
Predictive Markers for AD in a Multi-Modality Framework: An
Analysis of MCI Progression in the ADNI Population

Chris Hinrichsa,b,*, Vikas Singhb,d,a,*, Guofan Xuc,d, Sterling C. Johnsonc,d, and the
Alzheimers Disease Neuroimaging Initiative†
Chris Hinrichs: hinrichs@cs.wisc.edu; Vikas Singh: vsingh@biostat.wisc.edu; Guofan Xu: gxu@medicine.wisc.edu;
Sterling C. Johnson: scj@medicine.wisc.edu
a Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706
b Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison Madison,
WI 53705
c Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI
53705
d Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine
and Public Health, Madison, WI 53705

Abstract
Alzheimer’s Disease (AD) and other neurodegenerative diseases affect over 20 million people
worldwide, and this number is projected to significantly increase in the coming decades. Proposed
imaging-based markers have shown steadily improving levels of sensitivity/specificity in
classifying individual subjects as AD or normal. Several of these efforts have utilized statistical
machine learning techniques, using brain images as input, as means of deriving such AD-related
markers. A common characteristic of this line of research is a focus on either (1) using a single
imaging modality for classification, or (2) incorporating several modalities, but reporting separate
results for each. One strategy to improve on the success of these methods is to leverage all
available imaging modalities together in a single automated learning framework. The rationale is
that some subjects may show signs of pathology in one modality but not in another – by
combining all available images a clearer view of the progression of disease pathology will emerge.
Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion
of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The
principal innovation behind MKL is that it learns an optimal combination of kernel (similarity)
matrices while simultaneously training a classifier. In classification experiments MKL
outperformed an SVM trained on all available features by 3% – 4%. We are especially interested
in whether such markers are capable of identifying early signs of the disease. To address this
question, we have examined whether our multi-modal disease marker (MMDM) can predict
conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this
measure shows significant group differences between MCI subjects who progressed to AD, and
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those who remained stable for 3 years. These differences were most significant in MMDMs based
on imaging data. We also discuss the relationship between our MMDM and an individual’s
conversion from MCI to AD.

1 Introduction
A significant body of existing literature (Johnson et al., 2006; Whitwell et al., 2007; Reiman
et al., 1996; Canu et al., 2010; Thompson and Apostolova, 2007) suggests that pathological
manifestations of Alzheimer’s disease begin many years before the patient becomes
symptomatic – which is typically when cognitive tests can be used to make a diagnosis
(Albert et al., 2001). Unfortunately, by this time significant neurodegeneration has already
occurred. In an effort to identify AD-related changes early, a promising direction of ongoing
research is focused on exploiting advanced imaging-based techniques to characterize
prominent neurodegenerative patterns during the prodromal stages of the disease, when only
mild symptoms of the disease are evident. A set of recent papers (Davatzikos et al., 2008a,b;
Fan et al., 2008b; Vemuri et al., 2008) including work from our group (Hinrichs et al.,
2009a,b) have demonstrated that this is indeed feasible by leveraging and extending state-of-
the-art methods from Statistical Machine Learning and Computer Vision. Good
discrimination (in identifying whether an image corresponds to a control or AD subject) has
been obtained on classification tasks making use of MR or FDG-PET images (i.e., one type
of image data) (Davatzikos et al., 2008a,b; Fan et al., 2008b; Vemuri et al., 2008; Hinrichs et
al., 2009a). A natural question then is whether we can exploit data from multiple modalities
and biological measures (if available) in conjunction to (1) obtain improved accuracy, and
(2) identify more subtle class differences (e.g., sub-groups within MCI). This paper
considers exactly this problem – i.e., methods for systematic combination of multiple
imaging modalities and clinical data for classification (i.e., class prediction) at the level of
individual subjects.

Recently, we have seen evidence that various aspects of AD-related neurodegeneration such
as structural atrophy (Jack Jr. et al., 2005; deToledo-Morrell et al., 2004; Thompson et al.,
2001), decreased blood perfusion (Ramírez et al., 2009), and decreased glucose metabolism
(Hoffman et al., 2000; Matsuda, 2001; Minoshima et al., 1994) can be identified (in
structural and functional images) in Mild Cognitive Impaired (MCI) and AD subjects, as
well as at-risk individuals (Small et al., 2000; Querbes et al., 2009; Davatzikos et al., 2009).
A number of groups have made significant progress by adapting well-known machine
learning tools to the problem – this includes Support Vector Machines (SVMs), logistic
regression, boosting, and other classification mechanisms. In the usual classification setting,
a number of image acquisitions (training examples) are provided for which the subjects’
clinical diagnosis is as certain as diagnostically possible. The objective is to choose a
discriminating function which optimizes a statistical measure of the likelihood of correctly
labeling ‘future’ examples. Such measures may be based on certain brain regions, (e.g., the
hippocampus or posterior cingulate cortex) for example. The function’s output can then be
used as a targeted disease marker in individuals that are not part of the training cohort. In the
remainder of this section, we briefly review several interesting AD classification-focused
research efforts, and lay the groundwork for introducing our contributions (i.e., truly multi-
modal analysis).

The machine learning, or classification approach has been used to provide markers for
various neurological disorders including Alzheimer’s disease (Davatzikos et al., 2008b;
Klöppel et al., 2008; Vemuri et al., 2008; Duchesne et al., 2008; Arimura et al., 2008;
Soriano-Mas et al., 2007; Shen et al., 2003; Demirci et al., 2008). These efforts have
primarily utilized brain images, though some have also used other available biological
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measures. In (Fan et al., 2008b,a; Davatzikos et al., 2008a,b), the authors implemented a
classification/pattern recognition technique using structural (sMR) images provided by the
Baltimore Longitudinal Study of Aging (BLSA) dataset (Shock et al., 1984). The proposed
methodology was to first segment the images into different tissue types, and then perform a
non-linear warp to a common template space to allow voxel-wise comparisons. Next, voxels
were selected to serve as “features” (using statistical measures of (clinical) group
differences), used to train a linear Support Vector Machine (SVM) (Bishop, 2006). The
reported accuracy was quite encouraging. The authors of (Klöppel et al., 2008) also used
linear SVMs to classify AD subjects from controls using whole-brain MR images. An
additional focus of their research was to separate AD cases from Frontal Temporal Lobar
Degeneration (FTLD). The authors reported high accuracy (> 90%) on confirmed AD
patients, and less where post-mortem diagnosis was unavailable. In related work, Vemuri et.
al. (Vemuri et al., 2008) demonstrated a slightly different method of applying linear SVMs
on another dataset obtaining 88 – 90% classification accuracy. More recently, the methods
in (Fan et al., 2008a; Misra et al., 2008; Hinrichs et al., 2009a) have been applied to the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset,
(http://www.loni.ucla.edu/ADNI/Data/) (Mueller et al., 2005) consisting of a large set of
Magnetic Resonance (MR) and (18-fluorodeoxyglucose Positron Emission Tomography)
FDG-PET images, giving accuracy measures similar to those reported in (Fan et al.,
2008b,a; Davatzikos et al., 2008a,b). In (Hinrichs et al., 2009a), we proposed a combination
of ℓ1 sparsity and spatial smoothness bias, implemented via augmentation of the linear
program used in training. The spatial bias lead to an increase in accuracy, and made the
resulting images more interpretable. Steady increases in the levels of accuracy on this
problem, i.e., separating AD subjects from controls, have lead some researchers in the field
to move towards the more challenging problem of making similar classifications on MCI
subjects, with the expectation of extending such methods for identifying signs of the disease
in its earlier stages. We provide a brief review of some preliminary efforts in this direction
next.

Several recent studies (Schroeter et al., 2009; deToledo-Morrell et al., 2004; Dickerson et
al., 2001; Hua et al., 2008) have shown that certain markers are significantly associated with
conversion from MCI to AD. In (deToledo-Morrell et al., 2004; Dickerson et al., 2001), the
authors show that traced volumes of the hippocampus and entorhinal cortex show significant
group-level differences between converting and non-converting MCI subjects. We note that
these studies show (in a post-hoc manner) that certain brain regions are correlated with AD
histopathology; what we seek to do instead is to evaluate such markers in terms of their
ability to classify novel examples. In (Hua et al., 2008) a large number of ADNI subjects
were tracked longitudinally using Tensor-Based Morphometry (TBM). The authors
compared conversion from MCI to AD over 1 year with atrophy in various regions, but a
discussion of the predictive accuracy results was relatively limited (i.e., included p-values of
0.02 between converters and non-converters). In (Davatzikos et al., 2009), the authors
applied statistical techniques to both ADNI and BLSA subjects (Shock et al., 1984). A
classifier was trained using ADNI subjects, and applied to MCI and control subjects (in the
BLSA cohort) to provide a SPARE-AD disease marker. This procedure could successfully
separate MCI and control subjects with high confidence (AUC of 0.885), and it was
demonstrated that the MCI group had a larger increase in SPARE-AD scores longitudinally.
However, the main focus in (Davatzikos et al., 2009) was not on predicting which MCI
subjects would progress to AD, but rather on finding a marker for MCI itself. In (Querbes et
al., 2009), cortical thickness measures were used on a large set of ADNI subjects to
characterize disease progression in AD and MCI subjects. Freely available tools
(FreeSurfer) were used to calculate cortical thickness values at points on the surface of each
subject’s brain (after warping to MNI template space) and then the thickness measures were
agglomerated into 22 Regions of Interest (ROI), which the authors used as features (i.e.,
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covariates) in a logistic regression framework. Using age as a covariate, a set of AD and
control subjects were used to train a logistic regression classifier for each subject, yielding a
Normalized Thickness Index (NTI). It was found that this NTI was able to give 85%
accuracy in separating AD subjects vs. controls, and had 73% accuracy (0.76 AUC) in
predicting which MCI subjects would progress to full AD within 3 years. The latter
objective is of special interest in the context of the techniques presented in this paper.

A common trend in the studies mentioned above is their focus on using a single scanning
modality and processing pipeline. For instance, in a recent study (Schroeter et al., 2009), the
authors surveyed 62 original research papers in a meta-analysis aimed at identifying which
brain regions might make the most useful markers of AD-related atrophy, in a variety of
different scanning modalities. A fundamental assumption is that the studies use only one
scanning modality and analysis method in isolation, rather than combining the several
available modalities into a single disease marker. However, each scanning modality and
processing method can reveal information about different aspects of the underlying
pathology. For instance, structural MR images may reveal patterns of gray matter atrophy,
while FDG-PET images may reveal reduced glucose metabolism (Ishii et al., 2005), PIB
imaging highlights the level of amyloid burden in brain tissue (Klunk et al., 2004), and
SPECT imaging can allow an examination of cerebral blood flow (Ramírez et al., 2009);
similarly, Voxel-Based Morphometry (VBM) shows gray matter density at baseline, while
Tensor-Based Morphometry (TBM) shows longitudinal patterns of change (Hua et al.,
2008). Another important issue one must consider is that as new types of biologically
relevant imaging modalities become available, (e.g., new tracers for use in PET scanners, or
new pulse sequences in MRI scanners), it is desirable for the diagnostic process to
incorporate such advances seamlessly. Further, since AD pathology is known to be
heterogeneous, (Thompson et al., 2001) it may be advantageous to include multiple scanning
modalities in a single classification framework. Indeed, a wide variety of markers may be
available, and it is desirable to make the best use of all such information in a predictive
setting. The main difficulty is that as the number of available input features grows, many
machine learning algorithms may lose their ability to generalize to unseen examples, due to
the disparity between the sample size and the increased dimensionality. To address this
problem, we propose to employ a recent development in the machine learning literature,
called Multi-Kernel Learning (MKL), which is designed to deal with multiple data sources
while controlling model complexity. We have evaluated this method’s performance on
subjects from the ADNI data set, and report these results below. We have also applied the
multi-modal classifier to MCI subjects, showing a promising ability to predict which
subjects will convert from MCI to full AD in the ADNI sample.

The principal contributions of this paper are: (1) We propose a new application of Multi-
Kernel Learning (MKL) to the task of classifying AD, MCI, and control subjects, which
permits seamless incorporation of tens of imaging modalities, clinical measures, and
cognitive status markers into a single predictive framework. The main ideas behind MKL
are presented in Section 2.2; (2) We have conducted an extensive set of experiments using
ADNI subjects, aimed at providing a rigorous evaluation of the method’s ability to predict
disease progression under conditions designed to match a clinical setting. We present these
results in Section 4; (3) We employ our method to produce a Multi-Modality Disease
Marker (MMDM) for MCI subjects, and present an analysis of its predictive value on rates
of conversion from MCI to AD in Section 4.3. A discussion of our results is given in Section
5. 1

1A preliminary conference version of this paper appeared as (Hinrichs et al., 2009b).

Hinrichs et al. Page 4

Neuroimage. Author manuscript; available in PMC 2012 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2 Algorithm
2.1 Support Vector Classification

In the following section, we present a brief overview of Support Vector Machines, (Cortes
and Vapnik, 1995) illustrate the connection to Multi-Kernel Learning, and how this relates
to the problem of disease classification from multiple modalities.

Machine learning methods are designed to find a classifier (i.e., function) that correctly (or
maximally) classifies a set of n training examples (i.e., where class labels are known), while
simultaneously satisfying some other form of inductive bias which will allow the algorithm
to generalize, i.e., correctly label future examples. Given a collection of points in a high
dimensional space, SVM frameworks output a decision function separating classes (in a
maximum margin sense) in that space; the ‘bias’ here is toward selecting functions with
large margins. A linear decision boundary describes a separating hyper-plane –
parameterized by a weight vector w, and an offset b. Classifying a new example x involves
taking the inner product between x and w plus the offset b; the sign of this quantity indicates
which side of the hyperplane x falls on (i.e., its predicted class). In order to find the
classifier, SVMs try not only to assign correct labels to each training example by placing
them on the correct side of the hyperplane, but also attempt to place them some distance
away. The measure of this distance is controlled by ||w||2, or ℓ2-norm of w. Thus, by
rewarding the algorithm for reducing the magnitude of w, classifiers that correctly label the
data (and have the widest margin) are selected, see (Schoelkopf and Smola, 2002) for
details. SVMs choose an optimal classifier by optimizing the following primal/dual problem,
whose solution w gives the separating hyperplane:

(1)

(2)

In the primal problem (1), the slack variables ξ implement a soft margin objective. That is,
for each example i that is not placed more than unit distance from the separating hyperplane,
the slack variable ξi takes the value of the remaining distance from example i to the margin,
which is then penalized in the objective. C is a constant parameter controlling the amount of
emphasis on separating the data (if C is large,) vs. widening the margin (if C is small). Thus,
the soft-margin objective allows for a trade-off between perfectly classifying every example,
and widening the margin. The bias term b allows for separating hyperplanes (wTx + b)
which do not pass through the origin. Class labels for each example are given as yi = ±1, so
that yi(wT xi + b) will be positive iff wT x + b gives xi the correct sign specified by yi.

Note that the hyperplane parameters w can be given as a linear combination of examples. It
is a special property of the SVM formulation that the dual variables 2 α are exactly the
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coefficients of such a linear combination, i.e., w = Σi αiyixi. For typical settings of C, the
support of α will be sparse, giving rise to the term “Support Vector Machine”.

Note that in the dual problem (2), the examples only occur as inner products 〈xi, xj〉. These
inner products can be captured in a single n × n matrix called a Gram matrix or kernel
matrix, ; see (Bishop, 2006). In practice,  is specified by the user and expresses some
notion of similarity between the examples – that is, the magnitude of a kernel function of
two examples expresses an inner product between corresponding points in an implicit
Reproducing Kernel Hilbert Space . The translation from the original data space to  is
commonly denoted as φ(x); when the kernel function is modified, 3 the kernel space  and
translation function φ(x) are correspondingly modified. The kernel function can also be
calculated analytically – among those commonly used are Linear, Polynomial, and Gaussian
kernels. Briefly, a linear kernel function is simply the inner product of two examples in the
original data space; thus, unmodified SVMs use a linear kernel. A polynomial kernel
function is one in which each inner product is squared (or cubed etc.). Such kernels allow
for polynomial decision boundaries, rather than simple hyperplanes. Finally, Gaussian
kernels are based on the Euclidean distance between examples, by the formula

where σ is a bandwidth parameter and xi and xj may denote examples i and j. Gaussian
kernel-based SVMs can be thought of as training a Gaussian mixture model as the pattern
classifier. If a modified kernel function is used, corresponding to a non-linear transformation
of the data, then the learned classifier is a linear function (i.e., hyperplane) in the kernel
space . Such a function typically maps back to a non-linear decision function in the
original data space. A thorough treatment is given in (Bishop, 2006).

2.2 Multi-Kernel Pattern Classification
An extension of this idea is to combine many such functions of the data (i.e., multiple
kernels, each pertaining to one modality for example, or to different parameterizations of the
kernel function, or to different sets of selected features), to create a single kernel matrix
from which a better classifier can be learnt. Multi-kernel learning (MKL) (Lanckriet et al.,
2004; Sonnenburg et al., 2006; Rakotomamonjy et al., 2008; Gehler and Nowozin, 2009;
Mukherjee et al., 2010) formalizes this idea. This is achieved by adding a set of optimization
variables called subkernel weights which are coefficients in a linear combination of kernels.
The subkernel weights are chosen so that the resulting linear combination of kernel matrices
(another kernel matrix) yields the best margin and separation on the training set, with
additional regularization to reduce the chances of overfitting the data due to the increase in
the degrees of freedom of the model.

2In linear and quadratic optimization, every primal problem has an associated dual problem; the optimal solution to one can be used to
recover the optimal solution to the other.
3Any such modification must preserve the positive-definite property of the original kernel function.

Hinrichs et al. Page 6

Neuroimage. Author manuscript; available in PMC 2012 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

Here, βk is the subkernel weight of the k-th kernel, and wk is the set of weights for the k-th
feature space, while ξi is a slack variable as described above. Regularization of the
subkernel weights is accomplished by penalizing the squared 2-norm of β in the objective.
Thus, in addition to minimizing the magnitude of each set of weights, the MKL algorithm
also tries to minimize the magnitude of the subkernel weight vector. Thus as βk grows
larger, the corresponding wk is penalized less, and therefore tends to have a larger
contribution to the final classifier. The combined classifier is defined as f(x) = Σk wk

Tφk(x) +
b. Thus, the implicit kernel function is equal to Σk βkφk(xi)Tφk(xj). In the context of our
application, it is helpful to think of the various kernel matrices as being derived from
different sources of data (e.g., different modalities), different choice of kernel function or
parameters, (e.g., bandwidth parameter in a Gaussian kernel function,) or a different set of
features. Their assigned weights can then be interpreted as their relative influence in
learning a good classifier (i.e., discriminative ability). Because there is a natural mechanism
to control the greater complexity resulting from the increased dimensionality of multi-
modality data, we believe that MKL is a preferable option rather than simply
‘concatenating’ all features together and using a regular SVM. Our proposed method then, is
to calculate various kernel matrices from each available input modality – including brain
images, cognitive scores and other characteristics, such as CSF assays or APOE genotype,
and use MKL to train a optimal combined kernel and classifier.

Note that in the term  the subkernel weights are penalized according to the Euclidean,
or 2-norm. 4 A recent focus in MKL research has been to generalize this formulation to
include other norms (Kloft et al., 2010), having different effects on the sparsity of the
resulting vector of subkernel weights. For instance, the 1-norm is a sparsity inducing norm,
while the 2-norm is not; norms between 1 and 2 allow a trade-off of emphasis between
sparse and non-sparse solutions. When combining multiple imaging modalities for AD
classification, it is preferable not to encourage sparsity, as the algorithm will be very likely
to completely ignore some modalities.

3 Experimental Setup
3.1 Data

Data used in the evaluations of our algorithm were taken from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-
year public-private partnership. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimers disease (AD).
Determination of sensitive and specific markers of very early AD progression is intended to

4In general, the p-norm of a space  is given as ||(x)||p = (Σi |xi|p)p, for x ∈ .
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aid researchers and clinicians to develop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative
is Michael W. Weiner, M.D., VA Medical Center and University of California San
Francisco. ADNI is the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages
55 to 90, to participate in the research approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years, and
200 people with early AD to be followed for 2 years.

Our data consisted of ADNI subjects for whom both MR and FDG-PET scans roughly 24
months apart were available (as of October 2009). For quality control purposes, several (16)
subjects were removed due to motion artifacts (MR), reconstruction artifacts (FDG-PET) or
other problems visible to an expert. All such evaluations were made before any
classification experiments were conducted, so as not to unfairly bias the experimental
results. Finally, we had data for 233 subjects (48 AD, 66 healthy controls, and 119 MCI
subjects). Demographic data are shown in Table 1. Subject ID numbers are given in Tables
12 – 14. See Supplemental Materials.

3.2 Preliminary Image-processing
In order to apply SVM and MKL methods to imaging data, it is necessary to extract features
which are common to all subjects. Using standard voxel-based morphometry methods, as
described below, we warped the scans into a common template space, and used voxel
intensities as features. That is, after extracting foreground voxels, (i.e., those corresponding
to brain tissue,) each subject can then be treated as a vector of fixed length.

T1-weighted MR images—Cross-sectional image processing of the baseline T1-
weighted images was first performed using Voxel-Based Morphometry (VBM) toolbox in
Statistical Parametric Mapping software (SPM, http://www.fil.ion.ucl.ac.uk/spm). The
ADNI study provides repeated acquisitions of the MR scans, which we utilized by first
performing an affine warp between duplicates, and then averaging them in order to boost the
signal/noise ratio. We then segmented the original anatomical MR images into gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) segments. Then by using the
“DARTEL Tools” facility in SPM5, a study-cohort customized template was calculated
based on all subjects’ baseline MR images with the registration results as well as all relevant
flow fields (representing the transformations). All individual MR scans were subsequently
warped to this new template. Modulated GM and WM segments were produced in the
DARTEL template space, using both the original scans (Ashburner, 2007). Finally, the
normalized maps were smoothed using an 8 mm isotropic Gaussian kernel to optimize signal
to noise and facilitate comparison across participants. Analysis of gray matter volume
employed an absolute threshold masking of 0.1 to minimize the inclusion of the white matter
in analysis. Longitudinal MR image processing of baseline and 24-Month MR scans was
performed with a tensor-based morphometry (TBM) approach in SPM5. We first co-
registered the baseline and follow-up scans with rigid body affine transformation, and
applied bias correction and intensity normalization to make both images comparable. Pre-
processing TBM procedures are described in detail in a previous article (Kipps et al., 2005).
Briefly, a deformation field was used to warp the corrected late image to match the early one
within subject (Ashburner and Friston, 2000). The amount of volume change was quantified
by taking the determinant of the gradient of deformation at a single-voxel level (i.e.,
Jacobian determinant). Each subject’s Jacobian determinant map was normalized to the
cohort-specific DARTEL template and smoothed using a 12 mm isotropic Gaussian kernel.
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FDG-PET images—All FDG-PET images were first co-registered to each individual’s
baseline MR-T1 images and subsequently warped to the cohort-specific DARTEL template
(see above). A mask of the Pons was manually drawn in the DARTEL template as the
reference region. All of the normalized FDG-PET images were scaled to each individual’s
Pons average FDG uptake value and smoothed with a 12 mm isotropic Gaussian kernel.

Other biological and neurological data—In addition to MR and FDG-PET images,
other biological measures and cognitive status measures are provided by ADNI for some
subjects. These include CSF assays for certain compounds thought to be involved in
neurodegeneration, such as AB1-42, Total Tau, and P-tau 181; NeuroPsychological Status
Exam scores (NPSEs); and APOE genotype data. The complete list of biological measures,
and their availability in the study population is shown in Tables 2 and 3.

3.3 Experimental Methodology
We performed two sets of classification experiments: (1) We first performed multi-modal
classification experiments for separating AD and control subjects using baseline and
longitudinal imaging data, (MR and FDG-PET), and other available cognitive/biological
measures (CSF assays, NeuroPsychological Status Exams (NPSE), and APOE genotype).
For comparison, we also present single-kernel experiments for each data modality (except
APOE, since APOE genotype alone is not sufficient to diagnose AD), and on an SVM
trained on the sum of all kernels, (or equivalently, the concatenation of all feature vectors).
(2) Finally, we trained a classifier on the entire set of AD and control subjects and then
applied it to the MCI population, giving a Multi-Modality Disease Marker (MMDM). We
compared this marker with NPSEs taken at 24 months, and examined its utility in predicting
which MCI subjects would progress to AD, as opposed to remaining stable as MCI. Note
that this is different from separating MCI subjects from AD/controls.

Kernel matrices—Kernel matrices used in our experiments were computed using a
varying number of voxel-wise features, (i.e., intensity values at each voxel,) and kernel
functions i.e., linear, quadratic and Gaussian, for each imaging modality. For each fold,
voxels were ranked by t-statistic between AD and control training subjects. That is, each
voxel’s intensity value can be thought of as a random variable, upon which we performed a
t-test, and ranked the features by the resulting p-values. Separate kernels were computed
using the top 250,000, 150,000, 100,000, 65,000, 25,000, 10,000, 5000 and 2000 features,
respectively. These sets of features were chosen beforehand so as to give a reasonable
coverage of the range of features available, while allowing the algorithm to choose a linear
combination that leads to a discriminative kernel. In addition to performing an implicit
feature selection step, this allows us to evaluate the MKL algorithm’s ability to integrate
tens to hundreds of kernels, as in the case when many more modalities are available. For
each set of features, we constructed linear, quadratic, and Gaussian kernels, using a
bandwidth parameter of 2 times the number of features for the Gaussian kernel. The
Gaussian kernel bandwidth parameter should be chosen to be within the same order of
magnitude as the majority of pairwise distances. Thus, when voxel-wise intensity values fall
in the range [0, 1], a common choice for the bandwidth parameter is a small number times
the number of features. By this process, we obtained 24 separate kernel matrices for each
imaging modality. For non-imaging modalities, i.e., CSF assays, NPSEs, and APOE
genotype, all features were used, giving three kernels per modality. The biological measures
used are shown in Table 2. Because only a subset of subjects had such measures available,
we used zero values for those who did not. This means that kernel matrices had zero values
where such data were missing, and therefore added nothing to the classification on those
subjects. We chose a conservative approach to this problem, meaning that results can only
improve if a statistical interpolation method were to be introduced. For computing the
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MMDM for MCI subjects, all AD and CN subjects were used both in feature selection and
training.

Before training a classifier using the kernels constructed as described above, it is necessary
to perform some normalization; consider that the vector w which defines the separating
hyperplane is a linear combination of examples. If the average magnitude of examples as
implicitly represented by one kernel is orders of magnitude larger than that of another
kernel, then for the same subkernel weights, one kernel will have a far greater contribution
to w. In order to ensure that this is not the case, we adopted a standard approach to kernel
normalization. The first step is to divide each kernel by the largest entry, so that all entries
are in the range [0, 1]. Second, we re-centered the points in each kernel space by subtracting
row and column mean values, and then dividing by the trace. See Bakir et al. (2007) for
details. As a consequence of normalizing the kernels, the C parameter which controls the
regularization trade-off can be set to a small integer. We therefore set C = 10; no fine tuning
or model selection was necessary.

Recall that when longitudinal data are available, there is more than one way to perform
spatial normalization of scans, and we treat them as different imaging modalities, because
we expect different types of information to be revealed by each. From MR images, we have
both baseline VBM, and TBM modalities; in FDG-PET we have baseline and 24 month
scans, as well as the voxel-wise difference and ratio between scans at different time points.
Kernels based on the longitudinal voxel-wise difference and ratio in FDG-PET images were
found to have poor performance relative to the raw FDG-PET values (60% – 70% accuracy),
and we did not make further use of them in our experiments.

ROC curves—We also computed Receiver Operator Characteristic curves (ROCs) for
each set of experiments. Briefly, while a classification algorithm must output a ±1 group
label, our algorithm can also output a ‘confidence’ level for each test subject which in this
case is the signed output of the classifier. By ordering the confidence levels of the entire
study population, and calculating a True Positive Rate (TPR or sensitivity) and False
Positive Rate (FPR or 1 - specificity) for each level, an ROC curve qualitatively shows not
only how many examples are misclassified, but provides a sense of how the classifier’s
confidence relates to its correctness.

Cross-validated classification—For the first set of experiments, we performed AD vs.
control classification experiments using 30 realizations of 10-fold cross-validation. That is,
in each realization the study population was randomly divided into ten separate groups, or
folds. Each fold was used as a “test” set, while the remaining data was used as a “training”
set. Therefore, the algorithm was evaluated on AD and control examples which were unseen
during the training process, while permitting us to use the entire dataset effectively. Various
accuracy measures, such as test-set accuracy (% of test examples properly labeled as AD or
control,) sensitivity, (% of AD cases labeled as such) and specificity (% of controls labeled
as such), and area under ROC curves were computed by averaging over all 30 realizations.
Using this methodology, we first evaluated each kernel function on its own, in an SVM
framework. We then evaluated each modality in an MKL framework, by combining
different kernel functions, all derived from the same modality and features. Finally, we
combined all imaging modalities into a multi-modality MKL classification framework. We
did the same for cognitive scores and biological measures, allowing for a comparison
between different types of subject data in terms of their ability to identify signs of AD.

Comparison of subkernel weight vector regularization norms—Another
interesting area of investigation is on the effect of different MKL norm regularizers,
especially with regard to sparsity of the resulting classifier. Sparsity is often advantageous in
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the presence of non-informative or error-prone kernels, however an overly sparse
combination can discard useful information, leading to a sub-optimal classifier. Thus, it is
important to understand this trade-off. Using the cross-validation setup described above, we
compared different subkernel norm regularizers, (1, 1.25, 1.5, 1.75, and 2), using all
available kernel types, as shown in Tables 2 and 3. In order to demonstrate MKL’s ability to
combine fundamentally different sources of information, we also constructed additional
kernels using subject age, APOE genotype, years of education, and geriatric depression scale
as features. We expect that some of these additional kernels may or may not be as useful to
the learning algorithm, so as to allow a meaningful assessment of the usefulness of applying
sparsity in the kernel norm. For baseline comparison we trained an SVM on the sum of all
kernels, which is equivalent to simply concatenating all feature vectors, by definition of the
inner product of vectors.

MMDMs—Our next set of experiments were conducted to evaluate the ability of imaging-
based markers to predict which subjects would convert from MCI to AD. In order to do this,
we first trained an MKL classifier using all 114 AD and CN subjects, and then applied it to
all 119 MCI subjects, giving an MMDM measure. This procedure was repeatedly performed
using (a) imaging-based, (b) cognitive marker-based, and (c) biological measure-based
kernels, so as to evaluate each type of data separately, and facilitated a better comparison
among them. We also differentiated between baseline and longitudinal data.

To quantify the predictive value of the MMDMs, we separated the MCI subjects into three
groups – those who had progressed to AD after three years, those who remained stable, and
those who reverted to normal status – and calculated p-values of group differences using a t-
test. We also computed ROC curves to quantitatively measure the degree of differentiation
between the MCI groups as given by different types of biological measures. There are two
ways to compute such ROCs: based on the differentiation between progressing and reverting
MCI subjects, ignoring the stable MCI subjects; and based on the differentiation between
progressing and non-progressing MCI subjects. In the former case, we treat stable MCI
subjects as though their final status is not yet known, and thus the task is to predict whether
a given subject will eventually revert, or progress. For our analysis, we calculated both kinds
of ROC curves, and present results below.

Implementation—Our validation experiments and analysis framework were implemented
in Matlab using an interface to the Shogun toolbox (Sonnenburg et al., 2006)
(http://www.shogun-toolbox.org). The source code for this project and supplemental
information will be made available at http://pages.cs.wisc.edu/~hinrichs/MKL_ADNI [upon
publication].

4 Results and Analysis
We present here the results of our experiments on the ADNI data described in Section 3, and
an analysis of the MKL algorithm in the context of MCI progression.

4.1 Separating AD subjects and Controls
As a first step, we separately evaluated the kernels produced by each modality by comparing
their performance at classifying AD vs. control subjects using an MKL norm of 2.0, so as
not to discard any useful information. Results of these experiments are shown in Figure 1.
Note that the color scale is the same between all figures.

Our first set of multi-kernel experiments also focused on whether the algorithm could learn
to separate AD subjects from controls. Our experimental method was to use 10-fold cross-
validation repeated 30 times, using kernel matrices computed as described in 3.3. Accuracy,

Hinrichs et al. Page 11

Neuroimage. Author manuscript; available in PMC 2012 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.shogun-toolbox.org
http://pages.cs.wisc.edu/


sensitivity, and specificity results are shown in Table 4. In order to compare the efficacy of
imaging-based disease markers with other biological measures, we performed experiments
(1) using only image-derived data, (2) using other biological measures, (3) using only
NPSEs, and finally using all available data modalities.

Note that the accuracy achieved using imaging-based MMDMs is nearly as good as that
achieved using NPSEs. We believe this is promising, because NPSEs should be expected to
perform better than imaging modalities when AD-related cognitive decline is present, even
if the NPSEs were not used in making the diagnosis. This is because AD is currently
diagnosed according to the patient’s cognitive status, and while the NPSEs we utilized are
not the same as those used in making a clinical diagnosis, they are nonetheless markers of
detectable decline in cognition, and as such are not directly comparable to imaging-based
markers. Rather, we include these experiments only to facilitate indirect comparison. Thus,
for the imaging-based markers to be nearly as effective is quite promising.

The areas under each ROC curve (another measure of classification performance) are
provided in Table 4. In terms of area under ROC curve, all modalities performed about as
well as other accuracy measures would suggest. Again, we note that imaging modalities and
cognitive scores performed very similarly under this measure.

In order to compare the effect of subkernel weight norms, we repeated the above
experiments using all kernels and modalities available and MKL norms in the range of (1,
1.25, 1.5, 1.75, 2). These results are shown in Table 5. Note that among the MKL norms,
accuracy increases slightly with MKL norm up to the point where sparsity is no longer
strongly encouraged (at about 1.5), suggesting that overly sparse MKL norm regularizers do
indeed lose information. We also note that the SVM’s performance suffered significantly.

When using a 1-norm, out of the 72 available kernels, only 4 had non-zero weights: one
TBM Gaussian kernel using 10,000 features, two VBM kernels, (one linear with 10,000
features, one quadratic with 25,000), none from the baseline FDG-PET scans, and one linear
kernel with 2,000 features. In contrast, the subkernel weights chosen when using an MKL
norm of 2 were all non-zero, and are shown in Figure 2. This means that in the context of
AD classification, different modalities (and different representations of information from
those modalities) contributed to in varying proportions to yield a discriminative classifier. It
is perhaps interesting to note that most of the weight was placed on the VBM kernels,
followed by the TBM and FDG-PET kernels.

4.2 Classifier brain regions
An important component of the evaluation of our method is an analysis of the brain regions
selected by the algorithm. That is, if the algorithm is only given linear kernels from brain
images, then the decision boundary itself can be interpreted as a set of voxel weights, using
the formula wm = βm Σi αiφm(xi) where φm(x) is the implicit (possibly non-linear) transform
from the original data space to the kernel Hilbert space. An examination of these weights
can reveal which brain regions were found to be most useful or discriminative (by the
algorithm) in its predictions. Thus, the images of brain regions below are taken from the
multi-modality classifier trained on all four imaging modalities used in our experiments,
using only linear kernels. Note that from Figure 1, we can see that among the kernels
derived from FDG-PET images, the most informative kernel used more than 65000 voxels,
which implies that classification strategies can benefit from using whole-brain images
rather than examining small, localized brain regions, or ROIs in FDG-PET imaging. The
results are shown in Figures 3 – 6. Note that these weights were all calculated
simultaneously in the MKL setting. These images can be interpreted as follows: image
intensity in voxels showing a stronger red color contributes to a subject’s healthy (positive)
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diagnosis, while intensity in voxels showing a stronger blue color contributes to a subject’s
diseased (negative) diagnosis, and intensity in yellow-, green- or cyan-colored voxels is
essentially ignored. Note that these weights are purely relative, and thus have no applicable
units. Each subject’s final score is thus the difference between the weighted average
intensity in the red and orange regions and the blue and cyan regions. We interpret this as
meaning that red-orange (positive weighted) regions are those in which image intensity is a
prerequisite of healthy status. For blue-cyan (negative weighted) regions, the literal
interpretation is that the algorithm found higher intensity among the AD group than in the
controls.

In some cases, we observe that negative weights are assigned in regions where higher image
intensity is usually associated with positive status. There are several possible explanations
for this, such as image normalization artifacts which artificially boost the intensity of these
regions in some AD subjects. For instance in FDG-PET images, image intensity was
normalized using a map of the Pons, and thus irregularities in this region could produce
artificially inflated intensities in the rest of the image. Another possibility is brought up by
(Davatzikos et al., 2009), which is that in MR images of gray matter, periventricular white
matter may be mis-segmented as gray-matter, due to certain types of vascular pathology. A
third possibility is that there is a small set of subjects whose characteristics is heterotypical
of their group, and thus induce negative weights in regions which would otherwise have
positive weights. Evidence of such a group was found in (Hinrichs et al., 2009a). In order to
examine this possibility we found a set of subjects (5 subjects based on baseline FDG-PET
scans, and 4 subjects based on baseline MR scans) who had unusually strong intensity in
regions which had been assigned negative weights, and re-trained the MKL classifier
without them. The resulting classifier was nearly free of such anomalous negative weights,
which strongly suggests that these negative weights are entirely the result of the influence of
a small group of outlier subjects, (9 out of 114). We have investigated this issue briefly in
our previous work. (Hinrichs et al., 2009a) The weights assigned by this classifier can be
seen in Figure 7. It is important to note that these subjects were removed for visualization
purposes only, and were still used in computing accuracy and other performance estimates,
and in the MCI analyses described below.

In Fig. 3, we can see that heteromodal, frontal, parietal regions and temporal lobes are given
negative weights. The posterior cingulate cortex, lateral parietal lobules (bilaterally) and pre-
frontal midline structures prerequisite of an indication of healthy status. The weights
assigned to the FDG-PET scans taken at 24 months show a similar pattern, and are shown in
Figure 4.

Among the MR-based kernels, the most informative kernels (as measured in a single-kernel
setting,) used 5000 to 25000 voxels, implying that smaller regions, can be used to identify
signs of AD-related gray matter atrophy. Thus, we expect to see a similar pattern in the
multi-modality setting. Using the same interpretation of color as above, we can see that in
the baseline GM density images, (VBM) hippocampal and parahippocampal regions are
highlighted more clearly, consistent with the single-modality results which indicated that a
small number of voxels are most informative in this modality. In the TBM-based images, we
see that the hippocampal regions and parahippocampal gyri are highlighted, as well as
middle temporal lobar structures bilaterally, indicating that longitudinal atrophy is
concentrated in these regions, which is again consistent with the single kernel results, (and
prior literature), (Braak et al., 1999) in which the top 25000 voxels produced the most
informative classifier.
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4.3 Correlations and predictions on the MCI population
For the second set of experiments, which involved MCI subjects, we trained a classifier on
the entire AD and control population using MKL. This classifier was then applied to the
MCI population, giving a MultiModality Disease Marker (MMDM). Using this
methodology, only AD and control subjects were used to train the model, while MCI
subjects were only used for evaluation, rather than other methodologies in which MCI
subjects are used for training purposes. (Hua et al., 2008, 2009; Davatzikos et al., 2009) This
process was repeated for each modality separately, as well as in groups of modalities. That
is, all imaging modalities were combined, as were all NPSEs and biological measures. The
outputs for each subject are shown in Figure 8. Subjects who remained stable are shown in
blue; subjects who progressed to AD after 3 years or less are shown in red; subjects who
reverted to normal cognitive status are shown in green. The four plots are divided between
baseline (left) and longitudinal (right), and imaging-based (top) and NPSE-based (bottom)
MMDMs. In each plot, a maximum accuracy cut-point is plotted as a solid black line. On the
left we can see that neither of the baseline scans shows much differentiation between the
groups, and the maximum accuracy separating line is essentially choosing the majority class.
On the right, both the imaging-based and NPSE-based MMDMs provide better separation of
the 2 groups. We also computed a set of MMDM scores based on CSF measures and APOE
genetic markers, which did not show any ability to differentiate the 2 groups. An
encouraging sign is that none of the reverting subjects were given negative scores.

In order to quantify these differences, we evaluated the degree of group-wise separation
between progressing, reverting, and stable MCI subjects, under each of the available
modalities, using a t-test. As shown in Table 6, the resulting p-values of the imaging-based
MMDM (in separating progressing subjects from non-progressing) are several orders of
magnitude lower than those based on NPSEs at 24 months, and two orders lower at baseline,
suggesting that imaging modalities offer a better view of future disease progression than
current cognitive status. We believe this is an interesting result of our analysis.

Area under ROC curve results are shown in Table 7; the corresponding ROC curves are
shown in Figure 9. For ROCs showing separation between progressing and reverting
subjects, the AUCs are very high, as we would expect. These curves are shown on the left in
Figure 9. For comparison, we also computed ROC curves for single modalities, which are
also shown in the figure. Of special relevance is the fact that the MMDM based on imaging
data alone outperformed all others, both at baseline and at 24 months. The second
comparison we made via ROC curves was between progressing subjects and all others. We
accomplish this by using a different ground truth for computing the ROC curves. In this
case, the task is to understand which of the MCI subjects will progress to AD in the near
term (2–3 years), and which will remain stable or revert. These curves are shown on the
right in Figure 9. In this case, the imaging-based MMDM, (shown in green) outperformed
all others, most significantly at 24 months. The AUC for the image-based MMDM was 0.79,
while that of the NPSE-based MMDM was 0.74. The highest leave-one-out accuracy
achieved by the image-based MMDM was 0.723. For the NPSE the highest accuracy was
0.681 For the Biological measure-based MMDMs, it was not possible to achieve an
accuracy greater than chance.

5 Discussion
We have shown in our experiments that our approach can offer a flexible means of
integrating multiple sources of data into a single automated classification framework. As
more types of information about subjects become available, either through new scanning
modalities or new processing methods, they can simply be added to this framework as
additional kernel matrices in a seamless manner. For instance, rather than choose whether to
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use TBM or VBM in our experiments, we used both by delegating the task of choosing the
better (i.e., more discriminative) view of the data to our model.

The principal novelty of this work is to introduce a new machine learning algorithm, Multi-
Kernel Learning, to the application of discriminating different stages of AD using
neuroimaging and other biological measures. Many existing works (Davatzikos et al.,
2008a,b; Fan et al., 2008b,a; Vemuri et al., 2008; Duchesne et al., 2008; Davatzikos et al.,
2009; Querbes et al., 2009; Klöppel et al., 2008; Ramírez et al., 2009; Kohannim et al.,
2010; Walhovd et al., 2010), use either general linear models based on summary statistics,
or machine learning algorithms such as SVMs, logistic regression, or AdaBoost, with
extensive pre- and post-processing of imaging data which adapts these methods to the
particular application. Of the machine learning methods mentioned here, all three are
discriminative max-margin learning algorithms. Logistic regression uses a sigmoid function
to approximate the hinge-loss function, and must be optimized via iterative methods.
AdaBoost implicitly finds a margin by iteratively increasing the importance of examples
which are misclassified, much the same way that examples inside the margin become
support vectors in the SVM framework. Our method shares some commonalities in the sense
that pre-processing of brain scans is also required before a classifier can be trained.
However, by incorporating MKL, we can extend this framework to allow seamless
integration of multiple sources of data while controlling the complexity of the resulting
classifier without the need for creating summary statistics, (which discard a large amount of
information).

We note that several studies have reported better raw performance at classifying AD and
control subjects. There are several factors which can affect such results. First, there is the
issue of the severity of the disease, and of the availability of gold-standard diagnosis. For
instance, the authors of (Klöppel et al., 2008) reported that their accuracy suffered when
autopsy data were not available due to the difficulty of diagnosing AD in vivo. The ADNI
data set, on which our experiments were based, consists entirely of living subjects, having
relatively mild AD. (See Table 1). Other studies have used ADNI subject data (Davatzikos
et al., 2009; Querbes et al., 2009; Fan et al., 2008a), and while some have reported better
performance than we have, issues such as image registration and warping, subject inclusion
criteria (e.g., image quality), or choice of feature extraction/representation might have a
greater effect on final outcomes. A recent study, Cuingnet et al. (2010), addressed exactly
these issues, finding that when these issues are controlled, the accuracy results are closer to
those reported in this study. (See Table 4.) For example, if a pre-processing method is found
to be particularly useful for discriminative purposes, that method can be swapped with our
current pre-processing methods, or incorporated as additional kernels. The more important
comparison is between single modality and multi-modality methods, using the same data
and pre-processing pipeline. In addition, our experiments comparing MKL with a
concatenated-features SVM show that MKL has advantages in the presence of non-
informative kernels.

Single-modality results
Our experiments in single-modality AD classification give an indication of the relative
merits of various scanning modalities. We note first that in FDG-PET scans, the top
performing kernels are those which make use of at least 65,000 voxels, indicating that a
performance gain of five percentage points or more can be made from using the entire brain
volume, rather than using smaller selected regions. 5 That is, while most subjects can be
identified by examining smaller regions, some subjects can only be identified by

5The authors of (Fan et al., 2008b) found similar results in FDG-PET images.
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examination of whole-brain atrophy. This suggests that there is a small group of subjects
having atypical disease progression (in the case of AD subjects) or that some control
subjects may show early signs of disease. A somewhat surprising result is that longitudinal
analysis of FDG-PET images did not have much discriminative power. Neither of the two
methods we considered (voxel-wise temporal difference, and voxel-wise temporal ratio) had
accuracy higher than about 65%. This is perhaps an indication that signs of atrophy in FDG-
PET images accumulate slowly enough that changes over a 2-year period alone are not
enough to distinguish AD with high accuracy.

In the MR-based modalities, we can see that in baseline VBM images, the highest
performing kernels are those that focus on small brain regions of a few thousand voxels,
while in TBM images, the best performance is obtained from larger regions of about 25,000
voxels. We interpret this to mean that (in classifying AD and control subjects,) the most
indicative signs of atrophy already present at baseline can be found in hippocampal and
para-hippocampal regions (not shown), but the atrophy occurring at the stage of full AD
(i.e., that which occurs in the two years following diagnosis), is more diffuse. This suggests
that early signs of AD are more likely to be concentrated in smaller regions, such as the
hippocampus, and other structures known to be affected by AD.

Secondly, we note that linear kernels performed as well as, or better than quadratic and
polynomial kernels in all modalities examined, indicating that there are few quadratic or
exponential effects which can be used for discriminative purposes. This can be interpreted
that indications of pathology in each voxel contribute independently and cumulatively to the
final diagnosis.

Multi-modality results
An interesting comparison which arose in our experiments was between the various
imaging-based kernels individually, (see Figure 1), and the MKL experiments combining
groups of modalities (see Table 4). MKL produces linear combinations of kernels, and
therefore does not examine the interactions between them when evaluating new subjects.
This means that the ideal situation is where the errors present in each kernel matrix are
drawn randomly and independently. When combining modalities with strong similarities, it
is therefore expected that some errors will cancel out, to the extent that those errors do not
themselves arise from shared properties of both modalities. The rationale for combining
modalities into groups for comparison is that while imaging modalities are expected to
contain distinct (and useful) information about each subject, we expect that they will have
some information in common. For instance, properties such as total inter-cranial volume or
particular anatomical artifacts will be present in different scanning modalities, but not in
other biological measures. Thus, we first examine MKL’s ability to integrate groups of
similar measures and modalities, before examining its ability to combine dissimilar sources
of information.

First, we note that none of the individual kernels derived from imaging modalities achieved
an accuracy greater than MKL when given the combination of imaging modalities.
Moreover, when MKL was given the entire set of kernels from all available sources of
information, it outperformed any of the groups of modalities, except for the NPSEs, where
the differences were not significant. This is expected, because clinical diagnosis is already
known, meaning that the disease has already reached a stage where cognitive status effects
are measurable, in contrast to earlier stages, in which anatomical and physiological changes
have begun to occur, but outward signs have not. Indeed, in the analysis of MCI progression
(Tables 6 and 7), it is the imaging-based modalities which have the strongest performance.
Finally, it is interesting that for the biological measures, such as CSF assays and APOE
genotypes, while there is certainly some information contained in the kernels generated from
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these measures, by themselves they do not have nearly the discriminative power of either the
imaging modalities, or the NPSEs. This may be due in part to the fact that these measures
are not available for all subjects.

In Table 7 it may be surprising that the MMDM trained on all available modalities
underperformed the one trained only on longitudinal imaging modalities. This is likely due
to the fact that the training task and evaluation task were closely related, but slightly
different. Thus, the subkernel weights estimated to give the optimal performance on the
training task (AD vs. controls), may have been slightly less than optimal on the related task,
(MCI progression). Despite this, the disparity in performance is small, and the MMDM
using all combined modalities still outperformed all other MMDMs. It is also interesting to
note that while the NPSEs dominated in the AD vs. control task of Section 4.1, in this task,
the longitudinal NPSEs are roughly at parity with the baseline imaging modalities. (See
Tables 6 and 7.) This suggests that signs of impending progression from MCI to AD are
present in the imaging modalities approximately two years ahead of clinical psychological
measures.

MKL-norm results
In our experiments with varying MKL norm, we found that norms which encouraged
sparsity performed slightly worse than those which do not, suggesting that information is
being needlessly discarded. The results in Table 5 show that above about 1.5, sparsity makes
less of a difference, but at 1 or 1.25, sparsity is encouraged enough to affect MKL’s
performance. In contrast, the concatenated-features SVM’s performance was significantly
lower overall, as it has no mechanism for discarding non-informative kernels, especially
when there are more kernels from many different sources. When given only kernels from a
single modality, the SVM’s performance was closer to parity with MKL, however, this is
expected, due to the relative ease of combining kernels from similar sources of information.
Rather, it is when there is greater variety in the information content of the various kernels
that MKL incrementally shows an advantage over the concatenated-features SVM. This
demonstrates that regardless of the norm chosen, MKL has the ability to automatically
detect and discard sets of features which do not contribute significantly to the optimal
classifier. One could, in theory, manually select which features to include, and how to
weight them, but this would essentially emulate the MKL process by hand using a regular
SVM. With the proper construction of kernels, it is even conceivable that MKL could be
used to automatically select ROIs.

Brain regions selected
The classifier chosen by MKL consists of a set of kernel combination weights β, as well as a
set of example combination weights α. These weights can be combined to give a single
linear classifier based on voxel-wise features. The distribution of these voxel-weights
chosen by the MKL algorithm therefore gives some insight into the relative importance of
various brain regions, and we expect that a good classifier will place greater weight on
regions known to be involved in AD.

It is well known that the Posterior Cingulate Cortex is involved in memory retrieval and
related self referential processes (Northoff and Bermpohl, 2004; Piefke et al., 2003; Shannon
and Buckner, 2004). As part of the limbic system, it has reciprocal connections with other
memory areas including the dorsomedial and dorsolateral prefrontal cortex, the posterior
parahippocampal cortex, presubiculum, hippocampus, entorhinal cortex, and thalamus
(Mesulam, 2000). Previous imaging studies suggest the PCC is affected in AD even before
clinical symptoms appear, consistent with the very early memory symptoms in AD (Xu et
al., 2009; Ries et al., 2006). Interestingly, the earliest cerebral hypometabolism finding in
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AD involves the PCC-precuneus rather than the hippocampus (Villain et al., 2008).
Although the mechanism connecting cortical atrophy and hypometabolism in
neurodegenerative disorders is not fully understood, intuitively, a positive relationship is
expected. Both brain atrophy and cerebral hypometabolism reflect loss of neurons/synapses
(Bobinski et al., 1999) and decrease in synaptic density/activity (Rocher et al., 2003). As
mentioned in section 4.2, the brain regions selected by the MKL algorithm in FDG-PET
images, as show in Figures 3 to 4, include the PCC and precuneus, the lateral parietal
lobules, hippocampal and medial temporal regions, and the pre-frontal midline.

In MR longitudinal images (TBM, Figure 5), regions well-known to be atrophic in AD, such
as the hippocampus, parahippocampal gyri, fusiform gyri and other middle temporal
structures (Braak and Braak, 1991) are well highlighted. Expansion, (or reduced contraction)
is associated with healthy status, and thus these regions are given positive weights, shown in
red. Conversely, expansion in ventricles, and in the CSF surrounding the hippocampus is
shown in blue. Expansion in these regions is correlated with AD pathology, and so these
regions are given negative weights. In the baseline gray matter density images, (VBM,
Figure 6) similar hippocampal and medial temporal regions are shown.

MCI conversion
The task of predicting conversion from MCI to full AD is known to be difficult, (Querbes et
al., 2009; Davatzikos et al., 2009), and presents challenges beyond that of classifying AD
and control subjects, or even that of classifying AD/control and MCI subjects. This
difficulty arises largely from the “lag” between brain atrophy and cognitive decline. There
are several interesting aspects of the MMDMs we have examined. First, we note that at
baseline, neither NPSEs nor imaging modalities have a strong ability to detect which
subjects will convert to AD. This may be a result of the ADNI selection criteria for MCI
subjects – that is, MCI subjects are chosen so as to have very homogeneous cognitive
characteristics at baseline, and so we expect that NPSEs will not be able to differentiate
between progressing and stable MCI subjects very well. While the MMDM based on all
combined imaging modalities does have a better AUC at baseline than the NPSEs, the
improvement shown by the MMDM based on longitudinal imaging modalities suggests that
a significant portion of the neurodegeneration responsible for the subjects’ conversion to AD
takes place after MCI diagnosis. In addition, between baseline and 24 months, the imaging-
based MMDM outperforms the NPSE-based MMDM by an even wider margin, as shown by
the AUCs and p-values in Tables 6 and 7. This leads us to believe that while NPSEs can be a
better marker for subjects who already are showing AD-related cognitive decline, the
imaging modalities have slightly better predictive value for future decline. We expect that
further progress can be made in adapting multi-kernel methods to work specifically with
imaging data, allowing greater accuracy in identifying future patterns. Finally, we find it
interesting that combining all imaging markers into a single MMDM offers a slight
improvement over the best single imaging modality, which tends to be FDG-PET. This
improvement is relatively stable over time, between baseline and 24 months.

6 Conclusion
In this paper we have presented a new application of recent developments from the machine
learning literature to early detection of AD-related pathology. Using this measure of AD
pathology, we constructed a predictive marker for MCI progression to AD. This method is
fully multi-modal – that is, it incorporates all available sources of input relating to subjects,
yielding a unified Multi-Modal Disease Marker (MMDM). Our results on the ADNI
population indicate that this method has the potential to detect subtle changes in MCI
subjects which may provide clues as to whether a subject will convert to AD, or remain
stable. In particular, we have shown that imaging modalities have better ability to predict
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such outcomes than baseline neuropsychological scores, which is consistent with the view
that neurological changes detected in neuroimages can precede clinically detectable declines
in cognitive status. Our ongoing work focuses on further developing this method – which
will permit even higher accuracy and sensitivity, and allow predictions at the level of
individual subjects to be made with high confidence.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Accuracies of single-kernel, single-modality methods. Color represents classification
accuracy on unseen test data, ranging from blue (lowest, 50% accuracy,) to red (highest,
100% accuracy). The modalities used are, (a) FDG-PET scans at baseline, (b) VBM-
processed MR baseline scans, (c) FDG-PET scans at 24 months, and (d) TBM-processed
MR scans. See supplemental tables 8 – 11 for raw numbers.
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Figure 2.
Subkernel weights (β) chosen by the MKL algorithm with 2-norm regularization. Weights
are relative, and have no applicable units. The modalities used are, (a) FDG-PET scans at
baseline, (b) VBM-processed MR baseline scans, (c) FDG-PET scans at 24 months, and (d)
TBM-processed MR scans.
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Figure 3.
Voxels used in the classifier for FDG-PET baseline images. Weights are relative, and have
no applicable units. Blue indicates negative weights, associated with AD, while green
indicates zero or neutral weight, while red indicates positively weighted regions associated
with healthy status. Green bars in the axial and sagittal views correspond to coronal slices.
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Figure 4.
Voxels used in the classifier for FDG-PET images at 24 months. Weights are relative, and
have no applicable units. Blue indicates negative weights, associated with AD, while green
indicates zero or neutral weight, while red indicates positively weighted regions associated
with healthy status. Green bars in the axial and sagittal views correspond to coronal slices.
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Figure 5.
Voxels used in the classifier for TBM-processed MR images. Weights are relative, and have
no applicable units. Blue indicates negative weights, associated with AD, while green
indicates zero or neutral weight, while red indicates positively weighted regions associated
with healthy status. Green bars in the axial and sagittal views correspond to coronal slices.
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Figure 6.
Voxels used in the classifier for VBM-processed (GM density) MR images. Weights are
relative, and have no applicable units. Blue indicates negative weights, associated with AD,
while green indicates zero or neutral weight, while red indicates positively weighted regions
associated with healthy status. Green bars in the axial and sagittal views correspond to
coronal slices.
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Figure 7.
Voxel weights assigned by the MKL classifier when the outlier subjects were removed. (a)
FDG-PET baseline images; (b) FDG-PET images at 24 months; (c) VBM-processed
baseline MR images; (d) TBM-processed longitudinal MR scans.
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Figure 8.
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MMDMs applied to the MCI population. Subjects which remained stable are shown in blue;
subjects which progressed to AD are shown in red; subjects which reverted to normal
cognitive status are shown in green. In each figure, a line giving maximal post-hoc accuracy
is shown. Note that in some cases, the best accuracy can be achieved by simply labeling all
subjects as the majority class. In some cases, MMDM scores were truncated to ±2 so as to
preserve the relative scales. On the left (a,c) are shown MMDMs based on information
available at baseline. Note the homogeneity of the groups, leading to poor separability.
Imaging-based MMDMs are shown a the top (a), while MMDMs based on NPSEs are
shown below (c). On the right (b,d) are shown MMDMs based on all modalities available at
24 months. Note the improved separability between the progressing (red) and stable (blue)
MCI subjects. Note that the imaging-based marker above (b) shows slightly greater
separation of the 2 groups.
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Figure 9.
ROC curves for multi-modality learning on disease progression of MCI subjects using
various disease markers. The ROC curves for separating progressing and reverting MCI
subjects on the left (a,c). The ROC curves for separating progressing MCI subjects from all
others are shown on the right, (b,d). The top row (a,b) shows the curves derived from
information available at baseline, while those on the bottom (c,d) were derived from scans
and markers taken at both baseline and 24-months.
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TABLE 2
Biological measures data used in kernel functions

Non-imaging biological measures used to construct kernels for experiments. Cerebro-Spinal Fluid (CSF)
assays and APOE genotype data were utilized.

Type Subjects available

Tau 130

Amyloid-Beta 142 130

P-Tau 181P 130

T-Tau 130

APOE Genotype 233
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TABLE 3
Cognitive markers used in kernel functions

Non-imaging cognitive markers used to construct kernels for experiments.

Cognitive measure Subjects available

Rey auditory/verbal 1–5 scores 233

Rey auditory delayed recall scores 233

Category Fluency scores 233

Trail-making A & B 233

Digit-span scores 233

Boston Naming scores 233

ANART errors 233

Neuroimage. Author manuscript; available in PMC 2012 March 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hinrichs et al. Page 44

TABLE 4
Accuracy results of validation experiments using 2-norm MKL

Comparison of 2-norm MKL with different types of input data modalities.

Modalities used Accuracy Sensitivity Specificity Area under ROC

Imaging modalities 0.876 0.789 0.938 0.944

Biological measures 0.704 0.581 0.794 0.767

Cognitive scores 0.912 0.892 0.926 0.983

All modalities 0.924 0.867 0.966 0.977
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TABLE 5
Comparison of different MKL norms with the SVM trained on concatenated-features

Comparison of different MKL norms in the presence of uninformative kernels, and an SVM trained on a
concatenation of all features for comparison.

MKL norm used Accuracy Sensitivity Specificity Area under ROC

1.0 0.914 0.867 0.949 0.977

1.25 0.916 0.865 0.954 0.980

1.5 0.921 0.874 0.956 0.982

1.75 0.923 0.872 0.961 0.982

2.0 0.922 0.870 0.959 0.981

SVM (concatenated features) 0.882 0.844 0.910 0.970
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TABLE 6
t-statistic p-values for comparisons between MMDMs of stable MCI subjects, progressing
subjects, and reverting subjects

Significance of group-level differences in MMDM scores assigned to MCI subjects. There are 3 groups of
MCI subjects - those who reverted to normal status, those who remained stable for 3 years, and those who
progressed to full AD in 3 years.

Modalities used Reverting vs. rest Progressing vs. rest

Biological measures (baseline) 0.65 0.58

Imaging Data (baseline) 1.31 × 10−3 1.78 × 10−6

Imaging Data (longitudinal) 5.69 × 10−4 3.29 × 10−7

NPSEs (baseline) 2.63 × 10−3 5.51 × 10−4

NPSEs (longitudinal) 2.44 × 10−4 2.19 × 10−6
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TABLE 7
Area Under ROC results for different classes of MMDMs in predicting MCI progression
to AD

Area under ROC curves for predicting whether MCI subjects will progress to AD or not. In the left column are
AU ROCs for the task of separating only progressing subjects from reverting subjects, while ignoring stable
MCI subjects. On the right are AU ROCs for separating progressing subjects from all other subjects.

Modalities used Progressing vs. Reverting Progressing vs. Rest

Biological measures (baseline) 0.4368 0.5292

Imaging Data (baseline) 0.9532 0.7378

Imaging Data (longitudinal) 0.9737 0.7911

NPSEs (baseline) 0.9298 0.6693

NPSEs (longitudinal) 0.9415 0.7385

All Modalities 0.9708 0.7667
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