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ABSTRACT

Utilizing large-scale pretrained models is a well-known strategy to enhance performance on various
target tasks. It is typically achieved through fine-tuning pretrained models on target tasks. However,
naïve fine-tuning may not fully leverage knowledge embedded in pretrained models. In this study,
we introduce a novel fine-tuning method, called stochastic cross-attention (StochCA), specific to
Transformer architectures. This method modifies the Transformer’s self-attention mechanism to
selectively utilize knowledge from pretrained models during fine-tuning. Specifically, in each block,
instead of self-attention, cross-attention is performed stochastically according to the predefined
probability, where keys and values are extracted from the corresponding block of a pretrained
model. By doing so, queries and channel-mixing multi-layer perceptron layers of a target model
are fine-tuned to target tasks to learn how to effectively exploit rich representations of pretrained
models. To verify the effectiveness of StochCA, extensive experiments are conducted on benchmarks
in the areas of transfer learning and domain generalization, where the exploitation of pretrained
models is critical. Our experimental results show the superiority of StochCA over state-of-the-art
approaches in both areas. Furthermore, we demonstrate that StochCA is complementary to existing
approaches, i.e., it can be combined with them to further improve performance. Our code is available
at https://github.com/daintlab/stochastic_cross_attention

Keywords Cross-attention · Fine-tuning · Transformer · Transfer learning · Domain generalization

1 Introduction

Recently, notable developments have emerged in large-scale models pretrained on extensive collections of images [1,
2, 3, 4], natural language [5, 6, 7, 8, 9], or multi-modal datasets [10, 11, 12, 13]. Due to the generic representations
learned from these large-scale datasets, utilizing pretrained models is a well-known strategy for achieving successful
performance in a wide range of downstream tasks. Pretrained models can potentially learn diverse semantic information
that appears across large amounts of data rather than focusing on domain-specific patterns, such as image style. As
a result, models that are well-transferred can be robust against distribution shifts, as demonstrated in recent domain
generalization studies [14, 15]. Since pretrained weights provide a strong starting point for optimization, fine-tuning
has become the de facto standard for transferring pretrained knowledge to target tasks. However, naïve fine-tuning,
which involves end-to-end training to update all model parameters, may not always be the optimal approach. For
instance, naïve fine-tuning often requires a substantial amount of training data for target tasks to achieve satisfactory
performance [16]. It can also distort the pretrained features, leading to reduced generalization performance on out-of-
distribution data [17]. Therefore, with the increasing trend towards large-scale pretraining, it is crucial to effectively
leverage target-specific information from the vast amount of pretrained knowledge.
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In recent years, large-scale pretrained models in computer vision have often been built on the Vision Transformer
(ViT) architecture [10, 18, 19]. The ViT [20] is an architecture directly inherited from the Transformer [21] for natural
language processing. It processes image patches as input tokens, which undergo linear embeddings. A learnable
embedding vector of a special [CLS] token is added to form an input sequence. This input sequence is then processed
through multiple Transformer encoder blocks, resulting in a sequence of feature vectors. For image classification tasks,
the final feature vector corresponding to the [CLS] token is typically used for class prediction. Due to its impressive
performance, ViT is gradually replacing CNN-based models in a wide range of computer vision tasks.

The self-attention module, a key component of ViT, assigns weights to different elements of an input sequence by
computing attention scores. This mechanism allows a model to capture long-range dependencies and contextual
information, thereby enhancing its ability to understand the relationships between visual elements (i.e., image patches).
This self-attention has been extended to cross-attention for specific purposes in several previous studies. For example,
Chen et al. [22] introduced a dual-branch architecture to vary patch resolution and incorporated cross-attention between
the [CLS] token and patch tokens from different branches, enabling multi-scale feature representation learning. Jang et
al. [23] used cross-attention to focus on relevant image regions while processing textual information, facilitating a better
understanding of visual context and improving performance on tasks involving the fusion of image and text modalities.
However, to the best of our knowledge, the potential of cross-attention as a method for transferring pretrained knowledge
has not been explored in the literature.

In this study, we introduce Stochastic Cross-Attention (StochCA), a novel fine-tuning method designed to effectively
leverage pretrained knowledge within the ViT architecture, tailoring it to target tasks. During training on a target task,
cross-attention is employed to selectively reference the pretrained useful knowledge obtained from large-scale datasets.
The rationale for using cross-attention lies in viewing the pretrained model as a key-value store that contains rich
and valuable feature representations. In this framework, a target model’s query vectors are fine-tuned to effectively
access this store and retrieve meaningful representations for a given target task. The target model then learns to mix
channel information by fine-tuning position-wise multi-layer perceptron (MLP) layers using the retrieved features. In
our approach, a target model, initialized with the same weights as the pretrained model, is trained on a specific target
task. The pretrained model remains fixed (frozen) during training. In each attention layer of the target model, either
self-attention or cross-attention is performed for each forward pass, determined by a predefined probability. If a layer is
set to perform cross-attention, its output is computed using queries from the target model along with keys and values
from the corresponding block of the pretrained model. Throughout the training, the target model’s query vectors and
MLP layers are trained to be compatible with both its own key and value pairs and those of the pretrained model. This
compatibility is crucial for producing accurate predictions. In essence, the queries and MLP layers are fine-tuned to
extract and utilize valuable knowledge specific to the target task from the pretrained model. As a result, the target model
is expected to selectively incorporate this pretrained knowledge to effectively address the target task.

To validate the effectiveness of the proposed StochCA, we conducted evaluations under two distinct experimental
settings: transfer learning (TL) and domain generalization (DG), which can benefit from the effective use of pretrained
features. In the TL setting, which directly aligns with our primary objective of leveraging pretrained knowledge for
a target task, we measured the performance on the target task as an indicator of the method’s effectiveness. The DG
setting focuses on model performance in unseen domains that share semantic similarities but differ in input distribution,
such as image style. This setting tests the model’s ability to identify domain-agnostic patterns, thus assessing the
robustness of the target model to domain shifts. In both the TL and DG settings, the proposed StochCA has been
compared with state-of-the-art methods using several popular benchmarks. Our experimental results demonstrate the
superiority of StochCA in both scenarios. Additionally, the versatility of StochCA is highlighted by its compatibility
with other existing methods, showing improved performance when integrated with existing state-of-the-art approaches.
This highlights the complementary nature of StochCA. Furthermore, our analysis of the cosine similarity between the
query, key, and value vectors of the target model and the pretrained model provides evidence that StochCA selectively
exploits useful knowledge from the pretrained model, reinforcing the effectiveness of our approach.

In summary, our contributions are:

• We propose a novel fine-tuning method named StochCA, which utilizes cross-attention to selectively leverage
useful information from large-scale pretrained models for a target task.

• The effectiveness of StochCA is demonstrated in two experimental protocols, transfer learning (TL) and
domain generalization (DG), where the effective exploitation of pretrained models is critical.

• Extensive experiments reveal that StochCA achieves comparable, and in some cases superior, performance
compared to state-of-the-art methods in each setting. Our experimental results also suggest that StochCA can
effectively complement existing methods.
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• It is shown that StochCA selectively exploits the valuable knowledge of pretrained models by analyzing the
cosine similarity between query, key, and value vectors from a target model and those from a pretrained model.

2 Related Work

2.1 Transfer Learning

Transfer learning focuses on the effective adaptation of pretrained models to target tasks. This research area is
particularly important in scenarios with limited target data, where the challenge is to avoid overfitting or negative
transfer. For example, L2-SP [24] aims to regularize the target model’s weights so that these weights do not deviate from
the weights of the pretrained model. Similarly, DELTA [25] preserves pretrained knowledge by regularizing features
between models. REGSL [26] takes a layer-wise approach to weight regularization and incorporates a self-labeling
scheme for better robustness under noisy labels. StochNorm [27] regularizes the statistics in batch normalization
layers by stochastically selecting either moving average statistics or mini-batch statistics to avoid overfitting during
fine-tuning. BSS [16] reduces small singular values of output features based on the claim that direct regularization may
even preserve the pretrained knowledge that has a negative effect on the target task. In addition, Co-tuning [28] exploits
not only the feature extractor of the pretrained model but also the classifier for full transfer to the target task. However,
most of existing transfer learning methods have been validated in the context of convolutional neural networks (CNNs)
rather than ViT. In contrast, our proposed method is specifically designed for the ViT architecture, responding to its
growing popularity and distinct characteristics.

2.2 Domain Generalization

Domain generalization focuses on overcoming the challenge of domain shift, aiming to develop models that perform
well on unseen target domains by training on multiple source domains. Recent research suggests that preserving
features learned from large-scale datasets can effectively generalize to these new domains. For example, Cha et al. [14]
demonstrate that successful domain generalization can be achieved by maximizing the mutual information between
features from a large-scale pretrained model and a model being trained with source domains. Li et al. [15] propose an
efficient approach that involves learning adapters to merge predictions from a pool consisting of multiple pretrained
models with different domain generalization capabilities, without the need to fine-tune the original models. Furthermore,
the application of ViT to domain generalization has shown promising results. Zheng et al. [29] experimentally observe
that traditional domain generalization methods do not work well for ViT, and propose DoPrompt which learns to
generate adaptive domain prompts for input images. Sultana et al. [30] introduce a self-distillation approach that
exploits the monolithic structure of ViT to minimize overfitting to source domains.

2.3 Cross-attention in Vision Transformer

As ViT is widely used in the field of computer vision, cross-attention has been applied in various studies for specific
purposes. Dai et al. [31] introduce cross-attention between pairs of images of different styles, aiming to discern semantic
information accurately irrespective of stylistic variations. Kim et al. [32] enhance video interpolation by applying
cross-attention mechanisms between the query of a preceding frame and the key, value of a subsequent frame within
two adjacent frames. In addition, numerous studies [33, 34, 35, 23] apply cross-attention to capture better local features
or to integrate multimodal information. In contrast to these studies, we utilize cross-attention to selectively refer to the
useful knowledge of a pretrained model with large-scale datasets when transferring it to the target task.

3 Method

In this paper, we propose Stochastic Cross-Attention (StochCA), which selectively refers to the pretrained knowledge,
and demonstrate its effectiveness on two experimental settings: transfer learning and domain generalization. First,
we clarify the problem statement of the two experimental settings in Section 3.1. Since our proposed method is
developed by modifying the self-attention modules in ViT, we then present an overview of the self-attention mechanism
in Section 3.2. Next, we describe the proposed method, StochCA, in detail in Section 3.3.
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3.1 Problem Statement

3.1.1 Transfer Learning

As we focus on the classification task, a network f consists of a feature extractor F and a classifier C. Given a model
f0 pretrained on a large-scale source dataset Ds = {(xs

i , y
s
i )}

Ns
i=1, the goal of transfer learning is to obtain a model

ft that performs well on a target task by fine-tuning f0 with a target dataset Dt = {(xt
i, y

t
i)}

Nt
i=1. In the context of

transfer learning, Ds and Dt typically share a similar input space but differ in their category spaces. For example, in
computer vision tasks, Ds often represents large-scale datasets such as ImageNet [36], while Dt refers to a specific
visual classification dataset of interest [28]. Given that the label spaces of Ds and Dt are different, the pretrained model
f0 cannot be directly applied to the target dataset Dt. To address this, a task-specific module of f0 (i.e., the classifier C)
is replaced with a new classifier C ′ that is randomly initialized and tailored to fit the label space of the target task. Then,
the feature extractor F of f0 equipped with the target-specific classifier C ′ is fine-tuned for the target task to obtain the
target model f∗:

f∗ = argmin
F,C′

1

Dt

Nt∑
i=1

ℓ(C ′(F (xt
i)), y

t
i), (1)

where ℓ(·, ·) is a loss function such as cross-entropy.

3.1.2 Domain Generalization

In domain generalization, a dataset for a target task consists of multiple domains. Let Ds = {D1,D2, ...,Dn} be source

domains, where each Dk represents a domain with {(xs(k)
i , y

s(k)
i )}N

(k)
s

i=1 . The goal of domain generalization is to train a
model that performs well on an unseen target domain Dt = {(xt

i, y
t
i)}

Nt
i=1 by accessing only the source domains. Unlike

transfer learning, both Ds and Dt share the same label spaces, but they differ in input distributions due to domain shifts
such as variations in image style. During training in domain generalization, data from the specific target domain Dt

is not accessible: the model can only use data from the source domains Ds. Therefore, it is crucial for the model to
learn domain-invariant representations that encapsulate the underlying knowledge shared across all source domains.
Similar to transfer learning, a pretrained model f0 on a large-scale dataset such as ImageNet [36] is generally employed
as a starting point. This pretrained model is then further trained on Ds to adapt to domain generalization tasks. The
objective of vanilla fine-tuning for domain generalization is to optimize model parameters to minimize the loss values
across all source domains, which can be formulated as:

f∗ = argmin
F,C′

1

Ds

n∑
k=1

N(k)
s∑

i=1

ℓ(C ′(F (x
s(k)
i )), y

s(k)
i ), (2)

where ℓ(·, ·) represents a loss function such as cross-entropy.

3.2 Self-Attention of Vision Transformer

The self-attention (SA) module is a pivotal component in ViT, responsible for capturing long-range dependencies
between image patches. This is achieved by assigning importance weights to different spatial positions (i.e., image
patches) within an image, enabling the model to focus on relevant features during training. By leveraging self-attention,
ViT can effectively model the relationships between image patches and has achieved state-of-the-art performance in
various computer vision tasks.

Consider X ∈ Rn×d as an input sequence to the SA layer, where n represents the number of tokens and d is the hidden
dimension. The query Q ∈ Rn×dq , key K ∈ Rn×dk , and value V ∈ Rn×dv are defined and processed as follows:

Q = XWQ,K = XWK , V = XWV (3)

SA(Q,K, V ) = Softmax(QK⊤/
√

dK)V, (4)
where WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv are weight matrices for calculating Q, K, and V , respectively.
For simplification, this explanation considers single-head self-attention where dq = dk = dv = d. The self-attention
module thus learns to focus within the input sequence itself by generating queries, keys, and values from the same input.

3.3 Stochastic Cross-Attention

A characteristic of the self-attention module is that query, key, and value are derived from the same input sequence X .
In contrast, cross-attention (CA) has been employed in various studies to model conditional information by calculating
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Figure 1: Illustration of the attention mechanisms: (Left) The process of self-attention, where a model focuses on
different parts of a single input sequence to compute its representations. (Right) The process of cross-attention, where a
model attends to a different sequence (e.g., from a pretrained model) while processing an input sequence, facilitating an
interaction between the two.

the query, key, and value from different inputs, making it suitable for specific applications [31, 32, 33, 34, 35, 23]. In
this work, we utilize cross-attention to selectively access relevant knowledge from a large-scale pretrained model during
training on a given target task.

Let f denote a target model being trained on a given target dataset, and f0 be a pretrained model that the target model
refers to. We assume that both the target and the pretrained model share the same architecture. The cross-attention
mechanism for referencing features of the pretrained model at the l-th attention layer is computed as:

CA(Ql
f ,K

l
f0 , V

l
f0) = Softmax(Ql

fK
l⊤
f0 /

√
dK)V l

f0 , (5)

where Ql
f is the query obtained from the l-th attention layer of the target model f , and Kl

f0
and V l

f0
are the key and

value from the l-th attention layer of the pretrained model f0, respectively. Through this cross-attention, the query of
the target model f learns to efficiently extract useful information relevant to the target task from the key and value of
the pretrained model f0. Consequently, it enables the target model f to selectively leverage the knowledge embedded
in the pretrained model f0. Building upon these representations, the MLP layers in the target model are fine-tuned,
which focuses on learning channel-mixing strategies that are particularly relevant to the target task. Figure 1 illustrates
the processes of self-attention and cross-attention with a pretrained model, providing a visual representation of these
concepts.

However, if all self-attention layers in the target model f are replaced by cross-attention, learning for the target task
may be insufficient due to over-reliance on the pretrained model f0. To balance this, an appropriate utilization of both
self-attention and cross-attention is required. One straightforward method, as depicted in Figure 2 (left), involves
performing both self-attention and cross-attention in every attention layer, with the final prediction being an average
of the outputs from both paths. However, this approach necessitates the use of the pretrained model during inference
for the cross-attention path, thus increasing memory and computational requirements. Additionally, it requires dual
propagation for each image (one each for self-attention and cross-attention paths), leading to higher computational
costs during training.

To enhance computational efficiency, we propose the block-wise stochastic cross-attention (StochCA) method, which
selectively references the representations of the pretrained model. In StochCA, each attention layer of the target model
f is assigned a probability p for performing cross-attention. Based on this probability, the model stochastically selects
either self-attention or cross-attention during each training step. Specifically, the output of the l-th attention layer is
computed as follows:

hl = (1− β)SA(Ql
f ,K

l
f , V

l
f ) + βCA(Ql

f ,K
l
f0 , V

l
f0), (6)

where β is a random variable of Bernoulli distribution with probability p. Compared to the vanilla ViT, cross-attention
is performed instead of self-attention stochastically in each attention layer. During inference, the pretrained model f0
is no longer needed and the output computed via only self-attention is used for the final prediction (i.e., p = 0), thus
avoiding additional computational demands. The hyperparameter p regulates the target model’s dependency on f0. The
overall framework of StochCA is illustrated in Figure 2 (right) and described in detail in Algorithm 1.
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Figure 2: Two approaches to combining self-attention and cross-attention: (Left) A simple framework that integrates
both self-attention and cross-attention in a straightforward manner. (Right) The StochCA Framework that incorporates
stochasticity in the combination of self-attention and cross-attention.

Algorithm 1 Training procedure of Stochastic Cross-Attention
Input: pretrained model f0, target model f , cross-attention probability p, number of iterations
N , target training dataset Dtr

for iteration = 1, 2, ..., N do
Sample a data (xi, yi) from the training set Dtr

Extract {Kl
f0
, V l

f0
}Ll=1 for (xi, yi) from the pretrained model f0

h0 = Ef (xi) ▷ Image patch embeddings
for l = 1, 2, ..., L do

if β ∼ Bernoulli(p) = 1 then
Generate Ql

f from hl−1 using Eq. 5
hl = CA(Ql

f ,K
l
f0
, V l

f0
) ▷ Perform cross-attention

else
Generate Ql

f ,K
l
f , V

l
f from hl−1 using Eq. 4

hl = SA(Ql
f ,K

l
f , V

l
f ) ▷ Perform self-attention

end if
end for
Update f by minimizing cross-entropy loss l(Cf (hL), yi)

end for

Output: Trained target model f
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Figure 3: Samples of domain generalization benchmarks.

4 Experiments

4.1 Dataset

To assess the effectiveness of our proposed method, we utilize a total of eight image classification benchmarks commonly
used in transfer learning and domain generalization.

For transfer learning, our method is evaluated on the following four datasets:

• Caltech-UCSD Birds-200-2011 (CUB) [37]: A bird species classification dataset comprising 11,788 images
across 200 bird species.

• Stanford Cars (Car) [38]: A dataset including 16,185 images of 196 car classes, featuring diverse car viewpoints,
occlusions, and background variations.

• FGVC-Aircraft (Aircraft) [39]: An aircraft classification dataset which contains 10,200 images of 100 different
aircraft models from various viewpoints.

• Stanford Dog (Dog) [40]: A dog breed classification dataset containing 20,580 images of 120 different dog
breeds.

For domain generalization, we evaluate our method on the following four datasets:

• PACS [41]: A dataset comprising four domains (Art, Cartoon, Photo, and Sketch) with 9,991 images in 7
classes.

• VLCS [42]: A dataset consisting of four photographic domains (Caltech101, LabelMe, SUN09, and VOC2007)
with 10,729 images in 5 classes.

• OfficeHome [43]: A dataset including four domains (Art, Clipart, Product, and Real) with 15,500 images in 65
classes easily found in office and home environments.

• DomainNet [44]: A large-scale visual recognition dataset for domain generalization that encompasses six
domains (Clipart, Infograph, Painting, Quickdraw, Real, and Sketch), containing 586,575 images across 345
classes.

Figure 3 illustrates examples from different domains for each dataset, showcasing the same class in varied styles.
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4.2 Comparison Methods

For transfer learning, our proposed method is benchmarked against four established transfer learning algorithms: FT
(i.e., vanilla fine-tuning), L2-SP [24], BSS [16], and Co-tuning [28]. L2-SP [24] regularizes the weights of the fine-tuned
model to prevent significant deviation from the pretrained model’s weights. BSS [16] minimizes small singular values
of feature maps, thereby reducing the risk of negative transfer. Co-tuning [28] focuses on fully leveraging a pretrained
model by learning the label relationship between the source and target tasks.

For domain generalization, popular DG algorithms in DomainBed [45] are employed as comparison targets. These
include ERM [45], IRM [46], CDANN [47], DANN [48], GDRO [49], CORAL [50], MLDG [51], Mixup [52], and
MMD [53]. Additionally, we compare our method with DoPrompt [29], which enhances performance by learning
domain-specific prompts in the ViT structure, and MIRO [14], an approach that leverages pretrained knowledge by
maximizing mutual information.

4.3 Implementation Details

In our experiments, we utilize ViT-base/16 pretrained on ImageNet [36] and the AdamW optimizer [54] as our default
settings. In the case of transfer learning, models are trained for 10,000 steps with a batch size of 16. Following [33],
the base learning rate is set to 5e−4/512× batchsize with 100 steps of warm-up, followed by cosine scheduling for
decay. We apply a 550× 550 resize, a 448× 448 random crop, and a random horizontal flip for augmentation during
training. To ensure a fair comparison among different methods, we search for algorithm-specific hyperparameters (e.g.,
the coefficient β in L2-SP) for each method based on validation accuracy. A subset of 10% of the training dataset is used
for hyperparameter tuning, except for the Aircraft dataset, which has an official validation set. After the hyperparameter
selection, all models are re-trained on the combined training dataset (i.e., including both the training and validation
datasets) with the selected hyperparameters. The final performance evaluation is then measured on the test dataset.
For our proposed StochCA method, the cross-attention probability p is explored over the set {0.1, 0.3, 0.5, 0.7}. The
optimal value of p is determined to be 0.5 for the Dog dataset and 0.1 for the remaining datasets.

For domain generalization experiments, we follow the experimental settings of [45]. In this setup, each domain is split
into training and validation subsets. The model is trained using one domain as the target and the remaining domains
as the source. Training is performed on all training subsets of the source domains, and hyperparameters are selected
based on performance across all validation subsets of these source domains. The model’s test performance is then
evaluated on the unseen target domain. This procedure is repeated for each possible combination of source and target
domains, and the average test performances are calculated to determine the final performance for each benchmark.
Hyperparameters for each algorithm are divided into two categories: algorithm-agnostic and algorithm-specific. Initially,
algorithm-specific hyperparameters are tuned following the same approach as in transfer learning, while keeping
algorithm-agnostic hyperparameters at their default values. The default algorithm-agnostic hyperparameters are a
learning rate, weight decay, and a dropout rate for the last layer, which are set to 1e−5, 1e−2, and 0, respectively. For
PACS, VLCS, and OfficeHome, hyperparameters are determined based on validation accuracy evaluated every 200
steps. For the larger-scale DomainNet, validation accuracy is evaluated every 1,000 steps for hyperparameter selection.
Once algorithm-specific hyperparameters are set, we proceed to fine-tune algorithm-agnostic hyperparameters. The
learning rate, weight decay, and the dropout rate for the last layer are searched within the ranges of {5e−5, 1e−5, 5e−6},
{0, 1e−2}, and {0, 0.1}, respectively. All other configurations remain consistent with [45]. For the StochCA method,
the cross-attention probability p is selected as 0.1 for PACS and DomainNet and 0.3 for OfficeHome and VLCS. We
report the average accuracy (%) for three random seeds in all experimental results.

4.4 Experimental Results

Transfer learning Table 1 presents the performance of StochCA and various transfer learning methods on four
benchmarks, utilizing the ImageNet pretrained model. To investigate the effectiveness of transfer learning methods
in small data regimes, we experiment with using 15%, 30%, 50%, and 100% of the entire training data, following the
previous transfer learning studies [24, 16, 28].

As shown in Table 1, StochCA achieves the best performance on the CUB and Car datasets across various data
sampling rates. Notably, its performance advantage becomes more pronounced with the reduction of training data.
This underscores StochCA’s ability to efficiently leverage the pretrained model’s knowledge, even with limited training
samples. On the other hand, in Aircraft and Dog, StochCA demonstrates the second-best performance. However, the
performance can be further improved by combining StochCA with the best-performing methods for each dataset. For
example, when combining Co-Tuning and StochCA, the highest performance is achieved across all training data ratios
on the Dog dataset. This suggests a synergistic effect when integrating StochCA with existing transfer learning methods.
In summary, StochCA demonstrates superior performance in several transfer learning benchmarks. Furthermore, its

8



Dataset Method Sampling Rates

15% 30% 50% 100%

CUB

FT 56.09±1.12 75.39±1.02 81.60±0.47 86.85±0.42

L2-SP 55.64±1.16 75.20±1.06 81.50±0.48 86.82±0.46

BSS 55.60±1.35 75.37±1.13 81.57±0.43 86.72±0.28

Co-tuning 59.49±1.19 75.38±0.92 81.04±0.41 86.03±0.09

StochCA 60.14±1.01 77.82±0.91 83.51±0.74 87.55±0.10

Car

FT 44.94±0.18 73.73±1.20 85.20±0.24 91.21±0.14

L2-SP 44.51±0.14 73.51±1.16 85.16±0.21 91.17±0.14

BSS 44.97±0.38 73.87±1.27 85.51±0.22 91.12±0.14

Co-tuning 44.94±0.90 72.90±0.70 84.62±0.41 90.61±0.13

StochCA 48.34±1.22 74.68±1.04 86.01±0.25 91.72±0.20

Aircraft

FT 55.54±1.26 75.47±0.59 83.06±0.35 89.04±0.46

L2-SP 55.12±1.29 75.19±0.58 82.83±0.25 88.90±0.42

BSS 58.79±1.13 77.53±0.82 84.20±0.38 89.41±0.60

Co-tuning 56.53±1.62 75.98±0.81 83.69±0.66 89.37±0.39

StochCA 57.80±0.40 76.40±0.44 83.65±0.64 89.24±0.31

BSS + StochCA 61.30±1.10 78.25±0.21 84.44±0.33 89.49±0.35

Dog

FT 83.87±0.23 88.43±0.26 90.54±0.25 92.54±0.26

L2-SP 84.09±0.24 88.37±0.18 90.74±0.17 92.67±0.26

BSS 83.98±0.03 87.84±0.23 90.36±0.24 92.45±0.29

Co-tuning 89.15±0.23 91.15±0.24 92.53±0.16 93.71±0.09

StochCA 87.75±0.30 90.19±0.11 91.74±0.13 93.18±0.10

Co-Tuning + StochCA 90.57±0.30 91.88±0.11 92.82±0.13 93.94±0.10

Table 1: Transfer learning results with ImageNet pretrained models. Bold font indicates the best performance
considering the standard deviation across three random runs.

integration with existing methods can yield even more impressive results, highlighting its complementary benefits in the
realm of transfer learning.

Domain generalization To further investigate the robustness of StochCA, we conduct experiments within domain
generalization settings. The overall comparison results are summarized in Table 2, which reports the average test
accuracy for all source-target domain combinations for each dataset. While most results are directly obtained from
previous studies [29, 14], we encountered challenges in reproducing the performance of DoPrompt [29] using the
author’s official code. To maintain fairness, the reported performance of DoPrompt is noted in gray font, with our
reproduced results provided for comparison.

As shown in Table 2, StochCA demonstrates competitive performance across all benchmarks with the ImageNet
pretrained model. Notably, on the PACS dataset, StochCA achieves a top performance of 87.4%, matching the highest
result attained by Mixup. Overall, it is observed that StochCA demonstrates the highest average performance across
all benchmark datasets. Furthermore, we extended our experiments to include the CLIP pretrained model [10] as
a backbone, which is trained on a significantly larger-scale dataset compared to ImageNet (i.e., 400M vs. 1.3M of
training data). As shown in the lower section of Table 2, StochCA outperforms all previous methods by a considerable
margin when employing a larger-scale backbone. Remarkably, the average performance of StochCA exceeds ERM by
11.8% and even surpasses MIRO [14], the current state-of-the-art method in DG, by 0.7%. These findings highlight
the effectiveness of selectively leveraging information through cross-attention with a pretrained model. Additionally,
integrating StochCA with MIRO consistently yields the best results across all datasets, demonstrating substantial
performance improvements. For example, the average performance improvement of MIRO+StochCA over ERM
is 13.6%. This observation further reinforces the complementary potential of the proposed method when used in
conjunction with other approaches. Detailed results for each dataset are provided in Table 3 and Table 4.

Impact of StochCA on query, key, and value In this section, we delve into the impact of StochCA. We hypothesize
that if StochCA effectively references the knowledge of the pretrained model through cross-attention, then the query,
key, and value from the target model should exhibit similarities to those from the pretrained model. Alternatively, one
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Method PACS VLCS OfficeHome DomainNet Avg.
ImageNet pretrained ViT backbone

ERM 86.9 79.2 73.0 47.8 71.7
IRM† 83.9 79.5 72.3 27.1 65.7
CDANN† 82.3 79.1 72.3 34.3 67.0
DANN† 82.6 79.6 71.9 35.0 67.3
GDRO† 86.6 78.9 74.5 41.3 70.3
CORAL† 86.2 79.2 74.5 47.7 71.9
MLDG† 87.0 78.7 74.8 47.6 72.0
Mixup† 87.4 79.1 74.5 46.7 72.0
MMD† 86.9 79.8 74.5 47.4 72.2
DoPrompt† 88.1 80.4 76.0 48.3 73.2
DoPrompt 86.7 78.9 72.8 47.4 71.5
StochCA 87.4 80.0 74.6 47.7 72.4

CLIP(400M) pretrained ViT backbone

ERM‡ 83.4 75.9 66.4 44.4 67.5
MIRO‡ 95.6 82.2 82.5 54.0 78.6
StochCA 94.8 82.1 82.2 58.0 79.3
MIRO+StochCA 96.4 83.0 85.1 60.0 81.1

Table 2: Domain generalization performance using ImageNet and CLIP ViT backbones. The best performance for
each dataset is highlighted in bold. Performances marked with † and ‡ refer to the results reported in [29] and [14],
respectively.

Method Art Cartoon Photo Sketch Avg.
ERM 90.3±0.8 84.2±0.5 99.3±0.2 73.9±3.2 86.9
IRM† 89.1±0.7 79.1±1.1 98.3±0.1 68.2±5.1 83.9
CDANN† 87.3±0.6 80.1±0.5 98.5±0.2 63.1±2.9 82.3
DANN† 87.5±0.4 78.6±0.9 98.0±0.2 66.3±1.7 82.6
GDRO† 90.1±0.6 80.5±1.0 98.8±0.1 77.1±1.5 86.6
CORAL† 89.7±0.3 80.2±1.0 98.7±0.2 76.1±1.6 86.2
MLDG† 90.4±0.5 83.0±0.7 98.7±0.0 76.0±0.2 87.0
Mixup† 91.1±0.1 84.0±0.3 99.2±0.2 75.4±0.5 87.4
MMD† 89.9±0.5 80.8±0.5 98.7±0.1 77.1±0.7 86.6
DoPrompt† 91.1±0.3 83.0±0.2 99.6±0.0 78.7±0.8 88.1
DoPrompt 89.9±2.2 84.1±0.7 98.9±0.0 74.1±3.3 86.7
StochCA 90.8±0.6 82.9±0.7 98.9±0.1 77.1±2.4 87.4

Method Caltech101 LabelMe SUN09 VOC2007 Avg.
ERM 96.2±0.5 64.4±0.9 77.3±0.3 79.0±1.0 79.2
IRM† 96.2±0.5 65.7±0.8 76.8±0.4 77.7±0.9 79.5
CDANN† 96.3±0.2 66.3±0.5 76.5±0.6 77.3±0.5 79.1
DANN† 97.7±0.3 66.5±0.5 76.0±1.0 78.0±0.7 79.6
GDRO† 97.1±0.5 65.2±0.7 75.1±1.0 78.3±1.0 78.9
CORAL† 96.2±0.7 66.0±0.3 76.8±0.6 78.0±0.9 79.2
MLDG† 95.7±0.5 65.9±0.3 76.3±0.8 78.3±1.0 78.9
Mixup† 97.1±0.9 65.4±0.2 76.1±0.4 78.0±0.3 79.1
MMD† 96.8±0.1 65.6±1.0 77.3±0.6 79.3±1.5 79.8
DoPrompt† 97.2±0.1 67.4±0.5 77.4±1.0 79.7±0.5 80.4
DoPrompt 96.2±0.6 64.5±0.8 76.8±1.5 78.0±1.1 78.9
StochCA 96.3±0.3 65.9±0.8 77.9±0.6 79.9±0.7 80.0

Table 3: Detailed results on PACS (left) and VLCS (right). Performances marked with † refer to the results reported
in [29].

Method Art Clipart Product Real Avg.
ERM 69.8±0.5 59.4±1.0 79.6±0.5 83.1±0.4 73.0
IRM† 69.5±0.1 57.1±0.3 79.1±0.1 83.3±0.1 72.3
CDANN† 68.2±0.4 56.8±0.4 79.8±0.4 84.2±0.0 72.3
DANN† 68.7±0.9 55.8±0.4 79.2±0.0 83.9±0.2 71.9
GDRO† 71.2±0.7 60.9±0.4 81.1±0.3 84.7±0.3 74.5
CORAL† 72.3±0.7 60.9±1.0 80.4±0.4 84.3±0.0 74.5
MLDG† 72.3±0.0 60.0±1.1 82.2±0.2 84.7±0.1 74.8
Mixup† 72.7±0.4 59.7±0.5 80.9±0.3 84.6±0.2 74.5
MMD† 71.8±0.2 60.7±1.0 81.4±0.3 84.3±0.1 74.5
DoPrompt† 72.7±0.5 62.3±0.6 83.2±0.1 85.9±0.1 76.0
DoPrompt 69.5±0.5 59.1±0.3 79.9±0.5 82.7±0.2 72.8
StochCA 72.4±0.8 60.1±0.5 81.6±0.2 84.3±0.2 74.6

Method Clipart Infograph Painting Quickdraw Real Sketch Avg.
ERM 67.6±0.1 23.9±0.3 54.2±0.4 16.7±0.3 69.1±0.0 54.9±0.2 47.8
IRM† 35.6±0.5 13.9±0.2 33.1±0.8 6.4±0.2 40.6±0.4 32.8±0.3 27.1
CDANN† 45.3±0.5 13.5±0.0 45.8±0.0 7.7±0.2 49.6±0.1 43.8±0.2 34.3
DANN† 45.6±0.1 14.4±0.2 44.6±0.6 8.1±0.0 52.3±0.3 44.8±0.5 35.0
GDRO† 59.3±0.2 20.8±0.2 46.6±0.6 11.3±0.5 63.7±0.1 47.0±0.3 41.3
CORAL† 66.8±0.2 24.4±0.1 54.6±0.2 16.2±0.2 69.3±0.1 54.9±0.3 47.7
MLDG† 65.8±1.4 23.8±0.1 54.7±0.1 17.2±0.2 69.0±0.1 54.9±0.3 47.6
Mixup† 65.1±0.1 23.7±0.1 54.4±0.1 15.1±0.3 67.9±0.0 54.0±0.1 46.7
MMD† 67.0±0.2 23.8±0.2 54.0±0.0 15.9±0.5 69.0±0.1 54.6±0.2 47.4
DoPrompt† 67.7±0.2 24.6±0.1 54.9±0.1 17.5±0.2 69.6±0.3 55.2±0.5 48.3
DoPrompt 66.6±0.3 23.4±0.2 54.5±0.2 16.2±0.2 69.2±0.3 54.5±0.0 47.4
StochCA 67.0±0.3 23.9±0.9 54.5±0.3 16.8±0.3 69.0±0.2 54.7±0.4 47.7

Table 4: Detailed results on OfficeHome (left) and DomainNet (right). Performances marked with † refer to the results
reported in [29].

10



Layer Query Key Value

FT StochCA L2-Reg FT StochCA L2-Reg FT StochCA L2-Reg

1 0.98 0.99 1.00 0.99 1.00 1.00 0.86 0.97 0.99
2 0.97 0.99 1.00 0.94 0.99 1.00 0.85 0.95 0.99
3 0.97 0.99 1.00 0.96 0.99 1.00 0.90 0.97 1.00
4 0.97 0.99 1.00 0.96 0.98 1.00 0.92 0.97 1.00
5 0.95 0.98 1.00 0.95 0.98 1.00 0.88 0.96 1.00
6 0.91 0.96 1.00 0.91 0.96 1.00 0.84 0.94 0.99
7 0.89 0.95 1.00 0.88 0.95 1.00 0.80 0.92 0.99
8 0.85 0.93 1.00 0.84 0.93 0.99 0.77 0.90 0.99
9 0.83 0.91 0.99 0.84 0.92 0.99 0.71 0.87 0.98
10 0.88 0.94 1.00 0.85 0.93 0.99 0.66 0.85 0.97
11 0.86 0.94 0.99 0.85 0.93 0.99 0.66 0.85 0.97
12 0.74 0.89 0.98 0.86 0.93 0.99 0.60 0.84 0.95

Avg. 0.90 0.96 1.00 0.90 0.96 1.00 0.79 0.92 0.98

Layer Query Key Value

FT StochCA L2-Reg FT StochCA L2-Reg FT StochCA L2-Reg

1 0.99 0.99 0.99 0.99 1.00 0.98 0.91 0.92 0.84
2 0.97 0.98 0.98 0.95 0.96 0.98 0.90 0.91 0.90
3 0.98 0.98 0.99 0.97 0.98 0.98 0.92 0.94 0.90
4 0.97 0.98 0.99 0.97 0.97 0.99 0.94 0.95 0.96
5 0.96 0.97 0.98 0.96 0.97 0.99 0.91 0.93 0.96
6 0.93 0.94 0.98 0.92 0.93 0.98 0.87 0.89 0.95
7 0.89 0.91 0.97 0.89 0.91 0.97 0.83 0.86 0.94
8 0.85 0.88 0.96 0.83 0.87 0.95 0.81 0.85 0.93
9 0.83 0.87 0.95 0.82 0.86 0.95 0.75 0.80 0.90
10 0.85 0.83 0.96 0.83 0.87 0.94 0.72 0.77 0.87
11 0.73 0.87 0.96 0.79 0.83 0.93 0.69 0.76 0.86
12 0.90 0.80 0.94 0.85 0.89 0.95 0.70 0.76 0.87

Avg. 0.90 0.92 0.97 0.90 0.92 0.97 0.83 0.86 0.90

Table 5: Cosine similarity comparison for the query, key, and value vectors between the fine-tuned target model (through
FT, StochCA, and L2-Reg) and the pretrained model across all layers: (Upper) the CUB dataset and (Lower) the
OfficeHome dataset.

might explicitly incorporate regularization techniques, such as L2 penalization (e.g., minimizing the L2 norm of the
discrepancy between keys from the pretrained and target models), to guarantee this similarity. We denote this method as
L2-Reg. To test our hypothesis, we investigate FT (i.e., vanilla fine-tuning), StochCA, and L2-Reg by assessing the
cosine similarity between the queries, keys, and values from the fine-tuned target model and those from the pretrained
model.

Table 5 shows the cosine similarities calculated at each attention layer for the CUB and OfficeHome datasets. We
use 15% of the training data for the CUB dataset, and adopt source-target domain setting of {Clipart, Product, Real}
→ Art for the OfficeHome dataset. The results reveal that StochCA consistently shows higher cosine similarity
compared to FT (vanilla fine-tuning), suggesting that it facilitates learning features akin to those of the pretrained model
during fine-tuning. L2-Reg, which applies direct regularization, demonstrates even higher similarity than StochCA.
However, in terms of test performance, StochCA outperforms both L2-Reg and FT, achieving the highest scores: 60.1%
(StochCA) > 58.1% (L2-Reg) > 56.1% (FT) in CUB and 74.6% (StochCA) > 73.7% (L2-Reg) > 73.0% (FT) in
OfficeHome. These findings suggest that StochCA not only allows the selective retrieval of useful information from the
pretrained knowledge but also mitigates the risk of over-reliance on the pretrained model, which could lead to negative
transfer. This balance is key to its superior performance compared to alternative approaches.

4.5 Ablation Study

In this section, we perform an ablation study to investigate the impact of the StochCA components in two aspects:
the cross-attention probability p and the specific design of stochastic cross-attention. Table 6 presents a comparative
analysis of transfer learning performance with varying values of p. Our findings indicate that, except for the Dog dataset,
performance generally declines with increasing p. This trend suggests that excessive reliance on the pretrained model
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CA prob CUB Car Aircraft Dog

15% 100% 15% 100% 15% 100% 15% 100%

No (= FT) 56.09 86.85 44.94 91.21 55.54 89.04 83.87 92.54

0.1 60.14 87.55 48.34 91.72 57.80 89.24 87.05 92.94
0.3 59.69 87.56 47.27 91.00 56.10 88.73 87.63 93.12
0.5 58.19 87.22 44.75 89.80 52.53 87.34 87.75 93.18
0.7 56.62 86.50 41.94 87.70 49.42 85.38 88.01 92.93

Table 6: Ablation experiments on the cross-attention probability p of StochCA. The highest performance in each case
is highlighted in bold, while underlined values indicate the cross-attention probability chosen based on validation
accuracy.

Method CUB Car

15% 100% 15% 100%

FT 56.09 86.85 44.94 91.21

FT+CA 58.84 87.48 44.71 90.51
FT+CA (only SA) 58.62 87.18 45.91 91.43
StochCA 60.14 87.55 48.34 91.72

Table 7: Comparison between StochCA and alternative combinations of self-attention and cross-attention

may lead to suboptimal performance. For example, in the Aircraft dataset, StochCA with p = 0.1 surpasses FT, but
the performance diminishes for p values exceeding 0.5. In contrast, the Dog dataset shows a slight improvement in
performance as p increases. This can be attributed to the extensive representation of dog images in ImageNet, making
a higher reliance on the pretrained model more beneficial in this context. In summary, the optimal probability of
cross-attention, which determines the extent of knowledge reference from the pretrained model, varies across datasets.
When there is a significant semantic similarity between the pretraining and target datasets, a higher cross-attention
probability can lead to enhanced performance.

Next, we evaluate various design choices for integrating self-attention (SA) and cross-attention (CA). Table 7 presents
the comparative results between StochCA, which implements block-wise cross-attention stochastically, and other
methods maintaining separate paths for SA and CA. The method FT+CA represents an ensemble approach where
the outputs from both SA and CA paths are averaged during inference after training, as depicted in Figure 2 (left).
Since this FT+CA method requires additional memory and computational costs due to the necessity of maintaining
the pretrained model during inference, we also assess an alternative approach, FT+CA (only SA), where the learning
process is identical but only the output of the SA path is utilized for inference. As indicated in Table 7, both alternative
approaches, FT+CA and FT+CA (only SA), are superior to FT in most cases, although the amount of improvement
remains modest. In contrast, StochCA demonstrates significant performance gains over these simpler SA and CA
combinations. These results suggest that in addition to its computational efficiency, StochCA has a regularization effect
due to its stochastic nature (i.e., block-wise selection between SA and CA), leading to superior performance.

5 Conclusion

In the current trend of scaling up pretraining, the effective utilization of pretrained models with large-scale datasets
becomes increasingly important. In this study, we propose a novel fine-tuning method called StochCA, which selectively
leverages useful information from pretrained models that possess extensive knowledge learned from large-scale datasets.
Specifically, cross-attention is introduced as a mechanism for referencing pretrained knowledge that is useful for a target
task, involving the interaction between queries from the target model and keys and values from the pretrained model.
In addition, by stochastically implementing either cross-attention or self-attention in a block-wise manner, StochCA
avoids incurring additional computational costs while achieving a substantial regularization effect. Our experimental
results on transfer learning and domain generalization show the superiority of the proposed method. Moreover, it is
noteworthy that StochCA demonstrates complementary effects when integrated with existing methods in both tasks.

While our proposed method has been demonstrated on image classification tasks, its applicability is not limited to this
task. StochCA is adaptable to various computer vision tasks, provided that the underlying pretrained model utilizes
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the ViT architecture. To broaden its applicability, it would be valuable to verify StochCA on object detection or
semantic segmentation tasks, which we leave for future work. Additionally, exploring the synergy between StochCA
and knowledge distillation strategies offers an intriguing prospect for advancing research in this area.
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