
ar
X

iv
:1

80
7.

08
94

9v
2

 [
cs

.C
C

]
 9

 N
ov

 2
02

3

A Note on Clustering Aggregation for Binary Clusterings

Jiehua Chen1 and Danny Hermelin2 and Manuel Sorge1

1TU Wien, Institute for Logic and Computation, TU Wien, Austria
2Ben-Gurion University of the Negev, Beer Sheva, Israel

jiehua.chen@ac.tuwien.ac.at hermelin@bgu.ac.il manuel.sorge@ac.tuwien.ac.at

November 10, 2023

Abstract

We consider the clustering aggregation problem in which we are given a set of clusterings
and want to find an aggregated clustering which minimizes the sum of mismatches to the input
clusterings. In the binary case (each clustering is a bipartition) this problem was known to be
NP-hard under Turing reductions. We strengthen this result by providing a polynomial-time
many-one reduction. Our result also implies that no 2o(n) · |I ′|O(1)-time algorithm exists that
solves any given clustering instance I ′ with n elements, unless the Exponential Time Hypothesis
fails. On the positive side, we show that the problem is fixed-parameter tractable with respect
to the number of input clusterings and we give an integer linear programming formulation.

1 Introduction

Clustering is a fundamental data analysis task; in a basic form we aim to partition a set of given
entities into groups of pairwise similar entities. Nowadays, each entity is often specified by multiple
attributes. For example, in a social network a user may have a profile that consists of a description,
a GPS or other location trace, and lists of friends, of liked posts, of visited websites, and so on. It
is desirable to take aspects of these different attributes into account when computing a clustering.
This desire sparked the fields of so-called multi-view [22, 17, 7], multi-layer [14, 23], or ensemble-
based clusterings [18, 6, 19, 3]. A common strategy to obtain the overall clustering is then, to
compute clusterings based on individual attributes and, afterwards, to aggregate the clusterings
into a single consensus clustering [18, 6, 9, 3]. For instance, we may first individually cluster
the social-network users according to their friendship relation graph, then cluster them based on
meetings they had in the location trace, then on the similarity of visited websites, and finally
aggregate all these clusterings into one. The problem that we are interested in this article is the
following: Given a set of clusterings, how to compute a consensus clustering?

A common interpretation of a consensus clustering C is one that is closest to the input clusterings
by minimizing the sum over all input clusterings D of some distance measure between C and D (see
the survey [3]). A fundamental way to measure the distance between two clusterings C and D is
to count the number of pairs of entities that are clustered differently by C and D [9]. That is, to
count the number of pairs that are together in one cluster in C and in two different clusters in D
and vice versa. This distance measure is known as the Mirkin distance [16].

1

http://arxiv.org/abs/1807.08949v2

We in particular focus on the case of binary clusterings, that is, clusterings into two clusters.
Thus, we arrive at the problem of, given a set S of binary clusterings, to compute a binary clustering
that minimizes the sum of Mirkin distances to the clusterings in S. We call (the decision variant
of) this problem Mirkin Distance Minimization. See Section 2 for the formal definitions.

Our contributions Our main result in this paper is a tight running-time bound for the Mirkin
Distance Minimization problem. Specifically, there is a straightforward brute-force algorithm
that solves the problem in O(2n · nm) time, where n denotes the length of the input strings and m
their number: The algorithm simply tries all 2n solution strings and checks their Mirkin distance to
the input. At first glance it seems a O(n2)-time factor is needed to compute the Mirkin distance of a
guessed solution string and the input strings. Note that for binary input strings, the Mirkin distance
can be computed via the Hamming distance (see Section 2), which can be computed in O(n) time.
Unfortunately, the running time of this brute-force algorithm cannot be substantially improved:
We show, using an intricate reduction, that the problem cannot be solved in 2o(n) · (nm)O(1) time
unless the Exponential Time Hypothesis (ETH) [12] fails. This settles the form of the asymptotic
complexity with respect to the parameter n. In the second part of the paper, we consider the
parameter m of input strings, we show that the problem is fixed-parameter tractable with respect
to m, and we give an integer linear programming (ILP) formulation.

Related work Dörnfelder et al. [5] showed that Mirkin Distance Minimization is NP-hard
under Turing reductions (see their Theorem 3). That is, they gave a construction that takes
an instance I of the so-called Cluster Editing problem and produces a polynomial number of
instances of Mirkin Distance Minimization such that one of these instances is positive if and
only if I is. Instead, we show that we can map each instance of NAE-3SAT to a single equivalent
one of Mirkin Distance Minimization. (NAE-3SAT is the variant of 3SAT in which we want
to a find an assignment of truth values to variables such that each clause contains a satisfied and
an unsatisfied literal.) Moreover, our prudent use of gadgets also allows us to give a tight lower
bound for the running time assuming the ETH.

Mirkin Distance Minimization is a variant of the NP-hard Clustering Aggregation [9]
problem (aka. Consensus Clustering [6] or Clusters Ensembles [18]) from machine learning
and bioinformatics. Therein, we have as input a multiset P of m partitions on an n-element set U
and the goal is to search for a target partition P ∗ that minimizes the sum of Mirkin distances to
all m partitions.

Let us now view clusterings from a relational point of view. Recall that a partition on the
set U is an equivalence relation ∼ (i.e., reflexive, symmetric, and transitive) over U × U . Each
partition can be represented by the equivalence classes of the corresponding equivalence relation.
We can thus alternatively define the Mirkin distance between two partitions as the number of pairs
of elements which are equivalent in one partition but non-equivalent in the other, or the other way
round.

Mirkin Distance Minimization has applications in voting theory and is also a restriction
of the Binary Relation Aggregation via Median Procedure problem [1, 20, 21, 11]. The
latter problem takes as input a set of alternatives C and a set of votes expressed as binary relations
over C × C, and aims at finding a binary relation with minimum sum of symmetric-difference
distances to the votes [1]. The symmetric-difference distance between two binary relations s and t
is simply the cardinality of their symmetric differences δ(s, t) = |s \ t|+ |t \ s|. It is straightforward

2

to see that for equivalence relations the symmetric-difference distance equals two times the Mirkin
distance.

Relatedly, we considered a problem called p-Norm Hamming Centroid, which, for some fixed
p > 1, is to find a centroid string which minimizes the p-norm of its Hamming distances to the input
strings [4]. When the objective is to maximize instead of minimize the distances and when p = 2,
the Mirkin Distance Minimization problem can be reduced to this maximization variant.

Remarks In 2017, Jiehua Chen participated in the working group on “Aggregation Procedures
with Nonstandard Input and Output Types” of the Dagstuhl seminar on “Voting: Beyond Sim-
ple Majorities and Single-Winner Elections” that our friend Gerhard Woeginger also attended [2].
One of the open questions to be addressed in the working group is concerned about the computa-
tional complexity of Mirkin Distance Minimization proposed by Bill Zwicker (Union College).
Gerhard immediately pointed out that the objective function underlying Mirkin Distance Min-
imization is not convex. Although the working group did not settle the computational complexity
of Mirkin Distance Minimization, we would like to dedicate this article to Gerhard due to his
insightful comments and discussions during the seminar.

2 Preliminaries

For an integer t, let [t] denote the subset {1, . . . , t}. For ease of presentation, we will throughout
view the Mirkin Distance Minimization problem as a problem on binary strings, i.e., tuples in
{0, 1}∗. We abbreviate binary strings as strings if it is clear from the context. Let s and s′ be two
strings. Then, we use s ◦ s′ to denote the concatenation of s and s′ and |s| and s to denote the
length and the complement of s. By s[i] we mean the value of string s at the ith coordinate. and we
write s[i, j] as shorthand of s[i]s[j]. Given two integers i, j ∈ {1, 2, . . . , |s|} with i ≤ j, we use the
notation s|ji to denote the substring s[i]s[i + 1] · · · s[j]. Further, let hd(s, s′) denote the Hamming
distance between strings s and s′, i.e., the number of coordinates at which the values of s and s′

differ. For instance, hd(0101, 1100) = 2.
Given two binary strings s and s′, and an integer i with 1 ≤ i ≤ |s| + 1, by ins(s, s′, i) we

mean the string obtained by inserting the string s′ into s just before the ith position. For instance,
ins(0110, 00, 3) = 010010. In particular, ins(s, s′, 1) = s′ ◦ s and ins(s, s′, |s|+ 1) = s ◦ s′.

The Mirkin distance mirk(s, s′) [16] between two equal-length strings s and s′ counts the number
of mismatches for each pair of coordinates. Formally, Mirk(s, s′) = {{i, j} : (s[i] = s[j] ∧ s′[i] 6=
s′[j])∨(s[i] 6= s[j]∧s′[i] = s′[j])}, andmirk(s, s’) = |Mirk(s, s′)|. For instance, Mirk(01 001, 01 110) =
{{i, j} | i ∈ {1, 2} ∧ j ∈ {3, 4, 5}}, so mirk(01 001, 01 110) = 6. For binary strings, the Mirkin
distance has an alternative definition that uses Hamming distances:

mirk(s, s′) = hd(s, s′) · hd(s, s′) = hd(s, s′) · (n− hd(s, s′)).

In this paper, we will use the alternative definition extensively. Note that, by the above formulation,
the Mirkin distance function is not convex.

Let S be a collection of strings of length n each and let s∗ denote an arbitrary length-n string.
The Mirkin distance between s∗ and S is the sum of the Mirkin distances between s∗ and each string
in the sequence: mirk(s∗, S) =

∑

s′∈S mirk(s∗, s′). The Mirkin distance between s∗ and S regarding
a pair {i, j}, i 6= j ∈ [n], is the Mirkin distance between s∗[i, j] and the multiset {s′[i, j] | s′ ∈ S}.

The formal statement of the problem is as follows:

3

Mirkin Distance Minimization
Input: A collection S of strings s1, . . . , sm ∈ {0, 1}

n and an integer k.
Question: Is there a string s∗ ∈ {0, 1}n such that mirk(s∗, S) ≤ k?

3 NP-hardness for Mirkin Distance Minimization

In this section, we show that Mirkin Distance Minimization is indeed NP-hard by utilizing a
gadget that Dörnfelder et al. [5] used to enforce that the Mirkin distance for each two coordinates,
when restricted to only these two coordinates, is exactly half the number of the input strings since
exactly half of the input strings have the same value (00 or 11) and the other half have different
values (01 or 10). Algorithm 1 computes such a kind of gadget. Note that, however, this type of
gadget alone is not enough to devise a many-one hardness reduction. This gadget can be used to
encode truth-values of variables in a reduction from NAE-3SAT but an essential difficulty that
remains is to find gadgets that encode clause satisfaction.

Algorithm 1: Algorithm for constructing 2ℓ binary strings of length 2ℓ each such that for
each two coordinates, half of the strings have the same value and the other half not.

1 Build(2ℓ):
2 if ℓ = 1 then return (00, 01)
3 else

4 (s1, s2, . . . , s2ℓ−1)← Build(2ℓ−1)
5 return (s1 ◦ s1, s1 ◦ s1, . . . , s22ℓ−1 ◦ s22ℓ−1 , s22ℓ−1 ◦ s22ℓ−1)

We show that the strings constructed by Algorithm 1 fulfills our requirement above.

Proposition 1. Let S be the sequence of strings constructed by Algorithm 1. Then, for each two
distinct coordinates i, j ∈ {1, 2, . . . , 2ℓ},

(1) there are |S|/2 strings from S, called a1, a2, . . . , a|S|/2, such that ar[i] = ar[j], r ∈ [|S|/2], and

(2) there are |S|/2 strings from S, called b1, b2, . . . , b|S|/2, such that br[i] 6= br[j], r ∈ [|S|/2].

Proof. We show the statement via induction on ℓ. For ℓ = 1, Algorithm 1 returns (00, 01). Our two
statements follow immediately. Assume that sequence S′ = Build(2ℓ−1) satisfies the proposition
and let S′ = (s1, . . . , s2ℓ−1). We show that S = Build(2ℓ) also satisfies the proposition. By
Algorithm 1, we have S = (sr ◦ sr, sr ◦ sr)sr∈S′ .

Consider two distinct coordinates i, j ∈ {1, 2, . . . , 2ℓ}. Obviously, by our induction assumption,
the two statements hold if 1 ≤ i, j ≤ 2ℓ−1 or 2ℓ−1+1 ≤ i, j ≤ 2ℓ. Thus, we assume that 1 ≤ i ≤ 2ℓ−1

and 2ℓ−1 + 1 ≤ j ≤ 2ℓ (the other case when 1 ≤ j ≤ 2ℓ−1 and 2ℓ−1 + 1 ≤ i ≤ 2ℓ is analogous).
By construction, S consists of the following strings sr ◦ sr and sr ◦ sr, r ∈ [2ℓ−1]. By our choice
of i and j it follows that both strings have the same value at coordinate i and a different value at
coordinate j. Hence, for each r ∈ [2ℓ−1], one of the strings from {sr ◦ sr, sr ◦ sr} has the same value
at i and j, and the other does not. The two statements follow immediately.

To show NP-hardness, we reduce from Not-All-Equal 3-SAT (NAE-3SAT) [8], which,
given a set of size-three clauses, asks whether there is a satisfying truth assignment, that is, each
clause has at least one true literal and at least one false literal.

4

Theorem 1. Mirkin Distance Minimization is NP-hard.

Proof. As mentioned, we reduce from the NP-hard NAE-3SAT problem [8]. Let I = (X, C) be an
instance of NAE-3SAT, where X = {x1, . . . , xn} denotes a set of n variables and C = {c1, . . . , cm}
denotes a set of m clauses of size three each. By introducing variables that do not occur in any
clauses, we assume without loss of generality that n = 2ℓ + 1 for some ℓ. We construct two groups of
binary strings where each string is of length 2n = 2ℓ+1+2. Each variable will be encoded by a pair
of two consecutive coordinates in the string, one at an odd position, one at an even position. We
use the gadget constructed via Algorithm 1 to enforce that these two coordinates will always have
the same value so that 11 will correspond to setting the variable to true while 00 will correspond
to setting the variable to false.

The strings are built on two groups of strings.

Group 1. Let S = Build(2ℓ+1) (see Algorithm 1); note that |S| = 2n − 2. Then, for each in-
teger r ∈ [n] (representing the index of a specific variable) we introduce 2ℓ+1 strings as
follows. For each string si ∈ S, construct two strings with the forms ins(si, 11, 2r − 1) and
ins(si, 11, 2r − 1). Note that each of the newly constructed strings has length 2ℓ+1 + 2 = 2n.
Let Sr denote the sequence that contains the newly introduced strings.

For instance, for r = 2, ℓ = 1, sequences S and Sr consist of 2
ℓ+1 = 4 and 2 · 2ℓ+1 = 8 strings,

respectively:

S : 00 00,

00 11,

01 01,

01 10.

Sr : 00 11 00,

00 11 11,

01 11 01,

01 11 10,

11 11 11,

11 11 00,

10 11 10,

10 11 01.

Group 2. For each clause cj ∈ C, let ℓ1, ℓ2, ℓ3 be the three literals contained in cj . We define three

strings t
(1)
j , t

(2)
j , t

(3)
j ∈ {0, 1}

2n as follows:

∀(i, z) ∈ [n]× [3] :

t(z)[2i− 1, 2i] =

11, ℓz = xi,

00, ℓz = xi,

00, ℓy = xi for some y ∈ [3] \ {z},

11, ℓy = xi for some y ∈ [3] \ {z},

01, otherwise.

5

For instance, for clause cj = (x1, x2, x3), the three corresponding strings are

t
(1)
j = 00 00 11 01 01 . . . 01,

t
(2)
j = 1111 11 01 01 . . . 01,

t
(3)
j = 1100 00 01 01 . . . 01.

Let Tj = {t
(1)
j , t

(2)
j , t

(3)
j }.

Let L = 3m · n2. Then, let I ′ be an instance consisting of the following strings: For each r ∈ [n],
add L copies of Sr to I ′. For each j ∈ [m], add Tj to I ′. To complete the construction, let
k = L · n ·

[(2n−2
2

)

+ (4n − 4)
]

· (2n− 2) +m · (3n2 − 11). Clearly, the construction can be done in
polynomial time since Build(2ℓ+1) takes O(22ℓ+2) = O(n2) time.

We claim that the instance I has a satisfying truth assignment, that is, each clause has a true
literal and a false literal, if and only if there is a binary string s that has a Mirkin distance of at
most k to the strings from I ′.

Before we show the correctness of the construction, we present two observations which will help
us to determine the solution string for I ′.

Claim 1. Let s∗ be an arbitrary binary string of length 2n. For each integer r ∈ [n], the following
holds.

(1) If s∗[2r − 1, 2r] ∈ {01, 10}, then mirk(s∗, Sr) =
[(

2n−2
2

)

+ (4n − 4)
]

· (2n − 2) + (4n − 4).

(2) If s∗[2r − 1, 2r] ∈ {00, 11}, then mirk(s∗, Sr) =
[(

2n−2
2

)

+ (4n − 4)
]

· (2n − 2).

Proof. By the construction of Sr, we have the following (see also Proposition 1).

– For each pair {i, j} ⊆ [2n] \ {2r − 1, 2r} we have

1. |Sr|/2 strings s from Sr such that s[i] = s[j], and
2. |Sr|/2 strings s from Sr such that s[i] 6= s[j].

This means that the Mirkin distance from s∗ to Sr regarding the pair {i, j} is always |Sr|/2.

– For each coordinate i ∈ [2n]\{2r−1, 2r}, it holds that |Sr|/2 strings from Sr have a 0 in column i
and |Sr|/2 strings from Sr have a 1 in column i. Since all strings have a 1 in column 2r−1 (resp.
2r), the Mirkin distance from s∗ to Sr regarding the pair {i, 2r− 1} (resp. {i, 2r}) is also |Sr|/2.

– The Mirkin distance from s∗ to Sr regarding the pair {2r−1, 2r} is |Sr| if s
∗[2r−1, 2r] ∈ {01, 10};

otherwise it is zero.

In total, if s∗[2r − 1, 2r] ∈ {01, 10}, then we have

mirk(s∗, Sr) =

(

2n− 2

2

)

·
|Sr|

2
+ 2 · (2n − 2) ·

|Sr|

2
+ |Sr|

=

[(

2n− 2

2

)

+ (4n − 4)

]

· (2n − 2) + (4n− 4);

6

otherwise, we have

mirk(s∗, Sr) =

(

2n− 2

2

)

·
|Sr|

2
+ 2 · (2n − 2) ·

|Sr|

2

=

[(

2n− 2

2

)

+ (4n − 4)

]

· (2n − 2).

(of Claim 1) ⋄

Below we will sometimes interpret binary strings of length n as truth assignments to the variables
in X, where the ith character assigns the corresponding truth value to variable xi. Define also
γ : {0, 1}n → {0, 1}2n by γ(e1 · · · en) = (e1e1 · · · enen).

Claim 2. Let cj ∈ C be an arbitrary clause. Then, for each s ∈ {0, 1}n, we have that mirk(γ(s), Tj) ≥
3n2 − 11. Moreover, the equality is attained if and only if the string s, interpreted as a truth as-
signment to the variables xi, i ∈ {1, . . . , n}, satisfies cj with at least one true literal and at least one
false literal.

Proof. Assume, without loss of generality, that the literals in cj correspond to the first, the second,
and the third variable x1, x2, and x3 (each in either a positive or a negative form). For each

string t
(z)
j ∈ Tj with z ∈ {1, 2, 3}, by the definition of the Hamming distance, hd(γ(s), t

(z)
j) =

hd(γ(s)|61, t
(z)
j |

6
1)+hd(γ(s)|2n7 , t

(z)
j |

2n
7). By the definition of t

(z)
j regarding the positions from 7 to 2n,

we have that hd(γ(s)|2n7 , t
(z)
j |

2n
7) = n− 3.

Assume that s satisfies cj with the ath literal being true and the bth literal being false, a, b ∈
{1, 2, 3} and a 6= b. Let z ∈ {1, 2, 3} \ {a, b}. We distinguish between two cases. If ℓz is true under

s (i.e., the zth coordinate of string s is a 1 if ℓz = xz and a 0 otherwise), then hd(γ(s)|61, t
(a)
j |

6
1) =

2 = hd(γ(s)|61, t
(z)
j |

6
1) while hd(γ(s)|61, t

(b)
j |

6
1) = 6. If ℓz is false under s (i.e., the zth coordinate of

string s is a 1 if ℓz = xz and a 0 otherwise), then hd(γ(s)|61, t
(a)
j |

6
1) = 0 while hd(γ(s)|61, t

(b)
j |

6
1) =

hd(γ(s)|61, t
(z)
j |

6
1) = 4. In other words, we have that {hd(γ(s), t

(a)
j), hd(γ(s), t

(b)
j)} = {n − 1, n + 3}

if ℓz is true under s; otherwise {hd(γ(s), t
(a)
j), hd(γ(s), t

(b)
j)} = {n − 3, n + 1}. In both cases,

hd(γ(s), t
(z)
j) ∈ {n−1, n+1}. In both cases, using the alternative definition of the Mirkin distance,

we thus have that

mirk(γ(s), Tj) = (n2 − 9) + (n2 − 1) + (n2 − 1) = 3n2 − 11.

Now assume that under s either all literals from cj are true or all literals from cj are false.

For the first case, for each z ∈ {1, 2, 3}, we have hd(γ(s)|61, t
(z)
j |

6
1) = 4, implying mirk(γ(s), t

(z)
j) =

hd(γ(s), t
(z)
j) · (2n − hd(γ(s), t

(z)
j)) = n2 − 1. For the other case, for each z ∈ {1, 2, 3}, we have

hd(γ(s)|61, t
(z)
j |

6
1) = 2, implying mirk(γ(s), t

(z)
j) = hd(γ(s), t

(z)
j) · (2n−hd(γ(s), t

(z)
j)) = n2−1 as well.

Altogether, we have mirk(γ(s), Tj) = 3(n2 − 1) > 3n2 − 11. (of Claim 2) ⋄

Now, we are ready to show the correctness, that is, I = (X, C) admits a truth assignment such
that each clause in C has a true literal and a false literal if and only if there is a string s∗ whose
Mirkin distance to the strings in I ′ is at most k = L ·n ·

[(2n−2
2

)

+ (4n− 4)
]

·(2n−2)+m ·(3n2−11).

7

For the “only if” direction, assume that s ∈ {0, 1}n is a satisfying assignment for C such that
each clause cj ∈ C has at least one true literal and at least one false literal. Claim 2 indicates that
γ(s) has Mirkin distance 3n2 − 11 to each triple in Tj that corresponds to a clause cj . The second
statement in Claim 1 indicates that γ(s) has Mirkin distance

[(

2n−2
2

)

+ (4n− 4)
]

· (2n − 2) to all
strings in Sr that correspond to the variable xr. Altogether, the Mirkin distance between γ(s) and
all strings in I ′ is m · (3n2 − 11) + L · n ·

[(

2n−2
2

)

+ (4n− 4)
]

· (2n− 2) = k, as desired.
For the “if” direction, assume that s∗ ∈ {0, 1}2n is a string whose Mirkin distance to all strings

in I ′ is at most k. First, we claim that s∗ has the form s∗ = e1e1 · · · enen with ei ∈ {0, 1} for all
1 ≤ i ≤ n. Suppose, towards a contradiction, that s∗ is not of the desired form, and let i ∈ [n] be
an integer such that s∗[2i − 1, 2i] ∈ {01, 10}. Then, by the first statement in Claim 1, the Mirkin
distance of s∗ to the first group of strings in I ′ will be at least

L · n ·

[(

2n− 2

2

)

+ (4n− 4)

]

· (2n − 2) + L · (4n − 4),

which exceeds the distance bound k = L · n ·
[(2n−2

2

)

+ (4n − 4)
]

· (2n − 2) +m · (3n2 − 11) since
L > m · (3n2 − 11) and n ≥ 2, a contradiction.

Thus, s∗ has the form s∗ = e1e1 · · · enen with ei ∈ {0, 1} for all 1 ≤ i ≤ n. We show that
s = e1 · · · en is a satisfying assignment for C such that each clause has at least one true literal and
at least one false literal. By the above reasoning, the Mirkin distance of s∗ to the second group of
strings can be at most m · (3n2 − 11). Since there are m triples in the second group, one for each
clause, the average Mirkin distance of s∗ = γ(s) to each triple is 3n2 − 11. By Claim 2 the Mirkin
distance of s∗ to each triple in the second group is indeed 3n2 − 11, meaning that under s each
clause has at least one true literal and one false literal, as desired.

The running time lower bound for Mirkin Distance Minimization relies on the following
proposition.

Proposition 2. Unless the Exponential Time Hypothesis fails, NAE-3SAT does not admit any
sub-exponential time 2o(n+m) ·(n+m)O(1) algorithm, where n and m denote the number of variables
and clauses respectively.

Proposition 2 follows from Theorem 46 Point 7 by Jonsson et al. [13] where the authors in
particular show that, if the satisfiability problem for a finite constraint language is NP-hard, then
a subexponential-time algorithm for this satisfiability problem would refute the Exponential Time
Hypothesis, even in the case where each variable occurs only a constant number of clauses.

As a corollary, we obtain a running time lower bound for our problem.

Corollary 1. Unless the Exponential Time Hypothesis fails, there is no algorithm that solves any
given instance I ′ of Mirkin Distance Minimization in time 2o(n̂) · |I ′|O(1) where n̂ is the length
of the input strings.

Proof. To show the statement, note that the length n̂ of the strings that we constructed in the
proof of Theorem 1 is exactly 2n, where n is the number of variables in the NAE-3SAT instance.
Hence, a sub-exponential running time for our problem will contradict Proposition 2.

8

4 Parameter Number m of Strings and an Integer Linear Pro-

gramming Formulation

In this section, we show that Mirkin Distance Minimization is fixed-parameter tractable with
respect to the number m of input strings and we give an integer linear programming (ILP) for-
mulation. To achieve this, we show that a solution can be represented by a binary string whose
entries correspond to the column types of the input (to be defined shortly). Interpreting this string
as a set of variables and trying all assignments of values it will then follow that Mirkin Distance
Minimization is solvable in time O(22

m

·m · n).
The ILP also builds on the above-mentioned set of variables. We note that an integer program-

ming approach similar to ours is applicable in many string problems whenever the columns of the
input can be grouped together in order to be represented by a constant number of variables [10, 4].
Here, however, the resulting mathematical programming formulation is not linear at first because
the straightforward way to model the Mirkin distance involves multiplications of binary variables.
We give additional reformulation tricks such that we can safely omit the square of binary variables,
and such that we can introduce some extra variables to avoid multiplications of binary variables,
resulting in an integer linear programming formulation.

Before presenting the ILP formulation, we observe a useful property of an optimal solution that
allows us to introduce only binary variables, one for each column type. Herein, given a non-empty
sequence S = (s1, . . . , sm) of length-n strings, we say that two columns j, j′ ∈ [n] have the same
type if for each i ∈ [m] it holds that si[j] = si[j

′]. The type of column j is its equivalence class in
the same-type relation. Thus, each type is represented by a vector in {0, 1}m.

Lemma 1. Let S be a sequence of m strings, each of length n, and let s∗ be a solution with
minimum Mirkin distance to S. If two distinct columns j and j′ with j, j′ ∈ [n] have the same type
with respect to S, then it holds that s∗[j] = s∗[j′].

Proof. Towards a contradiction, suppose that s∗[j] 6= s∗[j′]. We will show that making these two
columns have the same values, either 0 or 1, will result in a better solution, i.e., a string with
smaller Mirkin distance. Let s∗00 (resp. s∗11) be a string that we obtain from s∗ by replacing with
00 (resp. 11) the values at positions j and j′. Formally, we have s∗00[j, j

′] = 00 and s∗11[j, j
′] = 11,

and for each ℓ ∈ [n] \ {j, j′}, we have s∗00[ℓ] = s∗11[ℓ] = s∗[ℓ]. Given two strings s and t, we define a
function f that computes the Mirkin distance from s to S subtracted by the Mirkin distance from t
to S:

f(s, t, S) := mirk(s, S)−mirk(t, S).

To obtain a contradiction, we show that s∗ is not an optimal solution by showing that

f(s∗, s∗00, S) + f(s∗, s∗11, S) > 0,

because this implies that

mirk(s∗, S) > mirk(s∗00, S) or mirk(s∗, S) > mirk(s∗11, S).

For each input string si ∈ S, let di denote the Hamming distance between s∗ and si, restricted

9

to the columns that are neither j nor j′. We show that f(s∗, s∗00, S) + f(s∗, s∗11) > 0.

f(s∗, s∗00, S) + f(s∗, s∗11, S)

= 2mirk(s∗, S)−mirk(s∗00, S)−mirk(s∗11, S)

= 2
∑

si∈S

(di + 1)(n − di − 1)

−
∑

si∈S
si[j,j′]=00

di(n− di)−
∑

si∈S
si[j,j′]=11

(di + 2)(n− di − 2)

−
∑

si∈S
si[j,j′]=00

(di + 2)(n− di − 2)−
∑

si∈S
si[j,j′]=11

di(n− di)

=
∑

si∈S

(

2(di + 1)(n − di − 1)− di(n− di)− (di + 2)(n − di − 2)

)

= 2m > 0.

By our reasoning before, this implies that s∗ is not an optimal solution, a contradiction.

By Lemma 1, for each type of column, we only need to store whether the output string will
contain 0 or 1 at each column that corresponds to this type. Let n′ denote the number of different
(column) types in S. Then, n′ ≤ min(2m, n). Enumerate the n′ column types as t1, . . . , tn′ . Below
we identify a column type with its index for easier notation. Using this, we can encode the set S
succinctly by introducing a constant e[j] for each column type j ∈ [n′] that denotes the number of
columns with type j. Analogously, given an optimal solution string s∗, by Lemma 1 we can also
encode this string s∗ via a binary vector x ∈ {0, 1}n

′

, where for each column type j ∈ [n′] we use
x[j] to indicate whether the columns that correspond to the type have zeros or ones. Note that
this encodes all essential information in a solution, since the actual order of the columns is not
important.

Example 1. For an illustration, let S = {0000, 0001, 1110}. Set S has two different column types,
represented by (0, 0, 1)T , call it type 1, and (0, 1, 0)T , call it type 2. There are three columns of
type 1 and one column of type 2. An optimal solution 0001 with minimum Mirkin distance four for
S can be encoded by two binary variables x[1] = 0 and x[2] = 1.

The above considerations now yield the following.

Theorem 2. Mirkin Distance Minimization can be solved in O(22
m

·m · n) time.

Proof. The algorithm tries all at most 22
m

possibilities for the binary string x ∈ {0, 1}n
′

. For each
of them, it constructs the corresponding solution string s∗ that in each column of type j ∈ [n′]
equals x[j]. This takes O(n) time. The algorithm then computes the Hamming distance between
s∗ and each of the input strings, which takes O(n ·m) time in total. It then computes the Mirking
distances from these Hamming distances in O(m) time. Finally, it reports success if the sum of the
Mirkin distances is at most k. It is clear that the running-time bound is satisfied. By Lemma 1
this algorithm will find a solution if there is one.

10

Integer Linear Program Formulation Using the binary variables x that represent a solution s∗

which has the same values in the columns of the same type, we can reformulate the Hamming
distance between the two strings si and s∗ as follows. For the sake of readability, we let si[j] = 1
if the column type of column j has 1 in the ith row and si[j] = 0 if it has 0 in the ith row.

hd(si, s
∗) =

n′

∑

j=1

e[j] · |s[j]− x[j]|

=
n′

∑

j=1

e[j] · (si[j] + (1− 2si[j]) · x[j]) .

Then, the Mirkin distance between x and si can be formulated as follows, where we let wi =
∑n′

j=1 e[j] ·si[j] denote the number of ones in string si and ci[j] = 1−2si[j], i.e., ci[j] = 1 if si[j] = 0
and ci[j] = −1 if si[j] = 1.

mirk(si, s
∗) = hd(si, s

∗) · (n − hd(si, s
∗))

=

wi +

n′

∑

j=1

e[j] · ci[j] · x[j]

 ·

n− wi −

n′

∑

j=1

e[j] · ci[j] · x[j]

= n

wi +

n′

∑

j=1

e[j] · ci[j] · x[j]

 −

wi +

n′

∑

j=1

e[j] · ci[j] · x[j]

2

= n · wi − w2
i +

n′

∑

j=1

(

n · ci[j] − 2wi · ci[j] − e[j]

)

· e[j] · x[j]

−
∑

{j,j′}⊆[n′]
j 6=j′

e[j] · e[j′] · c[j] · c[j′] · x[j] · x[j′]. (1)

The last equation holds since ci[j]
2 = 1 and since x[j] is binary, implying that x[j] = x[j]2.

The resulting formulation is not linear since the components in the last sum are products of
two binary variables. Nevertheless, we can introduce additional binary variables to linearize it. For
each two distinct column types j and j′ we introduce a binary variable y[{j, j′}] which shall have
the value y[{j, j′}] = x[j] · x[j′]. We can achieve this by introducing the following constraints:

∀j, j′ ∈ [n′], j 6= j′ : y[{j, j′}], x[j] ∈ {0, 1}, (2a)

y[{j, j′}] ≤ x[j], (2b)

y[{j, j′}] ≤ x[j′], (2c)

x[j] + x[j′]− y[{j, j′}] ≤ 1. (2d)

11

Now we can replace each product of two binary variables in (1) with a corresponding variable:

mirk(si, s
∗)

(1)
=

n · wi − w2
i +

n′

∑

j=1

(

n · ci[j]− 2wi · ci[j]− e[j]

)

· e[j] · x[j]

−
∑

{j,j′}⊆{1,...,n′}
j 6=j′

e[j] · e[j′] · c[j] · c[j′] · y[{j, j′}]. (3)

Combining (2a)–(2d) with the following constraint

m
∑

i=1

(

n · wi − w2
i +

n′

∑

j=1

(

n · ci[j] − 2wi · ci[j] − e[j]

)

· e[j] · x[j]

−
∑

{j,j′}⊆[n′]
j 6=j′

e[j] · e(j′) · c[j] · c[j′] · y[{j, j′}]

)

≤ k, (2e)

we obtain an ILP with at most 4m + 2m binary variables and 5n2 constraints, each with O(m)
terms.

5 Conclusion

While we now know that Mirkin Distance Minimization can be solved in single-exponential
time with respect to the length n of the input strings and such a running time is required, the basis
of the exponential is not yet determined. Is there an algorithm running in time (2 − ǫ)n · nmO(1)

or can we give a lower bound based on the Strong Exponential Time Hypothesis?
Currently, there is no known lower bound matching our fixed-parameter running time with

respect to the number m of input strings. Can Mirkin Distance Minimization be solved in
2m

O(1)
· (mn)O(1) time?

Finally, it is interesting to study other distance measures between the strings (or clusterings),
such as the variation of information [15], and to study other aggregation functions of the distance
measures, such as taking a p-norm of the distance vector instead of the sum of distances [4].

Acknowledgments

The main work was done while both Jiehua Chen and Manuel Sorge were with Ben-Gurion Uni-
versity of the Negev, funded by the People Programme (Marie Curie Actions) of the European
Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number
631163.11 and Israel Science Foundation (grant number 551145/14). Jiehua Chen acknowledges
support by the Vienna Science and Technology Fund (WWTF) [10.47379/VRG18012]. Manuel
Sorge acknowledges support by the Alexander von Humboldt Foundation.

12

References

[1] J. P. Barthelemy and B. Monjardet. The median procedure in cluster analysis and social choice
theory. Mathematical Social Sciences, 1(3):235–267, 1981. 2

[2] D. Baumeister, P. Faliszewski, A. Laruelle, and T. Walsh. Voting: Beyond Simple Majorities
and Single-Winner Elections (Dagstuhl Seminar 17261). Dagstuhl Reports, 7(6):109–134, 2017.
ISSN 2192-5283. 3

[3] T. Boongoen and N. Iam-On. Cluster ensembles: A survey of approaches with recent extensions
and applications. Computer Science Review, 28:1–25, 2018. doi: 10.1016/j.cosrev.2018.01.003.
1

[4] J. Chen, D. Hermelin, and M. Sorge. On Computing Centroids According to the p-Norms of
Hamming Distance Vectors. In 27th Annual European Symposium on Algorithms (ESA 2019),
volume 144 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:16.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. doi: 10.4230/LIPIcs.ESA.2019.28.
3, 9, 12

[5] M. Dörnfelder, J. Guo, C. Komusiewicz, and M. Weller. On the parameterized complexity of
consensus clustering. Theoretical Computer Science, 542:71–82, 2014. 2, 4

[6] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. International
Journal on Artificial Intelligence Tools, 13(4):863–880, 2004. 1, 2

[7] L. Fu, P. Lin, A. V. Vasilakos, and S. Wang. An overview of recent multi-view clustering.
Neurocomputing, 402:148–161, 2020. 1

[8] M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979. 4, 5

[9] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM Transactions on
Knowledge Discovery from Data, 1(1), Mar. 2007. ISSN 1556-4681. 1, 2

[10] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for Closest String
and related problems. Algorithmica, 37(1):25–42, 2003. 9

[11] O. Hudry. On the computation of median linear orders, of median complete preorders and of
median weak orders. Mathematical Social Sciences, 64(1):2–10, 2012. 2

[12] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001. 2

[13] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones and the time
complexity of SAT problems. Journal of Computer and System Sciences, 84:52–78, 2017. doi:
10.1016/j.jcss.2016.07.008. 8

[14] J. Kim and J.-G. Lee. Community detection in multi-layer graphs: A survey. ACM SIGMOD
Record, 44(3):37–48, 2015. 1

13

[15] M. Meilă. Comparing clusterings—an information based distance. Journal of Multivariate
Analysis, 98(5):873–895, 2007. doi: 10.1016/j.jmva.2006.11.013. 12

[16] B. Mirkin. Mathematical Classification and Clustering. Kluwer Academic Press, 1996. 1, 3

[17] D. P and A. Jurek-Loughrey. Multi-view clustering. In Linking and Mining Heterogeneous and
Multi-view Data, Unsupervised and Semi-Supervised Learning, pages 27–53. Springer, 2019.
doi: 10.1007/978-3-030-01872-6 2. 1

[18] A. Strehl and J. Ghosh. Cluster ensembles — A knowledge reuse framework for combining
multiple partitions. Journal of Machine Learning Research, 2:583–617, 2002. 1, 2

[19] A. Tagarelli, A. Amelio, and F. Gullo. Ensemble-based community detection in multilayer
networks. Data Mining and Knowledge Discovery, 31(5):1506–1543, 2017. 1

[20] Y. Wakabayashi. Aggregation of Binary Relations: Algorithmic and Polyhedral Investigations.
PhD thesis, Universität Augsburg, 1986. 2

[21] Y. Wakabayashi. The complexity of computing medians of relations. Resenhas, 3(3):323–350,
1998. 2

[22] Y. Yang and H. Wang. Multi-view clustering: A survey. Big Data Mining and Analytics, 1
(2):83–107, 2018. doi: 10.26599/BDMA.2018.9020003. 1

[23] M. Yuvaraj, A. K. Dey, V. Lyubchich, Y. R. Gel, and H. V. Poor. Topological clustering of
multilayer networks. Proceedings of the National Academy of Sciences, 118(21), 2021. 1

14

	Introduction
	Preliminaries
	NP-hardness for Mirkin Distance Minimization
	Parameter Number m of Strings and an Integer Linear Programming Formulation
	Conclusion

