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Abstract

A network of predominantly left-lateralized brain regions has been linked to verbal working 

memory (VWM) performance. However, the impact of memory load on the oscillatory dynamics 

serving VWM is far less understood. To further investigate this, we had 26 healthy adults perform 

a high-load (6 letter) and low-load (4 letter) variant of a VWM task while undergoing 

magnetoencephalography (MEG). MEG data were evaluated in the time-frequency domain and 

significant oscillatory responses spanning the encoding and maintenance phases were 

reconstructed using a beamformer. To determine the impact of load on the neural dynamics, the 

resulting images were examined using paired-samples t-tests and virtual sensor analyses. Our 

results indicated stronger increases in frontal theta activity in the high- relative to low-load 

condition during early encoding. Stronger decreases in alpha/beta activity were also observed 

during encoding in bilateral posterior cortices during the high-load condition, and the strength of 

these load effects increased as encoding progressed. During maintenance, stronger decreases in 

alpha activity in the left inferior frontal gyrus, middle temporal gyrus, supramarginal gyrus, and 

inferior parietal cortices were detected during high- relative to low-load performance, with the 

strength of these load effects remaining largely static throughout maintenance. Finally, stronger 

increases in occipital alpha activity were observed during maintenance in the high-load condition, 

and the strength of these effects grew stronger with time during the first half of maintenance, 

before dissipating during the latter half of maintenance. Notably, this was the first study to utilize a 

whole-brain approach to statistically evaluate the temporal dynamics of load-related oscillatory 

differences during encoding and maintenance processes, and our results highlight the importance 

of spatial, temporal, and spectral specificity in this regard.
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1. Introduction

Verbal working memory (VWM) encompasses the active maintenance and/or manipulation 

of verbal information to be used towards concurrent processing. It is commonly divided into 

three phases: encoding, maintenance, and retrieval (Baddeley, 1992). Encoding refers to the 

loading of information into working memory (WM), while maintenance involves the brief 

storage and rehearsal of that information. Finally, the information is recalled during retrieval, 

and applied towards a cognitive goal. Previous functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET) studies have demonstrated that a primarily 

left-lateralized network of neural regions underlies VWM performance, and that activity 

within this network tends to scale with WM load (i.e., the number of items held in WM; 

Cabeza and Nyberg, 2000; Rottschy et al., 2012; Smith and Jonides, 1997; Thomason et al., 

2009; Walter et al., 2003a).

The aforementioned body of literature has been corroborated and expanded upon by a 

growing number of neurophysiological studies on VWM. Specifically, decreased alpha, beta, 

and gamma oscillatory activity has been observed in a similar network of regions during 

VWM performance (Brookes et al., 2011; Deiber et al., 2007; Heinrichs-Graham and 

Wilson, 2015; Krause et al., 2000; Pesonen et al., 2007; Scharinger et al., 2017; Stephane et 

al., 2012; Stipacek et al., 2003), and many oscillatory studies have additionally reported 

increased frontal midline theta activity (Brookes et al., 2011; Deiber et al., 2007; Jensen and 

Tesche, 2002; Krause et al., 2000; Meltzer et al., 2007; Michels et al., 2010; Michels et al., 

2008; Onton et al., 2005; Pesonen et al., 2007), as well as increased parieto-occipital alpha 

oscillations during maintenance (Heinrichs-Graham and Wilson, 2015; Jensen et al., 2002; 

Michels et al., 2010; Michels et al., 2008). However, load-related effects on the oscillatory 

dynamics serving VWM remain poorly understood. Perhaps the most consistent load-related 

effect is greater frontal midline theta activity with increasing load (Brookes et al., 2011; 

Deiber et al., 2007; Gevins et al., 1997; Jensen and Tesche, 2002; Krause et al., 2000; 

Meltzer et al., 2007; Michels et al., 2010; Michels et al., 2008; Onton et al., 2005; 

Scheeringa et al., 2009; but see Scharinger et al., 2017 for conflicting results). In contrast, 

discrepant load-related modulations of alpha activity abound within the literature, with some 

studies reporting increased posterior alpha activity during high-relative to low-load VWM 

performance (Jensen et al., 2002; Meltzer et al., 2007; Michels et al., 2010; Michels et al., 

2008; Pavlov and Kotchoubey, 2017; Scheeringa et al., 2009), while others found the 

opposite pattern (i.e., stronger decreases in alpha activity with increasing load) in posterior, 

as well as frontal and central sites (Gevins et al., 1997; Krause et al., 2000; Meltzer et al., 

2007; Michels et al., 2010; Michels et al., 2008; Pavlov and Kotchoubey, 2017; Pesonen et 

al., 2007; Scharinger et al., 2017; Stipacek et al., 2003). Similarly, conflicting load-related 

effects regarding posterior beta activity have been reported between studies, albeit to a lesser 

extent (Deiber et al., 2007; Michels et al., 2010; Pavlov and Kotchoubey, 2017; Pesonen et 

al., 2007; Scharinger et al., 2017).
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In part, these discrepancies may be due to differences in task design and/or analytical 

approach. For example, many of the aforementioned studies utilized a Sternberg task, but 

analyzed different portions of the maintenance phase (e.g., end of maintenance, all of 

maintenance), while others employed an n-back task in which WM processes (e.g., encoding 

and maintenance) occur in parallel. Multiple studies focusing on a single load (e.g., 6 items) 

have shown that oscillatory responses within VWM-related regions evolve over time, and 

change dramatically across distinct phases of VWM performance (e.g., encoding, 

maintenance; Heinrichs-Graham and Wilson, 2015; McDermott et al., 2016; McDermott et 

al., 2015; Proskovec et al., 2016; Wilson et al., 2017). Thus, the aforementioned differences 

between studies manipulating load may indeed reflect timing differences, and a small subset 

of these studies support this proposition. For example, two studies plotted the temporal 

evolution of load effects across the maintenance period, and these generally showed that 

increases in alpha activity scaled with VWM load in posterior electrodes, and that the 

strength of these load-related effects fluctuated across time (Jensen et al., 2002; Scheeringa 

et al., 2009). A third study also examined the temporal dynamics of alpha and found a load-

dependent decrease during encoding; however, during maintenance some participants 

exhibited a load-dependent increase in alpha, while others showed the opposite effect 

(Meltzer et al., 2007). A similar discrepancy between participants was observed by Michels 

and colleagues in posterior electrodes during VWM maintenance, although source 

reconstruction revealed that the load-dependent increases in alpha likely originated in the 

occipital cortices, while the load-dependent decreases were restricted to the precuneus 

(Michels et al., 2010; Michels et al., 2008). Taken together, both temporal and spatial 

precision appear to be key in disentangling the impact of load on the oscillatory activity 

serving VWM. Despite this, a whole-brain source space analysis that statistically evaluates 

how WM load affects the dynamics of neural oscillatory activity throughout VWM encoding 

and maintenance is lacking.

In the present study, we directly examine this by identifying load-related effects during 

VWM encoding and maintenance, and further characterizing how the strength of such load-

related modulations vary as a function of time. Specifically, we had healthy adults perform a 

high-load (6 letter) and low-load (4 letter) variant of a Sternberg VWM task while 

undergoing magnetoencephalography (MEG). Consistent with previous studies (Jensen and 

Tesche, 2002; Meltzer et al., 2007; Michels et al., 2010; Scheeringa et al., 2009), we 

hypothesized an increase in frontal midline theta during VWM performance which would be 

stronger during the high- relative to the low-load condition. Consistent with some previous 

studies (Heinrichs-Graham and Wilson, 2015; Proskovec et al., 2016), we also expected 

decreased alpha/beta activity during encoding in posterior parietal and occipital regions, and 

that these attention-related processes would be stronger during high- relative to low-load 

encoding. During maintenance, we anticipated stronger decreases in alpha activity during 

the high-load condition in left-lateralized frontal, temporal, and parietal regions, and that 

these responses would be more closely tied to verbal storage processes. Finally, in 

agreement with some previous studies (Jensen et al., 2002; Scheeringa et al., 2009) and in 

contrast to others (Scharinger et al., 2017; Stipacek et al., 2003), we hypothesized that there 

would be strong increases in occipital alpha following the onset of maintenance across both 

conditions, and that this response would be generally stronger during the high-load 
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condition. Further, we expected the strength of these load-related occipital alpha effects to 

strongly vary as a function of time.

2. Methods and Materials

2.1 Subject Selection

Twenty-six right-handed healthy adults (13 females; M age: 27.12, SD: 4.25, range: 20–35) 

from the local community participated in the study. Exclusionary criteria included any 

medical illness affecting CNS function, neurological or psychiatric disorder, history of head 

trauma, non-corrected visual impairment, current substance abuse, and the MEG 

Laboratory’s standard exclusion criteria (e.g., dental braces, metal implants, and/or any type 

of ferromagnetic implanted material). After providing a complete description of the study, 

written informed consent was obtained from participants following the guidelines of the 

University of Nebraska Medical Center’s Institutional Review Board, which approved the 

study protocol.

2.2 Experimental Paradigm

During MEG recording, participants sat in a nonmagnetic chair within a magnetically-

shielded room and performed a verbal Sternberg WM task in which load was manipulated 

(Figure 1; Sternberg, 1966). Participants were instructed to limit eye movements and fixate 

on a centrally-presented crosshair that was embedded within a 2×3 grid throughout the task. 

During the recording, participants were monitored via live video feed to ensure task 

compliance (e.g., remaining alert, responding at the appropriate time). Each trial began with 

the presentation of the crosshair and empty grid for 1.3 s. Then, either four (low load) or six 

(high load) consonants were displayed within the grid (encoding). To balance the visual 

display across conditions, dollar signs were displayed within the two grid locations not 

occupied by consonants in the low-load condition. After 2.0 s the consonants were removed 

from the grid, and an empty grid and fixation cross remained for the subsequent 3.0 s 

(maintenance). Finally, a probe of one consonant was presented for 0.9 s (retrieval), and 

participants responded via button press as to whether that consonant was in the previous 

encoding set (yes or no). The probe was in-set 50% of all trials, and the order of in-set/out-

set trials was pseudorandomized. The two conditions were presented in separate runs, 

separated by a brief (~4 minute) break, and the order of conditions was counter-balanced 

across participants. Each trial lasted 7.2 s, and there were 128 trials per condition, resulting 

in a total run-time of ~15.5 minutes per condition.

2.3 MEG data acquisition

Recordings occurred in a one-layer magnetically-shielded room with active shielding 

engaged. Using an Elekta MEG system with 306 magnetic sensors (Elekta, Helsinki, 

Finland), neuromagnetic responses were sampled continuously at 1 kHz, with an acquisition 

bandwidth of 0.1–330 Hz. MEG data from each participant were individually corrected for 

head motion and noise reduced using the signal space separation method with a temporal 

extension (Taulu and Simola, 2006; Taulu et al., 2005).
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2.4 MEG Coregistration & Structural MRI Acquisition and Processing

Preceding MEG measurement, four coils were attached to the participant’s head and 

localized, together with the three fiducial points and scalp surface, with a 3-D digitizer 

(Fastrak 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). During MEG 

recording, an electric current with a unique frequency label (e.g., 322 Hz) was fed to each 

coil, inducing a measurable magnetic field which allowed each coil to be localized in 

reference to the sensors throughout the recording session. Since coil locations were also 

known in head coordinates, all MEG measurements could be transformed into a common 

coordinate system. With this coordinate system, each participant’s MEG data were 

coregistered with structural T1-weighted neuroanatomical data before source space analyses 

using BESA MRI (Version 2.0; BESA GmbH, Gräfelfing, Germany). These data were 

acquired with a Philips Achieva 3T X-series scanner using an eight-channel head coil (TR: 

8.09 ms; TE: 3.7 ms; field of view: 240 mm; slice thickness: 1 mm; no gap; in-plane 

resolution: 1.0 × 1.0 mm). Structural MRI data were aligned parallel to the anterior and 

posterior commissures and transformed into standardized space, along with the functional 

images, after beamforming (see section 2.6).

2.5 MEG Time-Frequency Transformation and Statistics

A high-pass filter of 0.5 Hz, low-pass filter of 200 Hz, and notch filter of 60 Hz (width: 2 

Hz) were applied. Cardiac and eye blink artifacts were removed from the data using signal-

space projection (SSP), which was accounted for during source reconstruction (Uusitalo and 

Ilmoniemi, 1997). The continuous magnetic time series was divided into epochs of 7.2 s 

duration, with the onset of the encoding stimulus being defined as 0 s and the baseline being 

defined as the 0.4 s before encoding (i.e., −0.4 to 0 s). Thus, maintenance onset occurred at 

2.0 s and retrieval onset occurred at 5.0 s. Epochs contaminated with artifacts were rejected 

based on a fixed threshold method, supplemented with visual inspection. Non-artifactual 

trials were also randomly excluded per participant so that the total number of accepted trials 

used in the final analyses did not differ between loads. All trials where the participant 

responded incorrectly were also excluded from analysis. On average, 93.7 (SD = 8.11) and 

93.7 (SD = 8.05) trials per participant were used from the high- and low-load conditions, 

respectively, and this was not significantly different between conditions t(24) = 0.00, p = 

1.00.

The artifact-free epochs were transformed into the time-frequency domain using complex 

demodulation with a resolution of 1.0 Hz and 50 ms (range: 4 to 50 Hz). For each sensor, the 

resulting spectral power estimations were averaged across all trials to generate time-

frequency plots of mean spectral density. These sensor-level data were normalized per time-

frequency bin using the baseline power per frequency bin (i.e., mean power during the −0.4 

to 0 s time period).

The time-frequency windows used for imaging were determined by statistical analysis of the 

sensor-level spectrograms. Briefly, the data was first collapsed across both conditions and 

significant differences in spectral power relative to the baseline were computed on a sensor-

by-sensor basis for all gradiometers. To reduce the risk of false positive results while 

maintaining reasonable sensitivity, a two-stage procedure was adopted. In the first stage, 
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one-sample t-tests were conducted on each data point (i.e., 1 Hz by 50 ms bin) in the sensor-

specific spectrograms. This created a spectrogram of t-values for each gradiometer sensor 

across all participants and both conditions, and these spectrograms were thresholded at p < .

05. In stage two, the time-frequency bins that survived this threshold were clustered with 

temporally and/or spectrally neighboring bins that were also significant. For example, if both 

the 9 Hz bin at 50 ms and at 100 ms (i.e., temporally-neighboring bins) were significant 

following stage one, these bins would be clustered together in stage two. Likewise, if both 

the 9 Hz and 10 Hz bins at 50 ms (i.e., spectrally-neighboring bins) were significant 

following stage one, these bins would be clustered together in stage two. For each cluster 

resulting from this procedure, a cluster value was computed by summing the t-values of all 

data points in the cluster. Nonparametric permutation testing was then used to derive a 

distribution of cluster-values and the significance level of the observed clusters were tested 

directly using this distribution (Ernst, 2004; Maris and Oostenveld, 2007). For each 

comparison, at least 10,000 permutations were computed. Based on these analyses, only the 

time-frequency windows that contained significant oscillatory events across all participants 

and both conditions were subjected to the beamforming (i.e., imaging) analysis. Thus, a 

data-driven approach was utilized for determining the time-frequency windows that were 

entered into the source reconstruction. This data-driven approach to identifying time-

frequency windows of interest has been used in many prior studies (Embury et al., 2018; 

McDermott et al., 2017; Proskovec et al., 2018a; Spooner et al., 2018; Wiesman et al., 2018; 

Wilson et al., 2017).

2.6 MEG Source Imaging & Statistics

Cortical networks were imaged for each condition independently through an extension of the 

linearly constrained minimum variance vector beamformer (Gross et al., 2001; Hillebrand et 

al., 2005), which calculates source power for the entire brain volume by employing spatial 

filters in the time-frequency domain. The single images were derived from the cross spectral 

densities of all combinations of MEG gradiometers averaged over the time-frequency range 

of interest (i.e., those identified by the sensor-level time-frequency statistical analysis 

described above), and the solution of the forward problem for each location on a grid 

specified by input voxel space. Following convention, the source power in these images was 

normalized per participant using a separately averaged pre-stimulus noise period (i.e., 

baseline) of equal duration and bandwidth (Hillebrand et al., 2005). Thus, the normalized 

source power was computed for the statistically-determined time-frequency bands over the 

entire brain volume per participant at 4.0 × 4.0 × 4.0 mm resolution. Oscillatory responses 

that were extended in time were imaged in 0.4 s non-overlapping time bins (see section 3.2 

for the specific time-frequency windows imaged). Each participant’s functional images were 

then transformed into standardized space using the transform that was previously applied to 

the structural images and spatially resampled (see section 2.4). MEG pre-processing and 

imaging used the Brain Electrical Source Analysis (version 6.1) software.

To determine the effect of load (i.e., high vs. low), the beamformer images were statistically 

evaluated using a random effects, mass univariate approach based on the GLM. Specifically, 

for each time-frequency bin, two-tailed paired-samples t-tests were computed for each voxel 

within the whole-brain map. This created an output map of t-values, which was thresholded 
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at p < .005. All output statistical maps were then adjusted for multiple comparisons using a 

spatial extent threshold (i.e., cluster restriction; k = 300 contiguous voxels) based on the 

theory of Gaussian random fields (Poline et al., 1995; Worsley et al., 1999; Worsley et al., 

1996). Of note, we also conducted nonparametric permutation testing using a cluster-based 

method similar to that performed on the sensor-level spectrograms (see section 2.5), to 

control for Type 1 error, and our results were virtually identical between the two methods.

To specifically examine how load-related effects changed as a function of time, we 

computed load-related difference images (i.e., high load – low load) per participant for each 

0.4 s non-overlapping time bin imaged. Utilizing these difference images, a series of two-

tailed paired-samples t-tests were conducted between each neighboring 0.4 s time bin. 

Essentially, since the focus of the study was on load effects, this temporal analysis was 

restricted to only those regions containing a significant load effect in the previous analysis. 

All output statistical maps were thresholded at p < .005, and corrected for multiple 

comparisons using the same clustering threshold of 300-voxels.

Finally, given the inconsistencies regarding the effect of load on parieto-occipital alpha 

activity (see section 1.0), we sought to quantify the temporal dynamics within this region in 

greater detail. Thus, we extracted virtual sensors (i.e., voxel time series) for each condition 

from the peak voxel of the occipital cluster demonstrating the greatest difference between 

loads. To compute the virtual sensors, we applied the sensor weighting matrix derived from 

the forward solution to the preprocessed signal vector, which yielded a time series for the 

specific coordinate.

3. Results

3.1 Behavioral Analysis

One participant was excluded from all statistical analyses due to excessive artifacts in their 

MEG data, which reduced the final sample to 25 participants. These participants 

successfully completed both conditions of the task, but task performance differed between 

conditions, such that participants were significantly more accurate when performing the low-

load condition (M = 95.78%, SD = 2.76%) relative to the high-load condition (M = 87.74%, 

SD = 5.69%), t(24) = 7.96, p < .001 (Figure 2). Participants also responded significantly 

faster during low-load (M = 734.01 ms, SD = 129.47 ms) relative to high-load trials (M = 

797.85 ms, SD = 174.26 ms), t(24) = −4.51, p < .001 (Figure 2). Note that only correct trials 

were included in the MEG analysis, and that we controlled for the total number of accepted 

epochs per condition (see section 2.5) to avoid differences in the signal-to-noise ratio 

between conditions.

3.2 Sensor-Level Analysis

Statistical analyses of the time-frequency spectrograms revealed a significant cluster of 

increased theta (4–7 Hz) oscillatory activity during encoding from 0.05 to 0.30 s (p < .001, 

corrected; Figure 3). Additionally, a significant cluster of decreased alpha/low-beta (9–16 

Hz) activity was observed, which began 0.2 s after the onset of encoding, and was sustained 

throughout the remainder of encoding (p < .001, corrected; Figure 3). This response 
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dissipated shortly after the onset of maintenance at about 2.4 s, and then transitioned into a 

narrower significant increase in alpha (10–13 Hz) activity (p < .001, corrected; Figure 3). 

This alpha increase began at roughly 2.5 s (i.e., 0.5 s into the maintenance phase), and 

persisted throughout the maintenance period before sharply terminating early in the retrieval 

phase. These three oscillatory responses were observed in a large overlapping group of 

posterior gradiometers, located near the bilateral parietal and occipital cortices, across all 

participants and loads. In addition, the individual responses were also seen in other more 

anterior gradiometers. Figure 3 illustrates the results from a peak sensor located near the 

right parieto-occipital region for frequencies between 4–30 Hz, and we have included the 

results for the full 4–50 Hz frequency range that was computed as supplementary material 

(see Supplementary Figure S1). As a sanity check, we also ran the same analyses for each 

load independently, and the results were strikingly similar to those described here in which 

we collapsed across conditions (Supplementary Figure S2). As the goal of the present study 

was to characterize the impact of load on the temporal evolution of VWM-related oscillatory 

responses, we split the aforementioned alpha/beta and alpha responses into 0.4 s non-

overlapping time bins, and performed source reconstruction on the resulting time-frequency 

windows for each load independently. Specifically, we applied a beamformer to the 

following windows: 4 to 7 Hz from 0.05 to 0.30 s, 9 to 16 Hz from 0.2 to 0.6 s (Encoding 1, 

or E1), 0.6 to 1.0 s (E2), 1.0 to 1.4 s (E3), 1.4 to 1.8 s (E4), and 1.8 to 2.2 s (Transition), and 

10 to 13 Hz from 2.2 to 2.6 s (Maintenance 1, or M1), 2.6 to 3.0 s (M2), 3.0 to 3.4 s (M3), 

3.4 to 3.8 s (M4), 3.8 to 4.2 s (M5), 4.2 to 4.6 s (M6), and 4.6 to 5.0 s (M7).

3.3 Beamformer Analysis

To investigate the effect of load on the oscillatory mechanisms serving VWM encoding and 

maintenance processes, paired-samples t-tests were computed between the high- and low-

load whole-brain maps, and a cluster-correction was applied to each resulting statistical 

parametric map (SPM). Our results indicated significant load-related effects on theta (4–7 

Hz) activity during encoding in the dorsomedial prefrontal cortex, right superior frontal 

sulcus, and right inferior frontal gyrus (Figure 4; p < .005, corrected). Across all three 

regions, these differences reflected stronger theta activity in the high-load relative to the low-

load condition during early encoding.

Strong decreases in alpha/beta activity were observed across a network of largely left-

lateralized regions throughout encoding and maintenance, irrespective of load 

(Supplementary Figure S3). Given the sustained nature of the alpha/beta (9–16 Hz) and 

alpha (10–13 Hz) responses, we not only characterized the effect of load on these 

oscillations using paired-samples t-tests (high vs low load), but additionally investigated 

how such load-effects evolved as a function of time by computing difference maps (high – 

low load) for each 0.4 s time bin, and then comparing neighboring 0.4 s time bins using 

paired-samples t-tests on regions found to exhibit significant load-effects in the previous 

analysis.

During encoding, the decreases in alpha/beta were significantly stronger during the high-

load condition in the right lateral occipital cortex (0.6 to 2.2 s), left lateral occipital cortex 

(1.4 to 1.8 s), left cerebellum (0.6 to 1.0 s and 1.4 to 3.0 s), and right cerebellum (0.6 to 2.6 
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s; Figure 5; all p’s < .005, corrected). Additionally, the strength of the load-related 

differences in right lateral occipital and cerebellar alpha/beta activity significantly varied 

from E1 to E2, such that these differences grew stronger as encoding progressed (p < .005, 

corrected). A similar pattern of time-related effects were observed between E3 and E4 for 

load-related differences in left cerebellar alpha/beta activity (p < .005, corrected).

During maintenance the same pattern of load effects emerged in other brain regions, with 

significantly stronger decreases in alpha activity during the high-load condition in the left 

inferior frontal gyrus (2.6 to 4.2 s and 4.6 to 5.0 s; Figure 6), middle temporal gyrus (2.6 to 

3.8 s), supramarginal gyrus (2.6 to 4.6 s), inferior parietal lobule (2.6 to 5.0 s), lateral 

occipital cortex (2.2 to 2.6 s and 4.6 to 5.0 s), superior parietal lobule (4.2 to 5.0 s), cingulate 

cortex (3.0 to 5.0 s), hippocampal and parahippocampal regions (2.6 to 3.4 s and 4.6 to 5.0 

s), motor cortex (3.8 to 5.0 s), bilateral calcarine (2.2 to 2.6 s), and the supplementary motor 

area (4.6 to 5.0 s; all p’s < .005, corrected). Significant temporal effects were found between 

M1 and M2 for load- related differences in calcarine activity, such that differences observed 

during M1 dissipated during M2 (p < .005, corrected). During the latter half of maintenance, 

the load effects observed in the motor cortex significantly varied as a function of time from 

M4 to M7, such that these differences grew stronger from M4 to M5 and from M5 to M6, 

but then strongly dissipated during M7 (all p’s < .005, corrected). Finally, significant load 

effects were also found in right hemispheric regions, including the right supramarginal gyrus 

(3.4 to 5.0 s), postcentral gyrus (3.0 to 3.8 s), superior parietal lobule (4.2 to 5.0 s), lateral 

occipital cortex (4.6 to 5.0 s), and cerebellum (4.6 to 5.0 s) during the latter half of 

maintenance (all p’s < .005, corrected). In all of these right hemispheric regions, the load 

effects reflected stronger alpha responses during high-load VWM maintenance. 

Additionally, significant time-related effects were observed between M6 and M7 for load-

related differences in right cerebellar alpha activity, such that these differences grew stronger 

from M6 to M7 (p < .005, corrected).

In regard to the extensively studied occipital alpha responses, significant load-related 

differences emerged during maintenance in right inferior occipital areas (3.0 to 4.2 s), and 

spread to include left inferior occipital regions (3.4 to 4.2 s) in subsequent time bins (all p’s 
< .005, corrected; Figure 7). In all cases, occipital alpha increases were stronger in the high 

relative to the low-load condition. These load effects significantly varied as a function of 

time between M2 and M3 in the right occipital cortex, such that these differences grew 

stronger as maintenance progressed (p < .005, corrected; Figure 7). A similar pattern of 

temporal effects were observed in the left occipital cortex between M3 and M4 (p < .005, 

corrected; Figure 7). Lastly, these load-related alpha effects significantly dissipated from M5 

to M6 in bilateral occipital regions (p < .005, corrected; Figure 7). Altogether, the virtual 

sensor data reflecting the occipital alpha time series broadly agree with the aforementioned 

load- and time-related effects (Figure 7).

4. Discussion

In this study, we utilized the spatiotemporal precision of MEG to characterize the impact of 

load on the neural oscillations underlying VWM encoding and maintenance processes, and 

to investigate how such load effects varied as a function of time. Our data indicated increases 
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in frontal theta activity during encoding that were stronger during the high-load condition. 

Slightly later during encoding, load-sensitive decreases in alpha/beta activity emerged in the 

occipital and cerebellar cortices, with stronger decreases observed during high-load 

performance. A similar pattern of load-related effects persisted in classic VWM-related 

regions, including the left inferior frontal gyrus, middle temporal cortex, supramarginal 

gyrus, and inferior parietal lobule throughout maintenance. Finally, while increased occipital 

alpha activity was observed across loads during maintenance, this increase was accentuated 

during the maintenance of more relative to less verbal information, and the strength of these 

load-related differences varied as a function of time. Below, we discuss the implications of 

these results.

In agreement with previous research, we observed load-sensitive increases in frontal theta 

activity early during stimulus processing (Deiber et al., 2007; Onton et al., 2005). Previous 

studies have implicated similar frontal theta increases in attention-related processes across a 

variety of cognitive tasks, with increases often scaling with cognitive demand (Deiber et al., 

2007; Ishii et al., 1999; Krause et al., 2000; McDermott et al., 2017; Onton et al., 2005; 

Proskovec et al., 2018a; Proskovec et al., 2018b; Wiesman et al., 2017). For example, 

simultaneous EEG-fMRI studies of VWM have tied increases in frontal midline theta to the 

deactivation of the default mode network (Meltzer et al., 2007; Michels et al., 2010; 

Scheeringa et al., 2009), which often becomes deactivated during attention-demanding tasks 

(Fox et al., 2005; Hsieh and Ranganath, 2014). Additionally, the right inferior frontal gyrus 

is part of the ventral attention network, which has been linked to the detection of 

behaviorally relevant stimuli, and not surprisingly, increases in frontal theta are often 

observed within this region shortly after the presentation of a target (i.e., behaviorally-

relevant) stimulus (Corbetta et al., 2008; McDermott et al., 2017; Petersen and Posner, 2012; 

Proskovec et al., 2018a; Wiesman et al., 2017). Given that the load-related modulations we 

observed in frontal theta were specific to the beginning of the encoding phase, our data 

further align with the functional involvement of these responses in directing attention to 

behaviorally relevant information.

It is important to note that we did not observe increased frontal theta during the maintenance 

phase, as has been reported in previous studies on VWM (Brookes et al., 2011; Jensen and 

Tesche, 2002; Meltzer et al., 2007; Michels et al., 2010; Michels et al., 2008; Onton et al., 

2005; Scheeringa et al., 2009). However, even among those studies which did observe such 

responses, many only observed the effects in a subset of participants (Brookes et al., 2011; 

Jensen et al., 2002; Meltzer et al., 2007; Michels et al., 2008). Additionally, evidence 

suggests that sustained increases in frontal theta during WM performance are more closely 

involved in the maintenance of temporal order information, and in line with this, these 

oscillatory responses appear to be most consistently observed in VWM studies in which 

stimuli are sequentially presented (e.g., n-back tasks; Brookes et al., 2011; Deiber et al., 

2007; Gevins et al., 1997; Hsieh and Ranganath, 2014; Krause et al., 2000; Pesonen et al., 

2007; Scharinger et al., 2017). As such, the simultaneous presentation of stimuli in the 

present study, and potential inter-subject variability of the response, may partially explain 

why we did not observe robust theta responses during the maintenance phase.
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While the theta findings during encoding pertained to frontal regions, the load-related effects 

on alpha/beta activity observed slightly later during encoding involved the occipital and 

bilateral cerebellar cortices, with load-related differences growing stronger as a function of 

time in right lateral occipital and cerebellar regions, and in the left cerebellar cortex. At first 

glance, the cerebellar results may seem surprising, as previous neurophysiological studies on 

VWM have not reported load modulations in the cerebellum. However, the vast majority of 

these studies either focused exclusively on the maintenance phase, or used an n-back design, 

thereby precluding the ability to examine encoding processes specifically. Of those studies 

that have examined encoding processes specifically, many have been single-load oscillatory 

studies, and these have similarly reported decreased alpha/beta activity in the cerebellar 

cortices during VWM encoding (Heinrichs-Graham and Wilson, 2015; McDermott et al., 

2015; Proskovec et al., 2016; Wiesman et al., 2016). Previous fMRI work has also reported 

load-related modulations in cerebellar activity, with stronger recruitment found during high- 

relative to low-load VWM performance (Cairo et al., 2004; Ng et al., 2016; Veltman et al., 

2003), and has tied such cerebellar activity to covert speech processes, providing evidence 

that it supports the sub-vocal articulation of verbal stimuli during WM performance (Marvel 

and Desmond, 2010). Importantly, combined EEG-fMRI studies have demonstrated that 

alpha and beta activity are negatively associated with the fMRI blood-oxygen-level 

dependent (BOLD) signal during cognitive processing (Meltzer et al., 2007; Michels et al., 

2010; Murta et al., 2015; Scheeringa et al., 2011; Scheeringa et al., 2009). That is, decreased 

alpha and/or beta activity within a region is often believed to reflect activation of the region, 

in fMRI terms, for the task at hand (Jensen and Mazaheri, 2010; Klimesch, 2012; Klimesch 

et al., 2007; Medendorp et al., 2007), which supports the purported link between our current 

observations and those from fMRI studies. Thus, our data agree with the aforementioned 

MEG and fMRI research, and extend it by identifying load-related modulations of cerebellar 

oscillations, which grew stronger as a function of time during VWM encoding.

As for the load-related modulations of lateral occipital alpha/beta activity observed during 

encoding, these data are in agreement with previous research demonstrating verbal domain 

dominance in similar regions (Walter et al., 2003a; Walter et al., 2003b). Importantly, alpha 

activity within striate and extrastriate regions is central to visual attention, and decreases in 

alpha are often observed in regions tied to the sensory representations of attended stimuli 

(Fries et al., 2001; Handel et al., 2011; Wiesman et al., 2018). Specifically, the lateral 

occipital cortices are involved in higher-level visual processing, including the processing of 

visually-presented letters (Capilla et al., 2014; Flowers et al., 2004). Additionally, these 

regions fall along the ventral-visual pathway, also known as the “what” pathway, as it is 

directly tied to visual object recognition (Goodale and Milner, 1992; Wandell et al., 2007).

The involvement of a predominantly left-lateralized network of inferior frontal, temporal, 

and parietal regions for VWM encoding and maintenance processes also came as no 

surprise, as these regions have been intimately tied to VWM and basic language functions 

(Cabeza and Nyberg, 2000; Nee et al., 2013). Specifically, during VWM performance, the 

left supramarginal gyrus and posterior temporal regions (overlapping with Wernicke’s area) 

are believed to serve as a temporary store for phonological information, while the inferior 

prefrontal cortex (overlapping with Broca’s area) is posited to support storage processes by 

refreshing the memory traces held within the posterior store via rehearsal mechanisms 
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(Cabeza and Nyberg, 2000; Fegen et al., 2015; Smith and Jonides, 1997; Smith et al., 1998). 

Also important within this network is the left inferior parietal lobule, which has been 

associated with the top-down allocation of attention to neural representations relevant to the 

task at hand (Nee et al., 2013). The stronger recruitment of these regions during the high-

load condition, and the fact that the strength of these load-related modulations were static 

across successive time windows, further bolsters the functional significance of these regions 

in verbal retention processes, and aligns with a large body of fMRI and PET research which 

found similar load-related effects (Cabeza and Nyberg, 2000; Nee et al., 2013; Nystrom et 

al., 2000; Owen et al., 2005; Reuter-Lorenz et al., 2000; Rottschy et al., 2012; Smith and 

Jonides, 1997; Wager and Smith, 2003; Walter et al., 2003a; Walter et al., 2003b), as well as 

previous MEG studies that reported sustained decreases in alpha/beta activity within left 

inferior frontal, temporal, and parietal regions during VWM performance (Brookes et al., 

2011; Heinrichs-Graham and Wilson, 2015; Proskovec et al., 2016). That is, one would 

logically presume that regions linked to the storage and rehearsal of verbal information 

during WM would be taxed to a greater extent as more content is needing to be retained, and 

the pattern of results reported here fully supports this. Finally, the load-related modulations 

of left hippocampal alpha activity that we observed during maintenance closely resemble the 

linear decrease in maintenance-specific hippocampal alpha/beta activity with increasing 

visual WM load found in a recent intracranial-EEG study, which implicated these responses 

in memory activation (Leszczynski et al., 2015).

Beyond identifying load-related alterations in left-hemispheric oscillatory dynamics, a goal 

of the present study was to shed light on the discrepant load-related effects concerning 

posterior alpha activity. To briefly recap, some studies have found increases in posterior 

alpha with increasing VWM load (Jensen et al., 2002; Meltzer et al., 2007; Michels et al., 

2010; Michels et al., 2008; Pavlov and Kotchoubey, 2017; Scheeringa et al., 2009), while 

others have reported decreases in posterior alpha with increasing load (Gevins et al., 1997; 

Krause et al., 2000; Meltzer et al., 2007; Michels et al., 2010; Michels et al., 2008; Pavlov 

and Kotchoubey, 2017; Pesonen et al., 2007; Scharinger et al., 2017; Stipacek et al., 2003). 

Resolving these inconsistencies is particularly relevant, as prior work suggests that increased 

parieto-occipital alpha activity during WM maintenance serves to protect memory 

representations. Essentially, increased parieto-occipital alpha is believed to reflect the 

functional inhibition of the dorsal visual stream during maintenance, thereby thwarting the 

processing of visual information irrelevant to the task at hand, and preserving the integrity of 

memory traces relevant to the current goal, which are stored elsewhere (e.g., left 

supramarginal/posterior temporal regions during VWM; Bonnefond and Jensen, 2012; 

Jensen et al., 2002). In alignment with some of the aforementioned studies, our data indicate 

stronger increases in occipital alpha activity during the maintenance of more relative to less 

verbal items. Importantly, these increases in occipital alpha were preceded in time by strong 

decreases in alpha activity during the encoding phase, within the same cortical regions. 

Given the temporal dynamics identified here, it is not surprising that the literature includes 

two opposing patterns of load-related effects on occipital alpha, as in some of the 

aforementioned studies encoding and maintenance processes were occurring simultaneously. 

Further, our time-dependent analysis indicated that load-effects on occipital alpha were 

dynamic, with load-related differences growing in strength during the first half of 

Proskovec et al. Page 12

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maintenance, and then sharply dissipating in the latter half of maintenance. Thus, even in 

those studies that were able to focus exclusively on load effects during maintenance, there is 

the possibility of conflicting results depending on the specific time period of interest. 

Furthermore, some of the previous studies were limited in their spatial precision, and this 

presents an additional concern as our results demonstrate decreased alpha activity in nearby 

parietal cortices during overlapping time periods. This parietal region exhibited stronger 

decreases during high-load VWM, which of course is opposite to the pattern of load-related 

effects observed in more central occipital regions. In sum, our results stress the importance 

of spatiotemporal specificity when investigating the impact of load on the oscillatory 

mechanisms serving VWM, and provide new information on how spectrally-specific load 

modulations evolve as a function of time.

While our results provide critical new insight, the study was not without limitations. For 

example, we did not investigate the impact of load on functional connectivity between the 

areas identified in our analyses, and previous neurophysiological studies have demonstrated 

theta and alpha functional connectivity, as well as theta-gamma coupling during WM 

performance (Freunberger et al., 2011; Sauseng et al., 2010; Sauseng et al., 2005; Wiesman 

et al., 2016). Thus, future studies should investigate load- and time-dependent effects on 

functional connectivity during VWM performance. Additionally, evidence suggests that 

ongoing theta and alpha oscillations in regions along the ventral visual pathway may reset 

following the presentation of encoding stimuli during visual WM performance (Rizzuto et 

al., 2003), and future load-investigations should further examine how and if such resetting 

affects the dynamics of the neural oscillations serving VWM. Finally, it would be intriguing 

to further probe some of the functional interpretations of specific WM-related oscillatory 

responses presented in the literature, and adopted in the present study. For example, as 

increases in parieto-occipital alpha oscillations are believed to reflect the inhibition of the 

dorsal visual stream during VWM maintenance, including a condition(s) in which a visual 

distractor is presented during maintenance, while employing a similar analytical approach as 

that used in the present study, would be an intuitive and interesting next step.

5. Conclusions

The present study offers novel insight on load-related alterations in the neural oscillations 

serving encoding and maintenance operations during VWM processing, and is the first to 

investigate how the strength of such load effects change as a function of time via a whole-

brain approach. Our results demonstrate spectrally-specific transient and sustained load-

related effects across a network of WM-related regions. Additionally, while the strength of 

load-related effects were dynamic in some regions during specific phases of VWM 

performance, other regions demonstrated rather static load-related differences across time. 

These patterns may have important implications in the resolution of conflicting load-related 

effects reported in previous neurophysiological studies on VWM.
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Highlights

• The impact of load on working memory-related oscillations has been 

inconsistent

• Adults performed a load-varying verbal working memory task during MEG

• MEG data were subjected to a beamformer and advanced oscillatory analysis 

methods

• Load distinctly modulated behavior, encoding- and maintenance-related 

oscillations

• Load-related effects were dynamic and involved a network of left cortical 

regions
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Figure 1. 
Verbal working memory task. A trial began with the presentation of a fixation cross 

embedded within an empty grid for 1300 ms, followed by the appearance of four (low load) 

or six (high load) consonants within the grid for 2000 ms (encoding), an empty grid for 3000 

ms (maintenance), and finally, the probe letter for 900 ms (retrieval). During retrieval, 

participants responded via button pad whether the probe letter was in the previous encoding 

set (yes/no).
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Figure 2. 
Behavioral results for the verbal working memory task with accuracy (% correct) depicted in 

the left panel, and reaction time (ms) in the right panel. Performance differed between loads, 

such that participants took longer to respond and were less accurate during the high-load 

(dark blue) relative to the low-load (light blue) condition (p < .001).
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Figure 3. 
Time-frequency spectrogram with time (s) shown on the x-axis and frequency (Hz) denoted 

on the y-axis. Percent power change was computed for each time-frequency bin relative to 

the respective bin’s baseline power (−0.4 to 0.0 s). The color legend is displayed to the right. 

Data represent a peak sensor, collapsed across loads, located near the parieto-occipital 

cortex. A strong increase in theta activity occurred immediately following encoding onset, 

and this was followed by strong decreases in alpha/beta activity during later encoding, which 

evolved into a narrower increase in alpha activity during maintenance. The time-frequency 

windows selected for beamforming (i.e., those containing significant oscillatory responses 

relative to baseline activity) are depicted by the white-dashed boxes.
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Figure 4. 
Memory load significantly (p < .005, corrected) affected theta oscillations during the early 

encoding phase in a frontal midline region, the right superior frontal sulcus, and right 

inferior frontal gyrus. Increases in frontal theta were stronger during the high-load condition 

in all of these regions.
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Figure 5. 
Significant load effects (p < .005, corrected) on alpha/beta oscillatory activity during the 

encoding phase in bilateral cerebellar and lateral occipital cortex are displayed. Stronger 

decreases in alpha activity were observed within these regions during the high- relative to 

low-load condition. This pattern persisted throughout the majority of the encoding phase.
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Figure 6. 
Significant load effects (p< .005, corrected) during the maintenance phase were observed in 

the left lateral occipital cortex, cerebellum, inferior frontal gyrus, middle temporal gyrus, 

supramarginal gyrus, and inferior parietal lobule, among other regions. Stronger decreases in 

alpha activity were observed within these regions during the high- relative to low-load 

condition. This pattern persisted throughout the majority of the maintenance phase.
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Figure 7. 
Significant load effects on occipital alpha activity are shown in the statistical parametric 

maps (SPM) at the top, while significant load by time effects are shown in the SPMs at the 

bottom (p < .005, corrected). Stronger increases in occipital alpha activity were observed 

during high- relative to low-load maintenance from 3.0 to 4.2 s, and the strength of these 

load effects varied as a function of time. Time courses of alpha activity from the peak 

occipital voxel (middle; high load: yellow, low load: orange) show the same load effects 

with greater temporal precision.
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