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Abstract
This study examined the large-scale connectivity among multiple resting-state networks (RSNs) in
the human brain. Independent component analysis was first applied to the resting-state functional
MRI (fMRI) data acquired from 12 healthy young subjects for the separation of RSNs. Four
sensory (lateral and medial visual, auditory, sensory-motor) RSNs and four cognitive (default-
mode, self-referential, dorsal and ventral attention) RSNs were identified. Gaussian Bayesian
network (BN) learning approach was then used for the examination of the conditional
dependencies among these RSNs and the construction of the network-to-network directional
connectivity patterns. The BN based results demonstrated that sensory networks and cognitive
networks were hierarchically organized. Specially, we found the sensory networks were highly
intra-dependent and the cognitive networks were strongly intra-influenced. In addition, the results
depicted dominant bottom-up connectivity from sensory networks to cognitive networks in which
the self-referential and the default-mode networks might play respectively important roles in the
process of resting-state information transfer and integration. The present study characterized the
global connectivity relations among RSNs and delineated more characteristics of spontaneous
activity dynamics.
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Introduction
Spontaneous neuronal activity, as observed in the blood oxygenation level-dependent
(BOLD) signal and as measured by the functional magnetic resonance imaging (fMRI)
technique, has provided new insights into the intrinsic functional architecture of the brain.
Large-scale coherent spatial patterns, namely resting-state networks (RSNs), identified from
spontaneous BOLD fluctuation were found extensively overlapped with task-induced
activated patterns related to visual, auditory, motor, attention and other cognitive processing
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(Damoiseaux et al., 2006; Fox et al., 2006; Jann et al., 2010; Mantini et al., 2007; Zuo et al.,
2010b). The functional connectivity of these RSNs was suggested to represent inherent
patterns for expected usages or potential future re-organizations (Fox et al., 2006; Pouget et
al., 2003). Numerous studies reported its relation with brain development (Fair et al., 2008;
Fransson et al., 2007; Stevens et al., 2009), normal aging (Andrews-Hanna et al., 2007),
various neuropsychiatric disorders (Greicius et al., 2004; Rotarska-Jagiela et al., 2010;
Seeley et al., 2009; Sorg et al., 2007), and individual’s behavioral or task performance (De
Luca et al., 2005; Fox et al., 2007; Kelly et al., 2008; Northoff et al., 2010).

Following investigations that have been mostly for each of the RSNs separately for its
intrinsic, task-independent, functional organization of brain activity, this study considers the
large-scale cross multi-network relations to reveal more global properties of the RSNs
altogether. In fact, in addition to these studies, on the functional connectivity of individual
RSNs separately, there were reports such as the graph theory based studies which analyzed
the profile of overall cortex connectivity patterns and provided topological reconfigurations
of spontaneous activity (Wang et al., 2010). They demonstrated that the brain’s functional
topology exhibited characteristics of complex networks, such as small-world (Bassett and
Bullmore, 2006; Bullmore and Sporns, 2009; He et al., 2007; Sporns and Honey, 2006),
highly connected hubs (Buckner et al., 2009; Sporns et al., 2007), modularity (Newman,
2006) and hierarchy (Ferrarini et al., 2009; Meunier et al., 2009). Evidences from these
studies may imply the spontaneous activity was not only organized into separated patterns,
but engaged in a larger scale functional cooperation and communications. This promoted us
to address the network-to-network connectivity among different RSNs for our better
understanding of the cross-network resting-state information exchange.

Given the recognition that neuronal systems in the brain functionally fall under the lower-
level sensation (e.g. visual, auditory, motor) and higher-order cognition (e.g. attention,
emotion, memory, language, executive, etc.) as evidenced primarily from activation studies
(Mesulam 1998), and some of these systems present themselves in the same or similar
organization during the resting-state (Jann et al., 2010), the study on the interactions
between RSNs, therefore, should note the natures of each network and with the assumptions
of their presence under the resting condition. Recent studies found that regions from the
default-mode network (DMN) served as cortical hubs for higher-order cognitive processing
(Buckner et al., 2009), and this network together with the self-referential network (SRN)
were with the highest causal flow among the RSNs (Liao et al., 2010). Another recent work
on the RSNs topological electrophysiological signatures reported networks for lower
sensory (somato-motor, auditory, visual) and higher cognitive (default-mode, control,
attention, working memory) processing showed inverted association with
electroencephalography (EEG) frequencies (Jann et al., 2010). These studies demonstrated
that the lower sensation/higher cognition systems established from task-related studies were
also presented during the resting-state with their own characteristics of intrinsic activity. The
current study is our efforts to investigate the cooperation and interaction properties of these
sensation/cognition RSNs under the resting condition.

Specific to this study, we focus on the large-scale network-to-network connectivity
modeling, and are interested in investigating: 1) whether RSNs for sensory processing or
cognitive function would be strongly interconnected and thus respectively integrated and
globally connected in a hierarchal manner, 2) how information exchange occur among the
sensory and cognitive RSNs during the resting-state and 3) whether there is one or more
critical networks for the transfer or integration of resting-state information between these
two layers.
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Methodology-wise, we used a combination of Group independent component analysis (ICA)
and Bayesian network (BN) learning approach to evaluate the directional connectivity
patterns of RSNs based on data from 12 healthy young college students. Group ICA is one
of the methods mostly employed to identify RSNs from spontaneous BOLD activity. A
recent study conducted by Daubechies et al. (2009) argued the use of ‘independency’ to
characterize the relationship among the unearthed networks by ICA approach. The authors
of that study suggested Group ICA estimated components were actually sparse rather than
independent (Daubechies et al., 2009). It is with this rational that we believe the
interconnectivities/interactions among the ICA identified RSNs can be mathematically
investigated further and subsequently by BN.

BN is recently introduced to fMRI studies to investigate the effective connectivity patterns
among brain regions (Kim et al., 2008; Li et al., 2008; Li et al., 2009; Rajapakse and Zhou,
2007; Zheng and Rajapakse, 2006). It can characterize the relation of conditional
dependencies/independencies between a set of variables, and identify the directionality of
connections (but see the cautionary note in the Discussion section and the work by Smith et
al. (2010)). The BN-based effective connectivity pattern of the brain regions from the DMN
has been constructed in one of our recent works (Wu et al., in press). Here it is extended to
the study of network-to-network relations, through which we intend to capture the
conditional dependencies among these RSNs and find the large-scale cooperation and
interaction mechanism among these networks during the resting-state condition.

Methods
Subjects and tasks

Twelve healthy right-handed college students (five males, Mean ± SD: 21 ± 3.4 years old)
participated in this study. For the resting-state scan, all the subjects were instructed simply
to keep their eyes closed and not to think of anything in particular. The purpose of the study
was explained to the participants and each of them gave written informed consent approved
by the Research Ethics Committee of the State Key Laboratory of Cognitive Neuroscience
and Learning, Beijing Normal University (BNU), prior to the experiment.

Data acquisition
A 3-T Siemens scanner equipped for echo planar imaging (EPI) at the BNU Imaging Center
for Brain Research was used for image acquisition. For each participant, we collected 300
EPI functional volumes. The following parameters were used: repeat time (TR) 2000 ms; 33
slices; matrix size 64 × 64; acquisition voxel size 3.13 mm × 3.13 mm × 3.60 mm. A high-
resolution, three-dimensional T1-weighted structural image was also acquired for each
subject with the following parameters: 128 slices; matrix size 256 × 256; resolution 1 mm ×
1.33 mm × 1 mm.

Data preprocessing
For each participant, the first 5 scans of the fMRI time series were discarded to allow for
equilibration of the magnetic field. Data pre-processing steps included within-subject spatial
realignment, slice timing correction, between-subject spatial normalization to a standard
brain template in the Montreal neurological institute (MNI) coordinate space and smoothing
by a Gaussian filter with a full width at half maximum of 8 mm using SPM2
(http://www.fil.ion.ucl.ac.uk/spm). Following this, the liner trend of the fMRI data was
removed. As discussed in a number of previous studies (Biswal et al., 1995; Seeley et al.,
2009; Van Dijk et al., 2010; Zuo et al., 2010a), functionally relevant, resting spontaneous
BOLD fluctuations within the RSNs occurred at low frequencies (0.01 – 0.08 Hz). The
fMRI data therefore was temporally band-pass filtered (0.01 Hz – 0.08 Hz) to remove low-
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frequency drifts and physiological high-frequency noise, a procedure used in a number of
reports. The final detrending and filtering steps were performed using resting-state fMRI
data analysis toolkit (REST, http://restfmri.net).

Group ICA
The preprocessed data of all participants were entered into the Group ICA program, the
fMRI Toolbox GIFT (http://icatb.sourceforge.net/), which included the data reduction by
two rounds principle component analysis (PCA), ICA separation and back-reconstruction
(Calhoun et al., 2001). The optimal number of independent components was estimated as 37
based on the minimum description length (MDL). In the first round of PCA, the data for
each individual subject were dimension-reduced temporally. After concatenation across
subjects within groups, the dimensions were again reduced to the optimal numbers via the
second round of PCA. Then the data were separated by ICA using the Extended Infomax
algorithm (Lee et al., 1999). After ICA separation, the mean independent components (ICs)
and the corresponding mean time courses over all the subjects were used for the back-
reconstruction of the ICs and the time courses for each individual subject (Calhoun et al.,
2001).

Various RSNs have been reported but not always as consistently. Take the visual network
for example, there were the whole visual network (Mantini et al., 2007), lateral and medial
visual networks (Damoiseaux et al., 2006), as well as the occipital, ventral and dorsal visual
networks (Jann et al., 2010). In this study, we developed a set of RSNs templates according
to previously described RSNs including visual, auditory, sensory-motor, default-mode,
attention, memory, executive-control, self-referential, language processing (Damoiseaux et
al., 2006; Fox et al., 2006; Jann et al., 2010; Liao et al., 2010; Mantini et al., 2007; Zuo et
al., 2010b) for the identification of RSNs from all the ICs. Upon visual inspection and
examination of goodness-of-fit for all the ICs to RSNs templates for each of the 12 subjects
included in this study, the IC patterns that were located in the cortex and best correlated with
the RSNs spatial templates were identified as functionally relevant RSNs. These identified
RSNs were used for the subsequent RSNs interconnectivity analysis via BN.

For the set of 12 individual ICs associated with each of the identified RSNs, a voxelwise one
sample t-test (False Discovery Rate, FDR, p = 0.05) was carried out. Thus, each of the group
RSNs finally generated was a statistically thresholded t-value map for the entire group
(Calhoun et al., 2001; Greicius et al., 2004; Sorg et al., 2007; Stevens et al., 2009).

BN modelling for the RSNs interconnectivity
BN can learn the global connectivity patterns for complex systems in a data-driven manner.
A BN model is a directed acyclic graph (DAG) that encodes a joint probability distribution
over a set of random variables, represented as nodes of the acyclic graph. Arcs between
nodes signify the directional dependence relations among these random variables and the
absence of arcs refer to conditional independencies. The dependencies are qualified by the
conditional probability of each node given its parent nodes in the network.

We employed the Gaussian BN method to characterize the large-scale network-to-network
connectivity patterns across these RSNs. Each network was a corresponding node in the BN
model with its time series assumed to be Gaussian distributed.

For better representation of RSNs, we further refined the spatial extent of each RSN prior to
the extraction of its time series for each subject. Some studies have suggested that, in
practice, the ICA procedure could generate misclassification and/or spatial overlap between
‘true’ neural RSNs components and artefactual (non-gray matter, respiratory and
cardiovascular signal fluctuation) components (Birn et al., 2008; Cole et al., 2010; Tohka et
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al., 2008). Therefore, the regions of interest (ROIs) mask for extracting RSNs time series
was defined by the intersection of each one sample t-test RSN (at p = 0.05 FDR) map with a
global gray matter mask from WFU_PickAtlas
(http://www.nitrc.org/projects/wfu_pickatlas/) in SPM2. Time series of all the voxels in the
gray matter of each RSN were extracted, averaged and entered the subsequent BN analysis.

Bayesian information criterion (BIC) (Schwarz, 1978) based BN learning approach was
adopted to identify the optimal BN model by selecting the one optimizing the BIC score
among the space of possible candidate networks. L1-Regularization Paths algorithm
(Schmidt et al., 2007) and maximum likelihood (ML) estimate, which were implemented in
the collections of Matlab functions L1DAGLearn
(http://www.cs.ubc.ca/~murphyk/Software/DAGlearn/) and Bayesian Net Toolbox (BNT,
http://code.google.com/p/bnt/), were respectively used for learning the structure and
parameters of the BN model.

A step-wise regression procedure was then performed to test the significance of connections
in the learned BN on the RSNs. This significance test approach was based on the fact that
the identified Gaussian BN was equivalent to a set of multivariate linear regression
equations. That is, each node in the BN model is the dependent variable in a linear
regression of its parent nodes with connection weights as the regression coefficients
(Shachter and Kenley, 1989). Thus the statistical significance of the regression coefficients
can be tested (p < 0.05). Finally the set of regression equations with significant weights were
in turn expressed in the form of BN graph (Li et al., 2009; Wu et al., in press), which was
the determined BN-based RSNs interconnectivity pattern.

For a better interpretation of the BN-based RSNs connectivity patterns, all the direct
connections were classified into sensory network to sensory network, cognitive network to
cognitive network connectivity as well as the connectivity between the two. If the resting
activity of sensory (cognitive) networks was mainly dependent on activity of sensory
(cognitive) networks, i.e., mainly receive direct ingoing connections from sensory
(cognitive) networks, we then refer the sensory (cognitive) RSNs as strongly intra-
dependent. On the other, if activity of the sensory (cognitive) networks mainly influence
activity of sensory (cognitive) networks, i.e., generate direct outgoing connections mainly to
sensory (cognitive) networks, the sensory (cognitive) RSNs are then referred to as strongly
intra-influential. Both the strong intra-dependence and intra-influence within sensory/
cognitive RSNs could represent a close interconnectivity or integration within each of these
two sensory/cognitive networks. In addition to the dependence/influence relations revealed
by the BN model, the direct/indirect connections in the BN pattern could also characterize
the information propagation mode across these sensory and cognitive networks. We also
examined our finding in terms of the top-down (cognitive network to sensory network),
bottom-up (sensory network to cognitive network) processing, or both simultaneously within
the framework of BN-based RSNs interconnectivity pattern.

Results
RSNs maps for the young subjects

Fig. 1 demonstrates the spatial maps of the RSNs derived from 12 young subjects by Group
ICA. Eight RSNs from the 37 ICs were located in the cortex and maximally overlapped each
with the previously reported lateral/medial visual, auditory, sensory-motor, self-referential,
dorsal/ventral attention, and default-mode networks. The foci for each RSN were given in
Table 1. These RSNs are consistent with what reported previously (Damoiseaux et al., 2006;
Fox et al., 2006; Jann et al., 2010; Mantini et al., 2007).
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Fig. 1A and B show two networks respectively for the lateral (VN1) and medial (VN2) parts
of visual cortex. Identical with Damoiseaux’s (2006) finding, the networks associated with
visual processing were distributed in two separate networks. VN1 consists of the peristriate
area, and lateral and superior occipital gyri [Brodmann area (BA) 19]. VN2 covers part of
the striate and parastriate area (BA 17/18).

Fig. 1C shows the auditory processing (AN) network including mainly the bilateral superior
temporal cortex (BA 22/42).

Fig. 1D is the sensory-motor network (SMN), which covers primary sensory-motor cortex
and supplementary motor cortex including medial frontal gyrus, paracentral lobule,
postcentral gyrus, and superior parietal lobule (BA 3/4/5/6).

Fig. 1E displays the SRN which is suggested as part of the DMN (Mantini et al., 2007) and
specifically related to self-referential mental activity. It mainly consists of the medial-ventral
prefrontal cortex (BA 9/10) and anterior cingulate (BA 24/32).

Fig. 1F and G are two networks associated with attentional processing, dorsal attention
network (DAN) (Fig. 1F) and ventral attention network (VAN) (Fig. 1G). The DAN is
bilaterally centered on the intraparietal sulcus (BA 7/39/40) and the frontal eye field (BA
6/8/9), and the VAN, is largely right lateralized to the temporal-parietal junction (BA
20/21/40) and the ventral frontal cortex (BA 6/8/9/10). It’s been suggested the DAN is
involved in the endogenous goal-driven attention orienting process and the VAN is
concerned with the exogenous stimuli-driven attention re-orienting process (Fox et al.,
2006).

Fig. 1H is known as the DMN, which includes the posterior cingulate cortex (BA 23/31),
medial prefrontal cortex (BA 10), bilateral inferior parietal cortex (BA 39) and medial
temporal lobe (BA 20/21/28/35) structures. DMN shows more increased neural activity
during resting-state as compared to most goal-oriented tasks. It might be functionally
relevant to episodic memory processing, mind wandering, consolidating the past knowledge,
stabilizing brain ensembles and preparing for the future actions (Buckner and Vincent, 2007;
Greicius et al., 2003; Mason et al., 2007; Morcom and Fletcher, 2007; Raichle and Snyder,
2007).

In summary, four of the eight RSNs including VN1, VN2, AN, SMN were related to the
lower-level sensory processing, and the remaining DMN, SRN, DAN and VAN were
associated with higher-order cognitive functions (Buckner et al., 2009; Jann et al., 2010;
Liao et al., 2010).

BN model on the RSNs
Fig. 2 shows the BN-based connectivity pattern among the 8 networks. All the direct
connections in the BN model and the associated connection weights as well as the
corresponding statistical significance were listed in Table 2, in which all the connections
were also classified according to their functions.

For the lower-level sensory-specific RSNs, we found except the dependence of VN2 on
DAN, the others converge on the sensation network to sensation network intra-
dependencies: VN2 was dependent on VN1; AN on VN1; and SMN on VN1 and AN. On
the other, half of the ten connections extended from these networks directly point to the
other sensory networks. They were connections from VN1 to VN2, AN and SMN; from AN
to VN2, SMN. The remaining five connections directly pointed to other cognitive networks
(VN1 to VAN, AN to SRN; SMN to SRN; VN2 to DMN, and AN to DMN). Only one direct
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connection from cognitive networks to sensory networks was found, the connection from
DAN to VN2.

For the higher-order cognitive RSNs, we found they were dependent on both the sensory and
the higher cognitive networks: DMN was dependent on VN2, AN, SRN and DAN; DAN on
SRN; VAN on VN1 and DAN; and SRN on SMN and AN. Connections generating from
these networks, however, were particularly for the cognitive network processing except
“DAN→VN2”. They were connections from SRN to DAN and DMN; from DAN to VAN
and DMN.

In addition, the SRN and DMN were unique among them. Connections pointing to SRN
were all from sensory-specific networks while initiating from SRN were all directed towards
higher cognitive networks. The DMN was only with ingoing connections from other
networks, and specifically all the networks except VAN had direct or indirect connections
finally pointing to the DMN (Fig. 2 and Table 2).

To sum up, the sensory networks tended to be intra-dependent, and out-going connections to
cognitive networks (bottom-up connections) with the remaining to the sensory networks
themselves, while the cognitive networks tended to be intra-influenced, and were dependent
on both the internal cognitive and external sensory networks. The powerful intra-
dependence between sensory RSNs and the strong intra-influential relations between
cognitive RSNs together rendered the BN-based RSN connectivity model as a hierarchal
architecture with dominant bottom-up connections from sensory networks to cognition ones
in the resting brain.

Discussion
In this study, we presented our investigational results on how functional interactions and
information exchanges arose across a set of RSNs in the resting-state of the human brain.
The procedure of BN learning approach allowed us to explore the conditional dependencies
and construct the large-scale connectivity patterns among these networks. With the
acknowledgement of the limitation of the BN approach as detailed below, the use of BN in
the current study allowed us to characterize the degree to which resting activity in one
network can directly modulate or depend on activity in another. In this context, we found the
RSNs were hierarchically connected and organized. Networks at similar function level were
strongly interconnected and united in the equivalent hierarchy level in the BN model. We
also found the information flow from the lower-level sensory networks to the higher-order
cognitive networks (i.e., a bottom-up processing mechanism) was clearly manifested.
Among the information exchanges, the SRN may play an intermediary role between lower-
level sensory and higher-order cognitive processing for the self-related information, and the
DMN may be pivotal in integrating the information from all the other systems as virtually all
the other RSNs having direct or indirect connections finally pointing to the DMN.

Hierarchal arrangement property of RSNs
The RSNs clustered in spontaneous fluctuations were involved in a variety of processes, and
fallen under the systems for lower-level sensory processing (VN1, VN2, AN, and SMN) or
the higher-order cognitive ones (DAN, VAN, SRN and DMN). BN-based RSNs
connectivity model shows, except the connection “DAN→VN2”, all the sensory networks
receive “sensory network to sensory network” ingoing connections, suggesting that intrinsic
activity of sensory networks is strongly intra-dependent, but relatively independent of other
higher-order cognitive networks under the resting condition (note our discussion here is with
the implicit resting condition assumption). The sensory networks also all have outgoing
connections towards the higher-order cognitive networks, implying that activity of sensory
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networks has some impacts on the cognitive ones. For the cognitive networks, however, the
outgoing connections are all virtually “cognitive network to cognitive network” relations,
and the ingoing connections are from both sensory and cognitive networks. This suggested
that intrinsic activity of cognitive networks was not only highly intra-influential and intra-
dependent, but also dependent on the sensory networks. The concentrative “sensory network
to sensory network” ingoing connections for sensory RSNs together with the “cognitive
network to cognitive network” outgoing connections for cognitive RSNs demonstrated by
the BN-based statistical evaluation suggested that networks at similar function level could
strongly connected, and thus allowed the RSNs to be organized in a hierarchal manner.

Although our study is probably among the first reporting such system level organizations
among multiple RSNs, we are definitely not the first recognizing the hierarchy property of
the brain organization (Ferrarini et al., 2009; Meunier et al., 2009). The preferential intra-
dependencies within lower sensory RSNs could reconfirm or explain the findings from
graph-based connectivity mapping which demonstrated regions for sensory processing
constituted a cortical subdivision with preferential local connectivity (Sepulcre et al., 2010;
Supekar et al., 2009). This preferential intra-dependencies and local connectivity found
respectively from system and region levels might consistently suggested a stronger
integration for lower-level sensory networks, which would benefit the cooperation of
sensory systems and promote the efficient communication or information processing across
sensory RSNs. Consistently, the stronger intra-influential relations between higher-order
cognitive networks would also be important for the efficient higher cognitive activity. On
the other, as there’re ingoing connections from sensory networks to cognitive networks, this
integration would also benefit the efficient processing of information from sensory
networks.

Information exchanges across the RSNs
The direct/indirect connections in the BN model signified the nature of relations between
RSNs. The direct connection between two nodes in a BN represents a direct dependence
(influence) relation among them, while the indirect association could represent how one
node generates its connectivity with the other nodes through the intervening variables.
Therefore, as a global mapping method, BN can be used for making probabilistic inferences
and characterizing the “neural information flow” among these RSNs. We can understand the
information transmission path across these RSNs under the framework of BN model. Here,
the hierarchy organization of the RSNs and the directionality of connections in the BN
model (Fig. 2) together illustrated apparently an information flow from the lower-level
sensory networks to the higher-order cognitive networks, i.e., a bottom-up processing
mechanism across the hierarchically organized RSNs in the BN pattern. Except the
connection “DAN→VN2” which might illustrate a direct top-down (cognitive-sensory)
processing, all the other connections were located in the bottom-up pathway in a direct or
indirect manner. The bottom-up and the top-down processing, which respectively view the
brain as a passive, stimulus-driven and an active, adaptive device, were two concepts used
for characterizing the information processing mechanism of large-scale dynamics (Engel et
al., 2001; Varela et al., 2001). As revealed by the BN pattern, the bottom-up processing
across the RSNs might be dominant, probably because the low-demand cognition during the
resting condition. Considering the top-down processing can act in the absence of specific
stimulus, or during states of anticipation (Engel et al., 2001), as well as the methodological
limitations of BN which was discussed in the next section, we cannot exclude the existence
of the top-down information pathway across the RSNs. Actually, the intrinsic network
hierarchies have endowed the brain with the ability to exert the reciprocal interaction
between the bottom-up and the top-down processing. Anyhow, the predominant bottom-up
connection flow across the RSNs demonstrated by BN suggested the brain was not
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functionally inactive at rest; constant cross-network large-scale information exchanges were
intrinsically engaged in the spontaneous neural activity.

In our study, some connections with negative weights were observed in the BN connectivity
pattern. The connections with negative weights included DAN→VN2, AN→DMN and
AN→SRN. These negative connections were all particularly for the direct connectivity
between sensory networks and cognitive networks. A negative connection was of inhibitory
in that an increase in the activity of the “parent” network would lead to the decrease in the
one that was directed to. The negative relations may embody a brain resource competition
(Kelly et al., 2008) or dynamic reallocation between lower sensory and higher cognitive
processing (Jann et al., 2010). This competitive relation has been also reported as the inverse
electrophysiological signatures for sensory and cognitive RSNs in a combined EEG and
RSNs relation study (Jann et al., 2010).

Among the connections between these RSNs, we intriguingly found connections pointing to
SRN were all from sensory-specific networks while those initiated from SRN were all
directed towards higher-order cognitive networks. The SRN may transfer information from
sensory networks for the higher cognitive processing. This statistical modeling based finding
was consistent with a previous study on the self-reference processing in human brain
(Northoff et al., 2006), which suggested that the self-reference processing acted as an
intermediary role for the reciprocal modulation between sensory and cognitive information
processing. The self-referential processing referrers to the process of distinguishing stimuli
related to one’s own concerns from the ones that are irrelevant, but it does not imply that
only self-related information could be transmitted to the higher cognitive networks for
processing. In fact, non-self-referential stimuli can also be processed by higher-order
systems (Northoff et al., 2006), as reflected by the direct interactions between sensory-
specific and higher-order networks, such as the connections VN1→VAN, VN2→DMN,
DAN→VN2 and AN→DMN. We hence propose the SRN might be the intermediary for the
self-relevant information, but not be the imperative or the only way for information
exchanges between sensory and cognitive processing.

Another network that might be crucial for the resting-state information processing is the
DMN. It plays as a confluent node in the BN-based connectivity pattern (Fig. 2), as we
found the DMN was only with ingoing direct connections from other networks, and
particularly the predominant bottom-up flow which originated from sensory networks all
converged on the DMN. Two sensory networks VN2 and AN on one hand, generated direct
connections pointing to DMN, on the other, worked as the intervening for transferring
information from VN1 to the DMN. The remaining sensory network SMN generated its
connectivity to DMN through SRN. Two cognitive networks SRN and VAN also directed
towards the DMN. We speculate the DMN may be important in receiving information from
other networks and in integrating the bottom-up information within the resting brain.
Intriguingly, previous work demonstrated the DMN, in contrast to other RSNs, was the only
network showing greater activity at resting state than the task-performing conditions
(Greicius et al., 2003). Graph-theory based analysis of overall cortical connectivity showed
regions with high degree of both local and distant connectivity converged on regions within
the DMN (Sepulcre et al., 2010), and regions from this network constituted the hubs of the
cortex (Buckner et al., 2009). The resting activity and connectivity characteristics of DMN
found in previous region-based and the present network-based studies may consistently
indicate an important integration function supported by this network. It might enable the
information from distributed systems to be associated together, and maintained stably in the
brain. We presume that an incisive exploration on the relationship between DMN integration
ability and human cognitive performance, such as intellectual performance would be
interesting for further understanding the function of DMN in the brain.
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Methodological considerations and limitations
In this study, we used a combined data-driven approach (“ICA + BN”) to identify the RSNs
and construct the network-to-network connectivity patterns. Although the primary BN
procedure as well as the ICA helped us to address the primary questions on modeling large-
scale cross-network connectivity, they were with several limitations we need to
acknowledge.

First, an important issue challenging the Group ICA is the evaluation of RSNs consistency.
There’re studies quantifying the consistency and reproducibility of RSNs (Chen et al., 2008;
Damoiseaux et al., 2006; Zuo et al., 2010b), and the number and patterns of networks are not
consistent across these studies. As demonstrated in the current study, we were not able to
identify ICs which can well target the language, memory, and executive-control network
templates. Only eight RSNs that were more consistent with reports in (Damoiseaux et al.,
2006; Fox et al., 2006; Mantini et al., 2007) were identified. To validate our findings,
additional studies are needed and important for the possible extension from the eight RSNs
to possibly more.

BN learning approach is one of several methods to infer effective connectivity patterns
among brain regions for fMRI studies (Kim et al., 2008; Li et al., 2008; Rajapakse and
Zhou, 2007; Zheng and Rajapakse, 2006). More in a global scale, BN is capable of
characterizing connectivity and providing a contextual picture of information processing
across nodes within the entire network (Rajapakse and Zhou, 2007). In these capacities, BN
is in sharp contrast with other pairwise leaning approach such as Granger causality analysis
(GCA) (Goebel et al., 2003), and it is more appropriate for the resting-state fMRI studies
comparing with other model-driven methods, such as structural equation modeling (SEM)
(McIntosh and Gonzalez-Lima, 1994) and dynamic causal modeling (DCM) (Friston et al.,
2003) approaches. Smith et al. (2010) recently used simulated fMRI datasets to evaluate the
performance of network modeling methods. Their studies found the BN methods together
with the partial correlation and inverse covariance methods were the top 3 in detecting
network connections, and better than the “lag-based” GCA. A previous work of our own
used the BN algorithm to characterize the directional connectivity among DMN regions and
evaluated the connectivity alterations in Alzheimer’s disease (Wu et al., in press). Based on
these studies and as a continuation of our previous BN based single network (DMN)
investigation, this current work is to use BN to examine the network-to-network
interconnectivity. Of note, limitations of the BN approach should be acknowledged. First, as
a DAG, BN can not model reciprocal connections. This together with the lack of BN
capacity to adequately estimate connection directionality (Smith et al, 2010, see below) put
cautionary marks on our observation of the dominant bottom-up connectivity across these
RSNs in the present work and our discussions on our observation. Second, the connectivity
given by BN is a single snapshot of the dynamic process, and it cannot explicitly disclose
temporal causal relations between nodes. Third, as simulations from Smith et al. (2010)
show although BN, partial correlation, and the inverse covariance methods could well find
the connectivity relations, all could not provide accurate connection directionality
estimations. Again, we note the connection directionality identified from BN should be
cautiously interpreted. Further validations or reconfirmation would be required through the
improvement of analytic method in the future. For example, an extension of BN, the
dynamic BN (DBN) (Rajapakse and Zhou, 2007), which can learn the bi-directional
interactions and capture the temporal characteristics of connectivity, would be promising,
but similar to BN and GCA, its robustness needs further explorations as well.

In summary, the current study characterized the global organizational properties of the
resting-state neural networks and delineated the cross-network information processing
patterns of the resting brain. It was found networks at different cognitive function levels
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were hierarchically interconnected and organized, and constant bottom-up cross-network
information exchanges might be intrinsically engaged in the spontaneous activity. Among
the information exchanges, the SRN may play an intermediary role between lower-level
sensory and higher-order cognitive processing for the self-related information, and the DMN
may be pivotal in integrating the resting-state information. It is of great interest to
investigate whether the interactions among these RSNs are present to the same pattern under
different conditions at developmental stages, during normal aging process or with
neurodegenerative disorders in the future studies.
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Fig. 1.
Coronal, sagittal, and axial view of spatial map for each RSN. A–H are respectively
networks for VN1, VN2, AN, SMN, SRN, DAN, VAN and DMN. Each RSN map was the
result of one-sample t test on the individual IC patterns (p < 0.05, FDR corrected). T-value
bar is shown at right.
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Fig. 2.
BN connectivity patterns on the RSNs. The RSNs are graphically represented with
connections depicting conditional dependencies. Networks responsible for the lower-level
sensory and higher-order cognitive processing are respectively located in the upper and
lower boxes. The SRN, which is suggested as an import intermediary for modulation
between sensory and higher-order cognitive processing, is individually marked in the graph.
Only connections survived the significance testing (p < 0.05) are shown. Solid and dashed
arcs are respectively for positive and negative connections. Line width is proportional to the
connection weights.
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Table 2

Direct connections in the BN model and the associated connection weights as well as the statistical
significance.

Function Direct Connections Weights T values P values

Lower-level Sensory processing (sensory RSN to sensory RSN)

VN1 → VN2 1.25 14.21 <0.0001

VN1 → AN 0.72 6.46 <0.0001

VN1 → SMN 0.20 2.46 0.0145

AN → VN2 0.18 2.61 0.0095

AN → SMN 0.42 6.74 <0.0001

Higher-order cognitive processing (cognitive RSN to cognitive RSN)

SRN → DMN 0.50 4.72 <0.0001

SRN → DAN 1.01 11.72 <0.0001

DAN → VAN 0.89 11.44 <0.0001

DAN → DMN 0.51 4.00 <0.0001

Interactions between sensory and cognitive networks

VN1 → VAN 0.14 2.69 0.0076

VN2 → DMN 0.40 6.67 <0.0001

AN → DMN −0.55 −8.60 <0.0001

AN → SRN −0.20 −3.33 0.0010

SMN → SRN 0.58 8.87 <0.0001

DAN → VN2 −0.50 −3.69 <0.0001
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