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Abstract
Accurate estimation of the timing of neural activity is required to fully model the information flow
among functionally specialized regions whose joint activity underlies perception, cognition and
action. Attempts to detect the fine temporal structure of task-related activity would benefit from
functional imaging methods allowing higher sampling rates. Spatial filtering techniques have been
used in magnetoencephalography source imaging applications. In this work, we use the linear
constraint minimal variance (LCMV) beamformer localization method to reconstruct single-shot
volumetric functional magnetic resonance imaging (fMRI) data using signals acquired
simultaneously from all channels of a high density radio-frequency (RF) coil array. The LCMV
beamformer method generalizes the existing volumetric magnetic resonance inverse imaging (InI)
technique, achieving higher detection sensitivity while maintaining whole-brain spatial coverage
and 100 ms temporal resolution. In this paper, we begin by introducing the LCMV reconstruction
formulation and then quantitatively assess its performance using both simulated and empirical
data. To demonstrate the sensitivity and inter-subject reliability of volumetric LCMV InI, we
employ an event-related design to probe the spatial and temporal properties of task-related
hemodynamic signal modulations in primary visual cortex. Compared to minimum-norm estimate
(MNE) reconstructions, LCMV offers better localization accuracy and superior detection
sensitivity. Robust results from both single subject and group analyses demonstrate the excellent
sensitivity and specificity of volumetric InI in detecting the spatial and temporal structure of task-
related brain activity.
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Introduction
The overall temporal resolution of magnetic resonance imaging (MRI) is limited by the time
required to traverse k-space during the signal acquisition period. Therefore, the collection
time for a complete volume of MRI data is determined by the time needed for k-space

© 2008 Published by Elsevier Inc.
*Corresponding author. Fax: +1 617 726 7422. fhlin@nmr.mgh.harvard.edu (F.-H. Lin)..

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2011 September 7.

Published in final edited form as:
Neuroimage. 2008 November 1; 43(2): 297–311. doi:10.1016/j.neuroimage.2008.06.038.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



traversal in either a set of multiple 2D k-space slices or in a single 3D k-space partition.
Thus, the total acquisition time in traditional 3D MRI methods is the product of the number
of slices and phase encoding steps. In contrast to classical gradient-echo or spin-echo
imaging methods that collect data from one k-space line during each excitation, both echo-
planar imaging (EPI) (Mansfield, 1977) and spiral imaging (Blum et al., 1987) utilize fast
gradient switching to achieve each 2D k-space traversal in a single RF excitation. With
current EPI or spiral imaging techniques and limitation from the hardware, one 2D single-
slice image can be collected in approximately 80 ms, allowing coverage of the entire brain
using multiple slices with three mm isotropic resolution in two to four seconds. For these
reasons, hemodynamically based fMRI studies (Belliveau et al., 1991, 1990; Kwong et al.,
1992; Ogawa et al., 1990) typically require these comparatively long temporal sampling
periods to achieve whole-brain coverage. Further improvements in temporal resolution can
be achieved by optimizing k-space sampling schemes and reconstruction methods. In these
techniques, instead of completing the k-space traversal for every measurement, MRI data
acquisition is accelerated by coordinated modifications in k-space trajectories and their
associated image reconstruction algorithms, as exemplified by the partial-k-space sampling
approach (McGibney et al., 1993). Alternative a priori information-based methods can also
improve MRI sampling rates (Tsao et al., 2001) through the use of implementation
variations such as key-hole imaging (Hu, 1994; Jones et al., 1993; van Vaals et al., 1993), in
which central k-space samples are dynamically updated in each time frame while the higher
k-space samples are kept unchanged.

Parallel MRI is an alternative approach to achieve image acquisition acceleration by using
spatial information sampled from the different channels of a receiver coil array (Pruessmann
et al., 1999; Sodickson and Manning, 1997). The feasibility of applying parallel MRI to
functional brain imaging has been successfully demonstrated in studies that have achieved
two to four-fold accelerations in data sampling rates (Lin et al., 2005a; Preibisch et al., 2003;
Schmidt et al., 2005). More extreme accelerations in acquisition rate have been achieved by
reconstructing each image from a single echo. For example, single-echo-acquisition (SEA)
methods employ a dedicated 64-channel linear planar array to eliminate phase encoding,
instead of using the spatial information obtained from an array of parallel coils. This planar
pair element design proved to be crucial for achieving well-localized field sensitivity
patterns (McDougall and Wright, 2005). In another work, Hennig et al. developed the one-
voxel-one-coil (OVOC) MR-encephalography technique, obtaining images by computing
the product of a full FOV reference scan and an accelerated acquisition scan where
traditional phase and frequency encoding were selectively omitted. This approach used
simultaneous multi-channel acquisition with multiple small receiver coils sampled such that
the signal received by each coil is read out separately. The effective voxel size observed by
each receiver channel was determined by the sensitive volume of the corresponding coil
element. The source spatial distribution was estimated by constrained reconstruction using
reference images acquired from each separate coil (Hennig et al., 2007). A similar
reconstruction algorithm termed HYPR was developed in the context of MR angiography
(Mistretta et al., 2006). Nevertheless, none of these approaches explicitly formulate the
spatial information content contained in the different channels of the RF coil array under
conditions of either full or minimal gradient encoding. Nor do they provide associated
techniques to estimate the significance of task-related signal changes, allowing statistical
inferences to be made concerning the spatial and temporal characteristics of the neural
activity in the associated high temporal resolution data sets.

In our previous work we generalized parallel MRI reconstruction techniques to allow high
MRI sampling rates using single-shot volumetric MR Inverse Imaging (InI), an approach
that employs an over-determined linear system in order to achieve a temporal resolution of
20 ms in single-slice 2D fMRI experiments (Lin et al., 2006). Inspired by
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magnetoencephalography (MEG) and electroencephalography (EEG) source localization
techniques, InI combines generalization of prior-informed parallel MRI approaches (Lin et
al., 2005b, 2004) with an adaptation of MEG reconstruction methods to MRI, thereby
reducing the whole-brain sampling time by minimizing k-space traversal time. Rather than
relying on traditional gradient encoding methods, InI derives spatial information by solving
the inverse problem in a way that incorporates information from all available array channels.
Thus, given the constraint imposed by the need to use echo times (TE) that are optimal for
BOLD-contrast (TE = 30 ms at 3 T), InI can complete a volumetric k-space traversal, and
acquire sufficient data for whole-brain image reconstruction in under 100 ms. Note that InI
methods can provide not only regional estimates of signal change over time, but also time-
resolved dynamic statistical parametric maps. We have previously shown the feasibility of
using InI in a 2D implementation (Lin et al., 2006) as well as demonstrated its utility in
event-related functional imaging experiments employing 3D whole-brain coverage (Lin et
al., 2008). In the present work we continue the development of these techniques by
combining InI acquisition and reconstruction techniques with spatial filtering to achieve
dramatic increases in task-related activity detection.

Similar to the problems encountered when using classical source localization techniques
with MEG and EEG data sources, an inverse operator is required to estimate the spatial
distribution of signal changes and their associated statistical significance in magnetic
resonance InI. Due to the limited amount of independent information from each RF coil
channel and the large number of sources to be estimated, an inverse problem of this type is
generally ill-posed, indicating that there exist an infinite number of solutions satisfying the
physical relationship between the underlying sources and the detected signals, the so called
forward solution. In order to obtain a unique solution, additional constraints must be applied
in solving this ill-posed inverse problem.

In MEG and EEG research, an effective and commonly used constraint involves the
assumption that a limited number of focal sources can account for the observed
electromagnetic signals. This is the equivalent current dipole (ECD) approach, used
extensively for discrete and focal source localization in applications such as epileptic spike
localization. One major challenge encountered in ECD source modeling is that the number
of dynamic sources (ECDs) must be specified a priori, possibly inducing bias in the location
or temporal modulation of the estimated sources. Additionally, the computational cost of
ECD source localization will grow rapidly when the number of assumed sources increases
from one to only a few. In the context of fMRI, where even the simplest tasks have been
seen to be associated with numerous foci of activity modulation, the assumption that
combinations of a limited number of focal dynamic sources can adequately account for the
observed signal modulations does not have great face validity.

In this paper we introduce a spatial filtering technique to obtain both spatially distributed
estimates of task-related dynamic signal changes and also their associated statistical
significance. The basic principle employed in spatial filtering involves passing dynamic
sources from a specified location while suppressing activity from all other signal source
locations. In our implementation, we construct a collection of spatial filters that span all
candidate source locations throughout the field-of-view. Four-dimensional maps of dynamic
source estimates are then obtained by applying this set of spatial filters to the InI data
recorded from the head coil array channels. In this way, we estimate not only time-varying
task-related signal changes, but also baseline signal variability. The estimated dynamic
changes are then used in drawing statistical inferences about the spatial and temporal
properties of the neural sources associated with specific task characteristics. This particular
spatial filtering technique falls in the category of linear constraint minimal variance
(LCMV) filtering, also called “beamforming” (Van Veen et al., 1997). Originally developed
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for radar and sonar processing to allow modulation of the sensitivity profile of radar arrays
(Van Veen and Buckley, 1988), LCMV beamforming has most recently been applied to the
problem of MEG and EEG source localization. One example is the synthetic aperture
magnetometry (SAM) approach, which automatically estimates the orientation of individual
current dipoles in the spatial filter design process (Robinson and Vrba, 1999). LCMV and
SAM have both been utilized in MEG and EEG studies utilizing time domain (Gaetz and
Cheyne, 2003; Sekihara et al., 2001) as well as spectral domain (Gross et al., 2001;
Taniguchi et al., 2000) analysis. LCMV and SAM beamformers have also been used for
statistical inference in MEG and EEG localization of neural activity (Barnes and Hillebrand,
2003; Chau et al., 2004). However, to our knowledge, none of these spatial filtering methods
have been applied to the problem of task-related signal detection in fMRI.

In the following sections, we introduce the principles involved in the design of spatial filters,
first quantitatively characterizing the spatial resolution and localization accuracy of the
LCMV inverse using synthetic simulation data and then describing the acquisition and
preprocessing of volumetric functional InI data from an event-related visual experiment. We
then demonstrate how the preprocessed experimental data and optimized spatial filters may
be used together to generate high temporal resolution (100 ms) 4D dynamic statistical
estimates of task-related regional BOLD-contrast responses.

Methods
Participants

Six healthy participants, with normal or corrected-to-normal vision, were recruited for the
study. Informed consent for these experiments was obtained from each participant under
conditions approved by the Partners HealthCare System Institutional Review Board.

Task
Our task required maintenance of fixation at the center of a tangent screen while viewing a
high-contrast visual checkerboard reversing at 8 Hz. The checkerboard subtended 20° of
visual angle and was generated from 24 evenly distributed radial wedges (15° each) and
eight concentric rings of equal width. The stimuli were generated using the Psychtoolbox
(Brainard, 1997; Pelli, 1997). The reversing checkerboard stimuli were presented in 500 ms
epochs and the onset of each presentation epoch was randomized with a uniform distribution
of inter-stimulus intervals varying from 3 to 16 s. For event-related fMRI data analyzed
using a general linear model (GLM), it is useful to jitter the event onsets in order to optimize
the estimates of the HRF by reducing its variance (Dale, 1999). Since the GLM is also used
in our study after reconstructing the 3D spatial distribution of the hemodynamic response
function (HRF), we followed the same rationale to optimize our experimental design by
randomizing the onsets of visual stimuli. Thirty-two stimulation epochs were presented
during four 240-s runs, resulting in a total of 128 stimulation epochs per participant. The
choices for the hemodynamic response function of 30 s epoch duration (see the section
below) and 3 to 16 s inter-stimulus intervals were made by consideration of the duration of
the canonical HRF and practical concerns related to accommodating 32 stimulus events
within a 240-s run.

Image data acquisition
MRI data were collected with a 3 T MRI scanner (Tim Trio, Siemens Medical Solutions,
Erlangen, Germany), using a body transmit coil and a custom-built 32-channel head-array
receive coil (Wiggins et al., 2006). The array consisted of 32 circular surface coils
tessellated to evenly cover the brain surface. Using volumetric InI (Lin et al., 2008), each
image volume time point was collected by combining EPI frequency encoding along the
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inferior–superior direction and phase encoding along the anterior–posterior direction. InI
reconstruction requires collection of a reference scan that provides coil sensitivity maps
covering the entire brain volume. With this reference scan data, also called the forward
operator, accelerated acquisition is possible by replacing spatial encoding, dependent upon
time consuming gradient switching, with an alternative image reconstruction algorithm that
involves solving an inverse problem along the spatial encoding direction. More traditional
sampling schemes acquire spatial information in this direction using gradient encoding.

The InI reference scan was collected using a single-slice echo-planar imaging (EPI) readout,
exciting one thick sagittal slab covering the entire brain (FOV 256 mm× 256 mm × 256 mm;
64 × 64 × 64 image matrix) with the flip angle set to the Ernst angle of 30°. Partition phase
encoding was used to obtain the spatial information along the left-right axis (inter-aural
line). The EPI readout had frequency and phase encoding along the superior-inferior and
anterior-posterior axes respectively. We used TR = 100 ms, TE = 30 ms, bandwidth=2604
Hz and a 12.8 s total acquisition time for the reference scan, with 64 TRs allowing coverage
of a volume comprising 64 partitions with 2 repetitions.

For the InI functional scans we used the same volume prescription, TR, TE, flip angle, and
bandwidth as for the InI reference scan. The principal difference was that the partition phase
encoding was removed so that the full volume was excited, and the spins were spatially
encoded by a single-slice EPI trajectory, resulting in a sagittal Y/Z projection image with
spatially collapsed projection along the left-right direction. The InI reconstruction algorithm,
described in the next section, was then used to estimate the spatial information along the
left-right axis. In each run, we collected 2400 measurements after collecting 32
measurements in order to reach the longitudinal magnetization steady state. A total of 4 runs
of data were acquired from each participant. During image acquisition, electrocardiogram
(ECG) was recorded using MRI-compatible leads, allowing the detection of signal
modulations related to cardiac activity. The analysis of power spectra in MRI as well as
ECG data were done by using the multi-taper filtering routines included in the Matlab
(Mathworks, Natick, MA) environment.

In addition to the InI reference and functional scans, structural MRI data for each participant
were obtained in the same session using a high-resolution T1-weighted 3D sequence
(MPRAGE, TR/TE/flip = 2530 ms/3.49 ms/7°, partition thickness = 1.33 mm, matrix = 256
× 256, 128 partitions, FOV = 21 cm × 21 cm). Using these data, the location of the gray-
white matter boundary for each participant was estimated with an automatic segmentation
algorithm to yield a triangulated mesh model with approximately 340,000 vertices (Dale et
al., 1999; Fischl et al., 2001, 1999). This mesh model was then used to facilitate mapping of
the structural image from native anatomical space to a standard cortical surface space (Dale
et al., 1999; Fischl et al., 1999). To transform the functional results into this cortical surface
space, the spatial registration between the InI reference or functional data and the native
space anatomical data was effected using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/),
estimating a 12-parameter affine transformation between the volumetric InI reference or
functional scans and the MPRAGE anatomical study. The resulting spatial transformation
was subsequently applied to each time point of the InI hemodynamic estimates, thereby
spatially transforming the signal estimates for each functional run to a standard cortical
surface space (Dale et al., 1999; Fischl et al., 1999). Before spatial transformation, the
activity maps were spatially smoothed with a 10 mm full-width-half-maximum (FWHM) 3D
Gaussian kernel; this smoothing kernel was chosen to be 2.5 times the native image
resolution (4 mm in our reference scan). This data set was used in our previous volumetric
MNE InI study (Lin et al., 2008). We used the same data in this work in order to allow direct
comparison of the sensitivity of the different inverse solution procedures.

Lin et al. Page 5

Neuroimage. Author manuscript; available in PMC 2011 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fil.ion.ucl.ac.uk/spm/


InI reconstruction preprocessing to estimate the projection image HRF
The InI reconstruction preprocessing procedure estimates the hemodynamic response
function (HRF) in the projection images from all channels of the RF coil array. Next, we
restored 3D spatial information using the LCMV spatial filter derived in the next section.
The time domain deconvolution used for HRF estimation in an event-related fMRI design is
mathematically decoupled from the spatial domain inverse problem solution using LCMV
owing to the linearity of these two processes in the temporal and spatial domains. This
preprocessing reduces the dataset size by eight-fold (2400 samples per run to 300 samples),

The InI acquisition and reference scans were processed from k-space to the image domain,
using 2D and 3D fast Fourier transformations, respectively. The reference scan in each
channel of the coil array was synthetically averaged across partitions to simulate the set of

InI acquisitions, such that , the simulated InI acquisition at location  and channel i,
was calculated as:

(1)

Here  represents the spatial location indices across different partition phase encoding steps
with the same frequency and phase encoding numbers, indicated by the spatial index , and

 represents the reference scan image from location  and channel i. These simulated
data were compared with the InI acquisition at each time instant to separately investigate the
variability of phase across time for each channel of the coil array. The global phase
difference, θi(t), for channel i at time instant t, is given by:

(2)

where  represents the signal from the InI acquisition with spatial location , time t
and channel i of the coil array. The phase of array coil channel i at time instant t was
compensated by −θi(t)in order to match the reference scan.

After phase-correction of the projection image time series from each coil array channel, we
calculated the HRF from the projection images in order to reduce the dataset size in the time
domain. In this process we first estimate the hemodynamic response function (HRF) elicited
by the stimulus in each channel of the coil array using a general linear model (GLM)
incorporating a basis set of finite impulse response (FIR) delta functions. The basis set was
temporally synchronized to the onset of the stimulus, spanning a 30 s period that included a
6 s pre-stimulus baseline and 24 s post-stimulus interval. Data were sampled at 10 frames
per second, resulting in a basis set of 300 delta functions. From a list of the stimulus onset
times, we constructed a stimulus onset vector  in which the value one indicated the
occurrence of a visual stimulus of 500 ms duration, and all other entries contained zeros. A
contrast matrix D was constructed from the convolution between the  vector and the HRF
H,
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(3)

We used a finite impulse response (FIR) model for the HRF and thus H is an nh × nh identity
matrix. Specifically, H models the 30 s duration HRF including the 6 s pre-stimulus
baseline. Thus, H is an identity matrix of dimension 300 (i.e., nh = 300). The coefficients for
each FIR basis were calculated using the GLM and a least squares minimization procedure.
Specifically, the GLM used a design matrix including both basis set and confound columns,
with the basis set consisting of a collection of temporally shifted delta functions and
confound columns modeling phase drifts θi(t), linear trends, and a constant. After model
estimation, the coefficients of the FIR basis set across the 30 s epoch for each of the 32
receiver channels were used for the subsequent LCMV spatial filtering reconstruction. At
each time instant, the FIR coefficient, a complex number including phase and magnitude
information, of each channel represents the instantaneous BOLD-contrast effect in that
channel. The collection of FIR coefficients across all channels at a specific time instant thus
represents the net BOLD-contrast effect, spatially weighted and integrated by the B1
sensitivity of each channel along the partition encoding direction.

InI reconstruction spatial filter design
The spatial filter used to estimate coil array channel i activity at time instant τ from the

preprocessed InI data  was formulated as a linear procedure using an inverse operator

:

(4)

Here  is a vector restoring the spatial information across different partition
encoding steps at each combination of phase and frequency encoding step indicated by .

An ideal spatial filter satisfies the following specification:

where  is a vertically concatenated vector of  from all channels in the array.

Our goal is to design a collection of customized spatial filters that pass all signals in the
target source locations  with a unity gain, while suppressing the respective contributions of
other source locations. This spatial filter design is achieved by solving an optimization
problem involving minimization of output variability at each target source location . The
attenuation requirement in the “stop band” (all other signal source locations outside the

target source location , ) is implicitly achieved since the contribution from the stop
band source locations  to the output at  will be minimized as specified in the cost
function.
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The cost function corresponding to the LCMV inverse operator is written explicitly as

(5A)

with a constraint

(5B)

where  is the data covariance matrix between different channels of the coil array, and

 is the forward operator derived from the reference scan at source location . The data

covariance matrix  describes the spatial correlation pattern observed among the array
coil channels during functional activity sampling. We utilized the deconvolved HRF to

estimate :

(6)

The solution of this optimization problem was derived using Lagrange multipliers (Van
Veen et al., 1997) to obtain the LCMV inverse operator:

(7)

As in MNE reconstruction techniques, we incorporate a regularization parameter in LCMV
reconstruction to stabilize the matrix inversion required in (7). This regularization is
accomplished by adding a noise covariance matrix C, estimated from baseline time points
across channels of the RF coil array, to improve the conditioning of the data covariance
matrix D:

(8)

where λ2 is the regularization parameter that can be estimated from the pre-specified signal-
to-noise ratio (SNR) of the measurement (Lin et al., 2006):

(9)

Here Tr(•) represents the trace of the matrix.

Statistical modeling
To facilitate statistical inference from the InI time series reconstruction results, the noise
levels in the reconstructed images were also estimated from the baseline data and the LCMV
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inverse operator. This approach was previously introduced in the context of MEG and EEG
source localization (Dale et al., 2000). Using these noise estimates, dynamic statistical
parametric maps may be derived as the time point by time point ratio between the InI
reconstruction values and the baseline noise estimates, given by:

(10)

where diag(•) is the operator used to construct a diagonal matrix from the input argument

vector. Here  represents estimated signal and diag  denotes
estimated noise. The division denotes the element-wise division. Dynamic statistical

parametric maps (dSPMs)  should be t distributed under the null hypothesis of no

hemodynamic response (i.e., ) (Dale et al., 2000). When the number of time
samples used to calculate the noise covariance matrix C exceeds 100, the t distribution
approaches the unit normal distribution and the individual t-statistics approximate z-scores.

Spatial resolution analysis
We performed numerical simulations to evaluate the spatial resolution and localization
accuracy of our LCMV InI reconstructions. The reference data for the forward operator

 and noise covariance matrix C were obtained from empirical data (see below for more

detail). The simulation procedure began by creating a source vector , with  set to unit
activity and all other locations set to zero. We then estimated the idealized measurements

from all coil array channels by computing the product of the forward operator  and

.

(11)

We created 100 realizations of synthetic noise with spatial coloring according to the noise
covariance matrix:

(12)

where  is the noise vector with complex values following a Gaussian distribution of
zero mean and unit variance. UC and Sc are the singular vectors and singular values of the

noise covariance matrix. At a specified SNR, the noise n  was scaled and subsequently

added to  to generate the synthetic measurements :
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(13)

Then we employed Eq. (6) to obtain the data covariance matrix, the LCMV inverse operator,
and the noise normalized LCMV inverse operator:

(14)

The LCMV reconstruction obtained with this procedure is equivalent to the point spread

function of simulated source . Both  and  were scaled to a
maximum of 1.

Similar to procedures used in MEG/EEG source analysis (Dale et al., 2000; Liu et al., 1998,
2002), we estimated the average point spread function (aPSF) at each location to quantify
the spatial distribution of the reconstruction:

(15)

where  indicates the distance between source location i source location

 represents vector entries in the LCMV reconstructiont

 exceeding 0.5 and l is the number of voxels to be spatially
resolved by the InI reconstructions. This procedure allows estimation of the full-width-half-
maximum (FWHM) of the point spread function. A 3D map of the spatial distribution of the
average point spread function for either LCMV or LCMV-dSPM estimates can be obtained
by repeating the calculation across the whole 256×256×256 mm FOV, a source space with 4
mm isotropic spatial resolution.

Since InI is an ill-posed inverse problem, the reconstructed image may not accurately reflect
the original spatial distribution of spins contributing to the actual measurements. Thus, we
next explored the technique's localization accuracy by estimating discrepancies between the
reconstructed and original sources. Quantification of localization accuracy was done by
calculating the shift between the center of mass of the InI reconstruction and the simulated
sources:

(16)
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A 3D SHIFT metric map for LCMV and LCMV-dSPM estimates was generated in each
simulation. Since the inverse operators depend on both the SNR and the measurement data,
the SNRs were parametrically varied from 0.1 to 100.

The image reconstruction and statistical analysis procedures were implemented in Matlab
(The Mathworks, Natick MA).

Results
Spatial resolution analysis of simulated data

Spatial resolution—Fig. 1 shows the spatial distribution of the average point spread
function for SNRs of 0.5, 1, 5, and 10 for both the MNE and LCMV reconstructions of the
simulated datasets. We observed global reductions in the aPSF in the MNE reconstructions
at higher SNR. In particular, deep brain regions show a broader aPSF and corresponding
lower spatial resolution, an observation matching the physical intuition that SNR is at a
minimum at the center of the head coil where the B1 fields from all channels are less
spatially disparate and B1 fields are of lower magnitude. Comparing to MNE, we observe
two features in the LCMV reconstructions. First, LCMV aPSFs are more spatially
homogeneous than MNE aPSFs. Second, LCMV aPSF estimates are less dependent on SNR
than are MNE estimates, as the aPSF metrics show similar spatial distributions with both
low SNR (SNR = 0.5) and high SNR (SNR = 10). The superior performance of the LCMV
procedure at low SNR may result from the normalization procedure intrinsic to the LCMV
spatial filter design. Quantitative analysis revealed that use of the LCMV-dSPM inverse
operator can result in an average aPSF of less than 1.0 mm when SNR is higher than 1.0,
whereas, the MNE-dSPM inverse still has an average aPSF of 8.64 mm. At extremely high
SNR (SNR>50), MNE can provide higher spatial resolution than LCMV. When SNR ranges
between 0.5 and 50, LCMV exhibits superior spatial resolution to MNE. To translate the
aPSF into a measure of spatial resolution, the point spread function should be spatially
convolved with the nominal spatial resolution of the fully gradient encoded scan. Thus, the
average spatial resolution at SNR=5 is approximately 8.7 mm and 4.7 mm for MNE and
LCMV respectively (see Table 1).

Spatial accuracy—Quantitative localization accuracy was estimated by calculating the
shift of the center of mass of the LCMV and MNE simulated source reconstructions. The
SHIFT metrics derived from both methods exhibit similar spatial distributions, as shown in
Fig. 2. The MNE results are characterized by sporadic high SHIFT metrics at low SNRs of
0.5 and 1. These erroneous localization specks were dramatically reduced in the LCMV
reconstructions using the same low SNR range. On average, the localization accuracy is
higher than 5 mm when SNR is higher than 1. LCMV appears to offer especially
homogeneous localization accuracy with high precision (1.5 mm or better) when SNR is
higher than 0.5. With respect to both the aPSF and SHIFT metrics, LCMV reconstructions
provide superior reconstruction quality across a range of SNRs. Details of the comparative
aPSF and SHIFT metric results are listed in Table 1.

Single subject analysis—The high temporal resolution of volumetric InI acquisition
enables the accurate observation of BOLD-contrast signal modulations resulting from
cardiac and respiratory effects, by avoiding the limitations resulting from the use of
sampling rates below the optimal Nyquist frequency. The left panel of Fig. 3 shows a clear
pattern of physiological fluctuation in 60 s of InI raw data sampled from the posterior
occipital lobe. The right panel of Fig. 3 shows the power spectral density of the same data,
demonstrating obvious frequency peaks for the cardiac and respiratory components.
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The LCMV technique can identify task-related activity in individual subjects with high
sensitivity. Fig. 4 shows the post-stimulus time course of task-related activity in two axial
slices estimated by LCMV overlaid on the sum-of-squares images from a representative
participant's reference scan. We used a critical threshold of t =22 (uncorrected p-value
<10−6). The maps show progressive activation in response to the reversing checkerboard
around the calcarine sulcus. Peak activity was observed between 3 and 5 s after stimulus
onset. This response started to decrease approximately 4 s after stimulus onset. The
functional activation was found spreading along the left- right direction. This can be
explained by the reduced spatial resolution in InI reconstructions as reported in Figs. 1 and
2. The functional activation of visual cortex activity has been found to be spatially clustered
around the occipital pole. Using a distributed source modeling, i.e., LCMV spatial filtering,
further made this physiologically uniform activity spatially smooth.

The area showing a positive visual response in the first 3 s after stimulus onset was used to
define a region of interest (ROI) in primary visual cortex. The average values and standard
deviations of this ROI time course are shown in Fig. 5. Without utilizing any specific model
of the hemodynamic response, InI revealed a sharp BOLD-contrast signal peak 4 s after
stimulus onset. We also observed a post-stimulus undershoot between 10 and 24 s after
stimulus onset. The pre-stimulus interval shows relatively small fluctuations around the
baseline.

The time course of the corresponding MNE and LCMV reconstructions are shown in Fig. 5.
The LCMV data exhibit clearly superior detection sensitivity, as we observed an
approximate five-fold increase in the peak t-statistic in the V1 ROI. However, we observed
that within V1 ROI, the baseline variability of the LCMV reconstruction was larger
compared to the MNE reconstructions. To further investigate the origin of the higher
detection sensitivity associated with the use of LCMV estimation, we plotted the spatial
distribution of the baseline variability seen with both the LCMV and MNE inverse
operators, as shown in Fig. 6. It is clear that LCMV generally gives higher source variability
estimates at the center of the brain. This is physically reasonable since, in this location, there
is less spatially overlapping information from the array coil channels and therefore more
expected uncertainty in localization. Although MNE results show a similar trend, namely an
increased variability of the source estimates at deeper locations, in the V1 ROI the MNE
estimate has only 30% baseline variability compared to the LCMV estimate, which can be
seen from the baseline t-statistics shown in Fig. 5. Even so, the LCMV reconstruction is
associated with a five-fold increase in sensitivity to task-related activity, as evidenced by
higher peak t-statistics and higher contrast-to-noise. Taken together, these results support the
interpretation that the relative improvement in detection sensitivity in LCMV results from
the improved contrast between task and baseline conditions, rather than from suppressed
baseline noise. Overall, the increased peak t-statistics and the baseline t-statistic variability
in the LCMV reconstructions likely result from the suppression of other source locations by
the spatial filter. Indeed, the suppression of other source locations in LCMV may cause
difficulties in discriminating two sources close to each other. However, this problem in
discriminating nearby sources also exists in the minimum-norm estimates (MNE), since
MNE provides spatially blurred reconstructions. Thus, these effects speak to the challenges
routinely encountered in distributed source modeling. With better prior knowledge about the
number of discrete signal sources, a superior solution might involve utilization of a method
similar to the multiple equivalent current dipole (ECD) modeling approach often used with
MEG or EEG data, where the solution has a point spread function like a delta function.
However, this possibility also leads to questions about the number of sources specified a
priori. We suggest that careful consideration of all aspects of signal sources, including the
number of expected clusters, their sizes, and their spatial distributions, can allow a
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principled decision concerning the choice of the best inverse solution employed in order to
achieve the optimal reconstruction.

LCMV spatial filters are parameterized by a regularization parameter (Eq. (8)). To further
evaluate the origin of improved sensitivity in LCMV reconstructions, we parametrically
varied the SNR between 0.1 and 100 (Eq. (9)). Since the regularization parameter is
inversely proportional to the square of specified SNR, varying SNR allows investigation of
the effects of regularization on the LCMV reconstruction. In the V1 ROI time courses
corresponding to different SNR values shown in Fig. 7, we observed very similar results for
SNR values of 0.1, 3, and 10. Note that even with an exceptionally high SNR value of 100,
the time course peak changed less than 10%. In our experience, the SNR in common event-
related BOLD fMRI experiments using 6 min of data acquisition and 120 total events ranges
from 3 to 15. The high SNR case (SNR = 100) can be regarded as the minimal regularized
LCMV reconstruction. Compared to MNE reconstruction, the improved sensitivity observed
with LCMV results more from its incorporation of spatial filtering rather than from differing
sensitivity to regularization parameters.

Group analysis—Strong task-related activity effects can also be easily seen in group
average time series. Fig. 8 shows 100 ms duration frames of InI dSPM t-values averaged
over 6 participants. The individual frames of this group average show progressively
increasing activity starting at 2.4 s after the stimulus onset (critical threshold t>8;
uncorrected p-value b 10−4). The signal returns to baseline approximately 6.9 s after
stimulus onset.

The time course of the InI dSPM t-values from the group average are shown in Fig. 9. The
shape of this average time series is very similar in character to the individual participant
time series shown in Fig. 5, qualitatively demonstrating the between-subject reliability of
LCMV InI reconstruction. We observed a reduced variability in the group time course as
compared with the individual time courses. Peak task-related activity was found 4.5 s after
stimulus onset and a post-stimulus signal undershoot was observed between 10 s and 24 s
after stimulus onset. Consistent with the individual participant results, LCMV InI
reconstructions show an approximately four-fold increase in detection sensitivity compared
to the MNE InI reconstructions (LCMV: 15.9; MNE: 3.4).

To examine the differences between MNE and LCMV reconstructions across participants,
we examined the t-value maxima and the t-value baseline standard deviation in primary
visual cortex ROIs from each participant (see Table 2). Generally, LCMV reconstructions
were associated with higher peak t-values (average 15.87) compared to MNE
reconstructions (average 3.40), reflecting a 4.67-fold advantage. Although the baseline
variability of LCMV (average 0.95) was also higher than that of MNE (average 0.34) by
2.79-fold, the relatively larger peak t-values results in a net detection advantage for the
LCMV approach.

Discussion
As the brain is a highly dynamic system, accurate estimation of the timing of neural activity
is required to fully model the information flow among functionally specialized regions
whose aggregate activity underlies perception, cognition and action. Event-related fMRI
(Rosen et al., 1998) is a widely utilized neuroimaging method that allows estimation of
information processing by measuring the spatial and temporal modulation of the
hemodynamic changes associated with changes in neural activity. Event-related experiments
have some advantages over block design experiments, which, while allowing high detection
sensitivity and fine spatial localization, can only reveal relatively coarse temporal features of
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task-related activity. In contrast, the superior timing information available with event-related
fMRI allows study of both transient and steady state responses, potentially mitigating the
bias originating from context or subject expectancy by allowing mixture of various event-
types. Event-related fMRI also enables the analysis of data using post-hoc categorization
based on the nature of the participant's response (Wagner et al., 1998). In addition, some
very successful experimental designs, such as the “odd-ball” experiment, can only be
implemented using event-related rather than block designs (Friston, 2007). All the reasons
described above encouraged us to explore the feasibility of volumetric InI data acquisition
and reconstruction using an event-related fMRI design.

Crude hemodynamic timing information can be estimated by traditional event-related fMRI
analysis techniques using deconvolution, which allows temporal resolutions ranging
between 2 and 4 s for whole-brain coverage using cubic voxels. This sampling rate is
bounded by the timing requirements of multislice EPI acquisition and the associated specific
imaging parameters, including number of slices, image matrix size, and receiver bandwidth.
In the context of event-related fMRI, single-shot volumetric InI can alleviate the
complexities associated with the fact that multislice acquisition is distributed over time.
Slice time correction can be implemented either using temporal data interpolation to
simulate simultaneous data acquisition or by modeling the relative slice acquisition delays
(Friston, 2007). However, temporal data interpolation cannot accurately correct temporally
aliased cardiac and respiratory components whose spectra are above the Nyquist sampling
frequency of 1/2 TR. Single-shot volumetric acquisition offers direct simultaneous
acquisition of data from the entire brain and its use in volumetric InI allows relatively rapid
sampling at the cost of moderate reductions in maximum spatial resolution.

The high temporal resolution of volumetric InI also allows estimation of relative task-related
timing differences at particular brain locations. Even though BOLD-contrast responses are
somewhat sluggish, higher temporal resolution is still desirable for better characterization of
the latency and shape of task-related hemodynamic responses (Miezin et al., 2000). The
accuracy of relative neural activity onset latency estimates are also directly related to fMRI
sampling rates. Limited by a temporal resolution spanning seconds, the traditional EPI
multislice acquisition relies heavily on modeling techniques to estimate activity response
latency. For example, the latency of BOLD-contrast responses has been estimated from the
linear intercept of the signal increase (Menon et al., 1998) or the peak of task-related signal
detected using spline interpolation (Huettel and McCarthy, 2001). Alternatively, the ratio of
the estimates of the hemodynamic response function and its temporal derivative can also be
used to estimate the latency of BOLD-contrast responses (Friston et al., 1998). Different
approaches have been suggested to improve the temporal resolution of fMRI, including
temporal jittering of stimuli within one TR (Friston, 2007) or using echo-shift pulse
sequences (Liu et al., 1993). However, these approaches either require longer time series for
stable BOLD-contrast response estimates, or suffer from reduced signal-to-noise ratio.
Without a heavy dependence on complicated modeling techniques following image
reconstruction, volumetric InI can achieve a direct temporal resolution of 100 ms at SNRs
comparable to those currently achieved with multislice EPI.

Single-shot volumetric InI methods can achieve an order-of-magnitude acceleration in
hemodynamic response sampling by combining dense head-array coil parallel data
acquisition with distributed source modeling. Applying volumetric InI to study task-related
visual responses using an event-related design, we found that the method is both sensitive
and reliable, as demonstrated in both individual participant and group average results. The
InI method described here offers two principal advantages. First, it allows collection of
whole-brain volumetric data using single-shot EPI acquisition, while previously it was only
possible to obtain one single 2D image at high temporal resolution (20 ms). Volumetric
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acquisition is more attractive to neuroscientists primarily interested in investigating whole-
brain spatiotemporal activity patterns. By sampling the entire brain, volumetric InI can avoid
the need for tedious manual slice prescription based on the prior anatomical scans required
to identify target brain areas. Second, our approach combines volumetric InI and event-
related fMRI design. The volumetric InI acquisition and reconstruction techniques had
sufficient sensitivity to reliably detect task-related activity in visual areas with high temporal
resolution. Our current experimental design used rather simple stimuli and thus it was
difficult to show widely distributed brain activity as is the observed activity was limited by
the physiology of regional functional specialization in the visual system. The purpose of this
communication is to introduce this novel data acquisition and image reconstruction approach
to the neuroimaging community, who may make best use of it to study more complex
patterns of spatiotemporal activity. More refined manipulation of the experimental
conditions is likely to more fully demonstrate the power of this new tool and we expect to
pursue these goals rather soon.

Relationship between LCMV and MNE
The LCMV inverse operator introduced here is closely related to the minimum-norm
estimate (MNE) procedure used in our 2D and 3D MR inverse imaging methods (Lin et al.,
2006, 2008). For source modeling of MNE and EEG, both LCMV and MNE have been
extensively used (Hamalainen et al., 1993) and the equivalence in the mathematical
formulation between LCMV and MNE has been proven (Mosher et al., 2003). While both
MNE and LCMV need to invert the “data covariance” matrix, the difference between the
two is that LCMV derives this data covariance matrix empirically from direct
measurements, while MNE indirectly derives the matrix from the forward operator, the
noise covariance matrix, and the regularization parameter DMNE = AAH + λ2 C. Thus, while
LCMV can be considered as a data-driven method to derive an inverse solution, MNE is a
model-driven approach. It is notable that LCMV also has a normalization term in the
denominator of the spatial filter in order to ensure a unit gain at each source location.
Compared to MNE, this normalization procedure also helps to achieve more homogenous
spatial resolution and higher localization accuracy, as demonstrated in Figs. 1 and 2.

The dependence of LCMV on the regularization parameter
The MNE inverse requires a regularization parameter during the derivation of the inverse
operator. This is because the matrix product AAH may not have a full rank due to similar
lead field patterns from different channels of the coil array. A rank-deficient product of AAH

prohibits the construction of a MNE inverse operator since a required matrix inversion does
not exist. To address this issue, a fully ranked noise covariance matrix is introduced as a
remedy for the rank deficiency. The dependency on the noise covariance is balanced
between the amplitude (SNR) of the measurement and the “size” of AAH:

In LCMV estimation, we do not require a regularization parameter if we provide a full rank
data covariance matrix. With long enough measurements, a full rank data covariance can
usually be calculated directly. The rule-of-thumb suggested is that the “number of
measurements should be at least three times as long as the number of sensors” (Van Veen et
al., 1997). However, a full rank noise covariance can still be added to improve the
conditioning of the data matrix in LCMV inverse if desired as described in Eq. (9).

Alternatively, a regularization parameter can be estimated by L-curve (Hansen, 1998) or
generalized-cross-validation (Golub et al., 1979). However, LCMV estimation is not as
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sensitive to regularization as MNE. Indeed, in our simulations (Figs. 1, 2,and Table 1) we
observed that both spatial resolution and localization accuracy are marginally modulated by
the imposed regularization parameter or the specified SNR. This argument is further
supported by the observation of similar BOLD time courses in V1 from empirical data
reconstructed using different regularization parameters.

Correlated sources
One major challenge of the LCMV inverse technique is that LCMV estimation may not be
able to detect highly correlated signal sources. This is the consequence of the inverse
operator derivation. Specifically, the inverse of the data covariance matrix implies the
structure of the “partial correlation coefficient matrix” between different channels
(Dempster, 1972). A pair (channel i and j) of highly synchronized sources will attenuate
each other in the inverse of the data covariance matrix and thus contribute minimally to the
collection of reconstructed sources. However, a high correlation between sources is quite
rare under physiological conditions. In fact, LCMV has been previously applied to imaging
of coherent neuronal oscillations (Gross et al., 2001). Other simulation studies also support
the use of LCMV in the presence of intermediate source correlation (Sekihara et al., 2002).
As all of these results were obtained using MEG and EEG signals, which are physiologically
quite different from fMRI hemodynamic BOLD-contrast responses, we will attempt to
investigate the detection sensitivity of LCMV to correlated sources in the near future.

Spatial resolution
InI solves an ill-posed inverse problem in image reconstruction. Namely, the limited spatial
resolution from all channels of the coil array may not be able to provide a unique solution
for image reconstruction. This deficiency in independent coil information leads to limits in
spatial resolution. However, from our empirical results, we can see that volumetric LCMV
InI provides reasonable spatial resolution and localization accuracy when compared to
MNE. From our simulation studies, we showed that the spatial resolution of LCMV InI
varied with both SNR and source location. For SNRs between 1 and 10, LCMV with noise
normalization can potentially achieve 1 mm average point spread function and 1 mm
localization accuracy. Additional factors, including but not limited to, coil geometry and
field strength, also affect the spatial resolution. Further empirical studies and theoretical
calculations are required in order to quantify the influence of these factors on spatial
resolution.

The spatial resolution in volumetric InI is spatially-varying because the total amount of
independent spatial information from the coil array channels varies among the voxels within
the field-of-view. In LCMV, two factors contribute to both the aPSF spatial homogeneity
and the localization accuracy (Figs. 1 and 2). First, the denominator in the LCMV inverse
operator imposes a “normalization” factor to ensure a unit gain from the spatial filter at each
source location. Second, the noise normalization procedure further reduces the spatial-
varying amplification of the reconstruction when baseline data are used. Both factors work
together to minimize the anisotropy of spatial resolution in the InI encoding direction. In
volumetric InI, anisotropic spatial resolution effects only appear in the InI encoding
dimension (left–right axis in this study), while the other two spatial dimensions (anterior–
posterior and superior–inferior axes) still retain isotropic spatial resolution because gradient
encoding is used. To improve the spatial resolution, there are two alternatives. First,
increasing the number of channels in a coil array can provide more independent spatial
information. However, the benefits obtained from increasing channels will reach a plateau
determined by electromagnetic theoretical limitations (Ohliger et al., 2003; Wiesinger et al.,
2004). In addition, at higher magnetic fields more independent spatial information can be
obtained from the same coil array geometry as the consequence of the shorter peak proton
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resonance wavelength. This implies that higher spatial resolution can be obtained at 7 T,
using the existing 32-channel coil array geometry. Second, we can ameliorate the spatial
blurring using other inverse reconstruction kernels, as discussed in the following section.

Applying the LCMV spatial filter at a particular location specifically suppresses
contributions at all other source locations. This phenomenon is shown in our point spread
function analysis (Fig. 1). However, sharpening a filter's spatial resolution can be either
beneficial or disadvantageous. For example, in estimation of the spatial resolution of an
actual source, which is theoretically impossible to derive due to the ill-posed nature of the
computational process, a sharpened point spread function may lead to underestimation of the
actual source size. On the other hand, if the actual sources are spatially focal, sharpened
point spread functions can provide better estimates of the spatial location and distribution of
the sources compared to other inverse solutions employing wider point spread functions.
One good example of this dilemma is the observed sharpening of the point spread function
when using equivalent current dipole (ECD) modeling with MEG/EEG data. Resembling a
delta function, ECD modeling has the most focal point spread function, making it very
useful in seizure focus estimation since epileptic events are generally spatially focal.
However, when estimating spatially distributed brain activation, such as that underlying
cognitive function, ECD may be an inferior choice compared to other distributed source
modeling alternatives (Hamalainen et al., 1993). In summary, tuning the point spread
function has been one approach to optimize the performance of inverse solutions, and this
rationale has been proposed by Backus and Gilbert in geophysical applications (Backus and
Gilbert, 1970). However, caution must still be taken when using inverse solutions with
sharpened point spread functions, including, but not limited to, LCMV spatial filters, when
prior knowledge about the true source spatial extent may be imperfect.

Spatial distortion
In this study we employed single-shot volumetric InI acquisition with an EPI readout. Thus,
the reconstructed projection image contains the expected EPI artifacts, including intravoxel
signal loss due to spatially inhomogeneous susceptibility distribution and geometrical
distortion along the phase encoding direction due to the intrinsically narrower bandwidth.
Correction of these artifacts has been extensively investigated. For example, to mitigate
these artifacts, we can use field mapping to estimate the spatial distribution of the off-
resonance effects and then use this information to reduce the susceptibility artifacts (Chen et
al., 2006; Chen and Wyrwicz, 1999; Zeng and Constable, 2002). It is also possible to use
parallel imaging techniques with EPI acquisition methods to limit geometric distortion
(Weiger et al., 2002), by systematically skipping multiple integer lines in the continuous
sampling of different phase encoding lines and then reconstructing the skipped phase
encoding lines using spatial information embedded inside different array channels. Thus, the
effective bandwidth in the reconstructed image will be wider and will thereby reduce the
spatial distortion. Note that the spatial information from the coil array channels is in an
orthogonal direction between EPI phase encoding (anterior–posterior axis) and InI encoding
(left–right axis) directions. Although the implementation of this line skipping approach will
not reduce the available spatial information in the InI reconstructions, concomitant SNR loss
is a price that must be paid for fewer data samples and changes in the parallel MRI
reconstruction geometrical factor (g-factor).

Future development
In MEG or EEG source localization, one solution to the ill-posed inverse problem was to
add mathematical constraints to limit the “power” of the estimated source in order to obtain
a spatially distributed source model. This class of approaches has included the use of L-1
and L-2 norm constraints, which respectively require the source models to have a minimal
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L-1 and L-2 norms among all possible configurations of sources satisfying the forward
solution. The resultant source models were called minimum-current estimates (MCE)
(Matsuura and Okabe, 1995; Uutela et al., 1999) and minimum-norm estimate (MNE). MNE
has a computational advantage since an analytic solution can be derived, while MCE
requires more complicated linear programming techniques to obtain a focal source estimates
compared to MNE. In experimental conditions where focal sources are expected, it may be
possible to use MCE to reconstruct volumetric InI data in order to further improve spatial
resolving power.

Even though volumetric InI allows dramatic increases in sampling rates, it is still
constrained by the need to use the optimal TE for detection of BOLD-contrast effects
(approximately 30 ms at 3 T). At higher field strengths, such as 7 T, the optimal TE for
detecting BOLD-contrast changes is approximately 20 ms, allowing further acceleration of
volumetric InI data acquisition, possibly to 50 ms for the whole-brain sampling. In addition,
there are two potential approaches to mitigate the temporal resolution limitations. First, we
may use different contrast mechanisms, such as steady state free precession (SSFP), where
the TE is usually less than 5 ms (Miller et al., 2003, 2006). Second, we may use an echo-
shifting technique to reduce the TR (Golay et al., 2000; Liu et al., 1993), as demonstrated in
our previous 2D InI study (Lin et al., 2006). Both alternatives are capable of reducing the
sampling time to around 20 ms. The resulting higher temporal resolution may allow study of
relative cortical activity timing on an extraordinarily fine time scale, thereby facilitating
study of the complex interactions among regionally specialized neural subsystems
responsible for the mediation of complex behavior.

MRI acoustic noise is generated by the induced Lorentz force interacting with the current
passing through the gradient coil perpendicular to the main field B0. The Lorentz force
acting on the gradient coil causes vibration similar to a loudspeaker (Schmitt et al., 1998).
This acoustic noise is particularly prominent in EPI, where fast oscillatory gradients are used
to accelerate k-space traversal. To mitigate this acoustic noise, a sparse sampling method has
been proposed (Edmister et al., 1999; Hall et al., 1999; Schwarzbauer et al., 2006; Talavage
et al., 1999) at the cost of a lowered data collection efficiency. Alternatively, the gradient
waveforms have been smoothed to suppress the noise level (Hennel et al., 1999). A BURST
sequence (Jakob et al., 1997, 1998) using 180-degree RF pulses has also been used to collect
trains of echoes with a constant gradient. Due to minimal gradient encoding, InI can provide
an alternative approach to reduce acoustic scanner noise by minimal phase encoding and/or
frequency encoding. This is especially important for investigations of the human auditory
system using fMRI.
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Fig. 1.
The spatial resolution distribution quantified by the average point spread function of MNE
and LCMV reconstructions at various SNRs. Only the central 32 axial slices selected from a
total 64 slices in the brain volume are shown here.
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Fig. 2.
The distribution of localization accuracy (quantified by the SHIFT metric) of MNE and
LCMV reconstructions at different SNRs. Only the central 32 axial slices selected from a
total 64 slices in the brain volume are shown here.
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Fig. 3.
(Left) A segment of a raw InI time course and synchronized ECG trace appears in black.
(Right) Power spectral density of the same InI data time series shows frequency peaks for
cardiac and respiratory components.
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Fig. 4.
Single subject results showing successive frames of InI LCMV-dSPM t-values
superimposed on the sum-of-squares images from the reference scan in four axial slices. The
critical threshold used is t = 22 (uncorrected p-value<10−4).
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Fig. 5.
Single subject InI reconstruction time courses and the location of the primary visual cortex
(V1) ROI (inset). The time courses show the average (red/dark blue) and the standard
deviation (magenta/light blue vertical error bars) of the InI LCMV-dSPM and MNE-dSPM
t-values within the V1 ROI.
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Fig. 6.
The spatial distribution of the standard deviation of the noise estimates from a single subject
in LCMV-dSPM and MNE-dSPM in arbitrary units.

Lin et al. Page 28

Neuroimage. Author manuscript; available in PMC 2011 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
The time courses of the InI LCMV-dSPM t-values within the V1 ROI from a single subject
with specified SNRs of 0.1, 3, 10, and 100.
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Fig. 8.
Group average task-related activity. (Top) An inflated left hemisphere cerebral cortex with
anatomical orientation (A: anterior; P: posterior; S: superior; I: inferior). Light and dark gray
represent gyri and sulci. The calcarine sulcus is labeled. The dashed box indicates the border
of the InI LCMV-dSPM single frame time series. (Bottom) Single frames of the InI LCMV-
dSPM t-values in visual cortex averaged across five participants shown from the medial
aspect of the left hemisphere using an inflated brain surface model. The critical threshold
was t>8 (uncorrected p-value<10−4).
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Fig. 9.
Group average InI reconstruction time courses and the location of the primary visual cortex
(V1) ROI (inset). The time courses show the average (red/dark blue) and the standard
deviation (magenta/light blue vertical error bars) of the InI LCMV-dSPM and MNE-dSPM
t-values within the V1 ROI.
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Table 2

The t-value maxima and t-value baseline standard deviation in primary visual cortex for MNE and LCMV InI
reconstructions of the 6 participants

Participant MNE LCMV

Peak t statistics Baseline t statistics variability Peak t statistics Baseline t statistics variability

1 3.45 0.32 23.67 1.20

2 5.47 0.24 29.11 0.68

3 2.06 0.43 7.04 1.42

4 2.79 0.29 13.50 0.74

5 3.87 0.41 10.37 0.70

6 2.78 0.34 11.54 0.94

Average 3.40 0.34 15.87 0.95

On average, LCMV InI estimates were associated with higher peak t-statistics and a higher ratio between the peak t-statistics and the baseline t-
statistic variability than were the MNE values.

Neuroimage. Author manuscript; available in PMC 2011 September 7.


