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Abstract
An Alzheimer’s fMRI study has motivated us to evaluate inter-regional correlations during rest
between groups. We apply generalized estimating equation (GEE) models to test for differences in
regional correlations across groups. Both the GEE marginal model and GEE transition model are
evaluated and compared to the standard pooling Fisher-z approach using simulation studies.
Standard errors of all methods are estimated both theoretically (model-based) and empirically
(bootstrap). Of all the methods, we find that the transition models have the best statistical
properties. Overall, the model-based standard errors and bootstrap standard errors perform about
the same. We also demonstrate the methods with a functional connectivity study in a healthy
cognitively normal population of ApoE4+ participants and ApoE4− participants who are recruited
from the Adult Children’s Study conducted at the Washington University Knight Alzheimer’s
Disease Research Center.
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1 Introduction
Functional magnetic resonance imaging (fMRI) is a neuroimaging approach that facilitates
the understanding of how brain regions are functionally activated and related. fMRI data are
measured with the blood oxygen level dependent (BOLD) contrast effect, which is the ratio
of oxygenated to deoxygenated blood (Huettel et al., 2008). Images of the working brain are
taken every few seconds, resulting in a series of temporally correlated scans. Hence, the
fMRI scans are typically analyzed as statistical time-series data (Lazar, 2008; Friston and
Buchel, 2004). It was shown early on (Worsley and Friston, 1995) that if this dependence
structure is not taken into account, inference will be adversely affected, as it is difficult to
distinguish between true signal and artifacts that arise from temporal correlation. In task-
based fMRI studies it is now common to account for temporal correlation via a general
linear model (GLM) with correlated errors for each subject, followed by a group summary
model, also known as the ”mixed-effects analysis” (Friston et al., 2005). Although there has
been some progress in modeling the temporal dependence of task-based fMRI studies,
limited methods have been devoted to groupwise resting-state functional connectivity
studies.

A recent area of interest in the analysis of fMRI data is resting-state functional connectivity.
Functional connectivity studies typically focus on understanding how regions are correlated
over time during a resting-state (i.e. with no stimulus or task). One goal of such studies is to
evaluate whether correlations between regions differ across groups of subjects. A common
approach for comparing connectivity patterns across groups is to compare the Fisher-z
transformed correlations between regions (Fox et al., 2009); in the rest of this paper we refer
to this approach as the ”standard pooling Fisher-z method”. A notable aspect of the standard
pooling Fisher-z approach is that the temporal data are treated as though they were
independent. Just as in the simpler case of analyzing responsivity to a task or stimulus, here
too ignoring the dependence structure of the time series has an adverse effect on inference.
Specifically, regional connectivity can be inflated and the estimates will not be consistent,
leading to incorrect comparisons (D’Angelo et al., 2011). Not much progress has been made
to date on modeling this temporal correlation when determining functional connectivity
group differences at resting-state. In particular, for resting-state connectivity studies, the
temporal correlation and lag, i.e. dependence of the value on its previous values, have yet to
be handled with a modeling approach while simultaneously entering all subjects’ data into a
single model at the first stage. Therefore, we suggest a two-stage approach that uses
generalized estimating equations (GEEs) (Diggle et al., 1994; Liang and Zeger, 1986; Zeger
et al., 1988) to handle the temporal dependence through a modeling strategy and then to use
residuals from that model in the calculation of correlations.

The GEE method is ideally suited for fMRI data. GEEs have been developed to handle
correlated response outcome data, such as a repeated measures response, cluster data, and
correlated bivariate responses. Although the GEE approach is somewhat similar to a GLM
with correlated error, one advantage to GEEs is that they require fewer distributional
assumptions of the dependent variable than are specified with the GLM. Another advantage
to GEEs over the GLM mixed effects analysis is that all subjects may be put into the model
simultaneously at the first stage, while accounting for both lag and temporal dependence.
Various model-free approaches, including principal component analysis (Bullmore et al.,
1996) and independent component analysis (Beckmann et al., 2005; Calhoun et al., 2001),
have been applied to resting-state functional connectivity data. However, these methods do
not address the lag or explicitly specify the temporal correlation of resting-state data, and
hence are not appropriate for our goal of comparing group regional correlations.
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The focus of this paper is on groupwise comparison of functional connectivity using selected
regions obtained from a seed-based analysis. We propose a two-stage approach with a GEE
to estimate brain regional associations and assess between group differences while
accounting for the temporal dependence in the individual time-series (Diggle et al., 1994).
We evaluate both GEE marginal and GEE transition models. Marginal models are a
population-average approach where we estimate the marginal expectation of the response.
Transition models estimate the expectation of the current value conditional on the previous
values. We also are interested in making inferences about functional connectivity
differences between groups. To make inferences of group connectivity differences, we
propose using both model-based standard errors (SEs) and bootstrap SEs to estimate p-
values and to calculate confidence intervals. We investigate the properties of these GEE
models and compare them to the standard pooling Fisher-z method using simulation studies.
Furthermore, we compare the model-based SE estimates to the bootstrap SE estimates to
assess their statistical properties. The methods are demonstrated with a functional
connectivity study in a healthy cognitively normal population of ApoE4+ participants and
ApoE4− participants from the Adult Children’s Study (ACS).

2 Data and functional connectivity
Our data consist of a study cohort with 100 healthy cognitively normal participants with no
brain amyloid (Pittsburgh Compound B negative) deposition recruited from the Adult
Children’s Study (ACS) (Sheline et al., 2010a). The ACS is conducted at the Washington
University Knight Alzheimer’s Disease Research Center. The sample consists of cognitively
normal participants who are all CDR 0 at baseline, where CDR is the Clinical Dementia
Rating (Morris, 1993). Sheline et al. (2010a) define PIB- (Pittsburgh Compound B negative)
as having a PIB value less than .18, the usual PIB threshold in our studies. Participants are
classified as being either ApoE4+ (n=38) or ApoE4− (n=62), where ApoE4+ status is
defined as having at least one 4 allele and ApoE4− is defined as having no 4 allele. ApoE4 is
an important genetic marker of Alzheimer’s disease, and it is the allele of the apolipoprotein
E (APOE) gene located on chromosome 19q13.

The preprocessing steps used are the standard steps described in Fox et al. (2009). Structural
images were first obtained to be used for atlas registration of the fMRI data. Structural data
were acquired using a T1-weighted MP-RAGE. Functional data were collected next using a
T2-weighted gradient echo sequence [echo time 27 ms; repetition time (TR) 384 ms; field of
view 256 mm; flip angle 90°]. fMRI BOLD datasets were collected while subjects fixated on
a cross-hair. Two fMRI runs with 164 frames were acquired at a TR of 2.2 sec
(approximately 6 minutes each). For the fMRI data, 36 contiguous, 4.0 mm thick slices were
acquired parallel to the anterior-posterior commissure plane (4.0 mm approximately
isotropic voxels) providing complete brain coverage. The fMRI data were transformed to a
common atlas space, normalized across runs, corrected for head motion, and blurred with a 6
mm full-width at half-maximum Gaussian filter. A temporal filter with a frequency full
width at half maximum cut-off of 0.1 Hz was applied to the fMRI data. Furthermore, noise
was removed by regression of several nuisance variables, including the signal averaged over
the whole brain and white matter parameters.

For the seed region, Sheline et al. (2010a, 2010b) selected bilateral precuneus (Talairach
coordinates +/−7, −60, +21) (Talairach and Tournoux, 1988), which is among the regions
affected early in the course of AD. They selected ROIs that were found to differ between
healthy controls and both Alzheimer’s disease participants and PIB+ participants (Sheline et
al., 2010b). Regional time series are an average of the voxel time series that are contained in
a sphere with a 12 mm diameter (coordinates in Talairach space) (Talairach and Tournoux,
1988). The data were initially analyzed via the standard pooling Fisher-z approach using the
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seed region and ROIs selected. With the standard pooling Fisher-z method the following
steps are taken: 1) the Pearson correlation between the regions for each subject is calculated;
2) the Pearson correlation coefficients are transformed to Fisher-z; 3) a group average of the
Fisher-z transformation is calculated; and 4) an unpaired t-test of the group averages is
performed. By this approach, 14 ROIs identified to have correlation differences between
ApoE4+ and ApoE4− with bilateral precuneus are reported in Table 1. Figure 1 depicts the
brain maps of the significant functional connectivity findings. In our analysis we compare
the GEE approaches to the standard pooling Fisher-z approach using the same seed and
ROIs.

3 Notation and methodology
We denote the covariates to be a p × 1 vector Xij and the outcome variables to be Yqij where
q = 1, ..,Q denotes the seed region (Y1ij) and its (Q − 1) regions of interest (ROIs), i = 1, .., n
denotes the ith subject, and j = 1, .., J denotes the jth fMRI measurement. Our objective is to
test for a group difference in the relationship between multiple ROIs Yq and the seed region
Y1, where Yq and Y1 are nJ × 1 vectors, q > 1, and the two groups are denoted as g = {0, 1}.
This objective will be determined via (Q − 1) pairwise correlations between the (q−1)th ROI
Yq and the seed region Y1. To reach our objective of comparing regional correlations
between groups we suggest using an approach that can handle time-series outcome data. We
describe two modeling approaches that can simultaneously handle time-series outcome data,
include all subjects in the same model, and adjust for covariates. Also, we describe the GEE
methodology that is used for regression parameter estimation of these modeling approaches
in the presence of repeated measures data.

3.1 Generalized estimating equations
We propose using two modeling approaches for time-series data, the marginal model and the
transition model. To be more specific each region will have its own model. The marginal
model (Diggle et al., 1994) is a population-average approach to longitudinal data where the

marginal expectation of the response Yqij, , is the focus. The marginal

expectation of Yqij is characterized as a function of the explanatory factors, i.e. 
for a link function h and regression coefficient parameter p × 1 vector βq = (βq0, …, βqp′)T

where p′ = p − 1. Also, the variance of Yqij is a function of the mean, Var(yqij)= g(μqij)φ,
for some variance function g and dispersion parameter φ. The correlation of the repeated
measurements from the same subject, i.e. Yqij and Yqik, is a function of the marginal means
and additional parameters, αq, and is given by Corr(Yqij, Yqik)= ρ(αq). The regression
coefficients, βq, have a similar interpretation to that of the population-average effect from a
cross-sectional analysis. Since our data are continuous and we assume they are Gaussian,
h(μqij) = μqij and g(μqij) = 1. The regression of the outcome on the covariates and the
dependence structure are modeled separately (Diggle et al., 1994). These parameters are
estimated using the quasi-likelihood and are estimated iteratively until convergence.

The other model we propose utilizing is the transition model. The objective of the transition
model is to model the history of the outcome. In a transition model (Diggle et al., 1994) the
current value of the outcome is influenced by its previous values. The model is

. We call the dependence on the past K values ”lag K”. The idea
behind the transition model is that the influence of the past outcome values can be removed
when they are adjusted for. The conditional mean and variance of the transition model are

, βq is a (p + K) × 1 vector of regression coefficients, and
Var(yqij)= g(μqij)φ. Again, since the data are continuous and we assume Gaussianity h(μqij)
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= μqij and g(μqij) = 1. Now the interpretation of the regression coefficients, βq, for the
covariates is that they are adjusted for the history of the transition process.

As mentioned previously we have time-series data which by definition are correlated. A
parameter estimation approach for both the marginal model and the transition model with
correlated data is the generalized estimating equation (GEE) (Diggle et al., 1994; Liang and
Zeger, 1986; Zeger et al., 1988). GEEs are derived from quasi-likelihood theory
(Wedderburn, 1974; McCullagh and Nelder, 1989) rather than from likelihood-based
derivations such as the GLM. This implies that the actual form of the distribution of the
outcome does not need to be specified. In quasi-likelihood, it is only necessary to specify the
mean-covariance structure and the relationship between the mean of the outcome and the
covariates. We estimate the regression coefficient, βq, by solving the GEE (Diggle et al.,
1994; Liang and Zeger, 1986; Zeger et al., 1988):

(1)

where Yqi=(Yqi1, …, YqiJ)T, , μqi = (μqi1, .., μqiJ)T,

, Aqi = diag(1, .., 1), and αq are replaced with
consistent estimates, α̂q. The GEE uses a ”working” correlation matrix, Rqi (αq), since the
true correlation is unknown. There are various correlation structures that can be used. In this
manuscript we consider the exchangeable correlation structure and the autoregressive of
order 1 correlation structure (AR(1)). The exchangeable correlation structure assumes a
constant correlation for a subject and is given by

The AR(1) correlation structure indicates that two observations further away are less
correlated than those close together and is

The correlation, Rqi (αq), is a nuisance parameter in the GEEs, and βq is the parameter of
interest.

As shown above, for the GEE it is only necessary to specify: 1) the mean and the variance of
the outcome conditioned on the covariates, and 2) the relationship between the expected
outcome and the covariates. With the transition model, when the specification of the
conditional mean of Yq is correct then in theory the repeated transitions can be treated as
independent data and standard statistical methods such as a GLM can be used. When the lag
specification is incorrect other measures need to be utilized such as using the GEE (Diggle
et al., 1994), by specifying an additional correlation structure that may not be captured by
the specified lag in the transition model. Generally speaking, not much is known in practice
regarding the independence assumption so we recommend being cautious and using the
GEE instead of the GLM since the parameter estimates can be less biased and more efficient
when using the GEE over the GLM.

D’Angelo et al. Page 5

Neuroimage. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



In this work we use both GEE models for each region. With the marginal model we consider
both exchangeable correlations and AR(1) correlations. For the transition model we consider
the exchangeable correlations and AR(1) correlations along with lags 1–3. The within-
subject correlation has been accounted for by the GEE. Plots of the fMRI time-series data
for each subject (see Figures 2a–2c) resemble a cosine wave and appear to be periodic.
Therefore, we assume the function of time to be a cosine wave. In order to use the cosine
waves in the models we have to estimate the frequency of oscillations in addition to the
other parameters. We use periodograms (Shumway and Stoffer, 2010) to estimate the
dominant frequency for each subject and then take the average of the dominant frequency
from all subjects. This average frequency for each region is used as an estimate of the
frequency of oscillations in the models.

We suggest a two-stage approach that uses the GEE to handle the temporal dependence
through a modeling strategy and then use these GEE residuals to calculate correlations
between the regions. The correlation between the regions, ρ̂1qi (defined below), is of
primary interest and is different from the within-subject correlation, Rqi (αq), estimated
from the GEE model. As stated earlier Rqi (αq) is a nuisance parameter. We use the
residuals estimated from the Q GEE models in the regional correlation analysis, and the
residuals are defined to be

(2)

For each subject, the Pearson correlation between the residuals of the seed region and the
ROI is calculated

(3)

where ε̂1i = (ε̂1i1, .., ε̂1iJ)T and ε̂qi = (ε̂qi1, .., ε̂qiJ)T are residuals defined in (2). The
correlation for each subject is then transformed to a Fisher-z

(4)

and ρ̂1qi is defined in (3). Then a group average of the Fisher-z transformation is calculated

(5)

where τ1qi is defined in (4), g denotes group status, G = {0, 1}, and

(6)

Lastly, a standard error needs to be estimated to test for differences of correlations across
groups. A model-based approach is used first, with the standard errors and confidence
intervals based on the t-distribution. The model-based standard error is
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(7)

where τ1qi is defined in (4), τ̄1q0 and τ̄1q1 are defined in (5), and n0 and n1 are defined in (6).
In addition, we estimate the standard errors and confidence intervals with the bootstrap to
include an empirical approach since we may be uncertain of the standard error estimate
provided by the model-based approach. Details for inferences using bootstrapping
approaches are provided in the next section. We employ this two-stage procedure for all
regions. We use the R package geepack (Højsgaard et al., 2005) to estimate the GEE
parameters.

To set ideas and demonstrate the usefulness of the GEE approach, we briefly describe a PET
example. A longitudinal study in Alzheimer’s disease (AD) has been conducted in which we
collect PET PIB and CSF biomarkers, CSF-40 and CSF-42, at baseline and two follow-up
annual visits. We want to determine if PET-PIB differs by group status and also if the
association between CSF biomarkers and PET-PIB differs between healthy normal controls
and AD subjects, with g = 0 if a control and g = 1 if an AD subject. A total of 25 healthy
normal subjects, n0 =25, and 20 AD subjects, n1 =20, have been collected. Since there are
three annual visits we denote the subscript for time to be j = 1, 2, 3. PET PIB is used to
measure MCBP (mean cortical binding potential) which is one of the outcomes Y1ij
measured for the ith subject at time j, i = 1, .., 45. The other two outcomes are CSF-40, Y2ij,
and CSF-42, Y3ij. Here we have three outcomes and let q = 1, 2, 3. Suppose we also need to
adjust for group, X1i, baseline age, X2i, gender, X3i, and time, j, yielding X = (1, X1i, X2i,
X3i, j)T, 1 is for the intercept, and (X1i, X2i, X3i) are fixed-time covariates. The mean
function is h(μqij) = μqij = βq0+x1iβq1+x2iβq2+x3iβq3+jβq4 for the marginal model and
h(μqij) = μqij = βq0 + x1iβq1 + x2iβq2 + x3iβq3 + jβq4 + yqi,j−1βq5 + .. + yqi,j−Kβq,5+K for the
transition model.

For example with PIB, the estimating equation (1) using the marginal model and
exchangeable correlation is

(8)

where Y1i=(Y1i1, Y1i2, Y1i3)T, , β1 = (β10, β11, β12, β13, β11), μ1i = (μ1i1, μ1i2,
μ1i3)T,

and

where φ is the dispersion parameter and is defined by
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Ji = 3 for all subjects, N is the total number of measurements, and p is the number of
regression parameters.

The regression parameters are estimated from (8) and these describe the relationship
between its covariate and the seed region. For example, adjusting for all other covariates β11
describes the relationship between group and the seed region. If the group regression
coefficient estimated from this GEE model is significant then there is a relationship between
PET-PIB and AD. These models account for the within-subject correlation. Furthermore, if
we want to know whether the AD groups differ in the association between PIB and the CSF
markers then we would also need to run a GEE model for both CSF markers. We would
obtain the residuals for the ith individual from each of the three models: ε̂1i = (ε̂1i1 = y1i1 −
μ̂1i1, ε̂1i2 = y1i2 − μ̂1i2, ε̂1i3 = y1i3 − μ̂1i3)T for PIB, ε̂2i = (ε̂2i1, ε̂2i2, ε̂2i3)T for CSF-40, and
ε̂3i = (ε̂3i1, ε̂3i2, ε̂3i3)T for CSF-42. Then we would take the residuals from all three GEE
models and calculate the correlations between the residuals of PIB and CSF-40,

, and also between the residuals of PIB and CSF-42, , for each
subject where ρ̂1qi is defined in (3). Then the Fisher-z transformation of PIB and CSF-40
and Fisher-z transformation of PIB and CSF-42 would be calculated using (4) to obtain τ12i
and τ13i, respectively, for the ith individual. Next, we would calculate the control group
means (τ̄120, τ̄130) and AD group means (τ̄121, τ̄131) for the Fisher-z transformations of PIB
and CSF-40 and Fisher-z transformation of PIB and CSF-42 using (5). Lastly, the t-test
would be calculated using the standard error defined by (7).

3.2 Bootstrap approach
Bootstrap approaches can be quite useful for inferential purposes in the event one is unsure
of the model-based standard error estimate or when dealing with complex data (Davison and
Hinkley, 1997; Efron and Tibshirani, 1993). We propose the individual bootstrap, i.e.
resampling subjects applied to all methods under comparison. The individual bootstrap
involves resampling n subjects and keeping the subjects’ whole time-series. This ensures
that the dependency structure of the temporal data is kept intact for each region. Also, there
is no violation of the independence assumption of bootstrapping since the whole series data
are selected.

We use the bootstrap to estimate the standard error and calculate the confidence interval of
the difference of the group-average Fisher-z transformations as follows. First we obtain the
correlations from the B boostrapped datasets. With the standard pooling Fisher-z approach

we resample the subjects first then obtain the correlations , b = 1, .., B, for the bth
bootstrap. For the GEE model, first we obtain residuals from the GEE model with all the
original subjects; then we resample the subjects on this residualized dataset and obtain the

correlations , b = 1, .., B, for the bth bootstrap. After obtaining the B bootstrapped
correlations we do the following for all methods. We estimate the difference of the group-

average Fisher-z transformations, , b = 1, .., B, for the bth bootstrap. Let  be the
difference of the group-average Fisher-z transformations from the actual sample. The bias is

estimated where . The average of the bootstrapped estimates of the
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Fisher-z group differences is . The variance of the bootstrapped estimates of
the Fisher-z group difference is

The bias-adjusted confidence interval is . It is recommended to
resample 100–500 times; and we have chosen to bootstrap 100 times since we did not see
much change in the standard errors with 500 bootstraps.

3.3 Algorithm
To summarize our approach we have provided an algorithm to obtain the connectivity
difference measures with all approaches.

Step 1 Start with preprocessed resting-state fMRI data for n subjects. Identify the
seed region and ROIs.

Step 2 For the standard pooling Fisher-z approach correlate the seed region with
each ROI for each subject to obtain the Pearson correlation, ρ̂1qi, using (3).

Step 3 For all GEE approaches run a GEE model in R, SAS, or STATA specifying
the correlation structure. Each region will have its own GEE model. Request
the residuals, ε̂qij, from the qth GEE model. Next correlate the seed region
with each ROI for each subject to obtain the Pearson correlation, ρ̂1qi, using
(3).

Step 4 The Fisher-z transformation, τ1qi, for the seed region and each ROI is
obtained for each subject using (4). This is done for all methods.

Step 5 For each method and seed region-ROI pair calculate the group mean Fisher-z,
τ̄1qg, using (5) and Fisher-z group difference τ̄1q1 − τ̄1q0.

Step 6 For each method and seed region-ROI pair calculate the model-based standard
error with (7) to be used for a t-test of connectivity group differences.

Step 7 To obtain a t-test with the bootstrap standard error for each seed region-ROI
pair do the following. For the standard pooling Fisher-z approach use the
original data and do subject resampling B times to get B bootstrap datasets.
With the GEE approaches first obtain the residuals from the GEE models with
the original data; then do subject resampling B times to get B datasets and
include the residuals in that bootstrapped dataset from the GEE models. To

estimate  for the bth bootstrap correlate the seed region with each ROI
for each subject to obtain the Pearson correlation; repeat for each method.
Then follow steps 4 and 5 to estimate the difference of the group-average

Fisher-z transformations, , for the bth bootstrap. Finally, estimate the

bootstrap standard error, , with (9) to be used for a t-test of group
differences.
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4 Simulation studies
We perform a number of simulation studies in order to evaluate the statistical properties of
the various approaches and to assess model misspecification. We compare six approaches:
the standard pooled Fisher-z approach (Pool), a GEE marginal model with AR(1) correlation
(GEE AR(1)), GEE transition models with lags 1–3 and the correct function of time with an
exchangeable correlation (Tran 1, Tran 2, Tran 3), and a GEE transition model with lag 1
and incorrect function of time with an exchangeable correlation (Tran 1*). We also
considered the marginal model with exchangeable correlations, marginal model with an
incorrect function of time and exchangeable correlations and AR(1) correlations, and
transition models with AR(1) correlations (results not presented). We generate the data to
have a cosine function of time; the marginal model and transition model with incorrect
function of time takes time to be linear. This allows us to assess robustness of the GEE
model to an incorrect function of time. The bias, average of the standard error (SE), mean
squared error (MSE), and 95% coverage probabilities of the difference between the group
average Fisher-z estimates, (τ1 − τ0), are calculated where τg =.5ln[(1+ρg)/(1−ρg)] and g =
{0, 1}. Results for the standard error and coverages are reported under their respective
model-based approach or bootstrap approach.

Our data generation consists of j = 1, .., 200 time-points per subject, two groups denoted as g
= {0, 1}, lag 1, and total number of subjects to be n = 60 with equal numbers in each group.
To examine finite-sample population properties we also considered sample sizes of 30 and
200 with equal numbers in each group (results not presented). We generate two variables
(Y1j, Y2j) to be (Y1j, Y2j)~BVN(μj, Σg) where μj=(μ1j, μ2j), μ1j=Acos(2πωj+φ)+b1y1,j−1,
μ2j=Acos(2πωj+φ)+b2y2,j−1, Σg is the covariance matrix for the corresponding group with
variances being 1 and the correlations denoted by ρg. The lag parameters are (b1, b2)=(−.
85,− .8) for group 0, (b1, b2)=(−.75,−.7) for group 1; amplitude is A = 5; frequency of
oscillation is ω = 1/20; and phase shift is φ = .6π. The three sets of correlation values and
Fisher-z difference values selected for the simulation studies are: (ρ0 = .05, ρ1 = .1, τ1 − τ0
= .05); (ρ0 = .1, ρ1 = .2, τ1 − τ0 = .1); and (ρ0 = .05, ρ1 = .35, τ1 − τ0 = .32). We generate
1000 replications for each study. Since each simulation study takes approximately three
weeks to run on a AMD Opteron 270 2.0 GHz Dual Core server, we have evaluated a
limited number of values for the parameters. For these simulation studies, we assume the
frequency of oscillations is not known and estimate it prior to the GEE parameter estimation
process (as described in Section 3). The GEE marginal model of interest is yqij = β0 + β1 cos
(2πωj) + β2 sin (2πωj) + β3g. The transition models with the correct function of time are:

. The transition model with the
incorrect function of time and lag of 1 is: yqij = β0 + β1j + β2g + β3yqi(j−1).

The true SE of the group Fisher-z transformation difference is

As may be noticed, the true standard error is a function of the number of time points and
number of subjects. Therefore, the standard error will be the same regardless of the
correlation values across simulation studies and will decrease as the sample size increases.

Results are reported in Tables 2, 3, and 4. The Pool approach has the most bias and has the
largest MSE. This is due to not accounting for the lag and possibly not modeling time. The
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transition models with the correct function of time all have smallest bias, smallest SEs that
are also closest to the true SE, and smallest MSE. The marginal model has small bias and
small MSE but the largest SE. The transition model with lag 1 and incorrect function of time
has more bias, larger SE, and larger MSE than the other GEE approaches, but still has
smaller bias and smaller MSE than the Pool approach and smaller SE than the marginal
model. The coverages are always too small for the Pool approach and the transition model
with the incorrect function of time; the narrowness of the intervals is worst with the Pool
approach. For the model-based SE and the bootstrap SE approaches, the coverages for the
marginal model and the transition models with the correct function of time are close to the
true nominal value. The model-based and bootstrap standard errors are very similar. As
connectivity differences increase, the Pool approach and the transition model with the
incorrect function of time result in a smaller bias, smaller MSE, and wider coverages;
however, they still perform worse than the other GEE models.

Our results held over various sample sizes; and as expected the standard errors are reduced
as the sample size increases. The results for the GEE approaches with the correct function of
time are very similar whether we select the exchangeable correlation or AR(1) correlation
structure; the standard error tends to be slightly smaller for the AR(1) correlation, most
likely due to the nature of the data. The marginal model with an incorrect function of time
performs poorly regardless of the correlation structure selected and is not an improvement
over the Pool approach. However, we found that the correlation structure selection matters
the most with the transition model and an incorrect function of time. With an incorrect
function of time in the transition model, the AR(1) correlation has superior performance
over the exchangeable correlation since it has less bias, smaller MSE, and wider coverages.
Based on our choices for these simulation studies, the transition model with the AR(1) tends
to be more robust to model misspecification. Based on our findings, we recommend using
the GEE transition model and either the model-based or bootstrap SE.

5 Example
The objective for the resting-state ACS fMRI dataset is to determine which regional
connections of precuneus and its ROIs differ between the ApoE4+ and ApoE4− groups of
those who are cognitively normal. Each of the 15 regions has 164 BOLD measures per
scanning session with two scanning sessions. We exclude the first four frames from each run
to remove the effect of the magnet initialization. We compare a total of six approaches: the
standard pooling Fisher-z method, a GEE marginal model with a cosine function of time and
AR(1) correlation; GEE transition models with: a cosine function of time, lags 1–3, and an
exchangeable correlation; and a GEE transition model with: lag 1, a linear function of time,
and an exchangeable correlation. It seems unnecessary to include a lag larger than three in
the analysis based on our plots of the current values versus the previous values using lags up
to seven. Also, we apply the model-based SE approach and bootstrap SE approach to all six
methods to obtain standard errors and confidence intervals. We include both an uncorrected
analysis where p-value≤.05 is considered significant and a corrected analysis for multiple
testing using a Bonferroni correction where p-value≤.004 is considered significant. In all
models we adjust for time and group; therefore for the GEE models we specify the outcome
to be the qth regional fMRI time-series data and the covariates to be time and group. For the
transition models we also adjust for the outcomes from the previous K time-points that are
specified by the lag of choice. Since age is related to ApoE4 status we include an analysis
that does not adjust for age (unadjusted analyses) and an analysis where we adjust for age
(adjusted analysis) (results only presented in figure). The GEE methods can include age as
an additional covariate. The Pool approach has an extra step for the adjusted analysis. After
obtaining the Fisher-z estimates for each subject we use a GLM to estimate group
differences where the outcome is the Fisher-z estimate and the covariates are group and age.
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We then use a t-test for the group coefficient to test for functional connectivity group
differences. We will focus the discussion here on the uncorrected unadjusted results since
the number of regions is small and age does not change the functional connectivity findings
except for a few cases with the multiple testing correction.

We only considered the 99 subjects who had two fMRI runs available. This gives us 38
ApoE4+ subjects to be compared with 61 ApoE4− subjects. Age is statistically significantly
different between ApoE4 groups (p-value=0.009) with a mean (SD) of 63.2 (7.4) yrs in the
ApoE4− group and 58.7 (8.5) yrs in the ApoE4+ group. ApoE4 groups do not statistically
differ (p>.05) across other demographics: gender (19 (31%) males ApoE4−, 9 (24%) males
ApoE4+); mini-mental status exam (MMSE) (mean (SD): 29.3 (.88) for ApoE4−; 29.6 (.68)
for ApoE4+); and education level (mean (SD): 16.1 (2.6) yrs for ApoE4−; 16.2 (2.0) yrs for
ApoE4+).

Tables 5, 6, 7, and 8 report the ApoE4+/− functional connectivity difference results between
precuneus and its ROIs. Figures 3–4 depict the positive and negative group connectivity
differences and their inferential findings across all methods using the model-based SE for
the unadjusted analyses and adjusted analyses, respectively. For all regions, the GEE
marginal model yields similar results to the Pool approach. We suspect this is due to the lag
not being accounted for in the marginal model and the function of time may be slightly
different than specified. The results for the transition model differ when compared to the
GEE marginal model and Pool approach. In general for the transition model, the
connectivity magnitude differences are smaller except for the hypothalamus, pregenual AC,
and left hippocampus. The transition models with lag 1 always have a smaller SE than the
transition models with lag >1. As for the standard errors, the smallest to the largest tend to
be the transition lag 1 models, marginal model and Pool approach which are similar, and the
transition lag>1 models. There are a few exceptions regarding the SE, where the transition
models are always smaller than the Pool approach and marginal model (medial prefrontal
cortex, right parahippocampus model-based only, middle temporal, and left hippocampus).
In a few instances, the Pool approach and marginal model have smaller standard errors than
the lag models (right hippocampus, dorsal AC, and left superior temporal). In all 14
analyses, the Pool approach and marginal model results are significant. Most of the
transition model results are significant with the following exceptions: inferior orbital cortex,
right hippocampus (transition lag > 1 models), right parahippocampus, right superior
temporal (transition >lag 1 excluding lag 2 bootstrap), dorsal AC (all except transition 1
with bootstrap), and left superior temporal (all except transition lag 1 with bootstrap).

With the multiple testing correction there are some additional findings. The group
connectivity findings of right parahippocampus are no longer significant for all of the
methods. The following eight regional functional connectivity group differences are no
longer significant for all the transition models: dorsal occipital cortex, inferior orbital cortex,
medial prefrontal cortex (except lag 3 bootstrap), right hippocampus, right superior temporal
gyrus, middle temporal cortex, dorsal AC, and left superior temporal gyrus. A few additional
nonsignificant findings that are isolated include: hypothalamus for all but the transition 1
models, gyrus rectus for the transition 1 models, pregenual AC for the Pool approach and
marginal model, and caudal orbital cortex for the transition 3 model. The multiple testing
correction leads to three additional regions being not statistically significant for the marginal
and Pool approaches. Also, most of the regions are no longer statistically significant for the
transition models.

We have shown how the functional connectivity values can differ when accounting for the
lag in the data. The transition models may improve the standard error estimate which drives
the inferential findings. The transition models do lead to some nonsignificant findings.
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Based on our simulation studies and the differences found in the example dataset we
recommend transition models. According to the simulation studies, the transition models
will lead to unbiased and more efficient estimates if the lag and function of time can be
estimated correctly.

6 Discussion
Resting-state fMRI studies have been limited in their analytical approaches. Minimal
progress has been made at modeling the temporal dependencies of fMRI data when
comparing group functional connectivity. The ACS fMRI data has motivated us to study
techniques that can handle the temporal characteristics of fMRI data while comparing
regional correlations across groups. When we ignore the temporal correlation, the data may
appear to be more correlated than they actually are and the estimates will not be consistent,
leading to incorrect comparisons. Much work has been done in the task-based area
addressing these concerns; however, much less focus has been in the resting-state area,
specifically in determining group correlation differences. Our work demonstrates application
of GEE approaches and a bootstrap approach to resting-state fMRI data. In particular, we
evaluated the potential utility of the transition model to analyze functional connectivity data.

With time-series data, previous values will most likely be related to the current values.
When removing the influence from the values of the previous timepoints, the correlations
and differences may no longer reflect these temporal dependencies. These temporal
dependencies are not of primary interest. The magnitude of the differences in functional
correlations may be affected when accounting for the lag of resting-state fMRI data. As
demonstrated in our simulation studies and real data example, the transition models yield
smaller magnitudes of connectivity differences than the other approaches. Our simulation
studies have suggested that the transition models may have better statistical properties than
the marginal model and standard pooling Fisher-z approach. Based on the ACS example, we
have shown that functional connectivity group differences will vary according to the method
selected. The transition model did result in fewer connectivity difference findings. There
were a few instances with the transition models, when the bootstrap SEs were slightly
smaller than the model-based SE leading to a more significant finding than when using the
model-based SEs. However, it should be mentioned that this was at the α = .05 threshold
where the p-values for the model-based was very close to .05. We are not sure why this
occurred. For a majority of the time the model-based and bootstrap standard errors were
very similar.

There are some limitations with our approach. The function of time needs to be further
evaluated. The simulation studies have demonstrated that when the function of time is very
incorrect the standard pooling Fisher-z approach and marginal model both perform poorly,
whereas the transition models are an improvement. Furthermore, the example found the
results to be similar between the standard pooling Fisher-z approach and marginal approach
and also similar between the transition lag 1 model with the cosine function of time and
linear function of time. Therefore, additional investigation is required to determine how
robust each method is to model misspecification. Another issue is with the estimation of
frequency of oscillation. When estimating the cosine functions we took an average of the
subjects’ dominant frequency of oscillations. This may not accurately reflect the data;
therefore, we are in the early stages of pursuing wavelets and mixtures of cosines to
determine if these are a better fit to the data. We are also currently evaluating the block
bootstrap which is appropriate for time-series data. We have had some success with the
block bootstrap; however, we need to understand the dependency structure of our fMRI data
to use this method appropriately. Additional simulation studies and methods are being
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designed to further evaluate properties of the GEE methods and bootstrap methods for
resting-state fMRI data.

GEE methods hold promise in the functional connectivity area as they are ideally suited for
modeling time-series data. Furthermore, GEE methods are flexible by having the ability to
adjust for covariates. Our results suggest that the transition model and bootstrapping may
contribute to our understanding of regional correlations. Code may be requested from the
corresponding author.
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Highlights

• We used GEE to compare groupwise functional connectivity.

• We estimated the model-based standard errors (SE) and bootstrap SE.

• We compared GEE models to the standard pooling Fisher-z approach.

• GEE transition models have the best statistical properties.
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Figure 1.
Brain Maps
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Figure 2.
Precuneus vs time for ApoE4+: (a) subject 1, (b) subject 2, (c) all subjects
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Figure 3.
Method comparison for model-based SE and unadjusted analysis: group differences of
functional connectivity between Precuneus and 14 ROIs. The heatmap color indicates the
group differences of functional connectivity between Precuneus and each ROI listed on the
y-axis. The color legend represents the range of correlation differences where red indicates a
positive correlation difference between ApoE4+ and ApoE4−, and blue indicates a negative
correlation difference between ApoE4+ and ApoE4−. All correlation differences are
statistically significant except where shown on the plot with a * and/or **, where: *=NS at
uncorrected, **=NS at corrected. On the color bar is a histogram of the correlation
differences across all methods and ROIs.
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Figure 4.
Method comparison for model-based SE and adjusted analysis: group differences of
functional connectivity between Precuneus and 14 ROIs. The heatmap color indicates the
group differences of functional connectivity between Precuneus and each ROI listed on the
y-axis. The color legend represents the range of correlation differences where red indicates a
positive correlation difference between ApoE4+ and ApoE4−, and blue indicates a negative
correlation difference between ApoE4+ and ApoE4−. All correlation differences are
statistically significant except where shown on the plot with a * and/or **, where: *=NS at
uncorrected, **=NS at corrected. On the color bar is a histogram of the correlation
differences across all methods and ROIs.
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Table 1

Regions of intererst (Talairach coordinates) selected for ACS ApoE4+/ApoE4− connectivity study

Hypothalamus (00, 00, −09)

Dorsal occipital cortex (00, −89, +40)

Gyrus rectus (+04, +23, −21)

Inferior orbital cortex (+07, +58, −21)

Medial prefrontal cortex (+16, +53, +18)

Right hippocampus (+19, −19, −06)

Right parahippocampus (+31, −30, −14)

Right superior temporal gyrus/fronto-parietal operculum (+51, −03, +08)

Middle temporal cortex (+58, −12, −22)

Pregenual anterior cingulate/striatum (−02, +24, +02)

Caudal orbital cortex (−13, +24, −16)

Dorsal anterior cingulate (−14, +18, +30)

Left hippocampus & parahippocampus (−17, −34, −12)

Left superior temporal gyrus/fronto-parietal operculum (−37, −40, +09)
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