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Abstract

Recent studies have illustrated that motion-related artifacts remain in resting-state fMRI (rs-fMRI)

data even after common corrective processing procedures have been applied, but the extent to

which head motion distorts the data may be modulated by the corrective approach taken. We

compare two different methods for estimating nuisance signals from tissues not expected to

exhibit BOLD fMRI signals of neuronal origin: 1) the more commonly used mean signal method

and 2) the principal components analysis approach (aCompCor: Behzadi et al., 2007). Further, we

investigate the added benefit of “scrubbing” (Power et al., 2012) following both methods. We

demonstrate that the use of aCompCor removes motion artifacts more effectively than tissue-mean

signal regression. In addition, inclusion of more components from anatomically defined regions of

no interest better mitigates motion-related artifacts and improves the specificity of functional

connectivity estimates. While scrubbing further attenuates motion-related artifacts when mean
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signals are used, scrubbing provides no additional benefit in terms of motion artifact reduction or

connectivity specificity when using aCompCor.
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1. Introduction

Resting state functional connectivity (rs-FC) measures the temporal synchrony of

spontaneous, low-frequency fluctuations in blood oxygen level dependent (BOLD) signals

in functional Magnetic Resonance Imaging (fMRI) and has proven to be a powerful tool to

examine the intrinsic functional organization of the brain in health (Barber et al., 2012;

Biswal et al., 1995; Fox et al., 2005) and disease (Choe et al., 2013; Repovs et al., 2011;

Rombouts et al., 2005). Rs-FC data are known to be contaminated by physiological effects

including cardiac and respiratory events as well as other nuisances including the effects of

head motion. These sources of nuisance can mimic and/or mask true functional connectivity,

and their minimization has been both a point of concern and controversy for rs-FC

investigations since their inception (Bianciardi et al., 2009; Biswal et al., 1996; Bright and

Murphy, 2012; Carbonell et al., 2011; Lund et al., 2006; Shmueli et al., 2007).

Recent publications have drawn renewed attention to artifacts introduced by participant

motion. It has long been recognized that motion-induced variation in the MR time course is

a complex function of both past and present head position and that as such, motion-induced

artifacts cannot be nullified by simple image realignment (Friston et al., 1996). One

important claim of these publications is that small movements previously thought to be

innocuous to the MR signal can introduce subtle, systematic effects on rs-FC data that

persist even after standard corrective procedures have been applied (Power et al., 2012;

Satterthwaite et al., 2012; Van Dijk et al., 2012). Out-of-plane head movements during 2D

planar image acquisition are especially problematic as they can cause regions of adjacent

slices to be subsequently excited before they have fully recovered; the resulting increase in

timeseries variance is referred to as spin history artifact. The relationship between head

motion (as measured by framewise displacement (FD)) and percent signal change (as

measured by the Derivative of root mean square VARiance over voxelS (DVARS)) can

serve as a marker of such nuisances (Hallquist et al., 2013; Power et al., 2014, 2012). One

reported manifestation of these insidious motion artifacts on rs-FC metrics is that motion

inflates short-range connectivity while weakening long-range connectivity (Power et al.,

2012; Satterthwaite et al., 2012). Therefore, motion effects are particularly relevant to

investigations of individuals and populations whose in-scanner movement profiles may

differ subtly, for instance, when comparing children to adults or individuals experiencing

involuntary or repetitive movements, such as tics or tremors, to controls. If not properly

accounted for, differences in participant motion may either introduce systematic differences

in functional connectivity maps that could be misinterpreted as group differences in

functional coupling between regions or reduce the sensitivity of rs-FC to detect real

differences in the underlying brain organization (Fair et al., 2013; Van Dijk et al., 2012).
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As a result of these findings, workers have begun to investigate the optimization of

approaches for mitigating motion-related BOLD effects (Carp, 2013; Hallquist et al., 2013;

Jo et al., 2013). All rs-FC studies attempt to account for motion, but the implementation of

additional correction methods beyond spatial realignment varies widely. For seed-based rs-

FC analyses, linear regression of the translational and rotational realignment parameters

from the fMRI signal is fairly standard practice. Applying a temporal filter to constrain the

data to frequencies more likely to represent neuronal-related variance is also common

(Weissenbacher et al., 2009; Windischberger et al., 2002). However, the number of

parameters used in the regression, the cut-off frequencies used for the filter, and even the

order in which these processes are applied differ across studies, and it is not fully understood

whether all strategies are equally vulnerable to motion-induced artifacts.

Since the original reports of the lingering effect of motion, simple simulations and re-

analysis of published results have suggested that small alterations in image processing may

have a substantial impact on the extent to which rs-FC analyses are corrupted by motion

(Carp, 2013; Hallquist et al., 2013; Jo et al., 2013). Including the temporal derivatives and

quadratic terms of the realignment estimates in the confound model to account for delayed

and non-linear motion-induced spin history effects appears to diminish motion-induced

artifacts in resting state data (Satterthwaite et al., 2013; Yan et al., 2013). Discarding

problematic volumes (scan “scrubbing”), or alternatively including spike regressors to act as

catch-alls for non-linear and non-quadratic spin history effects at these problematic time

points provides further defense from motion-induced artifacts. However, results have been

mixed as to whether any of these participant-level motion correction approaches completely

remove inter-individual differences in motion-related MR signal changes (Jo et al., 2013;

Power et al., 2014, 2012; Satterthwaite et al., 2013; Yan et al., 2013).

Nuisances in rs-FC data can also be mitigated by including additional regressors in the

confound model from tissues not expected to exhibit BOLD fMRI signals, namely white

matter (WM) and cerebral spinal fluid-filled spaces (CSF). Methods for estimating these

tissue-based nuisance regressors have been introduced, but their effectiveness at mitigating

motion-induced artifacts has not been rigorously compared. To date, all of the research

examining the effects of motion on seed-based rs-FC has included mean signals from WM

and CSF as nuisance regressors (Hallquist et al., 2013; Jo et al., 2013; Power et al., 2012;

Satterthwaite et al., 2013, 2012; Yan et al., 2013); in some cases, the first derivative of each

tissue-based regressor was also included (Power et al., 2014; Satterthwaite et al., 2013). This

mean signal approach is fairly common as it does not require external measures of

physiological activity or motion and is publically available as part of the Neuroimaging

Informatics Tools and Resources Clearinghouse (NITRC) 1000 Functional Connectomes

processing scripts (Biswal et al., 2010) and the Data Processing Assistant for Resting-State

fMRI (Yan and Zang, 2010).

An alternative approach is to estimate spatially coherent noise components in these same

tissues using principal component analysis (Behzadi et al., 2007). While not explicitly

introduced for motion correction, it was originally suggested that this method, referred to as

anatomical CompCor or aCompCor, may help minimize the effects of head displacements,

in addition to accounting for cardiac and respiratory fluctuations (Behzadi et al., 2007).
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Motion artifacts corrupt large portions of the affected images; however, their effects are not

spatially uniform (Satterthwaite et al., 2013; Yan et al., 2013). For example, motion may

cause a positive deflection in the time-course of some voxels, but a negative deflection in

the time-course of spatially disparate voxels. Signal averaging across voxels introduces the

risk that spatially disparate nuisance signals might cancel one another out; a potential

strength of aCompCor is that it can identify multiple nuisance signals from WM and CSF

thereby reducing this risk. Another benefit of aCompCor is that it does not make

assumptions about the relationship between the source of noise and the resulting change in

MR signal, potentially making it easier to account for delayed and non-linear effects of

motion. Previous research utilizing the anatomy of known functional networks to estimate

the specificity of functional connectivity following preprocessing has also suggested that

aCompCor preserves signals of interest better than other nuisance removal strategies (Chai

et al., 2012). Yet to date, the effectiveness of aCompCor in mitigating motion artifacts has

not been investigated.

Our chief objective was to compare aCompCor to the more commonly used mean tissue-

based nuisance regression method and to scan scrubbing. We evaluated the effectiveness of

each processing strategy to minimize the framewise relationship between head motion and

signal change. We also assessed the effect of each processing strategy on functional

connectivity metrics using the known anatomy of the default mode and motor control

networks.

2. Materials and Methods

2.1 Participants

One hundred and thirty typically developing (TD) children, mean (SD) age 10.2 (±1.2)

years, participated in this study. Written consent was obtained from a parent or legal

guardian and verbal assent was obtained from the participating child. This study was

approved by the Johns Hopkins Medicine Institutional Review Board. Participants were

recruited from local schools, community centers, pediatricians’ offices, and Kennedy

Krieger Institute (KKI) through advertisements and by word of mouth. All children were

screened for developmental or psychiatric disorders using the Diagnostic Interview for

Children and Adolescents-IV (Welner et al., 1987). A subset of the data were used in earlier

studies examining motor network connectivity (Barber et al., 2012; Nebel et al., 2012) and

developmental changes in FC (Barber et al., 2013).

2.2 Data acquisition

Imaging data were collected using a Philips Achieva 3T scanner (Philips Medical Systems,

Best, The Netherlands). All functional scans were obtained using a 2D-SENSE EPI

sequence (TR/TE = 2500/30 ms, flip angle = 70°, SENSE acceleration factor of 2, 47

contiguous ascending 3-mm slices per TR with an in-plane resolution of 3.05 × 3.15 –mm

[84 × 81 voxels]) and either an 8-channel head coil (N=127) or a 32-channel head coil

(N=3). The scanning times were 5 min 20 s (N=42), 6 min 30 s (N=59), or 6 min 45 s (N=1)

for one run collected in one session. A high resolution MPRAGE was obtained with 1×1×1-
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mm3 resolution, TR/TE = 8.0/3.7 ms to assist with registration of the functional images to a

standard space.

2.3 Data preprocessing

All preprocessing was done using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and custom

MATLAB (The Mathworks, Natick, Massachusetts, USA) scripts. A full view of the

processing stream can be seen in Figure 1.

2.3.1 fMRI preprocessing—The first four volumes of each run were discarded at the

time of acquisition to allow for magnetization stabilization. The data were slice-time

adjusted using the slice that was acquired at the middle of the TR (slice 24 of 47). Rigid

body realignment parameters were estimated with respect to the first (stabilized) functional

scan of the run, producing the motion parameters described in section 2.4.1 Metric of

Motion below. Anatomical images were registered to the first (stabilized) functional volume

and spatially normalized to the Montreal Neurological Institute (MNI) template using

SPM8’s unified segmentation-normalization procedure (Ashburner and Friston, 2005). The

estimated rigid body and non-linear spatial realignment transformations were then applied to

the functional data in one step and resulted in 2-mm isotropic voxels. To insure the

consistency of spatial normalization across participants, we visually spot-checked

registration to MNI space at a series of landmarks representing the anterior, posterior,

inferior, superior, and lateral extremes of the brain in SPM’s T1 template. Data at this point

in the pipeline will be referred to as pre-FCP (pre-Functional Connectivity Processing) data,

as no FC processing has been done, and will be used to measure differences pre- and post-

FC processing.

2.3.2 Functional connectivity processing—Each resting state scan was temporally

detrended on a voxelwise basis to remove linear trends. At this point, we trifurcated our

processing pipeline to evaluate the attenuation of motion effects using three nuisance

regression models. All three models included linearly detrended versions of the six rigid

body realignment parameters, the first derivative of each realignment parameter (computed

by backward differences), and representative signals of no interest from white matter (WM)

and cerebral spinal fluid (CSF). The three models differed in the way that signals from white

matter and CSF were estimated, but the same spatial masks were used to isolate signals from

these regions for all three models. Subject-specific tissue probability maps generated during

SPM’s unified segmentation-normalization process were restricted using a 99% probability

threshold. To further reduce the risk of capturing signals of interest from adjacent grey

matter voxels, the resulting WM mask was eroded using MATLAB’s imerode function, and

the CSF mask was constrained to areas within the ALVIN mask of the ventricles (Kempton

et al., 2011). Figure 2 illustrates the frequency across participants with which voxels were

included in these subject-specific tissue masks. Using these restricted masks, we examined

the following strategies:

1. MeanWC: included Mean timecourses from WM and CSF

2. aCompCor: included the top five principal components (PCs) from WM and the top

five from CSF
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3. aCompCor50: included enough PCs to explain 50% of the variance in WM and

50% of the variance in CSF.

This differs from the approaches taken by Satterthwaite et al. (2013) and Yan et al. (2013),

both of which investigated the efficacy of including an increasing number of regression

parameters derived from the whole-brain motion estimates while always including mean

signals from WM and CSF. The MeanWC strategy is similar to the RegBp approach in

Hallquist et al. 2013; however, slightly different criteria were used for identifying WM and

CSF in that case. In their original paper, Behzadi et al. (2007) used a Monte Carlo

simulation to generate a null distribution of expected principal values derived from normally

distributed data of rank equal to the covariance matrix of signals from white matter and CSF

voxels. Principal values computed from the observed covariance matrix that were

significantly larger than the generated distribution, as assessed using a two-tailed t-test (p < .

05), were retained. Based on this method, Behzadi et al (2007) included an average of 6.3 ±

0.52 principal components from white matter and CSF. FCP method #2 (aCompCor) was

based on the findings of a follow-up paper by Chai et al (2011) which examined the optimal

number of principal components to include from WM and CSF based on the resulting

specificity of connectivity metrics but did not consider the lingering effects of motion. FCP

method #3 (aCompCor50) was designed to examine whether a subject-specific criterion for

choosing the number of components to include in the nuisance regression model would

better mitigate the lingering effects of motion. For the aCompCor approach in this paper, the

top 5 PCs explained a mean (SD) of 35.7% (12.9%) of the variance for WM and 70.0% (.

10%) for CSF. For aCompCor50, the mean (SD) number of PCs needed to explain 50%

variance of the signal was 17.9 (9.8) for WM and 3.0 (1.1) for CSF. Following nuisance

regression, the data were spatially smoothed using a 6-mm FWHM Gaussian kernel.

Temporal bandpass filtering was then applied to constrain signals between .01 and.1Hz.

2.4 Data analyses

All analyses were implemented using the R statistical language (http://www.R-project.org/).

Data were visualized using Mango (http://ric.uthscsa.edu/mango/index.html), the ggplot2

package (Wickham, 2009) and 3D Slicer (Fedorov et al., 2012).

2.4.1 Metric of head motion—For each functional run, the six rigid body realignment

parameters estimated by SPM were condensed into a scalar time course of head motion

referred to as Framewise Displacement (FD) (Power et al., 2012). FD was calculated by

summing the absolute value of the three differenced (time t – time t−1) translational

realignment parameters and the three differenced rotational parameters, which were

converted from radians to millimeters by assuming a brain radius of 50 mm (Power et al.,

2012). The mean FD over the whole scan was also calculated for each participant.

Using an FD threshold of .5 mm, potentially motion-contaminated scans were identified, and

a temporal mask was created for each subject excluding one scan before and 2 scans after

each FD spike above this threshold (Power et al., 2012). For example, if FD for one

participant exceeded .5 mm for scans 5, 10, and 40, then scans 4–7, 9–12, and 39–42 would

be ignored (i.e. masked out). To compare the additional attenuation of motion-induced

effects by scan censoring across FCP strategies, all MR signal change and connectivity
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metrics were calculated two ways: 1) using all available scans (post-FCP) and 2) using only

those scans in this temporal mask (post-FCP+scrubbing). No criterion was set on the number

of post-scrubbed scans; we believed that including participants with many scans flagged for

motion would allow us to see the largest impact of scrubbing.

2.4.2 Metric of MR signal change—We summarized the magnitude of MR signal

change for grey matter as a whole as well as on a region of interest (ROI)-wise basis using

the Derivative of root mean square (RMS) VARiance over voxelS (DVARS). The derivative

refers to temporally backward-differenced functional images (Power et al., 2012). For global

DVARS, the grey matter tissue probability map generated during SPM’s unified

segmentation-normalization process was restricted using a 40% probability threshold, and

then DVARS was averaged across all voxels above this threshold. Voxels from WM and

CSF were excluded from the calculation of global DVARS because DVARS fluctuations in

these areas may average out potential artifacts in regions of interest, namely grey matter. For

ROI-specific DVARS, DVARS was averaged across all grey matter voxels within each ROI

(ROIs described in section 2.4.3). DVARS was always calculated using a subject’s entire

timecourse-worth of data, before any scan scrubbing was performed.

2.4.3 ROI definition—Because motion has been shown to have regionally heterogeneous

effects on MR signal change and functional connectivity estimates (Power et al., 2012;

Satterthwaite et al., 2013; Yan et al., 2013), we used a set of 264 spherical seeds with 6-mm

radii defined by J.D. Power and associates to extract time courses of interest and to calculate

functional correlations between regions (Power et al., 2011). These seeds represent a

relatively comprehensive coverage of the brain, both from a functional and an anatomical

viewpoint.

2.4.4 Assessing the mitigation of global head motion-induced signal changes
—To evaluate the impact of head motion on MR signal change at different stages of

preprocessing, we calculated Pearson’s correlation between FD and global DVARS on pre-

FCP and post-FCP data and on pre- and post-scrubbed data. For the post-scrubbing FD-

DVARS correlation, neither the FD timecourse nor the DVARS timecourse was recalculated

after scans were scrubbed due to excessive head motion. Only the correlation between FD

and DVARS was recalculated following scan scrubbing; time points that were flagged as

potentially contaminated by motion were ignored from both the FD and DVARS

timecourses, so that the correlation between FD and DVARS after scrubbing was based on

the same set of time points from each measure. Kernel density estimation (KDE) estimates

the shape of a distribution and is roughly similar to a smoothed histogram. We used KDE to

visualize how the FD/DVARS distribution changed following the various FC processing

strategies as well as post-scrubbing (post-FCP+scrubbing). A linear mixed effects (LME)

model was used to test the main fixed effects of and interactions between the following

within-subjects factors on the global FD/DVARS relationship using likelihood ratio tests:

FCP strategy (3 levels) and scrubbing (2 levels) with a random intercept for participant

(Bates et al., 2012). LME models were fit using maximum likelihood. Post-hoc Wilcoxon’s

signed-rank tests were used to assess pairwise differences in the distribution of the global

FD/DVARS relationship across FCP strategies, with p-values adjusted for multiple
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comparisons using Bonferroni correction. We corrected for multiple comparisons by

inflating the p-values by a factor of 6 for the 6 tests performed: across FCP strategies

without scrubbing and within FCP strategy, comparing the results pre- and post-scrubbing,

and these adjusted p-values were compared to an α-level of 0.05. Signed-rank tests report a

Z-score based on the W statistic, the sum of the positive ranks.

2.4.5 Comparison of global FD/DVARS mitigation in motion subgroups—To

compare FCP effectiveness in subjects whose in-scanner movement profiles differed subtly,

we divided our sample into low, medium, and high mover subgroups using the tertiles of the

mean FD distribution. We focused on comparisons of the low and high motion subgroups.

To determine if we observed effects of different processing strategies and scrubbing on the

FD/DVARS correlation within motion-determined subgroups, Wilcoxon signed-rank tests

were performed within the low and high motion groups separately. To determine if the FD/

DVARS correlation was different between high and low movers for any FCP strategy/

scrubbing combination, an LME model with a random intercept for participant was fit with a

3-way interaction between motion subgroup (high or low), FCP strategy, and scrubbing.

Another LME model was fit with the 2-way interaction of FCP strategy and scrubbing, and a

likelihood ratio test was performed on the motion subgroup interaction. Post-hoc Wilcoxon

rank-sum tests were performed to determine which strategy/scrubbing combinations were

different across the high and low motion subgroups.

2.4.6 Assessing the mitigation of regional variation in FD/DVARS—Expanding

on prior demonstrations of regional variation in the impact of motion on MR signal change

(Power et al., 2012; Satterthwaite et al., 2013; Yan et al., 2013) and because regional

variations may cancel each other out at the global DVARS level, we attempted to

characterize how regional variations in the FD/DVARS relationship were affected by FCP

strategy and by scrubbing. We first calculated Pearson’s correlations between FD and ROI-

wise DVARS (ROI-DVARS) on the pre-FCP data. We used kernel density estimation to

visualize this distribution, which allowed us to see differences in the distributions of the FD/

DVARS correlations over ROIs. We then applied k-means clustering on the pre-FCP FD/

ROI-DVARS correlations to identify seed regions that were differentially impacted by head

motion. The 264×130 (ROIs x subjects) matrix of pre-FCP FD/ROI-DVARS correlations

were partitioned to minimize the sum, over all clusters, of the within-cluster sums of point-

to-cluster-centroid Euclidean distances; missing values were imputed using Matlab’s

knnimpute.m, a nearest-neighbor method. The partitioning was repeated 100 times using

random initial conditions, where the final solution was the clustering with the lowest within-

cluster sum of point-to-centroid Euclidean distances. We searched for two clusters because

the distribution of FD/ROI-DVARS correlations by ROI for the pre-FCP data appeared to be

bimodal (Figure 6A).

To corroborate the spatial organization of this bimodal relationship between head motion

and MR signal change, we calculated the average Euclidean distance from the center of all

seeds in each cluster to the edge of the brain. A mask of outer edge brain voxels was

constructed based on SPM’s tissue probability masks for grey matter, WM and CSF.

Euclidean distance was then computed between the center of each ROI and each outer edge
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voxel, and the nearest outer edge voxel was identified by taking the minimum of these

distances for each ROI. T-tests were then performed to test whether the minimum distance

to outer edge was significantly different for the two clusters.

The mean FD/ROI-DVARS correlations for each cluster were taken as summary measures

for each participant. A linear mixed effects model was constructed to test the main effects of

and interactions between the following within-subjects factors on the FD/ROI-DVARS

relationship using likelihood ratio tests: cluster (2 levels), FCP strategy (3 levels), and

scrubbing (2 levels) with a random intercept for participant. Post-hoc Wilcoxon signed-rank

tests were performed to further assess differences in group medians under different

processing strategies separately for each cluster. We used Bonferroni correction to adjust for

3 tests within cluster and 6 total tests across clusters.

2.4.7 Modulation of motion effects on connectivity by ROI-pair distance—
Previous studies have shown that connectivity between pairs of ROIs are differently

modulated by head motion, depending on the distance between ROIs (Power et al., 2012;

Satterthwaite et al., 2012; Van Dijk et al., 2012) and that this modulation of motion effects

by internode distance can be influenced by preprocessing (Power et al., 2014; Satterthwaite

et al., 2013). We calculated the group-level correlation between an individual’s mean FD

and each ROI-pair’s connectivity score (QC-RSFC). We then estimated the relationship

between this measure and ROI-pair distance using a generalized additive model (GAM) and

a linear model (Hastie and Tibshirani, 1990). We tested differences in QC-RSFC distance

correlations across processing strategies using Williams’ test (Williams, 1959).

2.4.8 Specificity comparison of FCP strategies—The risk of removing signal of

interest along with noise increases as potentially more and more data is discarded either by

performing additional scan scrubbing or by including more parameters in the nuisance

regression model, reducing signal variability. To address this concern, we assessed the

specificity of each FCP strategy before and after scrubbing. Using a subset of the 264 seeds,

we compared connectivity scores for regions within the same purported functional network

with connectivity scores for regions between which no functional coupling is expected (Chai

et al., 2012; Weissenbacher et al., 2009). We chose to focus on two networks of particular

interest to our lab: the default mode network (DMN) and the somatomotor network (SMN).

These networks are two of the most consistently identified and well characterized functional

networks in the brain using rs-FC; the DMN represents relatively long-range connectivity

while the SMN represents relatively short-range connectivity. We defined our target DMN

ROI as a seed in the left medial prefrontal cortex (mPFC) and then chose six of the

remaining 263 seeds that belonged to the DMN and that we expected would be highly

correlated with the mPFC: the right mPFC, bilateral posterior cingulate cortex (PCC),

bilateral angular gyrus (AG), and precuneus cortex. We defined our target SMN ROI as a

seed in the left primary motor cortex (M1) and then chose five other seeds that belonged to

the SMN: the left primary somatosensory cortex, the right primary motor cortex, premotor

cortex and bilateral putamen. Four additional seeds within the visual cortex were used as

reference regions for the mPFC and M1: bilateral BA17 and bilateral BA18. Table 1 lists the

MNI coordinates of the centers of all seeds used to calculate FC specificity.
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For each participant, representative seed time courses were generated by averaging the

timeseries of all voxels belonging to each seed. Specificity was then estimated as follows:

where ztarget is the average Fisher transformed Pearson’s correlation between the target seed

time course and the time courses of the other seeds belonging to the same functional

network, and zreference is the average Fisher-transformed Pearson’s correlation between the

target seed time course and the time courses of the reference seeds. A linear mixed effects

model was used to test for main effects and interactions of the same factors used in section

2.4.4 but with ROI specificity as the dependent variable. Post-hoc paired Wilcoxon signed-

rank tests were used to further investigate main effects and interactions that were identified

as significant by the LME, and were Bonferroni corrected to account for multiple

comparisons. MeanWC+scrubbing was also compared to the aCompCor methods to see if

scrubbing would increase specificity of MeanWC, as this is a common practice, over using

aCompCor alone.

3. Results

3.1 Motion characteristics of the sample

We restricted our analyses to participants who met our normal motion constraint: no subject

had between volume translational movements of more than 3 mm or rotational movements

of more than 3 degrees. Figure 3 illustrates the distribution of mean FD values for our

sample. The mean (SD, range) of the sample was 0.220 mm (±0.119 mm, 0.064 mm – 0.611

mm). The 33rd and 66th percentiles for the mean FD distribution were 0.147mm and

0.236mm, respectively; 44 and 43 children were in the low and high-motion subgroups,

respectively.

3.2 Effects of preprocessing on global motion-induced signal change

3.2.1 Full-sample analysis of FD/DVARS correlation distribution—To investigate

whether the association between head motion and DVARS varied among the three FC

processing approaches considered here, the correlation between FD and global DVARS was

computed using pre-FCP data, post-FCP data and post-FCP+scrubbing data for each

approach separately. Figure 4A illustrates how the relationship between FD and global

DVARS changed using all three FC processing strategies, while Figure 4B illustrates the

distributions of global FD/DVARS correlations post-scrubbing. Consistent with previous

reports (Hallquist et al., 2013), we observed a strong correlation between FD and global

DVARS in pre-FCP data (Figure 4A, red line; median: .805).

Also consistent with published findings (Hallquist et al., 2013), we observed a significant

reduction in the median correlation between FD and global DVARS after applying all three

FCP approaches; however, MR signal modulation by head motion appeared to be

differentially mitigated by the FCP strategies. Overall, the linear mixed effects model

revealed a significant effect of FCP strategy on the global FD/DVARS correlation (χ2(2) =
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288.7, p < .0001). Post-hoc analyses revealed that the median correlation between FD and

global DVARS was significantly stronger for MeanWC (Figure 4A, green line; median: .

206) than for either aCompCor (Figure 4A, blue line; .099, Z = 8.96, p < .001) or

aCompCor50 (Figure 4A, purple line; .001, Z = 9.71, p < .001), indicating that both

aCompCor approaches attenuated the motion-BOLD relationship more than the MeanWC

method. Comparison of the two aCompCor methods revealed that aCompCor50 was

superior in mitigating the FD/DVARS correlation compared to aCompCor (Z = 7.87, p < .

001), suggesting that including more spatially coherent PCs from WM and CSF in the

nuisance regression improved the attenuation of motion-related global fluctuations in the

fMRI signal.

According to the LME, the effect of scrubbing on global FD/DVARS correlations was

marginal (χ2(1) = 3.16, p = .076), but there was a significant interaction between FCP

strategy and scrubbing (χ2(2) = 36.8, p < .0001). Given this interaction, we ran post-hoc

analyses to investigate how scrubbing affected the FD/DVARS correlation under each

processing strategy. Comparing the data pre- and post-scrubbing, we observed that the

median FD/DVARS correlation was significantly weaker for MeanWC+scrubbing (Figure

4B, green line; median: .184) compared to MeanWC alone (Z = 4.43, p < .001 corr). In

contrast, the median FD/DVARS correlation was stronger for aCompCor50+scrubbing

(Figure 4B, purple line; median: .062) compared to aCompCor50 alone (Z = 3.37, p < .002

corr). The median FD/DVARS correlation did not significantly increase for aCompCor

+scrubbing (Figure 4B, blue line; median .139) compared to aCompCor alone (Z = 1.20, p

= .14 uncor, p=.81, corr). These differences in FD/DVARS correlation may be due to

scrubbing artificially reducing the variability in FD and DVARS simultaneously since the

scrubbed scans are based on high values of FD. Considered together, these results suggest

that scrubbing further reduces motion-related artifacts following the MeanWC strategy, but

may be counterproductive when aCompCor50 is used.

3.2.2 High-motion subgroup analysis of FD/DVARS correlation distribution—
The distributions of the FD/DVARS correlations for the low and high motion subgroups are

presented in Figure 5. Comparing high-motion data pre- and post-scrubbing, we observed

that the median FD/DVARS correlation was significantly weaker for MeanWC+scrubbing

(Figure 5D, green line, median: .251) compared to MeanWC alone (median: .388, Z = 3.92,

p < .001 corr). In contrast, the median FD/DVARS correlation was not significantly

different for aCompCor50+scrubbing (median: .159) compared to aCompCor50 alone

(median: .128, Z = −1.11, p = .27) or for aCompCor (median: .183) compared to aCompCor

+scrubbing (median: .165, Z = 0.11, p = .92). Overall, aCompCor50 had the lowest median

compared to aCompCor (Z = −2.95, p < .01 corr), MeanWC (Z = −5.68, p < .0001 corr), and

MeanWC+scrubbing (Z = −3.89, p < .001 corr). aCompCor had a lower median FD/DVARs

correlation compared to MeanWC (Z = −5.66, p < .0001 corr), and marginally lower median

compared to MeanWC+scrubbing after Bonferroni correction (Z = −2.55, p = .010, p = .060

corr). Similar to the overall group, these results suggest that scrubbing further reduces

motion-related artifacts following the MeanWC strategy, but may not be beneficial when

either aCompCor or aCompCor50 is used.
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3.2.3 Low-motion subgroup analysis of FD/DVARS correlation distribution—
Comparing the low-motion data pre- and post-scrubbing, we did not observe a significant

difference in the median FD/DVARS correlation for MeanWC+scrubbing (median: .103)

compared to MeanWC alone (median: 0.089, Z = 1.26, p = .51) or aCompCor+scrubbing

(median: .069) compared to aCompCor alone (median: .058, Z = −2.01, p = .336 corr). The

median FD/DVARS correlation was larger but closer to zero for aCompCor50+scrubbing

(median: −.028) compared to aCompCor50 alone (median: −.062, Z = 2.56, p = .050 corr).

Overall, aCompCor50 had the lowest median compared to aCompCor (Z = −5.36, p < .0001

corr), MeanWC (Z = −5.56, p < .0001 corr), and MeanWC+scrubbing (Z = −5.40, p < .0001

corr), and aCompCor had a lower median compared to MeanWC (Z = −4.26, p < .0001

corr), and and MeanWC+scrubbing (Z = −3.61, p = 0.002 corr). In the low motion subgroup,

scrubbing appeared to only have an effect when using aCompCor50, which had a small but

negative median FD/DVARS correlation.

3.2.4 Comparison of low and high motion subgroup distributions of FD/
DVARS correlations—Comparing the high and low motion groups, the likelihood ratio

test for the 3-way interaction of motion subgroup, FCP strategy and scrubbing was

significant (χ2(2) = 64.3, p < .0001), suggesting that FCP strategy and scrubbing impacted

FD/DVARS correlations differentially across the two groups. The results of the across-

group tests and reported medians are available in Supplemental Material Table 1. Post-hoc

Wilcoxon rank sum tests indicated that the high motion subgroup had a higher median FD/

DVARS correlation than the low motion subgroup for all combinations of processing

strategies and scrubbing (all p < 0.0028 corr).

3.3 Effects of preprocessing on regional motion-induced signal change

Building on previously reported evidence of regional variation in the impact of motion on

MR signal change (Power et al., 2012; Satterthwaite et al., 2013; Yan et al., 2013), we

attempted to characterize how regional variations in the FD/DVARS relationship were

affected by FCP strategy and by scrubbing. Figure 6 shows the distribution of the FD/

DVARS correlation for the 130 participants for each of the 264 ROIs. In the pre-FCP data

(Figure 6A), the distributions were generally above zero and appeared to be bimodally

distributed (Cluster 1: red lines and Cluster 2: green lines). To further investigate this

bimodal distribution, k-means clustering of the pre-FCP FD/ROI-DVARS relationships was

performed using two clusters (Figure 6B). To test whether the spatial distribution of these

two sets of ROIs was different, the distance to the outer edge of the brain was compared.

Cluster 1 ROIs (Figure 6B, red dots) were significantly closer to the outer edge of the brain

(mean distance: 13.05 mm) and had a stronger relationship between motion and MR signal

change (median FD/ROI-DVARS: .520) than cluster 2 ROIs (Figure 6B, green dots; mean

distance: 26.44 mm, t(237) = −13.2, p < .0001; median FD/ROI-DVARS: .325, Z = −11.0, p

< .001). This is consistent with the concentric circle pattern of motion-induced signal

observed by (Satterthwaite et al., 2013); whole-brain motion parameters explain more signal

variance in regions that tend to be more prone to motion, i.e., regions furthest from the pivot

point which are near the outer edges of the brain.
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Although we observed that the overall density of FD/ROI-DVARS correlations became

more centered around zero and less variable following all FCP strategies (Figure 6C, E, G),

we wanted to investigate whether FCP strategy and scrubbing had differential effects on the

ROIs most affected by motion compared to those least affected by motion. To do this, we

constructed a linear mixed effects model using cluster-mean FD/ROI-DVARS correlations

for each participant as our outcome. The three-way interaction between cluster, FCP

strategy, and scrubbing was not significant (χ2 (2) = 1.19, p = .552). However, we observed

significant two-way interactions between cluster and FCP strategy (χ2 (2) = 8.44, p = .015),

cluster and scrubbing (χ2 (1) = 17.0, p < .0001), and, consistent with the overall single mode

model, scrubbing and FCP strategy (χ2 (2) = 90.5, p < .001), suggesting that there were

differential effects of processing stream and scrubbing across the clusters. We therefore

investigated effects of FCP strategy and scrubbing on FD/ROI-DVARS correlations within

each cluster and across clusters.

The medians for each processing strategy by scrubbing and cluster and their comparisons are

shown in Table 2. Independent analyses for each cluster revealed that within the outer

cluster with higher degrees of motion (Cluster 1), MeanWC had a higher FD/ROI-DVARS

correlation compared to aCompCor (median difference = .042, Z = 9.51, p < .001) and

aCompCor50 (median difference = .073, Z = 9.77, p < .001); additionally, aCompCor had a

higher correlation compared to aCompCor50 (.027, Z = 7.16, p < .001). A similar pattern

was observed within the inner cluster (Cluster 2). MeanWC had a higher FD/ROI-DVARS

correlation compared to aCompCor (median difference = .056, Z = 9.39, p < .001) and

aCompCor50 (.028, Z = 9.78, p < .001); aCompCor had a higher correlation compared to

aCompCor50 (.031, Z = 7.07, p < .001). Thus, in both clusters, aCompCor50 performed the

best and MeanWC performed the worst.

Across clusters, there was a higher median change in the outer cluster compared to the inner

cluster for MeanWC versus aCompCor (median difference= .010, Z = 6.03, p < .001),

MeanWC versus aCompCor50 (.017, Z = 7.43, p < .001), and aCompCor versus

aCompCor50 (.006, Z = 4.47, p < .001). This indicates that both aCompCor approaches

reduced the differential impact of motion on BOLD signal changes across clusters more than

MeanWC, and again aCompCor50 performed the best.

Scrubbing had a differential effect across clusters for MeanWC (median difference between

MeanWC and MeanWC+scrubbing for cluster 1 - cluster 2: .012, Z = 6.83, p < .001),

aCompCor (.006, Z = 5.56, p < .001) and aCompCor50 (.003, Z = 4.66, p < .001). This

indicates that scrubbing affects the FD/ROI-DVARS correlation differentially in the inner

cluster compared to the outer cluster. Looking at the differences within cluster, aCompCor

and aCompCor50 had an estimated median difference of 0 between using the non-scrubbed

vs. scrubbed data in the outer cluster, but had a negative median difference in the inner

cluster, indicating that scrubbing did not largely affect the FD/DVARS correlation in the

outer cluster, but actually increased the correlation in the inner cluster for these FCP

strategies. On the contrary, the estimated median difference in the inner cluster for MeanWC

was 0 comparing pre-post scrubbing, but was positive in the outer cluster, indicating that

scrubbing did not change the median FD/DVARS correlation for the inner cluster, but

mainly the outer cluster of ROIs. Again, it seems as though scrubbing using the MeanWC
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FCP strategy is beneficial with respect to the MR signal-motion relationship, but can be

detrimental when using aCompCor.

The main effect results for the FD/ROI-DVARS model confirmed the findings observed for

the global FD/DVARS model. We found a significant effect of FCP strategy across both

clusters on mean FD/ROI-DVARS correlation (χ2(2) = 542.3, p < .0001). Post-hoc analyses

revealed that the median correlation between FD and ROI-DVARS was significantly larger

for MeanWC (.053) than for either aCompcor (.017, Z = 9.53, p < .001, corr) or

aCompcor50 (−.013, Z = 9.79, p < .001, corr) across all ROIs, regardless of scrubbing. The

median correlation of FD/ROI-DVARS was significantly lower using aCompCor50 than

aCompCor (Z = 7.22, p < .001, corr), again suggesting that including more PCs from WM

and CSF in the nuisance regression improves the attenuation of motion-related fluctuations.

Although there was a marginally significant main effect of scrubbing on the median global

FD/DVARS correlation in section 3.1, the main effect of scrubbing on median FD/ROI-

DVARS was not significant (χ2(1)=.26, p = .61). This indicates that scrubbing did not

appear to affect FD/ROI-DVARS on a marginal level across processing streams and

clusters.

3.4 Effect of FCP strategy on connectivity

3.4.1 Motion effects on connectivity by inter-node distance—We did not observe

strong relationships between QC-RSFC and ROI-pair distance using the GAM or linear

model, regardless of processing strategy or use of scrubbing; all QC-RSFC Pearson

correlations had magnitudes < .08 (Supplemental Figure 1). Using the full time-course for

ROI-pair correlations, aCompCor50 had the smallest magnitude of QC-RSFC distance

correlation (−.061) followed by aCompCor (−.0655) and then MeanWC (−.079), which had

the largest magnitude. Using the scrubbed time-course mitigated this negative relationship

(correlation for aCompCor50: −.0005, aCompCor: − .0050, MeanWC: −.0380), but the

shape of the QC-RSFC-distance relationship was similarly flat as when the full time-courses

were used. Comparing FCP strategies using the same time courses, Williams’ test indicated

that QC-RSFC distance correlations were significantly different with p < .01, except for the

difference between aCompCor50 and aCompCor using the full time-course, which had a p-

value of .01. Though we see statistically different correlations when we compare FCP

strategies, this is largely due to the number of ROIs selected, as the effect of distance on the

QC-RSFC correlation is small even for large distances between ROIs.

3.4.2 Effect of FCP strategy on specificity of well-defined functional networks

3.4.2.1 mPFC specificity: To investigate the potential cost of mitigating motion artifacts in

terms of our ability to estimate functional connectivity, we assessed FC specificity of the

mPFC for each FCP strategy before and after scrubbing. Figure 7A illustrates the

distribution of mPFC specificity scores for each method and Supplementary Figure 2A

shows the breakdown of specificity scores into ztarget and zreference components for each

method. Higher specificity scores indicate stronger correlations between regions that are

known to be functionally connected (ztarget) relative to correlations between regions that are

not expected to be functionally connected (zreference). Using a linear mixed effects model,

the main effect of FCP strategy was significantly related to FC specificity (χ2(2) = 61.7, p
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< .0001). Wilcoxon signed-rank tests were run to further investigate this main effect pre-

scrubbing (3 tests) as well as 3 additional apriori tests comparing MeanWC+scrubbing to

each of the three pre-scrubbing methods (see next paragraph); thus, a Bonferroni correction

factor of 6 was used. The pre-scrubbing comparisons indicated that specificity of mPFC

connectivity using the MeanWC processing was lower (median = .502) than using

aCompCor (.554, Z = 3.27, p = .006 corr) and aCompCor50 (.604, Z = 5.06, p < .0001 corr),

suggesting that both aCompCor approaches improved specificity of mPFC connectivity

compared to MeanWC. The median specificity mPFC connectivity using aCompCor50 was

higher compared to aCompCor (Z = 2.54, p= .011 uncorr), but this difference was only

marginal when corrected for multiple comparisons (p=.067, corr).

Neither the main effect of scrubbing on mPFC specificity (χ2(1) = .77, p = .38) nor the

interaction between FCP strategy and scrubbing on mPFC specificity (χ2(2) = .06, p = .97)

was significant. We performed additional post-hoc tests to investigate whether specificity

loss using MeanWC compared to the aCompCor methods was recovered post-scrubbing by

comparing MeanWC+scrubbing specificity to aCompCor and aCompCor50 specificity prior

to scrubbing (included in the Bonferroni correction factor described in the preceding

paragraph). When scrubbing was performed at the end of the MeanWC pipeline, no

significant change in specificity was observed compared to the MeanWC approach by itself

(scrubbed median specificity = .513, Z = 0.82, p > .41 corr). The median specificity of

mPFC connectivity calculated using aCompCor and aCompCor50 were both significantly

higher than MeanWC+scrubbing specificity (Z = 2.83, p = .028, Z = 4.64, p < .0001, corr,

respectively). Thus, even after scrubbing, MeanWC as a strategy continued to result in lower

mPFC specificity compared to both aCompCor methods. While scrubbing improved the

effectiveness of MeanWC in terms of the motion-BOLD relationship, scrubbing did not

improve the effectiveness of MeanWC (or any of the FCP strategies) in terms of specificity.

3.4.2.2 M1 specificity: We assessed M1 FC specificity for each FCP strategy before and

after scrubbing in a similar way to the mFPC analysis. Figure 7B illustrates the distribution

of M1 specificity scores for each method, and Supplementary Figure 2B shows the

breakdown of specificity scores into ztarget and zreference components for each method. Using

a linear mixed effects model, the main effect of FCP strategy on MI FC specificity was

significant (χ2(2) = 8.91, p = .012). Post-hoc Wilcoxon signed-rank tests were conducted to

test differences in specificity: 3 to explore differences in M1 specificity pre-scrubbing, 3 to

explore M1 specificity differences post-scrubbing, and two apriori tests comparing M1

specificity for MeanWC+scrubbing to aCompCor and aCompCor50 pre-scrubbing. Thus,

significance levels were Bonferroni-corrected for multiple comparisons using a correction

factor of 8. Prior to scrubbing, M1 specificity using the MeanWC processing was marginally

lower (median = .488) than using aCompCor (.541, Z = 1.94, p = .052 uncor) or

aCompCor50 (.521, Z = 2.01, p = .044 uncor), but these differences were not significant

after correcting for multiple comparisons (p = .419 and p = .354 corr, respectively). The

median specificity of aCompCor was not different compared to aCompCor50 (Z = 0.334, p

> 0.94, corr).

The main effect of scrubbing on specificity (χ2(1) = 12.14, p < .001) was also significant

whereas the interaction between FCP strategy and scrubbing on specificity was not (χ2(2) = .

Muschelli et al. Page 15

Neuroimage. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



29, p = .866). We performed additional post-hoc tests to investigate whether scrubbing

significantly increased specificity. When scrubbing was performed, specificity was lower for

MeanWC (scrubbed median specificity = .458, Z = 4.72, p < .001, corr), aCompCor

(scrubbed median specificity = .504, Z = 4.00, p < .001, corr), and aCompCor50 (scrubbed

median specificity = .507, Z = 4.83, p < .001, corr), compared to the non-scrubbed data.

Specificity using the MeanWC+scrubbing strategy was significantly lower compared to

aCompCor (Z = 4.08, p < .001, corr) and aCompCor50 (Z = 4.03, p < .001, corr). Thus,

scrubbing lowered specificity under all three processing strategies and did not improve the

specificity of M1 connectivity estimates under MeanWC processing compared to aCompCor

or aCompCor50 prior to scrubbing.

4. Discussion

A recent flurry of papers has raised concerns about the corruption of rs-FC measures by

head movements, yet the question of what to do about motion is still controversial. In the

current study, we did not aspire to present an optimal processing stream. Rather, we set out

to answer the call to action proposed by J. D. Power and associates in 2012 to examine our

own preprocessing strategy to determine if motion-induced MR signals linger in our FC

data. We crafted these analyses to determine how effectively aCompCor mitigates motion-

induced MR signal changes and to measure the cost of the attenuation of motion-related MR

signal change in terms of the resulting specificity of connectivity estimates. Compared to the

more commonly used mean tissue-based nuisance signal regression, we found that

aCompCor attenuated the relationship between head motion and MR percent signal change

more effectively. All of the nuisance regression methods examined profoundly reduced the

spurious FD/DVARS relationship compared to the use of preprocessed data without any

nuisance regression. Both aCompCor methods led to further reductions compared to the

MeanWC method and had a significantly smaller FD/DVARS relationship compared to the

mean signal method. In addition to mitigating the relationship between BOLD signal change

and motion artifact, we also found that both aCompCor methods improved connectivity

metric specificity compared to MeanWC. These findings suggest that aCompCor is a better

method for rs-FC post-processing than mean signal regression.

4.1 Motion and BOLD signal of neuronal origin

MR signal had a strong relationship with motion before FC preprocessing, as seen by the

distribution of both global FD/DVARS correlations (Figure 4A) and the 264 distributions of

FD/ROI-DVARS (Figure 6A). These 264 pre-FCP FD/ROI-DVARS distributions were bi-

modal, which reflected the spatial organization of the seed regions. The FD/ROI-DVARS

relationship was mitigated by all of the post-FCP methods. Even MeanWC resulted in FD/

ROI-DVARS correlations that were centered close to zero thus providing drastic

improvements in the relationship between MR signal change and motion. Previous studies

have found that the choice of post-processing steps and the order in which these steps are

performed modulates the effects of motion (Carp, 2013; Hallquist et al., 2013; Jo et al.,

2013). Hallquist and colleagues showed that performing nuisance regression after temporal

filtering does a poor job of removing nuisance frequencies and results in a higher FD/

DVARS relationship. For the current study, the order of processing operations as well as the
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motion parameters used during nuisance regression were held constant for all three methods

examined, thus reducing the likelihood of frequency misspecification presented by Hallquist

et al. (2013). As with these previous studies, we performed nuisance regression before

temporal filtering, so as to filter signals no longer related to physiological or motion

artifacts. In addition, strict thresholds of subject-specific tissue maps (Ashburner and

Friston, 2005) were used to identify nuisance voxels for all methods. These FCP processing

steps may account for some mitigation in the FD/DVARS relationship across all methods

examined.

Despite the profound reduction in the relationship between MR signal change and motion by

all FCP strategies tested, the aCompCor methods produced additional improvements

compared to the use of mean tissue-based nuisance signal regression. Across regions, both

aCompCor methods mitigated the FD/DVARS relationship more thoroughly compared to

MeanWC. In addition, this difference was greater for ROIs in the outer cluster (cluster 1),

reflecting greater mitigation of motion effects using aCompCor for those ROIs near the edge

of brain. Furthermore, while scrubbing data processed using the MeanWC FCP strategy was

beneficial with respect to the MR signal-motion relationship, it appeared detrimental to data

processed using aCompCor. By not averaging over voxels, aCompCor reduces the risk of

spatially disparate nuisance signals canceling one another out. In addition, aCompCor does

not make assumptions about the shape or timing of the relationship between the source of

noise and the resulting change in MR signal. Several papers using an approach similar to the

MeanWC method have suggested expanding the explicit model of motion to 24, or even as

many as 36, terms as opposed to the 12 parameters included in all three strategies in this

experiment (Power et al., 2014; Satterthwaite et al., 2013; Yan et al., 2013). It is possible

that including these additional terms could have improved the efficacy of the MeanWC

method in mitigating motion artifacts, but we suggest that aCompCor allows for a more

flexible model that can potentially mitigate motion effects not accounted for by the 12

explicit motion regressors while also accounting for sources of physiological noise such as

respiration and cardiac pulsation. We believe the 24- and 36-parameter models impose

stronger assumptions about the relationship of motion to BOLD signal change and may

require additional terms for physiological noise, while parameter inclusion for the

aCompCor50 approach is guided solely by the variance in tissues of no interest. Unlike ICA

approaches to nuisance removal, aCompCor does not require the classification of

components into noise and signal of interest; all components identified by aCompCor are

assumed to be noise because they originate in tissues not expected to contain BOLD signal.

All of these strengths potentially contribute to the superior performance of aCompCor and

virtually eliminate the need for additional scan scrubbing.

When we investigated the mitigation of motion-induced BOLD signal changes in high and

low motion subgroups, we found that the aCompCor methods more effectively reduced the

FD/DVARS relationship compared to the MeanWC approach within each group. In

addition, both aCompCor methods more effectively removed differences in the FD/DVARS

relationship between high and low movers compared to mean tissue-based nuisance signal

regression. Scrubbing appeared to reduce the group difference in the relationship between

MR signal change and motion when the MeanWC method was used; however, the effect of

scrubbing on the FD/DVARS relationship for the aCompCor methods was not consistent
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across groups and did not lead to significant reductions in the differences between groups. A

small but statistically significant difference in FD/DVARS correlation persisted between the

high and low motion groups even when aCompCor50 was used. Further research is

necessary to determine if/how this lingering difference impacts connectivity estimates, but

balancing groups according to their motion characteristics or including a group-level

adjustment for motion may still be necessary when comparing groups with differential

movement profiles.

It is important to note that none of the FCP strategies examined in this paper included global

signal regression (GSR), which is another nuisance mitigation approach not explicitly

intended for motion correction. While Yan et al. (2013) and Power et al. (2014) found that

GSR more thoroughly removed relationships between motion and resting state FC metrics

compared to regression of explicit models of motion-induced signal change, concerns have

been raised about the potential of GSR to remove signal of neuronal origin (Schölvinck et

al., 2010) and to introduce additional confounds into rs fMRI data (Murphy et al., 2009;

Saad et al., 2012). One paper even presented evidence that GSR can exacerbate motion

artifacts (Jo et al., 2013) while another suggested that GSR biases the structure of motion

artifacts (Satterthwaite et al., 2013). Due to this controversy, we chose not to include GSR in

any of the FCP strategies tested. aCompCor has already been suggested as an alternative to

GSR because it improves the specificity and sensitivity of functional connectivity metrics

compared to GSR (Chai et al., 2012). Having omitted GSR, we were still able to drastically

reduce the relationship between MR signal change and head motion and to observe

additional reductions in this relationship when using aCompCor versus MeanWC. In a

supplementary post-hoc regression analysis, we investigated the shared variance between the

global signal for each participant and the WM and CSF signals estimated for the three FCP

strategies. We found that, on average, WM and CSF regressors estimated by aCompCor and

aCompCor50 explained more of the global signal variance (median adjusted R2=.436 and .

479, respectively) than the ones estimated by MeanWC (R2=.201). Although the aCompCor

regressors appear to share more variance with the global signal, we consider it unlikely that

the superior performance of the aCompCor methods over MeanWC is simply due to leakage

of grey matter signal (which would contribute to the global signal) into adjacent WM and

CSF-labeled voxels given the measures we took to minimize partial voluming effects in our

WM and CSF masks. Rather, we argue that bulk motion induces signals changes that are

common across voxels regardless of tissue type and that aCompCor is better able to estimate

multiple components that are common across voxels than the MeanWC method.

4.2 Motion and Connectivity

Previous studies have suggested that motion has non-uniform effects across the brain which

may lead to spurious assumptions about group differences in connectivity (Power et al.,

2012; Satterthwaite et al., 2013, 2012; Van Dijk et al., 2012). Assessing the effects of

motion on rs-FC is challenging because some connections may be strengthened with motion,

while others are weakened. We examined if the correlation between connectivity and motion

was modulated by ROI-pair distance, but found that distance did not change the group-level

QC-RSFC metric regardless of the FCP strategy used. To further examine the impact of

motion on rs-FC, we used a specificity metric based on the anatomy of known functional
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networks to determine whether connectivity is high for regions within the same network and

low for regions between different networks that are not expected to be strongly connected

(Chai et al., 2012). Well-established DMN, motor and visual regions were selected for this

purpose. It was found that the specificity of mPFC and M1 connectivity was greater for both

aCompCor methods than for MeanWC, although the relatively shorter-range M1

connectivity was less affected by FCP strategy than the longer-range mPFC connectivity.

Therefore, in concordance with Chai and colleagues, the current study found that the use of

aCompCor significantly improved the specificity of connectivity measurements for these

networks. In addition, all of the motor seeds belonged to the inner cluster in Figure 6B,

while some of the DMN seeds belonged to the outer cluster. Just as we saw that the benefit

of aCompCor over MeanWC was amplified in the outer cluster in terms of the FD/DVARS

relationship, here too, we see that the benefit of aCompCor over MeanWC in terms of

specificity is also maximal when ROIs in outer cluster are involved. Furthermore, while

scrubbing improved the effectiveness of MeanWC in terms of the motion-BOLD

relationship, scrubbing did not improve the effectiveness of MeanWC (or any of the FCP

strategies) in terms of the specificity of mPFC connectivity and actually reduced the

specificity of M1 connectivity for all three FCP strategies.

4.3 Limitations

The current study illustrates the utility of aCompCor in mitigating motion artifacts.

However, a number of limitations exist which may be addressed in future studies. First, the

current sample of 8–12 year old typically developing children was relatively homogenous.

Because the motivation for this project centered around our concern that motion-induced

MR signals might linger in our FC data, we restricted our analyses to participants who met

our normal motion constraint: no subject had between volume translational movements of

more than 3-mm or rotational movements of more than 3 degrees. Thus, the current study

does not address issues related to more extreme head motion. While there was some

variation in the scanning parameters used to collect the data analyzed in this study, it is

nevertheless the case that our scanning parameters were relatively homogeneous in the

context of other papers analyzing the impact of motion on resting state data (Power et al.,

2014, 2012). Therefore, we cannot address the impact of scan acquisition parameters like

repetition time, scan length, or slice acquisition sequence on the lingering effects of motion.

Extending this processing stream comparison to a large, heterogeneous data sets, such as the

ADHD-200 (HD-200 Consortium, 2012) or the ABIDE data set (Di Martino et al., 2013),

would help to address these issues.

Within our relatively homogeneous sample, we attempted to stratify the effectiveness of

preprocessing on global motion-induced signal change by levels of head movement.

However, we did not attempt to investigate the influence of motion on group differences in

network connectivity. Using resting state scan-rescan data, Van Dijk et al (2012) reported

that participant motion was highly correlated across the two sessions; people who moved a

lot during the first scan tended to move a lot during the second scan, suggesting that head

motion may reflect a participant trait. If we compared the 34,164 connectivity estimates for

high and low movers within our sample, we would probably find significant differences.

While some of these differences may be due to lingering motion artifacts, some may be due
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to trait differences between high and low movers, which are reflected in true connectivity

differences between the groups. Scrubbing may reduce the number of significantly different

connections between the groups of movers but is also likely to contribute to a failure to

detect true connectivity differences between high and low movers, as we have already

shown that scrubbing has a tendency to reduce specificity for connectivity within the well-

defined motor network. A more straightforward approach to examining this critical issue

would be to compare within-subject connectivity differences from data collected during

scans with little motion versus data collected from the same individuals during which their

heads were purposefully moved.

Another important limitation is that we did not set an explicit criterion for the number of

time points necessary for a subject to be included in these analyses. We acknowledge that

basing correlation calculations on varying numbers of scans across participants is

problematic; participants retaining more time points will have less variance in their

correlation estimates compared to participants with fewer data points. This problem, while

exacerbated by scan scrubbing, is not limited to the discussion of scrubbing; resting state

data collected using various repetition times and scan lengths are routinely combined

without adjustment for sample size (Biswal et al., 2010; Fair et al., 2013; Power et al., 2014;

2012). Determining an optimal solution for accounting for sample size in resting state

correlation estimates is an important area of future work but is beyond the scope of this

paper. We believe that excluding participants based on the number of scans retained after

scrubbing would introduce a potentially larger problem of biasing results due to selection.

The subjects that would have been excluded by such a criterion are the subjects in our

sample who moved the most. Also, in comparing estimates calculated pre- and post-

scrubbing, we believe including all participants is conservative as using participants with a

large number of “scrubbed scans” would allow for scrubbing to have the largest effect.

4.4 Conclusions

The current study found that all nuisance regression strategies significantly mitigated the

spurious relationship between motion and regional BOLD signal. However, the use of

aCompCor further reduced this relationship compared to mean signal regression.

Examination of network connectivity found that aCompCor also improved the specificity of

mPFC and M1 connectivity compared to mean signal regression. While the use of

aCompCor may not entirely eliminate the impact of motion on rs-FC, we hypothesized that

aCompCor would be superior to the mean signal method and our results support this

hypothesis. Furthermore, while scrubbing helped to attenuate motion-related artifacts when

mean signal regression was used, scrubbing provided no additional benefit in terms of

motion artifact reduction or specificity when aCompCor was used. We recommend an

aCompCor approach to nuisance regression of rs fMRI data, implementations of which are

freely available as part of the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012)

and the Configurable Pipeline for the Analysis of Connectomes (http://

fcon_1000.projects.nitrc.org/indi/cpac/index.html).

SFigure 1: Relationship between mean FD and resting state functional connectivity (QC-

RSFC) and ROI-pair distance. Plotted are the group level correlations of subject-specific
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mean FD and 34164 ROI-ROI correlations (264 choose 2, excluding ROI pairs < 20-mm

apart as suggested in Power et. al. 2012) versus the distance between the ROI pairs for each

processing stream. The blue lines represents generalized additive model (GAM) smoothed

estimates and the red lines represents linear model fits (LM) of the relationship. At the top of

each panel, the Pearson correlation between QC-RSFC and ROI-pair distance is indicated.

We see no strong relationship between QC-RSFC and ROI-pair distance in the data,

regardless of processing stream or scrubbing. Within the time-course used, aCompCor50 has

the smallest correlation magnitude. Also, using the scrubbed time-course for the ROI-pair

correlation also mitigated this negative relationship, but the change is practically small.

Williams’ test indicated that for every pair, the correlation was significantly different with p

< 0.01, except for the difference between the aCompCor50 and aCompCor distance-FC-

RSFC full time-course correlation, which had a p-value of 0.01. Though we see significant

differences, the effect of distance on the FD-ROI correlation is small even for large

distances between ROIs. Ranges for the correlation of FD and ROI-ROI correlation are

similar to Satterthwaite et al., 2013 (Figure 5). We see that the correlation consistently

remains above 0.2 for the correlation of FD and ROI-ROI correlation without global signal

regression (GSR), similar to that of Power et al., 2014 (Figure 12, right panel). We see a

result similar to Power et al. 2014: “Without GSR, correlations at all distances are positively

related to mean FD and these relationships can be reduced but not eliminated by scrubbing

and reprocessing.” This may be the case without GSR, yet we address other concerns about

GSR in the discussion. Also, though this correlation has been considered a measure of

motion artifact, the measure has mainly been used to show that this effect is ROI-pair

distance dependent, which is a result we do not see under our processing strategies in our

data.

SFigure 2: Boxplots of ztarget, zreference and specificity for A) the medial prefrontal cortex

(mPFC) and B) the left primary motor cortex (M1). Note the vertical scales for A and B are

not the same; comparisons are to be made within each panel. ztarget boxplots are in the first

column of each panel. A) Prior to scrubbing (lightly shaded boxes), we see that the

aCompCor50 (blue) approach produced a higher median mPFC-DMN correlation compared

to MeanWC (red) and aCompCor (green), which further supports our argument that

aCompCor50 outperforms the other two methods in terms of the mitigation of motion

effects. In addition, aCompCor50 also reduces the median mPFC-visual correlation

(zreference, middle column of boxplots), which is also a relatively long-range “connection,”

suggesting that aCompCor50 is not increasing all long-range correlations but only those that

are real. The increase in ztarget and the decrease in zreference for aCompCor50 both contribute

to aCompCor50 having higher median mPFC specificity compared to the other two

approaches (third column). Median mPFC-DMN (ztarget) and mPFC-visual (zreference)

correlations are relatively consistent for each processing stream post-scrubbing (darkly

shaded boxes). B) In contrast, the shorter-range median M1-motor correlations (ztarget, first

column) are relatively similar for the three processing streams pre-scrubbing. Pre-scrubbing

differences in specificity appear to be due to differences in longer-range median M1-visual

correlations (Z-reference, middle column). Post-scrubbing (darkly shaded boxes), M1-motor

correlations (ztarget) are reduced for all FCP strategies, as is specificity.
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Highlights

We compared PCA- and mean signal-based artifact reduction methods for rs-fMRI

data.

PCA more effectively attenuated motion artifacts than mean signal.

PCA enhanced the specificity of functional connectivity compared to mean signal.

Scan scrubbing following PCA did not further reduce motion artifacts.
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Figure 1.
Processing Stream. The components of the processing stream are broken up horizontally by

standard fMRI preprocessing steps (pre-FCP) and FC preprocessing steps, and vertically by

actions performed on functional data (left), anatomical data (middle), and derived metrics

for analysis (right). Standard fMRI preprocessing steps included slice time adjustment,

motion realignment, and spatial normalization (using unified segmentation-normalization).

The 6 (x, y, z, roll, pitch, yaw) motion parameters estimated from realignment were

condensed into one per-scan measure: framewise displacement (FD). After temporally

detrending the functional data, we trifurcated our FC pipeline to evaluate the attenuation of

motion effects using three nuisance regression models: MeanWC, aCompCor, and

aCompCor50. These models differed in the way that nuisance signals from white matter

(WM) and cerebrospinal fluid (CSF) were estimated; the mean signals (MeanWC), the top 5

principal components (PCs) (aCompCor), or the minimal number of PCs that explained at

least 50% of the variance (aCompCor50) from WM and CSF were included in the

regression, with signals from WM and CSF being estimated separately for each method. The

data were then spatially smoothed and bandpass filtered (.01–.1Hz pass-band). DVARS was

calculated and FD/DVARS Pearson correlations were estimated using the pre and post-FCP

data. Scans with FD > .5mm were regarded as potentially motion-contaminated. One scan

prior and 2 scans after these identified scans, including the scan itself, were ignored from

correlations and timecourses to generate “scrubbed” data. Timecourses from seeds within

the Default Mode network and somatomotor network were extracted, and mPFC and M1

specificity were calculated.

Muschelli et al. Page 26

Neuroimage. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Frequency maps for voxel inclusion in tissue-based nuisance masks. The base image is the

grey matter tissue prior from SPM8. The intensity of the overlays reflects the number of

subjects for which each voxel was included in either the white matter (WM, green) or CSF

(red) mask used to estimate nuisance signals. Subject-specific masks were generated by

restricting tissue probability maps from SPM’s unified segmentation normalization process

using a 99% probability threshold. To further reduce the risk of capturing signals of interest

from adjacent grey matter voxels, the resulting WM mask was eroded using MATLAB’s

imerode function, and the CSF mask was constrained to areas within the ALVIN mask of

the ventricles (Kempton et al., 2011).
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Figure 3.
Distribution of mean Framewise Displacement (FD). The solid line represents a kernel

density estimate of the overall mean FD density. The dashed vertical line represents the

mean (.220 mm) and the dotted line represents the median (.183 mm). The standard

deviation and range were .119 mm and .064 – .611 mm, respectively.
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Figure 4. Full-sample distributions of global FD/DVARS correlations by processing strategy
A) Each line represents a kernel density estimate (KDE) of the distribution of correlations

between FD and gray matter DVARS over the 130 participants for each FCP method prior to

scrubbing. KDEs are given for pre-FCP data (red) and data FC processed under MeanWC

(green), aCompCor (blue), and aCompCor50 (purple). B) The distributions of FD/DVARS

correlations using scrubbed data. The median correlation of FD and DVARS is high before

FC processing (.805), and was significantly lower (all p < .001, corr) after MeanWC (.206),

aCompCor (.099), and aCompCor50 (.001). The median correlation between motion and

MR signal change was significantly smaller for data processed using aCompCor versus

MeanWC, aCompCor50 versus MeanWC, and aCompCor50 versus aCompCor, (p < .001,

corr). MeanWC+scrubbing had significantly lower median correlation compared to

MeanWC alone (scrubbed median: .184, p < .001, corr) but aCompCor50+scrubbing had a

larger median correlation compared to aCompCor50 alone (.062, p < .002, corr). Scrubbing

did not significantly increase median correlation using aCompCor (.139, p = .14, uncor, p=.

81, corr).
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Figure 5.
Distributions of global FD/DVARS correlations by processing strategy for motion-

determined subgroups. Low (N=44), medium (N=43) and high (N=43) motion subgroups

were determined by tertiles of the mean FD distribution. A) Each line represents a kernel

density estimate (KDE) of the distribution of correlations between FD and gray matter

DVARS over participants of in the low-motion subgroup for each FCP method prior to

scrubbing. KDEs are given for data FC processed under MeanWC (green), aCompCor

(blue), and aCompCor50 (purple). B) The distributions of FD/DVARS correlations using

scrubbed data for the low-motion subgroup. Plots C) and D) correspond to plots A) and B),

respectively, for the high-motion subgroup. In the both subgroups, the median correlation

between motion and MR signal change was significantly smaller for data processed using

aCompCor versus MeanWC, aCompCor50 versus MeanWC, and aCompCor50 versus

aCompCor, (p < .0001, corr). For each processing strategy, the high-motion subgroup had a

higher median FD/DVARS correlation compared to the low motion subgroup (p < .0001

corr). See Supplemental Table 1 for specific median values.
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Figure 6.
Distributions of FD/ROI-DVARS correlation by processing strategy and cluster. Kernel

Density Estimates (KDEs) of the distributions of the correlations between FD and DVARS

for each of the 264 ROIs. Heuristically, all functional connectivity processing resulted in

more zero-centered and less-variable distributions compared to the pre-FCP data. Using the

pre-FCP data in A), the 264 ROIs were clustered using k-means clustering on the 130

participants’ data. Two clusters were chosen since there appeared to be a bi-modality in the

pre-FCP FD/ROI-DVARS distribution. The spatial distribution of the 2 clusters are

presented in B), showing that ROIs with higher mean FD/DVARS correlation tended to be

closer to the surface.
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Figure 7.
Specificity of functional connectivity. Correlations were Z-transformed and specificity was

calculated as in Chai et al., 2012 (calculation in section 2.4.8) for A) the medial Pre-Frontal

Cortex (mPFC) and B) the left primary motor cortex (M1). mPFC specificity was lower

using the MeanWC strategy (median = .502) compared to aCompCor (.554 p = .003, corr)

and aCompCor50 (.604, p = .0001, corr). The median mPFC specificity of aCompCor50 was

higher compared to aCompCor (p= .011 uncorr), but this difference was only marginal when

corrected for multiple comparisons (p=.067, corr). The median specificity for MeanWC

+scrubbing was still lower than both aCompCor strategies: (median difference with

aCompCor: −.068 (p = .028, corr) and median difference with aCompCor50: −.072 (p < .

0001, corr). M1 specificity was not significantly different using MeanWC processing

(median = .488) than using aCompCor (.541, Z = 1.94, p = .314, corr) or aCompCor50 (.

521, Z = 2.01, p = .265, corr). The median specificity of aCompCor was not different

compared to aCompCor50 (Z = 0.334, p > .94, corr). Specificity was lower for MeanWC

+scrubbing (scrubbed median specificity = .458, Z = 4.72, p < .001, corr), aCompCor

+scrubbing (scrubbed median specificity = .504, Z = 4.00, p < .001, corr), and

aCompCor50+scrubbing (scrubbed median specificity = .507, Z = 4.83, p < .001, corr),

compared to the non-scrubbed data. Specificity using the MeanWC+scrubbing strategy was

significantly lower compared to aCompCor (Z = 4.08, p < .001, corr) or aCompCor50 (Z =

4.03, p < .001, corr).
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Table 2

Median FD/ROI-DVARS Correlations between Clusters by Processing Strategy.

FCP strategy Outer Cluster (1) median Inner Cluster (2) median Outer – Inner median p-value

pre-FCP .520 .325 .185 <.001

MeanWC .078 .039 .043 <.001

MeanWC+S .058 .033 .029 <.001

MeanWC-MeanWC+S .010 .000 .012 <.001

aCompCor .035 .000 .033 <.001

aCompCor+S .041 .017 .023 <.001

aCompCor-aCompCor+S .000 −.004 .006 <.001

aCompCor50 .000 −.018 .028 <.001

aCompCor50+S .024 .000 .019 <.001

aCompCor50-aCompCor50+S .000 −.011 .003 <.001

MeanWC-aCompCor .043 .056 .010 <.001

MeanWC-aCompCor50 .078 .028 .017 <.001

aCompCor-aCompCor50 .021 .031 .006 <.001

Clusters were determined using k-means clustering of the pre-FCP FD/ROI-DVARS correlations. Mean correlations were calculated for each
cluster, over ROIs, for each participant. Group median correlations are presented above for each cluster, the median difference in correlation
between clusters. The tests are separated by comparing across scrubbing within FCP strategy (above the line) and across FCP strategy (below the
line). P-values were calculated using Wilcoxon signed-rank tests. FCP = Functional Connectivity Processing; S = Scrubbing
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