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Abstract

A powerful way to probe brain function is to assess the relationship between simultaneous 

changes in activity across different parts of the brain. In recent years, the temporal activity 

correlation between brain areas has frequently been taken as a measure of their functional 

connections. Evaluating ‘functional connectivity’ in this way is particularly popular in the fMRI 

community, but has also drawn interest among electrophysiologists. Like hemodynamic 

fluctuations observed with fMRI, electrophysiological signals display significant temporal 

fluctuations, even in the absence of a stimulus. These neural fluctuations exhibit correlational 

structure over a wide range of spatial and temporal scales. Initial evidence suggests that certain 

aspects of this correlational structure bear a high correspondence to so-called functional networks 

defined using fMRI. The growing family of methods to study activity covariation, combined with 

the diverse neural mechanisms that contribute to the spontaneous fluctuations, have somewhat 

blurred the operational concept of functional connectivity. What is clear is that spontaneous 

activity is a conspicuous, energy-consuming feature of the brain. Given its prominence and its 
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practical applications for the functional connectivity mapping of brain networks, it is of increasing 

importance that we understand its neural origins as well as its contribution to normal brain 

function.

Introduction

Using fMRI to study processes in the brain requires the interpretation of hemodynamic 

activity time courses. Traditionally, fMRI studies have mapped the physiology of the brain 

by measuring how such time courses change as a result of stimuli or actions occurring at 

definable points in time (Kwong et al., 1992). Researchers can map the mean fMRI response 

to a given type of stimulus by comparing the measured time courses of voxels throughout 

the brain to model time courses derived from the dynamical structure of the task design. 

This powerful approach has certain limitations. First, its success relies heavily on the 

capacity to construct a sensible model time course, which is often difficult (Aguirre et al., 

1998; Handwerker et al., 2004). Second, it is insensitive to brain activity that is not time-

locked to the task, such as spontaneous activity. For these reasons, and based on initial 

findings that spontaneous fMRI signals are not only prominent but also highly organized 

(Biswal et al., 1995), a second principal mode of fMRI investigation has emerged. This new 

set of methods, generally falling under the term ‘functional connectivity’, represents a 

fundamental shift in the strategy toward decoding fMRI time courses. Rather than linking 

fluctuations to external task design, this approach asks how voxel time courses throughout 

the brain relate to one another. In most cases, there is no task at all, and subjects simply lie 

in the scanner with their eyes closed.

Analysis of fMRI time courses in the absence of a task, also called ‘resting-state’ data, has 

led to the discovery of a relatively small number of stable, spatially organized patterns of 

correlated activity. The robustness and reproducibility of such ‘resting-state networks’ over 

time and laboratories (Zuo et al., 2010; Braun et al., 2012), as well as the spatial 

correspondence between resting-state and task-driven data (Smith et al., 2009), have led to 

an explosion of interest in spontaneous activity among fMRI researchers. An interesting 

aspect of this new trend is that, in contrast to conventional fMRI design, functional 

connectivity analysis is almost entirely data driven (Van den Heuvel and Hulshoff Pol, 

2010). When a priori hypotheses are applied, they usually come into play at a later stage, as 

in comparing between different patient groups, rather than during the mapping process itself 

(Sorg et al., 2009; Zhang and Raichle, 2010). As such, this new mode of fMRI investigation 

is more exploratory than its predecessor, and the two approaches are often applied together. 

As a measure of functional anatomy, this approach is also playing a particularly prominent 

role in the human connectome project.

Despite the success of fMRI in mapping brain-wide spatial patterns in spontaneous activity, 

the link between the measured hemodynamic signals and the underlying neural signals is 

only indirect (Logothetis, 2003). Direct electrophysiological measures are required to study 

neurophysiological processes that underlie these hemodynamic networks. In that vein, 

several recent studies have attempted to specify the relationship between spontaneous 

electrical and hemodynamic signals in the brain (Laufs, 2008; Shmuel and Leopold, 2008). 
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These studies have revealed clear neural correlates of spontaneous fMRI activity, with 

hemodynamic fluctuations following shortly after, and presumably caused by, local neural 

events. Importantly, however, identification of a correlate is not a demonstration of 

causality, nor is it equivalent to understanding the physiological origin of spontaneous 

activity. These neural correlates merely indicate that the fMRI signal is a reliable indicator 

of local spontaneous neural activity. It is thus worth noting that the electrophysiological 

signal has been shown to correlate with hemodynamic fluctuations even centimeters away 

(Schölvinck et al., 2010), drawing attention to the shortcomings of purely correlative 

approaches. Why does the brain show widespread fluctuations in the first place? If the 

spatial pattern of these fluctuations cannot be attributed entirely to anatomical connectivity, 

as considerable evidence suggests (Damoiseaux and Greicius, 2009; Honey et al., 2009), 

then what other factors are at play in shaping BOLD activity correlations? Despite the 

intense interest in spontaneous brain signals that has emerged in the past decade, relatively 

little attention has been paid to these important questions. In the era of the human 

connectome project, the utility of functional connectivity maps derived from an enormous 

amount of resting-state fMRI data may ultimately be determined by our understanding of 

brain's endogenous processes. Moreover, as terms such as functional connectivity and 

functional network have proven to be highly adaptable in the face of new methods and 

observations, they no longer signify unique or precise quantities. While this diversity in 

measures of “connectivity” reflects genuine scientific advances, it poses distinct challenges 

to the connectome project, which aims to compile results across studies in order to portray a 

comprehensive description of the brain's functional connections.

The present article explores the neurophysiology of spontaneous brain activity in an effort to 

link fMRI functional connectivity to electrical signals. We review the spatiotemporal 

organization of a range of electrophysiological measurements, including the local field 

(LFP) and electrocorticographic (ECoG) potentials in experimental animals and human 

patients, as well as electroencephalographic (EEG) and magnetoencephalographic (MEG) 

recordings in human research subjects. After introducing concepts related to correlational 

methods for investigating brain function, we describe the spatial and temporal scales of 

electrophysiological brain signals. Next, we review a small number of studies directly 

comparing large-scale electrophysiological correlation with fMRI functional connectivity-

defined networks, and outline some of the theoretical and practical issues with measuring 

and defining functional connectivity in electrophysiology. Finally, we speculate on the 

origins and purpose of spontaneous brain activity as well as its bearing on the human 

connectome project.

Investigating functional interactions in the brain

The study of functional connectivity taps into the interaction between brain regions. 

Historically, neuroscientists have employed a wide range of approaches to study how two or 

more brain areas interact. For example, early electrophysiological studies in animals 

examined the effects of chemically evoked activity at one cortical site on the neural activity 

measured elsewhere in the same hemisphere (Dusser de Barenne, 1924; Pribram and 

Maclean, 1953). Other types of studies probed the behavioral effects of ‘disconnecting’ two 

areas by ablating one of the areas in each of the hemispheres (Mishkin, 1972). In the last 
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decades, the capacity to simultaneously record activity from multiple isolated neurons has 

pushed correlative approaches to the forefront of studying neural interaction. The correlated 

activity between neurons, measured within the same area or between areas, has contributed 

to theories of stimulus processing (Eckhorn et al., 1988; Gray et al., 1989) and other aspects 

of cognition (Murthy and Fetz, 1996).

Early single-unit work considered the possibility that the spontaneous spiking of neural pairs 

might provide an indication of their anatomical connectivity (Aertsen and Gerstein, 1985), 

and this method was applied to study, for example, the pattern of horizontal connections in 

the cerebral cortex (Ts'o et al., 1986). Such shared electrical activity is often spatially 

localized; for instance, millisecond-precise synchronization between nearby neurons in 

primary visual cortex of macaques is most frequently observed when these neurons share 

similar orientation preferences (Frien and Eckhorn, 2000; Kohn and Smith, 2005), an effect 

that has been attributed to horizontal connections linking regions of similar stimulus 

preference (Smith and Kohn, 2008). Other work has revealed spiking correlations between 

neurons over longer time scales, with simultaneously measured neurons exhibiting shared 

trial-to-trial variability upon repeated presentation of the same stimulus (Shadlen and 

Newsome, 1998). Such correlations in activity that are not determined by a stimulus are 

often called noise correlations. In general, single unit spiking, even that of nearby neurons, 

shows levels of spontaneous correlation that rarely exceed 0.05-0.1 over either short or long 

time scales (Gawne and Richmond, 1993; Ecker et al., 2010).

A typical measure of local neuronal activity, other than spiking, is the local field potential 

(LFP). The LFP is a complex measure of neuroelectric activity that contains within it the 

aggregate membrane potential fluctuations of a local ensemble of neurons (Buzsáki et al., 

2012). In contrast to spiking activity, correlation in the spontaneous LFP measured over 

similar distances is typically much higher, ranging from ~0.2 for LFP in the gamma (30-100 

Hz) frequency range to ~0.7 for LFP in the delta (1-4 Hz) frequency range (Leopold et al., 

2003). Comparable values have in fact been found in fMRI resting-state correlations over 

much larger distances (Fox and Raichle, 2007). How is it possible that the noise correlations 

in spiking activity are so low, but that the spontaneous LFP correlation and BOLD 

correlation is so high? A potential reason for this discrepancy might be found in the spike 

threshold; when the mean membrane potential of neurons is far below threshold, firing rates 

are low and many of the shared membrane potential fluctuations will be visible in the LFP 

but are unobservable in spiking responses (Dorn and Ringach, 2003).

It is important to note that temporal correlation as a measure of neural interactions can be 

distorted by any factor that affects either one or both of the signals being compared. One 

example of this is common input resulting from sensory stimulation. Common input will 

trivially increase the measured correlation whenever two neurons, sites, or voxels are driven 

by the same external stimulus. To contend with this issue, neurophysiologists have 

established methods to eliminate shared variance caused by predictable external events in 

order to focus on the so-called noise correlation described above (Perkel et al., 1967). A 

growing number of fMRI functional connectivity studies capitalizes on these methods, 

trying to capture noise correlations in BOLD activity measured during a task (Arfanakis et 

al., 2000; Fair et al., 2007). Unpredictable or immeasurable external sources of sensory 
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input, such as the occurrence of eye movements, pose a greater challenge and often cannot 

be entirely discounted (Fig 1; Ramot et al., 2011). Small residual correlations must thus be 

interpreted with great caution, particularly if they show patterns similar to those evoked by 

the task design.

In the case of spontaneous activity examined during rest, it is more reasonable to assume 

that endogenous processes shape measured time courses and thus are the primary 

determinants of functional connectivity. However, there are still several significant problems 

if one wants to interpret this measure as reflecting the interaction between areas. First, as 

described above, it is impossible to entirely eliminate the contribution of external sensory 

events to correlational measures. Second, certain categories of internal activity, such as 

changes in arousal, will cause large-scale changes that synchronize a broad range of areas 

(Tagliazucchi et al., 2013). These sources of variance are difficult to remove or minimize, 

and attempts to do so with various types of global signal regression are controversial 

(Murphy et al., 2009). Third, even for the endogenous processes that serve as the basis for 

functional connectivity measures, there is no way to discern direct interaction from common 

anatomical input. For example, brain structures that are not anatomically connected, such as 

the left and right caudate nucleus, can still exhibit strong functional connectivity, which is 

likely caused by some form of common input from a third structure (Di Martino et al., 

2008). Fourth, it is not only sources of common input that shape measured correlation but 

also patterns of exclusive input. For example, a decrease in the measured correlation 

between two areas may not reflect a decrease in their coupling, but could equally reflect the 

addition of a new, unshared process to only one of the areas. All these problems pose 

significant interpretive challenges for the functional connectivity method.

Finally, a tacit assumption in most correlational measures is that of temporal stationarity, 

meaning that the signals maintain their statistical characteristics within the time window 

over which their correlation is computed. Given the 1/f power spectrum of most 

neurophysiological signals, meaning that the slowest fluctuations have the highest 

amplitude, it seems impossible to determine a single window size in which all frequency 

components of the signal are stationary. Recent work in resting-state fMRI has therefore 

begun to investigate how temporal correlations themselves evolve over time (Chang and 

Glover, 2010; Hutchison et al., 2010; Handwerker et al., 2012; Keilholz et al., 2012), all 

concluding that the assumption of temporal stationarity is a poor one. This implies that 

different functional networks measured over short time windows might be integrated into 

the same fMRI network measured over longer time scales, and that transient functional 

networks might not even be visible in fMRI. Though usually interpreted as evidence for 

‘dynamic functional connectivity’, these findings raise questions about the nature of the 

observed correlations, the methodologies currently used to elucidate them, and the 

interpretation of functional connectivity maps more generally.

A continuum of scales

Given the potential value of correlation methods, as well as the caveats described above, we 

next survey a number of relevant properties of electrophysiological signals measured across 

the brain over a range of scales. As mentioned above, the spiking times of individual 

Schölvinck et al. Page 5

Neuroimage. Author manuscript; available in PMC 2014 October 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



neurons can be coupled at timescales as short as several milliseconds, with correlations 

highest among neighboring neurons (Maffei and Galli-Resta, 1990; Pillow et al., 2008). 

However, it is clear that for the brain to create a unified sequence of actions based on 

multimodal sensing of the environment, neural activity must be coordinated over much 

larger scales as well. Indeed, simultaneous EEG-fMRI resting-state measurements have 

shown increased functional integration between brain areas as subjects transcended from 

deep sleep to wakefulness (Tagliazucchi et al., 2013). In contrast to fMRI, 

electrophysiological methods are well-suited to reveal structure in spontaneous activity over 

this entire range of spatial, temporal, and spectral scales (Fig 2).

Slow electrophysiological activity changes are of great interest for two reasons. First, they 

occupy similar time scales as the sluggish hemodynamic signal. Second, their pattern of 

spatial correlation in some cases bears resemblance to fMRI functional connectivity, as we 

will see in the next section. Fluctuations in electrophysiological signals in the 0.01 – 0.1 Hz 

range have been termed Slow Cortical Potentials (SCPs) (Birbaumer et al., 1990; McCallum 

and Curry, 1993). They are thought to be caused by long-lasting excitatory postsynaptic 

potentials (EPSPs) at apical dendrites in superficial layers (Speckmann and Elger, 1993). 

Since a predominance of EPSPs results in a negative shift in scalp-recorded EEG, a negative 

shift in SCPs is typically interpreted as increased cortical excitability (Birbaumer et al., 

1990). This assumption is further substantiated by the finding that negative SCP is 

correlated with the amount of task-related cognitive effort (Khader et al., 2007) and with the 

positive fMRI BOLD response (Hinterberger et al., 2003; He and Raichle, 2009; Jost et al., 

2011, 2012).

A second category of slow electrophysiological fluctuations is, in fact, derived from faster 

signals. The Band Limited Power (BLP) corresponds to the power or envelope modulations 

of a relatively narrow range of LFP frequencies, for instance the alpha (8-13 Hz) band. BLP 

modulations, like the SCP modulations, show temporal variation over time scales of seconds 

and even minutes. Like fMRI correlations, correlations in the BLP fall off with distance, yet 

much more gradually than the correlations in the raw high-frequency LFP from which it is 

derived (Leopold et al., 2003). Spontaneous gamma BLP fluctuations recorded from depth 

electrodes in epileptic patients (Nir et al., 2008) and MEG sensors in healthy subjects (Liu et 

al., 2010) revealed correlations between bilateral homotopic brain regions, which is 

consistent with numerous fMRI functional connectivity studies. This work is supported by 

further studies using MEG source space localization to show long range temporal correlation 

between spontaneous BLP signals in, for example, left and right primary motor cortices 

(Brookes, Hale, et al., 2011; Hall et al., 2012; Hipp et al., 2012).

Closer examination of the wide spatial and temporal spectrum over which neural 

correlations are observed suggests that the two scales are inextricably linked; the slower the 

electric potentials, the larger the area over which they can be correlated (Frien and Eckhorn, 

2000; Von Stein and Sarnthein, 2000; Leopold et al., 2003). There are several biophysical 

properties of oscillations that could account for this finding. It could be simple passive 

attenuation of higher frequency components due to differences in signal propagation; 

however, the impedance spectrum of gray matter is the same across different spectral 

components (Logothetis et al., 2007). Theoretical models (Koenig and Schillen, 1991) and 
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empirical data (Frien and Eckhorn, 2000) suggest that the more distant two neural 

assemblies are, the longer the signal-conduction delay between them, which biases the 

maintenance of a phase relationship between the two signals over longer cortical distances 

towards lower frequencies, with fewer cycles to maintain phase stationarity over. In 

addition, the spatial superposition of locally generated currents in the extracellular medium 

is much more likely to be destructive at short wavelengths (i.e. high frequencies), since 

small time shifts will cause proportionally large phase shifts; this again biases larger spatial 

correlations towards the lower frequencies. Furthermore, the observed 1/f distribution in 

frequencies makes coherence in the higher frequencies such as gamma much lower in all 

cases, although the gamma BLP, which can fluctuate arbitrarily slowly, is again correlated 

over large spatial scales (Schölvinck et al., 2010). Finally, it is important to point out that the 

above discussion pertains to the spatial correlation of spontaneous signals. During a task, 

temporal coupling among electrophysiological signals has been demonstrated repeatedly 

between distant areas and during specific cognitive states (Schoffelen et al., 2005; 

Buschman and Miller, 2007; Gregoriou et al., 2009; Canolty et al., 2010). For the present 

discussion, these effects underscore the fact that activity correlation measured over small or 

large spatial scales is not, and should not be conceived as, a fixed reflection of underlying 

anatomical connections and physiological mechanisms.

Functional networks as assessed with electrophysiology

Given the pronounced temporal correlation observed between distant brain sites in ECoG, 

EEG, and MEG studies, we next consider these results in the context of resting-state 

‘networks’ described using fMRI functional connectivity. Do the spatial patterns found in 

electrophysiology resemble these networks at all, and if so, to what extent? A functional 

network is a central concept in fMRI functional connectivity; a set of brain regions whose 

measured BOLD fluctuations are correlated in time. Typically, regions that are co-activated 

during certain tasks tend to be correlated in their resting-state activity, and this might have 

led to the fact that these resting-state networks are commonly related to a particular 

cognitive function. Some well-known networks include those associated with perception and 

action, such as the visual (Wang et al., 2008), auditory (Cordes et al., 2000), and motor 

(Biswal et al., 1995) networks; and those associated with attention and cognition, for 

example the fronto-parietal (Fox et al., 2005), and default mode (Greicius et al., 2003) 

networks.

Large-scale electrophysiological measures have found networks of correlated sites or 

sensors that show some degree of correspondence to the resting-state networks found with 

BOLD fMRI. For example, ECoG electrodes implanted over areas of the sensorimotor 

network in epileptic patients show an activity correlation structure in SCPs similar to that 

observed in BOLD data (He et al., 2008); similar results have been found in ECoG-recorded 

gamma power (Nir et al., 2008). Likewise, using spontaneous MEG power reconstructed at 

each voxel of the brain, De Pasquale et al. (2010) revealed the dorsal attention and the 

default mode networks well-known to resting-state fMRI researchers; this work was later 

extended to four additional networks, which showed various degrees of across-network 

correlations (De Pasquale et al., 2012). Brookes et al. (2011) also employed spontaneous 

MEG data to derive the spatial structure of eight MEG networks based on the BLP. In these 
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MEG studies, spectral analysis indicated that the resting-state networks were manifest 

primarily within the theta, alpha, and beta bands - frequencies lower than those typically 

associated with the local electrophysiological correlates of BOLD activity, which may 

reflect the increased signal to noise ratio in these lower frequency bands. Resting-state 

networks have to our knowledge never been described in BLPs or SCPs of the EEG, but 

could in principle be found if the spatial resolution of the EEG signal is enhanced by, for 

example, current source density (CSD) transformation (Hinterberger et al., 2005; Lamm et 

al., 2005) across the scalp electrodes. Specific spatio-temporal features of the EEG have, 

however, been used to define so-called EEG microstates; these microstates form spatial 

maps that are thought to correspond to functionally relevant brain states (Britz et al., 2010; 

Musso et al., 2010; Van de Ville et al., 2010; Brodbeck et al., 2012).

Recent years have seen a number of emerging clinical applications of these brain-wide 

electrophysiological networks. For example, differences in MEG functional connectivity 

compared to healthy controls has been reported for Alzheimer's Disease (Sorg et al., 2009; 

Stam et al., 2009), Attention-Deficit/Hyperactivity Disorder (Wilson et al., 2013), and 

epilepsy (Sakurai et al., 2010). Furthermore, acquired brain injury such as a stroke can 

radically alter functional connectivity patterns (Castellanos et al., 2010, 2011; Gerloff and 

Hallett, 2010). Knowledge of these alterations in functional connectivity could potentially 

help optimize rehabilitation strategies (Butz et al., 2009), although any differences in 

functional connectivity between patients and controls has to be viewed with caution because 

of the many potential reasons for differences in temporal correlations as discussed above.

The degree of spatial correspondence between electrophysiological and hemodynamic 

functional networks is still under debate. MEG studies have shown that, if the BLP envelope 

at a seed location within one node of an fMRI network is taken, one finds that across the 

whole brain, the highest temporal correlation most often occurs within a separate node of 

that same fMRI network (Brookes, Hale, et al., 2011; Hall et al., 2012; Hipp et al., 2012). 

The question of spatial correspondence has also been tackled using independent component 

analysis on BLP signals measured with MEG. Clusters of voxels forming distributed spatial 

patterns exhibited significantly higher spatial correlation to some BOLD networks than 

matched surrogate data, implying a degree of spatial concordance (Brookes, Woolrich, et al., 

2011). However, it is important to note that despite compelling similarities, clear differences 

are also observed which are often overlooked. For example, the sensorimotor network 

includes the supplementary motor area (SMA) in fMRI but this is often lacking in MEG 

(Brookes, Hale, et al., 2011; Hipp et al., 2012). This could reflect a genuine difference 

between fMRI and MEG networks resulting from the disparate nature of the two signals; 

however, it could also relate to technical limitations of MEG. Spatial matching of MEG and 

fMRI networks is inherently confounded because the ill-posed inverse problem (see below) 

necessarily brings about spatial imprecision in MEG networks maps that is not present in 

fMRI.

In determining the spatial correspondence with functional networks found in fMRI, EEG, 

and MEG studies have to overcome the fundamental problem that unlike hemodynamic 

responses, scalp-recorded field potentials are a reflection of neural events happening 

elsewhere. Technically, this problem is referred to as volume conduction or field spread, 
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meaning that the electric or magnetic field induced by a single source in the brain is 

recorded at multiple EEG or MEG sensors; likewise a single EEG or MEG sensor will 

record the activity of multiple sources. As distance from sources to sensors increases, the 

signal to noise ratio (SNR) drops, and the number of affected sensors grows. This 

necessarily confounds sensor space connectivity metrics. The problem can, in part, be 

ameliorated by projection of scalp-based signals to reconstruct time courses of electrical 

activity at a set of locations in the brain (Schoffelen and Gross, 2009). However, the 

observed field pattern at the scalp surface could be caused by an infinite number of possible 

sources in the brain. This makes this so-called MEG/EEG inverse problem mathematically 

ill-posed, meaning that reconstructed signals will ‘leak’ between voxels generating spurious 

connectivity. This leakage changes as a function of the SNR; it is generally more 

problematic for deeper sources, as has been shown by computing the point spread function 

of a single dipole at various locations (Hauk et al., 2011), and the leakage is also highly 

spatially inhomogeneous (Brookes, Hale, et al., 2011). In recent years sophisticated methods 

have been developed to address this problem. For example, a number of studies (Nolte et al., 

2004; Guggisberg et al., 2007) have shown that by taking only the imaginary part of the 

complex coherence, spurious connectivity caused by signal leakage can be eliminated, since 

leakage is necessarily zero phase lag (i.e. contained wholly within the real part of 

coherence). These same theories have also been extended for use in BLP correlation 

estimation, where techniques based on linear regression of projected oscillatory signal, prior 

to BLP computation, have been used to correct for signal leakage, with some success 

(Brookes et al., 2012; Hipp et al., 2012). Another approach to combating the inverse 

problem is to inform the MEG or EEG sources by fMRI scans of the same subject (De 

Pasquale et al., 2010).

One step further in relating the fMRI resting-state networks to the networks found with 

electrophysiology is to acquire these signals simultaneously. The correlation between the 

power of band-passed electrophysiological signals and the fMRI signal in the resting state 

shows frequency diversity. Lower frequencies such as alpha (Laufs et al., 2003; Moosmann 

et al., 2003; Mantini et al., 2007) and even SCPs (for a review, see Khader et al., 2008) 

typically show a negative relationship, although there is also opposing evidence. For 

example, Niessing et al. (2005) found that delta oscillations in the LFP of anesthetized cats 

are negatively correlated with the BOLD signal, whereas others showed this relationship to 

be positive in un-anesthetized, drowsy monkeys (Schölvinck et al., 2010). For the higher 

frequencies such as gamma, the evidence seems to be unambiguously pointing to a strong, 

positive relationship between the LFP or EEG power and the fMRI BOLD signal (Niessing 

et al., 2005; Shmuel and Leopold, 2008; Schölvinck et al., 2010). However, there is certainly 

no oneto-one correspondence between oscillations in any single frequency band and the 

BOLD response (Winterer et al., 2007); moreover, these correspondences might change with 

fluctuations in brain state (Tagliazucchi et al., 2012). It is also important to realize that LFP 

and EEG signals are merely the reflection of neural processes that may originate elsewhere 

and that might themselves be correlated to other neural processes leading to the BOLD 

response. These problems of indirectness and spatial localization are but a few of the many 

challenges in linking spontaneous electrophysiological and hemodynamic signals.
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Diverse correlational measures

The lack of a one-to-one correspondence between spontaneous electrophysiological and 

hemodynamic measures suggests that electrophysiology might be able to reveal properties of 

spatial patterns in spontaneous activity that are undetectable with fMRI. For example, the 

much better temporal resolution of electrophysiology enables researchers to pose questions 

about networks such as whether one brain area ‘leads’ while another one in the network 

‘follows’; despite recent analysis tools such as Granger causality and Dynamic Causal 

Modelling such questions remain at best indirectly, and perhaps not at all, answerable with 

fMRI alone (Smith et al., 2011). In recent years, the complex nature of electrophysiological 

brain signals combined with increasing focus on spectral differences has led to a 

combinatorial explosion of measures that bear on the concept of functional connectivity. 

Whether these new measurements and methods reveal fine-grained functional differences 

within the resting-state networks that remain invisible to fMRI (Fig 3), or whether they 

undermine the concept by blurring its definition, remains to be determined. Here we provide 

a brief overview of several electrophysiology measures of activity correlation, discussed in 

the context of functional connectivity mapping.

A commonly computed entity is the magnitude-squared coherence between two signals, 

which is a measure of correlation between two signals as a function of frequency. Coherence 

is closely related to the phase-locking value, which also signifies a fixed phase relationship 

between two neural oscillatory processes at a certain frequency, but which is independent of 

amplitude (Varela et al., 2001). Coherence and phase-locking have both been computed for 

spontaneous EEG and MEG activity. For example, Jann et al. (2009) found that EEG 

electrodes over brain regions that were determined by simultaneous fMRI to form a certain 

resting-state network, were phase-locked in the alpha band. In MEG there are a number of 

examples of coherence being used successfully to illustrate long range connections. 

Hillebrand et al. (2012), for instance, used phase-locking to investigate the frequency 

dependence of fixed phase coupling in resting-state networks.

In addition to investigating functional connectivity within certain frequency bands, recent 

studies have begun to assess cross-frequency effects, such as the amplitude or phase of low-

frequency oscillations in one brain region modulating the amplitude or phase of high-

frequency oscillations in either the same or a spatially separate brain area (He et al., 2010). 

For example, the amplitude of the peaks in the oscillatory alpha rhythm in MEG is 

correlated with the negative amplitude of SCPs (Mazaheri and Jensen, 2008). Coupling 

between the phase of low frequencies and the amplitude of the gamma frequency has been 

shown in spontaneous activity in the sensory cortices of monkeys (Lakatos et al., 2005; 

Spaak et al., 2012) as well as in mouse hippocampus (Buzsáki et al., 2003), and recently, 

studies have also begun to assess cross-frequency coupling in resting-state activity measured 

with EEG (Osipova et al., 2008) and intracranial recordings (Foster and Parvizi, 2012) in 

humans.

A fundamental issue for the connectivity analyses described above and their reliance on 

various frequency bands is where these different frequency signals are generated. It makes 

quite a difference for the interpretation of the data if certain rhythms are generated locally 
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(as has been suggested for gamma activity), or in thalamocortical loops, that then provide 

modulatory input to cortex (Steriade, 2001); this is analogous to the common input problem 

described earlier. Even more fundamentally, the multitude of connectivity analyses raises 

the question of how diversely the term ‘functional connectivity’ can be defined without 

losing its usefulness. As described earlier, correlational measures run the danger of 

capturing heterogeneous processes, only a subset of which reflects an interaction between 

areas. However, if correlations consistently map onto a specific anatomical connection, then 

we may be justified in calling it functional connectivity. Even if we accept that in this case, a 

principle such as ‘functional connectivity’ exists in the brain, it is highly unlikely that the 

connectivities one measures in electrophysiology over the entire spatiotemporal scale are 

subserved by similar physiological mechanisms. Therefore, the concept of functional 

connectivity is necessarily more vaguely defined in electrophysiology than in fMRI, where 

we can reasonably assume that the underlying physiological mechanisms generating the 

BOLD signal are similar over the entire brain.

Role of spontaneous activity

Correlational analysis of spontaneous activity is currently a key component of the human 

connectome project, serving to provide a comprehensive map of functional connections in 

the brain. Why spontaneous activity should provide such a reproducible outline of functional 

brain networks as it does is by no means obvious. Nor is it clear whether the mechanistic 

basis of activity correlation in different networks is similar. For these and other reasons, it is 

critical to develop a better understanding of the origins and purposes of the brain's 

endogenous processes.

The brain is, metabolically speaking, an expensive organ (Sokoloff, 2007) and endogenous 

processes make up the majority of this energy usage (Raichle and Mintun, 2006). Brain 

metabolism has been studied globally, primarily with the use of positron emission 

tomography (PET). Elevations in cerebral metabolism induced by a task are relatively small; 

in fact, local task-induced increases in functional activity, although associated with 

regionally increased blood flow, are too small to induce detectable changes in global blood 

flow or metabolism (Sokoloff et al., 1955). Brain metabolism depends on two factors: 

oxygen and glucose consumption. During rest, oxygen consumption is much higher than 

glucose consumption, measured in μmol / min / 100 gr brain tissue; however, when a strong 

visual stimulus is presented, oxygen consumption in visual cortex increases only relatively 

little (5%) compared to glucose consumption (51%). Since the conversion of glucose to 

energy requires oxygen, this small increase in oxygen consumption implies that much of the 

glucose taken up is not converted to energy directly, but instead metabolized to lactate (Fox 

et al., 1988). Therefore the increase in energy consumption during perceptual processing is 

very small compared to the resting energy consumption (Schölvinck et al., 2008). Since 

energy is a valuable commodity, these facts point to spontaneous activity as serving a vital 

function for the brain (Van Eijsden et al., 2009).

It is certainly the case that coordinated spontaneous activity is always present at some level, 

taking different forms during different states of consciousness. It is striking that even in 

deeply anesthetized monkeys the familiar fMRI resting-state networks such as the default-

Schölvinck et al. Page 11

Neuroimage. Author manuscript; available in PMC 2014 October 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mode network have been found (Vincent et al., 2007). It is unknown how these correlated 

patterns of spontaneous activity relate to the functional networks found in the awake brain. 

However, we do know that spontaneous activity can display vastly different characteristics, 

dependent on the internal state of the brain (Harris and Thiele, 2011). During slow-wave 

sleep and anesthesia, the cortex displays highly synchronized activity with regular ‘upstates’ 

of generalized activity and ‘downstates’ of network silence (Steriade et al., 1993; Sanchez-

Vives and McCormick, 2000); during waking or rapid eye-movement sleep, the cortex 

operates in the desynchronized state, characterized by low-amplitude, high-frequency LFP 

patterns (Curto et al., 2009). Spontaneous activity in these brain states might serve different 

functions. A myriad of self-governed oscillations at various spatial and temporal scales can 

be detected in the sleeping brain, which might temporally link neurons into assemblies 

(Steriade et al., 1993; Steriade and Timofeev, 2003), and as such, might underlie memory 

consolidation (Born and Wilhelm, 2012). In the awake brain, spontaneous activity might be 

more related to cognitive operations or even day-dreaming (Mason et al., 2007).

One proposed general function of spontaneous activity for the awake brain is that the brain 

needs to predict external stimuli and events in order to react to them adequately (Engel et al., 

2001; Pouget et al., 2003); and to make an accurate prediction of new events, the brain needs 

to remember past events. Indeed, spontaneous patterns of activity resembling stimulus-

evoked responses have been reported in anesthetized (Han et al., 2008; Xu et al., 2012) as 

well as in awake (Foster and Wilson, 2006) rats immediately following extensive stimulus 

presentation, reminiscent of a memory trace of the stimulus. Evoked-like patterns in 

spontaneous activity that are not time-locked to the end of a period of extensive stimulation 

also seem to occur generally with a likelihood higher than chance (Kenet et al., 2003); this 

has been taken as evidence for spontaneous activity playing a predictive role for probable 

upcoming sensory stimuli (Fiser et al., 2004; Berkes et al., 2011). This constant 

‘remembering’ and ‘predicting’ might require constant cross-talk between areas that are 

commonly co-activated (Salinas and Sejnowski, 2001). The correlation patterns seen in 

fMRI resting-state networks might also be viewed in this light; this cross-talk might 

continue even when the brain is ‘at rest’.

Other support for the notion that spontaneous activity resembles dynamic predictions about 

the environment comes from fMRI studies that show an effect of the spontaneous activity 

during or just preceding a stimulus on the subsequent perception of that stimulus 

(Hesselmann, Kell, and Kleinschmidt, 2008; Coste et al., 2011; Schölvinck et al., 2012). For 

example, prestimulus activity in the fusiform face area predicts whether the bistable face-

vase stimulus will be more likely perceived as a face or a vase (Hesselmann, Kell, Eger, et 

al., 2008), and activity in the auditory cortex just prior to a faint auditory stimulus predicts 

the chance of detecting that stimulus (Sadaghiani et al., 2009). Electrophysiology studies 

employing the same logic have shown similar effects; for example, for a detected stimulus, 

the preceding spiking activity in monkey primary visual cortex was stronger than for an 

undetected stimulus (Supèr et al., 2003), and decreases in EEG alpha power over occipital 

electrodes ~100 ms before stimulus onset facilitate visual stimulus detection (Thut et al., 

2006; Romei et al., 2008). It is possible that predictive activity associated with perception, 

action planning, and other aspects of behavior not strictly linked to stimulus processing must 

be continually reinforced with signals transmitted within the circuit. Such activity, thought 
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to occur during sleep, may also have reflections in waking restfulness and may account for 

certain observed patterns of functional connectivity.

The truth is that, at present, the basis of functional connectivity in the brain is in the realm of 

speculation. Here we mention but a few candidate processes that have been put forth, most 

of which link to cognitive operations such as predicting forthcoming sensory stimuli and 

memory consolidation. Other accounts may take rather different forms related to 

homeostasis, synaptic reinforcement, or energetics. How the endogenous processes of the 

brain are conceived and treated in the future remains to be seen, as does their impact on the 

evolving subfields of functional connectivity that figure so prominently in the human 

connectome project.

Conclusions

Measuring spontaneous correlations, be it in electrophysiology or in fMRI, has grown to be 

a much-used way to probe brain function. In some ways this has opened an unexpected 

chapter in neuroscience; while the prominence of spontaneous activity was always 

appreciated, no a priori hypothesis of brain structure and function would have led to the 

prediction of spatially organized patterns of correlated spontaneous activity emerging over 

timescales much slower than those usually tapped into during conventional paradigms. 

These so-called resting-state networks commonly found in fMRI seem to possess analogous 

electrophysiological patterns over the cortical surface. At the same time, the wealth of 

spectral, spatial, and temporal scales afforded by electrophysiological measurements has 

begun to put the spotlight on the meaning and value of correlation-based concepts such as 

functional connectivity and functional networks. Most importantly, the neurobiology 

underlying the spatially and temporally correlated patterns of spontaneous brain activity is 

still not understood, and its purpose or role remains in the realm of speculation. As future 

investigations delve deeper into the origins and possible functions of spontaneous brain 

activity, we can anticipate gaining deeper insight into the functioning of the brain as a 

whole, including its comprehensive set of functional connections.
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Highlights

• Electrophysiological signals exhibit significant spontaneous temporal 

fluctuations.

• These fluctuations exhibit correlational structure over many spatiotemporal 

scales.

• Over large scales, evidence suggests correspondence with fMRI functional 

networks.

• The many methods to study correlation blur the concept of functional 

connectivity.

• To clear this up, we need to understand the neural origins of spontaneous 

activity.
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Figure 1. 
An example of uncontrolled common input during the resting state. The flatmaps show the 

widespread correlation of spontaneous eye movement amplitude with the BOLD fMRI 

signal recorded during the resting state, averaged over 30 subjects. Contours show auditory 

cortex (red), the frontal and supplementary eye fields (blue and green respectively), and the 

early visual areas (dotted white line). CS, central sulcus; STS, superior temporal sulcus; IPS, 

intraparietal sulcus. Adapted with permission from Ramot et al., 2011.
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Figure 2. 
Detailed spatial, temporal, and spectral patterns observed in spontaneous 

electrophysiological data. A Coherence in the gamma band (30-100 Hz) of spontaneous LFP 

shows a distinct laminar profile (top). The local LFP measured in the granular layer (red) is 

highly coherent with other granular (G) and supragranular (SG) sites, whereas the local LFP 

in the infra-granular layer (green) is only coherent with other infragranular (IG) sites. This 

division between supra- and infragranular layers is also clearly visible in the cross-

correlogram of the spontaneous LFP at all sites (bottom). Adapted with permission from 

Maier et al., 2010. B A neuronal population in rat primary visual cortex shows sequential 

spiking when a dot moves through their spatially aligned receptive fields; similar spiking 

sequences are detected in the spontaneous activity after repeated presentation of the moving 

dot. Adapted with permission from Xu et al., 2012. C The correlations (i, ii, and iii) between 

three nodes of the default mode network (the anterior cingulate and left and right parietal 

lobules) measured with MEG show spectral differences. Correlations are highest in the beta 

band (15-25 Hz); compare the real MEG data (red) to simulated data (green). Adapted with 

permission from Brookes, Woolrich, et al., 2011.
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Figure 3. 
Functional networks in fMRI and electrophysiology. A The visual network as exhibited in 

intracranial ECoG. Slow spontaneous changes in gamma power of a visual-related electrode 

in the left hemisphere (seed; pink arrow) correlate strongest with other visual electrodes, 

especially in a homotopic region in the right hemisphere (green arrow). Adapted with 

permission from Nir et al., 2008. B Regions of the fMRI default mode network (top) are 

correlated with the beta band power as measured with EEG (bottom). Adapted with 

permission from Mantini et al., 2007. C The dorsal attention network revealed in fMRI (left) 

and MEG (right). The fMRI map shows voxels with significant temporal correlation in at 

least three of four predefined seed regions (vIPS, ventral intraparietal sulcus; MT, middle 

temporal area; FEF, frontal eye field; and pIPS, posterior intraparietal sulcus). The MEG 

map shows a t-statistic comparing voxel-wise correlation with the seed region versus the 

mean correlation of the seed region with the rest of the brain. There is rough similarity 

between the fMRI and MEG network, but also clearly observable differences. Adapted with 

permission from De Pasquale et al., 2010.
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Figure 4. 
Electrophysiology might be able to detect fine-grained cognitive differences within 

functional networks not visible to fMRI. For example, the fronto-parietal attention / working 

memory network (A) that has been found during the resting state (Fox et al., 2005), as well 

as during task performance (Corbetta and Shulman, 2002), can be reflected on a 

neurophysiological level by several processes (B). Amplitude coupling (top) between frontal 

and parietal areas has been interpreted as controlling working memory retention and 

workload (Sarnthein et al., 1998; Sammer et al., 2007). Phase coupling (middle) between 

these areas could reflect phasic aspects of top-down modulation of working memory 

contents (Sadaghiani et al., 2012). Lastly, phase-amplitude coupling (bottom) between theta 

and gamma could reflect a memory matching process between internally expected and 

external visual input (Sauseng et al., 2008).

Schölvinck et al. Page 26

Neuroimage. Author manuscript; available in PMC 2014 October 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


