the data also causes worse predictions.

Table 5 provides further comparison with PIELM, BPIELM and PINN for both cases with

noise scale, i.e., εu, εb ∼ N
(
0, 0.052

)
and εu, εb ∼ N

(
0, 0.12

)
. The problem setting here is the same

as the Fig.14. The data in the table shows that BPIELM is much more accurate than PIELM

and is dramatically faster to train PINN (by two orders of magnitude). BPIELM and PINN give

close predictions. Besides, we observe that larger noise leads to worse predictions of the problem

parameters and the solution. In a word, the results show the effectiveness of BPIELM in identifying

the unknown problem parameters and solving the solution from the scatter noisy data.

Fig.15 demonstrates the effect of the different neuron number for a fixed number of training
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Fig. 15. 1D Poisson equation - inverse problem: The comparisons of PIELM and BPIELM under the different
neuron number. The first two columns represent the predictions for the system parameters, λ1 and λ2, where the
exact solutions for λ1 and λ2 are 0.49 and 2.25. The last column represents the comparisons of Max-AEs and MAEs
of PIELM and BPIELM. The number of sensors is Nu = 18, the number of neurons is N = 100 and the number of
training points is Nf = 100 and Nb = 2.

points in PIELM and BPIELM on identifying problem parameters and predicting the solution.

The data in the first two columns show that BPIELM are more stable for the neuron number, while

PIELM is more sensitive to the neuron number. Note that when the neuron number is large enough,

the predictive problem parameters of BPIELM converge to exact values and fluctuate in a small

range. As the last column shows, Max-AEs as well as MAEs of PIELM and BPIELM are close

under the small neuron number and then PIELM achieves the best Max-AEs and MAEs within a

certain neuron number, but it is difficult for PIELM to find appropriate neuron number in practice

except for the experiments. However, BPIELM alleviates overfitting noisy data and a large enough

number of neurons is chosen for BPIELM, which is more appropriate for noise scenarios.

4.4.2. Helmholtz equation

In the next test, we consider the following 1D linear Helmholtz equation

uxx + k2u = −λ1f1(x) + λ2 · f2(x)− λ3, x ∈ Ω,

u (x1) = b1, u (x2) = b2,
(33)

where the problem parameters (λ1, λ2 and λ3) are unknown, the wave number is k2 = 10, x1 as

well as x2 are boundary points, f1(x) = sin(2x) cos(4x), f2(x) = cos(2x) sin(4x), and Ω = {x | x ∈

[−2π, 2π]}. The exact solution is considered in this problem,

u = sin(2x) cos(4x) + 1. (34)
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Fig. 16. Helmholtz equation - inverse problem: The comparisons of PINN, PIELM and BPIELM with Nu =
13, 18, 23 under two noise scales. The number of training points is Nf = 100 and Nb = 2. Black circles represent the
positions of sensors.

Assuming that the exact solution is unknown, we have Nu sensors for u, which are equidistantly

distributed in Ω. Besides, two sensors are placed at x1 = −2π and x2 = 2π to provide the boundary

conditions for u. The Gaussian noises in the measurements are considered, i.e., εu and εb.

We next compare BPIELM with PIELM and PINN for solving the Helmholtz equation, where

more unknown problem parameters are identified. Fig.16 compares the solution using BPIELM,

PIELM and PINN under two data noise scale, .i.e., εu, εb ∼ N
(
0, 0.052

)
and εu, εb ∼ N

(
0, 0.12

)
.

In the setting of PINN, we use four hidden layers with 100 neurons in each layer and use 4,000

epochs to train the NN with the tanh activation function. For PIELM and BPIELM, the number

of neurons is also set to be N = 100. As the figure shows, BPIELM over PIELM and PINN

has a two-fold benefit: (1) BPIELM gives the uncertainty quantity for the solution and errors are

mostly bounded by two standard deviations. (2) BPIELM provides more accurate predictions for

the solution than PIELM and BPIELM reduces the computational cost to achieve close or better

predictions than PINN (the computational cost is shown in Table 6).

Table 6 provides further comparison with PIELM, BPIELM and PINN for both cases with noise

scale, i.e., εu, εb ∼ N
(
0, 0.052

)
and εu, εb ∼ N

(
0, 0.12

)
. The problem setting here is the same as

the Fig.16. The results show the effectiveness of BPIELM in identifying the unknown problem
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Fig. 17. 1D Helmholtz equation - inverse problem: The comparisons of PIELM and BPIELM under the different
neuron number. The first row represents the predictions for the system parameters, λ1 and λ2. The second row
(from left to right) represents the prediction for the system parameter λ3 and comparisons of Max-AEs and MAEs.
The number of neurons is N = 100 and the number of training points is Nf = 100 and Nb = 2. The exact solutions
for λ1, λ2 and λ3 are 10, 16, -10, respectively.

Table 6
1D Helmholtz equation - inverse problem: The comparisons of PINN, PIELM and BPIELM under two noise scales.
The number of neurons is N = 100 and the number of training points is Nf = 100, Nu = 18, Nb = 2. The exact
solutions for λ1, λ2 and λ3 are 10, 16, -10, respectively.

Method
εu, εb ∈ 0.05 εu, εb ∈ 0.1

λ1 λ2 λ3 Max-AE MAE Time/s λ1 λ2 λ3 Max-AE MAE Time/s
PINN 9.84 15.84 -9.96 0.034 0.015 399.38 9.71 15.71 -9.93 0.071 0.031 398.13

PIELM 9.71 14.8 -10 0.337 0.047 0.69 9.41 13.5 -10 0.683 0.096 0.81
BPIELM 9.80 16.0 -10 0.051 0.018 2.59 9.60 15.9 -10 0.091 0.035 2.51

parameters and solving the solution from the scatter noisy data. BPIELM is not only much more

accurate than PIELM, but also considerably cheaper than PINN in terms of the computational

cost. The training time with the BPIELM is on the order of two seconds. In contrast, it is takes

400 seconds to train PINN to obtain close predictions.

Fig.17 illustrates the effect of different neuron number for a fixed number of training points

in PIELM and BPIELM on identifying problem parameters. The results show that PIELM is

dramatically more sensitive to the neuron number than BPIELM. For BPIELM, when the neuron

number is large enough, predictive problem parameters converge to exact values and fluctuate
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in a small range, which indicates the BPIELM avoids overfitting noisy data. For Max-AE and

MAE curves, under the small neuron number, MAEs between PIELM and BPIELM are close and

worse. It means that a shallow NN architecture both for PIELM and BPIELM can not learn

enough physics information to depict the whole solution. As the neuron number increases, MAEs

of PIELM increase after reaching the minimum value in a certain range, while the Max-AE and

the MAE curves of BPIELM converge to the values and fluctuate in a small range. In summary,

considering the accuracy as well as the sensibility to the neuron number, BPIELM is a better

approach than PIELM for noise scenarios.

5. Conclusion

In this work, we propose the BPIELM framework to quantify the uncertainty arising from noisy

data for forward and inverse PDE problems. The physics laws (PDE, boundary conditions, and

measurements) are first incorporated into the NN as the cost function. Then a prior probability

distribution is introduced in the output layer and the Bayesian method is used to estimate the

posterior. To support our claim, we examine BPIELM for forward and inverse PDE problems,

including Poisson, advection, diffusion and Helmholtz equations. In those tests under noise scenar-

ios, the results show that BPIELM has a three-fold benefit: (1) BPIELM provides the uncertainty

quantification for the solution and more accurate predictions for solutions as well as problem pa-

rameters than PIELM. (2) PIELM is prone to be drastically sensitive to the number of hidden

neurons, but BPIELM alleviates the sensitivity characteristic and improves the robustness of the

NN. (3) BPIELM is considerably cheaper than PINN in terms of the computational cost.

Although BPIELM has exhibited some superior potential for designing fast and accurate scien-

tific machine learning techniques, some things need to be resolved. The high efficiency of PIELM

benefits from the linear nature of the final problem, therefore BPIELM, which inherits some charac-

teristics of PIELM, is also limited to studying linear problems. How to further extend and improve

this method is an interesting problem, and will be explored in future works.
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