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Abstract

A pattern descriptor invariant to rotation, scaling, translation (RST), and robust to additive

noise is proposed by using the Radon, Fourier, and Mellin transforms. The Radon transform converts

the RST transformations applied on a pattern image into transformations in the radial and angular

coordinates of the pattern’s Radon image. These beneficial properties of the Radon transform make

it an useful intermediate representation for the extraction of invariant features from pattern images

for the purpose of indexing/matching. In this paper, invariance to RST is obtained by applying

the 1D Fourier–Mellin and discrete Fourier transforms on the radial and angular coordinates of the

pattern’s Radon image respectively. The implementation of the proposed descriptor is reasonably fast

and correct, based mainly on the fusion of the Radon and Fourier transforms and on a modification

of the Mellin transform. Theoretical arguments validate the robustness of the proposed descriptor to

additive noise and empirical evidence on both occlusion/deformation and noisy datasets shows its

effectiveness.

Keywords: Invariant pattern representation; Radon transform; Fourier–Mellin transform; feature

extraction; noise robustness

1 Introduction

The problem of recognition of image patterns that undergo geometric transformations like rotation,

scaling, and translation is an important topic in pattern recognition and is the goal of many research

works. Many approaches have been proposed for this problem and they can be classified into three main

lines: brute force, image normalization, and invariant features. Brute force approaches are the most

trivial ones, using “complete” training datasets; for each pattern category, the training dataset contains

all its RST transformed versions. This line of approaches has inherent limitations in both storage

requirement and time complexity that make them practically inapplicable. Image normalization is a

solution for the reduction of the size of training datasets. The burden of the encoded RST transformation

parameters in input pattern images is alleviated by normalizing them regarding their orientation, size,

and position. However, despite its efficiency in the recognition stage, normalization of image patterns

involves difficult inverse problems that are often ill-conditioned or ill-posed, leading to unreliable

normalization results. Approaches using invariant features are based on the idea of describing image

patterns by a set of measurable quantities that are insensitive to RST transformations while providing

enough discriminatory power for their recognition. Mathematically speaking, if f(x, y) is an image and

let g(x, y) be another image described as g = O(f), where O is an RST transformation operator, then

the invariant I is a functional satisfying I(f) = I (O(f)).
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Many pattern descriptors have been proposed in literature for the extraction of pattern’s invariant

features [1, 2] using techniques that allow operator O to be rotation, scaling, translation, or their

combinations. Translation and scaling invariance could be obtained by using the Fourier [3] and

Mellin [4] transforms respectively; rotation invariance by computing the harmonic expansion [5] or

performing the discrete Fourier transform on the circular coordinate of the pattern image in polar

space [6], etc. However, the task of combining several techniques to make operator O full RST

transformations while guaranteeing the discriminatory power of the invariant features is challenging and

has attracted attention of many researchers. Most of the existing methods do not allow operator O to

be full RST transformations, they usually require normalizations for the unavailability of any of RST

transformations in operator O. For example, methods based on the theory of moments [7, 8] usually

normalize input pattern images regarding their centroid position and size: the pattern’s centroid is

required to coincide with the origin of the coordinate system and the longest distance from this centroid

to a pattern point is set to a fixed value. These normalizations usually introduce errors, are sensitive to

noise, and thus induce inaccuracy in the later recognition/matching process.

Radon-based methods are different from the others in the sense that Radon transform is used as an

intermediate representation upon which invariant features are extracted from. By applying the Radon

transform on a RST transformed pattern image, the transformation parameters are encoded in the radial

(for translation and scaling) and angular (for rotation) coordinates of the obtained Radon image [9].

Current techniques thus usually exploit this encoded information to define invariant features. A pioneer

and notable work in this direction is the R-transform proposed in [10] to compute the R-signature.

This approach uses an integral function and the discrete Fourier transform for the radial and angular

coordinates of the Radon image respectively to get a 1D signature of the pattern image that is invariant

to RST transformations. The strength of this approach is simplicity, however, even if an extension to a

2D signature has been proposed, the obtained signature still has low discriminatory power as there is a

loss of information in the compression process from the Radon image to the 1D signature. Recently,

there was an effort to apply the 2D Fourier–Mellin transform on the Radon image [11]. Similarly, Mellin

transform and harmonic expansion are applied on the radial and angular coordinates of the Radon

image respectively to get a pattern descriptor that is invariant to scaling and rotation. Similar efforts

with different strategies to exploit the Radon image have been reported in [12–14]. These methods,

however, do not allow operator O to be full RST transformations as in the R-signature, operator O

could only be a combination of rotation and scaling. Moving the origin of the coordinate system to the

pattern’s centroid is a common solution to have translation invariance, however, this normalization step

may introduce errors when the image is noisy or the pattern is slightly distorted.

Another direction in using the Radon transform for pattern description is to extract pattern features

directly from the Radon image, similar to the way the Hough transform [15] is used. For example,

pattern primitives in edge form are detected from the Radon image and represented analytically in [16].

Moreover, their spatial relations can be made explicit [17] and this leads to a taxonomy of pattern for

its characterization [18]. This approach, however, is quite limited as it requires that the edge primitives

should have analytical form. Recently, a set of spectral and structural features proposed in [19] is

extracted from a slightly modified version of the Radon transform for pattern description. This set of

features is not invariant to rotation and, consequently, in the matching step, these features need to

be rotated to all possible angles corresponding to potential pattern’s orientations in order to compute

patterns’ similarity. Long matching time may prevent the application of this approach in real systems.

A generalization of the Radon transform, called the trace transform, has also been proposed and used

for image description [20,21] but its application is restricted due to high computational complexity.

This paper presents a novel RST invariant pattern descriptor which has briefly presented in [22],
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called the RFM descriptor, defined based on the Radon, Fourier, and Mellin transforms that is invariant

not only to rotation, and scaling but also to translation by definition. The proposed descriptor is

a global one, its computation is essentially different from that of another type of descriptors, local

descriptors [23,24], which can work only on textured patterns and fail to describe smooth or non-textured

ones. The main idea here is to apply the 1D Fourier–Mellin transform, which is invariant to translation

and scaling, on the radial coordinate of the pattern’s Radon image. The result of this transform is a

representation of pattern that is shifted horizontally according to the pattern’s rotating angle. A further

application of the discrete Fourier transform on this representation guarantees a pattern descriptor

totally invariant to RST transformations. The proposed descriptor is fast in implementation and is more

robust to additive noise than existing descriptors. Experimental results on both occlusion/deformation

and noisy databases show the usefulness of the proposed descriptor.

The main contribution of this paper is to adopt and use the three basic transformations (Radon,

Fourier, and Mellin) to transform an input pattern image into a descriptor that is totally invariant to

RST transformations. Moreover, we apply the 1D Fourier–Mellin transform on the radial coordinate of

the pattern’s Radon image. We use an implementation of the Mellin transform that is fast, accurate,

and can preserve the discriminatory information of the input signal. Additionally, we analyzed and

provided theoretical evidence for the robustness of the proposed descriptor to additive noise. And finally,

we illustrate the usefulness of the proposed descriptor in the presence of occlusion/deformation and

additive noise using several datasets.

The remainder of this paper is organized as follows. Section 2 gives some background on the

Radon, Fourier, and Mellin transforms and their beneficial properties. Section 3 presents the combined

1D Fourier–Mellin transform and then defines the RFM descriptor. A reasonable fast and accurate

implementation of the proposed descriptor is provided in Section 4 and then an analysis on the robustness

of the proposed descriptor to additive noise is carried out in Section 5. Experimental results are given

in Section 6 and finally conclusions are drawn in Section 7.

2 Basic material

This section reviews the three transformations used in the proposed descriptor, that are the Radon,

Fourier, and Mellin transforms. It includes their definition and their derived beneficial properties.

2.1 The Radon transform

Let f(x, y) ∈ R
2 be a 2D function, L(θ, ρ) be a straight line in R

2 represented by

L = {(x, y) ∈ R
2 : x cos θ + y sin θ = ρ},

where θ is the angle L makes with the y axis and ρ is the distance from the origin to L. The Radon

transform [25] of f , denoted by Rf , is a function defined on the space of lines L(θ, ρ) by the line integral

along each line:

Rf (L) = Rf (θ, ρ) =

∫

L

f(x, y) dxdy =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(ρ− x cos θ − y sin θ) dxdy. (1)

In the field of shape analysis and recognition, the function f(x, y) is constrained to the following

particular definition:

f(x, y) =

{

1 if x ∈ D

0 otherwise,
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Figure 1: Graphical illustration of the Radon transform of a function f(x, y). The Radon transform

is a mapping from the image space (x, y) to the parameter space (θ, ρ) and can be mathematically

represented by a line integral of f(x, y) along all the lines L parameterized by (θ, ρ) represented in the

image space (x, y).

where D is the domain of the binary shape represented by f(x, y). In the illustration of the Radon

transform given in Fig. 1, the shaded region represents the region D. The value of the line integral in

Eq. (1) equals the length of the intersection between the line L and the shaded region.

The Radon transform has some properties that are beneficial for pattern recognition problems as

outlined below:

P1 linearity : The Radon transform is linear.

R(f+g)(θ, ρ) = Rf (θ, ρ) +Rg(θ, ρ).

P2 periodicity : The Radon transform of f(x, y) is periodic in the variable θ with period 2π.

Rf (θ, ρ) = Rf (θ + 2kπ, ρ), ∀k ∈ Z.

P3 semi-symmetry : The Radon transform of f(x, y) is semi-symmetric.

Rf (θ, ρ) = Rf (θ ± π,−ρ).

P4 translation: A translation of f(x, y) by a vector ~u = (x0, y0) results in a shift in the variable ρ of

Rf (θ, ρ) by a distance d = x0 cos θ + y0 sin θ, equal to the length of the projection of ~u onto the

line x cos θ + y sin θ = ρ.

Rf (θ, ρ) → Rf (θ, ρ− x0 cos θ − y0 sin θ).

P5 rotation: A rotation of f(x, y) by an angle θ0 implies a circular shift in the variable θ of Rf (θ, ρ)

by a distance θ0.

Rf (θ, ρ) → Rf (θ + θ0, ρ).

P6 scaling : A scaling of f(x, y) by a factor α results in a scaling in the variable ρ and the amplitude

of Rf (θ, ρ) by the factors α and 1
α
respectively.

Rf (θ, ρ) →
1

α
Rf (θ, αρ).
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2.2 The Fourier transform

Let f(x) ∈ R
1 be a 1D function. The Fourier transform [3] of f , denoted by Ff , is a function defined

for every real number ξ by:

Ff (ξ) =

∫ ∞

−∞
f(x)e−i2πξx dx. (2)

It is well known that the Fourier transform possesses a shift or translation invariant property.

Consider a function g(x) = f(x− x0), a version of f(x) shifted by x0, then:

Fg(ξ) =

∫ ∞

−∞
g(x)e−i2πξx dx = e−i2πξx0Ff (ξ). (3)

Taking the magnitude of the two sides of Eq. (3) results in:

|Fg(ξ)| = |Ff (ξ)|.

or, in other words, the magnitude of the Fourier transform of a 1D function is invariant to translation.

Discrete version of Eq. (2) defined for a sequence of numbers {f(n) : n = 0, . . . , N − 1} has the following

definition:

DFf (k) =
N−1
∑

n=0

f(n) e−
2πi
N

kn, k = 0, . . . , N − 1.

Similarly, the discrete Fourier transform possesses a circular shift invariant property: a circular shift

of the input {f(n)} corresponds to multiplying the output DFf (k) by a linear phase. Let {g(n)} be a

sequence obtained by circular shifting {f(n)} by a distance m, then:

DFg(k) = e−
2πi
N

kmDFf (k). (4)

Taking the magnitude of the two sides of Eq. (4) results in:

|DFg(k)| = |DFf (k)|,

or the magnitude of the discrete Fourier transform of a 1D function is invariant to circular shifting.

2.3 The Mellin transform

Let f(x) ∈ R
1 be a 1D function. The Mellin transform [4] of f , denoted by Mf , is a function defined by:

Mf (s) =

∫ ∞

0
f(x)xs−1 dx, (5)

where s = σ + iτ . The real part of s, σ, is a constant chosen such that the integral in Eq. (5) converges.

The imaginary part of s, τ , is the transform variable.

Consider a function g(x) = f(αx), a scaling of f by a factor α (α > 0), then:

Mg(s) =

∫ ∞

0
g(x)xs−1 dx = α−sMf (s). (6)

Taking the magnitude of the two sides of Eq. (6) results in:

|Mg(s)| = α−σ|Mf (s)|.

Thus, except for a constant multiplicative factor α−σ, the Mellin transform is scale invariant.

However, this scaling factor can be easily eliminated by normalization or it can be used to find the

relative scale between two functions.
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3 An invariant pattern descriptor based on the Radon, Fourier, and

Mellin transforms

This section presents a combination of the Fourier and Mellin transforms for 1D signals and its application

on the radial coordinate of the pattern’s Radon image to have a pattern descriptor invariant to RST

transformations. A measure of similarity for the proposed pattern descriptor is also defined, allowing

the comparison/matching between any pair of images.

3.1 The combined Fourier–Mellin transform for 1D signals

Combinations of the Fourier and Mellin transforms have been proposed in literature to have signal

representations that do not vary with rotation/scaling or translation/scaling. For 2D signals, they are

first converted from Cartesian coordinates into polar coordinates then Fourier and Mellin transforms

are performed independently on the circular and radial coordinates of the converted signals respectively

[26, 27]. In this way, the obtained representation is invariant to rotation and scaling. For 1D signals,

Fourier and Mellin transforms are performed in sequence directly on the signals [28, 29] to have signal

representations invariant to translation and scaling.

Consider the Fourier transform of a function g(x) = f(αx− x0), a scaled and translated version of

f(x) by parameters α and x0:

Fg(ξ) =

∫ ∞

−∞
f(αx− x0)e

−i2πξx dx. (7)

Denoting y = αx− x0, Eq. (7) becomes

Fg(ξ) =
1

α
e−i2π ξ

α
x0

∫ ∞

−∞
f(y)e−i2π ξ

α
y dy =

1

α
e−i2π ξ

α
x0 Ff

(

ξ

α

)

. (8)

Taking the magnitude of the two sides of Eq. (8) results in:

|Fg(ξ)| =
1

α

∣

∣

∣

∣

Ff

(

ξ

α

)
∣

∣

∣

∣

. (9)

The translation parameter x0 has disappeared in Eq. (9); the remaining scaling parameter α could

be eliminated by applying the Mellin transform on both sides of Eq. (9):

M|Fg |(s) =

∫ ∞

0

1

α

∣

∣

∣

∣

Ff

(

ξ

α

)∣

∣

∣

∣

ξs−1 dξ = αs−1M|Ff |(s),

or:

∣

∣M|Fg |(s)
∣

∣ = ασ−1
∣

∣

∣
M|Ff |(s)

∣

∣

∣
. (10)

Therefore, by defining:

MFf (s) =
∣

∣M|Fg |(s)
∣

∣ =

∣

∣

∣

∣

∫ ∞

0

∣

∣

∣

∣

∫ ∞

−∞
f(x)e−i2πξx dx

∣

∣

∣

∣

ξs−1 dξ

∣

∣

∣

∣

, (11)

as the combined 1D Fourier–Mellin transform of a function f(x) and from Eq. (10), MFf (s) is invariant

to translation and scaling, except for a constant multiplicative factor.
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3.2 The proposed RFM descriptor

Attractive properties of the Radon and 1D Fourier–Mellin transforms lead to the proposal of a novel

region-based pattern descriptor, called the RFM descriptor. The proposed descriptor of an image I is

computed by RFM(I) =

∣

∣

∣

∣

DFMFRI
(k,s)

DFMFRI
(0,s)

∣

∣

∣

∣

, namely:

Step 1: The Radon transform performed on the image I, RI(θ, ρ).

Step 2: The 1D Fourier–Mellin transform performed on the radial coordinate of the obtained Radon

image, MFRI
(θ, s).

Step 3: The magnitude of discrete Fourier transform performed on the angular coordinate of the

obtained, discretized Fourier–Mellin image normalized by the DC component,

∣

∣

∣

∣

DFMFRI
(k,s)

DFMFRI
(0,s)

∣

∣

∣

∣

.

Invariant properties of the proposed descriptor described above are proved as follows.

Properties. The proposed RFM descriptor is invariant to translation, rotation, and scaling.

Proof. Let J be the image obtained after scaling, rotating, and translating a image I using transformation

parameters α, θ0, and ~u = (x0, y0). Properties P4–6 of the Radon transform imply:

RJ(θ, ρ) =
1

α
RI(θ + θ0, αρ− d), (12)

where d = x0 cos(θ + θ0) + y0 sin(θ + θ0) is the shift distance depending on θ. Eq. (12) indicates that,

except for a constant multiplicative factor 1
α
, each column constant-θ slice of the Radon image of J ,

RJ(θ, ·), can be obtained by scaling and translating the constant-θ + θ0 slice of the Radon image of I,

RI(θ + θ0, ·) by a factor α and a distance d.

Applying the 1D Fourier–Mellin transform on RJ(θ, ·) and RI(θ + θ0, ·) and using its invariant

property and Eq. (10), Eq. (12) becomes:

MFRJ (θ,·)(θ, s) = ασ−2MFRI(θ+θ0,·)(θ + θ0, s).

By varying the value of θ and s, the two images MFRJ
(θ, s) and MFRI

(θ, s) are obtained.

Moreover, except for a constant multiplicative factor ασ−2, MFRJ
(θ, s) can be directly obtained by

shifting MFRI
(θ, s) along the θ axis by a quantity −θ0. Applying the discrete Fourier transform on

the angular coordinate of the Fourier–Mellin images MFRJ
(θ, s) and MFRI

(θ, s) then ignoring the

phase information in the coefficients, we have
∣

∣

∣
DFMFRJ

(k, s)
∣

∣

∣
= ασ−2

∣

∣

∣
DFMFRI

(ξ, s)
∣

∣

∣
. (13)

This demonstrates that, except for a constant multiplicative factor ασ−2, the proposed descriptor

computed on a scaled, rotated, and translated version J of a image I is exactly the same as the descriptor

computed on the original image I. The factor ασ−2, however, can be easily eliminated by a normalization

step using the DC component as

∣

∣

∣

∣

DFMFRI
(k,s)

DFMFRI
(0,s)

∣

∣

∣

∣

or it can be used to determine the relative scale between

any two pattern images of the same category.

Calculating the proposed RFM descriptor, as described above, does not require any normalization

regarding the size, position, or orientation of the patterns, it only requires a normalization in the

intensity of the computed descriptor. As a consequence, the proposed descriptor is totally invariant to

RST transformations.
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3.3 Similarity measure

For any two images I and J represented by RFM(I) and RFM(J) respectively, their measure of similarity

is defined as the ℓ2-norm distance between their descriptors as

sim(I, J) = ‖RFM(I)− RFM(J)‖2. (14)

The computation of sim(I, J) is simple and fast, permitting the RFM descriptor to be used in

pattern matching problems with large-size datasets. More sophisticated distances like the weighted

Euclidean distance [30] could be used to reduce the dominance of some of the coefficients in the RFM

descriptor. However, as small value coefficients usually correspond to high frequency components,

meaning that they are more sensitive to additive noise and sampling/quantization effect, balancing the

coefficient contributions thus reduces the performance of the descriptor in noisy environment. Moreover,

due to the orthogonality in the basis of the discrete Fourier transform, there is no correlation among

coefficients of the RFM descriptor and thus the Mahalanobis distance [31], if employed, reduces to the

weighted Euclidean distance.

4 Implementation of the RFM descriptor

From the definition of the RFM descriptor in Subsection 3.2, its calculation could be separated into three

steps: Radon, 1D Fourier–Mellin, and discrete Fourier transforms. However, due to the interpretation of

the Radon transform by means of the Fourier transform, a computational reduction is possible by fusing

these two transforms. Moreover, in order to have fast implementation and high discriminatory power, a

modified version of the Mellin transform has been used.

4.1 Possible fusion of Radon and Fourier transforms

The Radon transform could be computed based on recursively defined digital straight lines [32, 33]

requiring O(N logN) operations for an images of N = n× n pixels. It could also be computed through

2D Fourier transform with the same complexity by means of the projection slice theorem [34], which

states that the 1D constant-θ slice of the Radon image Rf (·, θ) and the 1D radial slice of the 2D Fourier

transform Ff (ξ cos θ, ξ sin θ) make a 1D Fourier transform pair:

FRf (·,θ)(ξ) =

∫ ∞

−∞

(
∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(ρ− x cos θ − y sin θ) dxdy

)

e−iρξ dρ

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−i(x cos θ+y sin θ)ξ dxdy

= Ff (ξ cos θ, ξ sin θ).

Thus, if one chooses to implement the Radon transform through 2D Fourier transform, due to the

successive application of inverse and forward Fourier transforms, performing the 1D Fourier–Mellin

transform on each constant-θ slice of the Radon image is equivalent to directly performing the Mellin

transform on the 1D radial slice of the 2D Fourier transform. This equivalence results in a computational

reduction with no change in complexity. However, for notation convenience and for the clarity of

presentation, the RFM descriptor in this paper sticks with the definition in Subsection 3.2. This choice

of presentation has no impact on the remaining part. It is only when the RFM descriptor is chosen to

be implemented through 2D Fourier transform that the readers should pay attention to this fusion for

their own computational benefit.
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4.2 The modified direct Mellin transform

The Mellin transform, as defined in Eq. (5), has a very attractive property of scaling invariance and it

can be implemented optically by using an optical scale invariant correlator [26]. However, there are

reported problems with its digital implementation in today’s digital systems [35]. Traditionally, the

Mellin transform is implemented by changing the variable x = ey:

Mf (s) =

∫ ∞

0
f(x)xs−1 dx =

∫ ∞

0
f(x)xσ−1eiτ lnx dx =

∫ ∞

−∞
[f(ey)eσy] eiτy dy.

This is, by definition, the Fourier transform of the distorted function f(ey) weighted by eσy. For

sampled data, the discrete (fast) Mellin transform is implemented through FFT by re-sampling the data

exponentially. Exponential sampling means interpolating the data to make them uniformly sampled in

the y domain [36]. This process introduces errors into the transform and accentuates the low frequency

components. Additionally, if f(x) is sampled at the Nyquist rate and N is the number of data samples

in the x domain then the number of the required data samples in the y domain will be M = N lnN [37].

Likewise, when f(x) is nonzero at x = 0, f(ey) will be nonzero at y = −∞ and the implementation

is not realizable. In this case, the Mellin transform can be approximated by using a correction term

defined based on the value of f(x = 0) [37].

Another problem is on the application of the combined Fourier–Mellin transform in Subsection 3.1

for feature extraction despite it is invariant to scaling and translation. The problem is the obscurity of

the discriminatory information contained in the input function [38]. Possible reasons are the discard of

the phase information from the output of the Fourier and Mellin transforms and the accentuation of low

frequency components. Moreover, as FFT is applied on the radial coordinate of the pattern’s Radon

image, the DC component is always nonzero and it, in turn, is the value of the Mellin transform’s input

function f(x) at x = 0.

To avoid these problems, an alternative implementation of the Mellin transform proposed in [29],

which is called the direct Mellin transform, is adopted for this work. Assuming f(x) is in the form of

sampled data with sampling period T , expanding Eq. (5) gives:

Mf (s) =

∫ T

0
f(x)xs−1 dx+

∫ 2T

T

f(x)xs−1 dx+ · · ·+

∫ NT

(N−1)T
f(x)xs−1 dx. (15)

The value of f(x) is assumed to be piecewise constant in any interval T , then:

sMf (s) = f(0)xs |10 + f(T )xs |21 + · · ·+ f((N − 1)T )xs |NN−1 . (16)

Denoting f(iT ) = fi+1, then ∆k = fk − fk−1 and, without loss of generality, assuming T = 1 and

fN = 0, Eq. (16) becomes:

sMf (s) = f1x
s |10 + f2x

s |21 + · · ·+ fNxs |NN−1 =
N−1
∑

k=1

ks (fk − fk+1) =
N−1
∑

k=1

ks∆k. (17)

Substituting s = σ + iτ into Eq. (17):

(σ + iτ)Mf (σ + iτ) =

N−1
∑

k=1

kσ+iτ∆k. (18)

Because kσ+iτ = e(σ+iτ) ln k is bounded for any fixed constant value of σ, the right hand side of Eq.

(18) is bounded, which means |Mf (s)| converges to zero when |s| increases. This indicates the low-pass

filtering of the Mellin transform.
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For a set of si = σ + iτi with i = 1, . . . ,m, τi is the arbitrary spectral component, and denoting

ksi = φi,k, Eq. (17) can be rewritten in matrix form as













s1Mf (s1)

s2Mf (s2)
...

smMf (sm)













=













φ1,1 φ1,2 · · · φ1,N−1

φ2,1 φ2,2 · · · φ2,N−1
...

...
. . .

...

φm,1 φm,2 · · · φm,N−1

























∆1

∆2

...

∆N−1













. (19)

The direct Mellin transform, as defined in Eq. (15), is an exact implementation of the Mellin

transform for sampled data and has the following properties:

• It does not require exponential re-sampling and there is no requirement for a correction term.

• Only the differences in the value of adjacent data points are used for computing the transform.

• The coefficients φi,k in Eq. (19) can be computed off-line and stored. For each specific value of si,

the number of stored coefficients for direct Mellin transform is N whereas the number of stored

coefficients for fast Mellin transform is N lnN .

• Computing siMf (si) consists of only an inner product of two vectors, one of which has been

pre-computed and stored and the other vector could be obtained from the input data by simple

subtraction operations. Thus, Eq. (19) is very fast in digital implementation.

In order to eliminate the low-pass filtering characteristic of the direct Mellin transform, a modification

is carried out by removing the s = (σ + iτ) factor in Eq. (18). The resulting transform is called the

modified direct Mellin transform, denoted by MM, as follows:

MMf (s) = sMf (s) =
N−1
∑

k=1

ks∆k.

In the time domain, the modified direct Mellin transform is defined as

MMf (s) = s

∫ ∞

0
f(x)xs−1 dx.

It is easy to verify that the modified direct Mellin transform maintains the scaling invariance property

and the combined Fourier-modified direct Mellin transform, defined as

MFf (s) = MM|Ff |(s) = s

∫ ∞

0
|Ff |x

s−1 dx. (20)

is invariant to both translation and scaling. Therefore, the 1D Fourier–Mellin transform used in the

definition of the RFM descriptor in Subsection 3.2 is henceforth defined as in Eq. (20), instead of Eq.

(11), and implemented through Eq. (19).

To qualitatively illustrate the invariant properties of MFRI
(θ, s), Fig. 2 provides some example

pattern images and their corresponding Radon and Fourier–Mellin images. The first row contains two

original pattern images (Fig. 2(a)-2(b)) and the RST transformed versions (Fig. 2(c)-2(e)) of the pattern

image in Fig. 2(b). The second row shows the Radon transform of these pattern images and the third

row shows the images obtained after performing the 1D Fourier–Mellin transform on the Radon images

in the second row using 150 values of τ ranging from 2.0 to 16.9 with increment of 0.1. It is noteworthy

here that, due to the periodicity and semi-symmetry properties of the Radon transform (P2–3), the

effective range of θ used in the computation is 0–π (rad) or 0–180 (degree).
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(a) Image I1 (b) Image I2 (c) Image I3 (d) Image I4 (e) Image I5

(f) RI1(θ, ρ) (g) RI2(θ, ρ) (h) RI3(θ, ρ) (i) RI4(θ, ρ) (j) RI5(θ, ρ)

(k) MFRI1
(θ, s) (l) MFRI2

(θ, s) (m) MFRI3
(θ, s) (n) MFRI4

(θ, s) (o) MFRI5
(θ, s)

Figure 2: Illustration of the properties of the Radon and 1D Fourier–Mellin transforms performed on

pattern images. The first row contains two original pattern images (a)–(b) and the RST transformed

versions (c)–(e) of the pattern image in (b). The second row shows the Radon transform of these pattern

images and the third row shows the images obtained after performing the 1D Fourier–Mellin transform

on the Radon images in the second row using 150 values of τ ranging from 2.0 to 16.9 with increment of

0.1. The intensity of these images has been rescaled to fit the display range.

The two images I1, I2 in Figs. 2(a), 2(b) are not similar and as a consequence MFRI1
(θ, s),

MFRI2
(θ, s) in Figs. 2(k), 2(l) have different patterns. The images I3, I4, and I5 in Figs. 2(c)–2(e) are

transformed versions of the image I2 in Fig. 2(b) then MFRI3
(θ, s), MFRI4

(θ, s), and MFRI5
(θ, s)

in Figs. 2(m)–2(o) have the same pattern with MFRI2
(θ, s) in Fig. 2(l). The image in Figs. 2(l)–2(o)

demonstrates clearly the scaling and translation invariant properties of the 1D Fourier–Mellin transform,

it is invariant to scaling, translation and converts rotation in the image I into a circular shift in the

variable θ of MFRI
(θ, s).

A quantitative evaluation of the invariant properties of the Fourier–Mellin transform is given in Fig.

3 using the normalized cross correlation between all possible pairs of Fourier–Mellin images MFRIi
(θ, s)

and MFRIj
(θ, s) from the third row of Fig. 2. Normalized cross correlation is selected for the sake of

overcoming the constant multiplicative factor ασ−2 in Eq. (13). To overcome the remaining rotating

parameter, the correlation is calculated for all possible rotating angle, meaning that one of the two

Fourier–Mellin images can be circular shifted along its θ direction by 180 possible values from 0 to 179

with increment of 1. Denoting ϕ as the shifting distance, the correlation between image Ii and Ij at ϕ

is defined as

Cij(ϕ) = corr2
(

MFRIi
(θ, s),MFRIj

(θ + ϕ, s)
)

,

11
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Figure 3: The normalized cross correlation between all possible pairs of Fourier–Mellin images from the

third row of Fig. 2. For each pair of images, 180 correlation values are calculated by circular shifting

one of the two Fourier–Mellin images along its θ direction by 180 possible values from 0 to 179 with

increment of 1.

where corr2(A,B) is the normalized cross correlation function between two 2D input data A and B of

size m× n calculated using the following formula:

∑m
i=1

∑n
j=1(Aij − Ā)(Bij − B̄)

√

(

∑m
i=1

∑n
j=1(Aij − Ā)2

)(

∑m
i=1

∑n
j=1(Bij − B̄)2

)

,

where Ā and B̄ are the mean values of A and B respectively.

The 10 curves Cij(ϕ) corresponding to the 10 possible pairs of five Fourier–Mellin images have two

different patterns, Cij(ϕ) is peaky only when the two pattern images Ii and Ij are similar (i, j = 2, 3, 4, 5).

The maximum value of Cij(ϕ) are 0.6200, 0.6236, 0.6239, 0.6239, 0.9962, 0.9943, 0.9943, 0.9970, 0.9970,

1.0000 respectively from left to right, top to bottom. The non-peaky and peaky maxima exhibit

the discriminatory power of the proposed descriptor and the maximum of nearly 1 means that the

Fourier–Mellin image is invariant to translation and scaling. The value of ϕ∗ corresponding to the peak

in Cij(ϕ) denotes the difference in orientation (in degree) between the patterns in Ii and Ij .

5 Robustness to noise

Pattern descriptor defined based on the Radon transform has the advantage of being robust to additive

noise [39]. Suppose the image f(x, y) is corrupted by additive white noise η(x, y) with zero mean and

variance σ2 to be f̂(x, y) = f(x, y) + η(x, y), the Radon transform of the noisy image f̂(x, y) is obtained

by applying the linearity property of the Radon transform (P1):

R
f̂
(θ, ρ) = Rf (θ, ρ) +Rη(θ, ρ).

Recall that the Radon transform, as illustrated in Fig. 1, is line integrals of f(x, y). In the continuous

domain, the Radon transform of additive white noise Rη(θ, ρ) is proportional to the mean value of the

noise, which means Rη(θ, ρ) = 0, or

R
f̂
(θ, ρ) = Rf (θ, ρ). (21)
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Figure 4: Illustration of the computation of the Radon transform by definition: for each value of θ, the

image function f(x, y) is projected onto an axis ρ which is perpendicular to the line L and makes with

the x axis an angle of θ. The projection makes itself a line Rf (θ, ·) in the Radon image.

The ideal additive white noise, therefore, has no effect on the Radon transform of the image in the

continuous domain. However, in practice, the image represented and processed in digital computer is

not a continuous function but its sampled and quantized version and Eq. (21) does not hold.

Suppose f(x, y) is in the form of a sampled 2D signal of size m× n (0 ≤ x ≤ m, 0 ≤ y ≤ n) whose

values are random variables with mean µ and variance σ2. The computation of the Radon transform

of f(x, y) is assumed to follow the definition, that is the values of f(x, y) along the lines L(θ, ρ) are

summed up, as shown in Fig. 4. The contribution of each pixel i to the sum is equal to the length of its

intersection with L(θ, ρ). The sum of all the pixels’ contribution corresponding to L(θ, ρ) is therefore

equal to the length of the segment AB, the intersection of f(x, y) with L(θ, ρ). The sum of f(x, y) along

all the lines L(θ, ρ) having the same direction θ can also be interpreted as the projection of f(x, y) onto

an axis ρ perpendicular to L(θ, ·). This projection is actually the line Rf (θ, ·) in the Radon image of

f(x, y).

To study this projection, let θ = const and denoting nρ = AB, then the sum of the pixel values

pρ = Rf (θ, ρ) for each line L(θ, ρ) has mean nρµ and variance nρσ
2. The average of the expected value

of p2ρ is:

Ep =
1

2Nρ

∫ Nρ

−Nρ+1
E{p2ρ} dρ =

1

2Nρ

∫ Nρ

−Nρ+1
nρσ

2 dρ+
1

2Nρ

∫ Nρ

−Nρ+1
n2
ρµ

2 dρ. (22)

In the above equation, the integral
∫ Nρ

−Nρ+1 nρ dρ represents all the area of f(x, y) and is equal to the

number of pixels in f(x, y), which is mn. Then, by denoting A(θ) =
∫ Nρ

−Nρ+1 n
2
ρ dρ, Eq. (22) is simplified

as

Ep =
mnσ2

2Nρ
+

A(θ)µ2

2Nρ
. (23)

For the image f(x, y) corrupted by white noise η(x, y), assuming f(x, y) has mean µs, variance σ2
s

and η(x, y) has mean µn = 0, variance σ2
n, then Es =

mnσ2
s

2Nρ
+ A(θ)µ2

s

2Nρ
and En = mnσ2

n

2Nρ
. The signal-to-noise
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Figure 5: The values of the multiplicative factor A(θ)
mn

in Eq. (24) at different values of θ computed on an

image f(x, y) of different sizes. It gets its maximum at θ = 90 (degree) corresponding to the direction

of the longer side of f(x, y) and its minimum near θ = 0 (degree). The values of A(θ)
mn

relates directly to

the noise-suppressing ability of the Radon transform.

ratio (SNR) of f̂(x, y) and its projection R
f̂
(θ, ·) is:

SNRimage =
σ2
s + µ2

s

σ2
n

,

SNRproj(θ) =
Es

En
=

mnσ2
s +A(θ)µ2

s

mnσ2
n

=
σ2
s +

A(θ)
mn

µ2
s

σ2
n

,

or:

SNRproj(θ) = SNRimage +

(

A(θ)

mn
− 1

)

µ2
s

σ2
n

. (24)

The SNR is increased by a quantity
(

A(θ)
mn

− 1
)

µ2
s

σ2
n

after projecting f̂(x, y) along the direction

θ. As the value of A(θ) depends both on θ, m and n, the multiplicative factor
(

A(θ)
mn

− 1
)

is not

constant. Moreover, the value of A(θ)
mn

is “big” because A(θ) =
∫ Nρ

−Nρ+1 n
2
ρ dρ is one order higher than

mn =
∫ Nρ

−Nρ+1 nρ dρ. Eq. (24) can be rewritten as

SNRproj(θ) ≃ SNRimage +
A(θ)

mn
×

µ2
s

σ2
n

.

As A(θ)
mn

× µ2
s

σ2
n
is positive and has high value, corresponding to a high increase in the value of SNR

after projection, this means that the Radon transform is very robust to additive white noise. Fig. 5

depicts the values of A(θ)
mn

for a range of θ from 0 to 180 (degree) using input images of different sizes.

We can notice that the value of A(θ)
mn

depends on the actual size of f(x, y) and it gets its maximum in the

direction of the longer side and its minimum near the direction of the shorter side of f(x, y), therefore:

min
θ

A(θ)

mn
≃ min(m,n),

max
θ

A(θ)

mn
= max(m,n).

In the field of shape analysis and recognition, f(x, y) is constrained to have binary values of 0 or

1 and the additive noise to f(x, y) is in the form of “salt & pepper” noise, instead of white noise. To
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model this type of noise, let D and d be the percentage of pixels in f̂(x, y) occupied by the shape region

and flipped by the noise respectively, then:

µs = D, σ2
s = D −D2,

µn = d(1− 2D), σ2
n = d− d2(1− 2D)2.

Using Eq. (23), the signal-to-noise ratio (SNR) of f̂(x, y) and its projection R
f̂
(θ, ·) is:

SNRimage =
σ2
s + µ2

s

σ2
n + µ2

n

=
D

d
,

SNRproj(θ) =
mnσ2

s +A(θ)µ2
s

mnσ2
n +A(θ)µ2

n

=
D −D2 + A(θ)

mn
D2

d− d2(1− 2D)2 + A(θ)
mn

d2(1− 2D)2

=
D

d
×

1 +D
(

A(θ)
mn

− 1
)

1 + d(1− 2D)2
(

A(θ)
mn

− 1
) ,

then:

SNRproj(θ)

SNRimage
=

1 +D
(

A(θ)
mn

− 1
)

1 + d(1− 2D)2
(

A(θ)
mn

− 1
) .

It is clear that
SNRproj(θ)

SNRimage
depends on the size of the input noisy image f̂(x, y), the projection direction

θ, the percentage of shape region D, and the level of noise d. For explicit minimum value of
SNRproj(θ)

SNRimage
,

let’s say D ∈ [0.3, 0.7] and d ∈ [0, 0.2]. This is a practically reasonable assumption as the shape usually

occupies around half of the image region (D = 0.5) and the shape image is not too noisy (the highest level

of noise used in experimentation is d = 0.1, meaning 10% of the image pixels is flipped, corresponding to

the dataset in the bottom row of Fig. 11(b)). Due to the inverse proportion of
SNRproj(θ)

SNRimage
to d,

SNRproj(θ)

SNRimage

gets its minimum value at max d = 0.2. Moreover at d = 0.2, as
SNRproj(θ)

SNRimage
decreases when D is going

away from the point D = 0.5, the minimum value of
SNRproj(θ)

SNRimage
, at a specific value of A(θ)

mn
, is reached

at minD = 0.3. The depiction of the value of
SNRproj(θ)

SNRimage
for the case A(θ)

mn
= 100 over the domain

D ∈ [0.3, 0.7] and d ∈ [0, 0.2] is given in Fig. 6(a).

Fixing D = 0.3 and d = 0.2, the dependance of
SNRproj(θ)

SNRimage
on A(θ)

mn
is further given in Fig. 6(b). It

is evident that
SNRproj(θ)

SNRimage
> 1, meaning the projection in the Radon transform has the property of

suppressing “salt & pepper” noise. Additionally,
SNRproj(θ)

SNRimage
increases with the increase in A(θ)

mn
from

4.1667 at A(θ)
mn

= 20 (a very small image) to its limit at:

lim
A(θ)
mn

→∞

SNRproj(θ)

SNRimage
=

D

d(1− 2D)2
= 9.375,

implying a better suppression of noise in the projection of bigger-size images.

6 Experimental results

In order to demonstrate the effectiveness of the proposed RFM descriptor, three experiments on grayscale

and binary image datasets have been carried out. The robustness of the proposed descriptor to additive
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Figure 6: (a) The values of
SNRproj

SNRimage
over the domain D ∈ [0.3, 0.7] and d ∈ [0, 0.2] for the case A(θ)

mn
= 100,

SNRproj

SNRimage
reaches its minimum value at one of the four corners of the plotted range (D = 0.3, d = 0.2).

(b) The dependance of the values of
SNRproj

SNRimage
on A(θ)

mn
for the minimum case D = 0.3, d = 0.2.

white noise is first demonstrated by using two sets of datasets generated from images of 26 Latin

characters and from the COIL-20 dataset [40] by adding white noise of different levels to them. Secondly,

the proposed descriptor is computed on a set of datasets generated from the UMD Logo dataset [41]

by adding “salt & pepper” noise of different levels to its images. The aim of these experiments is to

demonstrate the robustness to “salt & pepper” noise of the proposed descriptor. Finally, the proposed

descriptor is computed and compared with other descriptors on the reference Shapes216 dataset [42],

which is used to evaluate its robustness to occlusion and deformation. Thus, the first experiment deals

with grayscale patterns and the last two ones with binary patterns.

The proposed RFM descriptor is compared with angular radial transform (ART) [43], generic Fourier

descriptor (GFD) [6], Zernike moments [30], R-signature [10], and Radon 2D Fourier–Mellin transforms

(R2DFM) [11]. Except for the R-signature, all other comparing descriptors need normalizations in

order to be invariant to RST transformations. Moreover, the R-signature and R2DFM descriptors

are also defined on the Radon transform. These descriptors are selected because they are commonly

used and have good reported performance. The measure used for comparison among descriptors is the

precision–recall curve defined in information retrieval context.

In computing the precision–recall curve for each dataset, in the experiment, each of the images in

the dataset is used as a model to which all the images in the dataset are compared/matched with. The

matching is realized using the similarity measure defined in Eq. (14). The obtained matching results are

then sorted, or ranked, for the determination of the nth nearest matches for each model.

6.1 Grayscale pattern recognition

The performance of the proposed descriptor has been first tested on grayscale noisy images to demonstrate

its robustness to additive white noise. Two experiments have been carried out on two different sets of

datasets:

• ExpA: The first set of six alphabet datasets has been generated from images of 26 Latin characters

as shown in Fig. 7(a). Each of these six datasets has 260 images of 26 categories, each category

contains 10 images.

• ExpB : The second set of six object datasets has been generated from 20 object images from the
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(a) Noise-free images

SNR = 16 SNR = 8 SNR = 4 SNR = 2 SNR = 1 d = 0.5

(b) Examples of noisy images

Figure 7: (a) Images of 26 Latin characters of size 64× 64 pixels in Arial bold font used to generate the

six alphabet datasets. (b) Sample images from the six alphabet datasets generated from the first four

character images with six possible values of SNR = {16, 8, 4, 2, 1, 0.5}, corresponding to the six datasets.

COIL-20 dataset [40] as shown in Fig. 8(a). Each of these six datasets has 220 images of 20

categories, each category contains 11 images.

The main characteristic that differentiates ExpA and ExpB, besides the semantic content of their

images, is the number of intensity levels in the original images: character images have only two levels

of intensity whereas object images have multi-level intensity. Noisy images are generated from the

corresponding noise-free images by randomly scaling, rotating, translating and then adding white noise

to them. Let SNR be the signal-to-noise ratio defined as

SNR =

∑

x,y f
2(x, y)

∑

x,y η
2(x, y)

where f(x, y) is the noise-free image and η(x, y) is the added white noise, the value of SNR for each

dataset is kept constant and, for each experiment, SNR has six possible values {0.5, 1, 2, 4, 8, 16},

corresponding to the six datasets. Some example images from the six datasets in the two experiments

are given in Figs. 7(b), 8(b).

Comparison of the proposed RFM descriptor with ART, GFD, Zernike, R-signature, and R2DFM

descriptors on these noisy datasets have been performed and the obtained results on ExpA and ExpB

are given in Figs. 9 and 10 respectively. It is observed from these set of figures that:

• ART, GFD, Zernike, and R2DFM descriptors are not robust to additive white noise at all, their

performance is similarly poor for different levels of noise.

• R-signature and RFM descriptors have reasonably good performance when the noise is weak

(SNR = 16, 8, 4), demonstrating its resistance to additive noise.

• As SNR decreases (the images get noisier), the precision–recall curves of the R-signature and

RFM descriptors generally move downwards. However, the curves of the RFM descriptor is always

above that of the R-signature, meaning a more robustness of the RFM descriptor to noise than

the R-signature.
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(a) Noise-free images

SNR = 16 SNR = 8 SNR = 4 SNR = 2 SNR = 1 d = 0.5

(b) Examples of noisy images

Figure 8: (a) Twenty object images from the COIL-20 dataset [40] used to generate the six object

datasets. (b) Sample images from the six object datasets generated from the four object images with six

possible values of SNR = {16, 8, 4, 2, 1, 0.5}, corresponding to the six datasets.

It is thus can be concluded that the proposed RFM descriptor is more robust to additive white noise

than all other comparing descriptors on grayscale noisy datasets and this provides an empirical evidence

for the analytical results developed in Section 5. Poor performance of ART, GFD, Zernike, and R2DFM

descriptors has its root in the required normalizations in their computation and can be explained as

• To have invariance to translation, the origin of the polar coordinate system needs to be placed at

the centroid of the pattern. In the presence of noise, position of the centroid is shifted arbitrarily

according to the actual noise.

• To have invariance to scaling, the radial axis is normalized by the distance from the origin of the

polar coordinate system to the furthest pattern’s point. In the presence of noise, this furthest

point might not belong to the actual pattern but the noise.

Furthermore, it is also evident from the two set of experiments that the performance of R-signature

and RFM descriptors is better on ExpB than on ExpA at each value of SNR, leading to a conclusion

that the proposed descriptor performs better on multi-level than two levels grayscale images. Possible

explanation for this come from the effect of re-sampling and re-quantization when an image is rotated,

scaled, and/or translated. Multi-level images have “smooth” intensity surface which suffers less

deformation due to re-sampling and re-quantization than the deformation occurred at sharp edge in two

levels images.

6.2 Binary pattern recognition

6.2.1 Noisy datasets

The robustness of the proposed RFM descriptor to additive “salt & pepper” noise is demonstrated

using six logo datasets generated from the first 25 logo images of the UMD Logo dataset as shown in

Fig. 11(b). Each of these six logo datasets has 275 images of 25 categories, each category contains 11

images generated by randomly scaling, rotating, translating the original corresponding logo image and

then adding “salt & pepper” noise to it. Let d be the percentage of pixels flipped by the noise, the
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(e) SNR = 1
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Figure 9: Precision–recall curves of comparing descriptors on the six alphabet datasets. ART, GFD,

Zernike, and R2DFM descriptors are not robust to noise while R-signature and RMF descriptors are.

As SNR decreases (the images get noisier), the precision–recall curves of the RMF and R-signature

descriptors generally move downwards but the curves of the RMF descriptor is always above that of the

R-signature, meaning its superiority.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

ART
GFD
R−sig

Zernike
R2DFM
RFM

(a) SNR = 16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

ART
GFD
R−sig

Zernike
R2DFM
RFM

(b) SNR = 8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

ART
GFD
R−sig

Zernike
R2DFM
RFM

(c) SNR = 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

ART
GFD
R−sig

Zernike
R2DFM
RFM

(d) SNR = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

ART
GFD
R−sig

Zernike
R2DFM
RFM
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Figure 10: Precision–recall curves of comparing descriptors on the six object datasets. ART, GFD,

Zernike, and R2DFM descriptors are not robust to noise while R-signature and RMF descriptors are.

As SNR decreases (the images get noisier), the precision–recall curves of the RMF and R-signature

descriptors generally move downwards but the curves of the RMF descriptor is always above that of the

R-signature, meaning its superiority.
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(a) Noise-free images

d = 0 d = 0.02 d = 0.04 d = 0.06 d = 0.08 d = 0.1

(b) Examples of noisy images

Figure 11: (a) Twenty-five logo images from the UMD Logo dataset [41] used to generate the six logo

datasets. (b) Sample images from the six logo datasets generated from the first four logo images with

six possible values of d = {0, 0.02, 0.04, 0.06, 0.08, 0.1}, corresponding to the six datasets.

value of d for each generated dataset is kept constant and d has six possible values ranging from 0 to

0.1 with increment of 0.02 corresponding to six datasets. The first dataset with d = 0 is actually a

noiseless dataset; its use is intended for checking the invariant properties of the proposed and comparing

descriptors. The values of d of the other five noisy datasets make up an arithmetic progression with

common difference 0.02. These five datasets are, therefore, used to evaluate the resistance of the

proposed and comparing descriptors at incrementing levels of additive noise. Some sample images from

these six datasets are given in Fig. 11(b). It should also be noted that the maximum chosen value of d,

0.1, satisfies the assumption on possible value of d in the analysis of the robustness of the proposed

descriptor to additive “salt & pepper” noise in Section 5.

The proposed RFM descriptor is again compared with ART, GFD, Zernike, R-signature, and R2DFM

descriptors using these six datasets and the computed precision–recall curves of these descriptors are

depicted in Fig. 12. For the noiseless dataset with d = 0 (Fig. 12(a)), all shape descriptors have ideal

performance. This demonstrates that the proposed descriptor is totally invariant to both translation,

rotation, and scaling. When d 6= 0 (Fig. 12(b)-12(f)), deterioration appears in the performance of all

descriptors and their precision–recall curve moves downwards. However, the impact of d on those curves

differs from one descriptor to another. Among the other descriptors, the proposed descriptor has the

best performance for all the five noisy datasets while ART and Zernike descriptors have similarly worse

performance. It is also observed that:

• As d increases, the curve of all the descriptors generally move downwards.

• ART and Zernike descriptors are not robust to noise at all, their performance is similarly poor for

different levels of noise.

• GFD have more resistance to noise than ART and Zernike because its curves are pushed away

from the ideal curve (when d = 0) with distance which increases along with the increase in d.

However, the resistance of GFD is weaker than that of descriptors defined on the Radon transform.

• Among the three Radon-based descriptors, the shift in the curve of R-signature and RFM is more

regular than that of R2DFM. In addition, and more importantly, the RFM descriptor has the
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Figure 12: Precision–recall curves of comparing descriptors on the six logo datasets. For the noiseless

dataset d = 0 (a), all shape descriptors have ideal performance. When d 6= 0 (b)–(f), deterioration

appears in the performance of all descriptors and their curve moves downwards. However, the impact of

d on those curves differs from one descriptor to another. Zernike and the RFM descriptors have worse

and best performance respectively among the remaining.

smallest in the shift of its curve among all descriptors for each value of d.

The above observations lead to a conclusion that the proposed RFM descriptor is more robust to

additive “salt & pepper” noise than all other comparing descriptors and this provides an empirical

evidence for the analytical results developed in Section 5. Poor performance of ART, GFD, Zernike,

and R2DFM descriptors in binary noisy datasets has similar explanations as in grayscale noisy datasets

given in the previous subsection.

6.2.2 Occlusion and deformation dataset

Fig. 13 shows some shapes from the Shapes216 dataset. This dataset is composed of 18 shape categories

with 12 samples per category, each of these cannot be obtained by RST transforming any other shape

from the same category. The overall resulting nearest matches by category using the proposed RFM

descriptor is given in Table 1. The value of each cell in the center region of this table represents

the number of times the nth nearest matches for each category are in the appropriate category. The

precision of the first 12 nearest matches for each category is given in the last column and the value

varies according to category. The proposed descriptor obtains:

• 100% precision in the first 12 nearest matches on Car, Children, Face, and Fountain.

• High performance on Bone, Brick, and Classic.

• And low performance on Elephant, Fork.
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Figure 13: Example images from the Shapes216 dataset [42]. There are 18 shape categories and each

category contains 12 shapes (shown in the figure are four shapes for each category), each of these cannot

be obtained by RST transforming any other shape from the same category.

Table 1: The resulting nearest matches by category of the Shapes216 dataset using the proposed RFM

descriptor.

Category
nth nearest match

%
1 2 3 4 5 6 7 8 9 10 11 12

Bone 12 12 12 12 12 12 12 12 12 12 12 10 98.61
Glasse 11 12 11 12 12 11 10 11 11 12 6 12 90.97
Heart 11 8 9 8 9 5 8 9 10 9 7 7 69.44
Misk 10 10 10 6 4 10 10 10 1 10 10 10 70.14
Bird 4 1 9 10 11 6 10 10 10 11 9 7 68.06
Brick 12 12 12 12 11 12 12 12 12 12 12 12 99.30
Camel 6 6 8 9 9 5 7 5 10 8 8 9 62.50
Car 12 12 12 12 12 12 12 12 12 12 12 12 100
Children 12 12 12 12 12 12 12 12 12 12 12 12 100
Classic 11 11 11 12 12 10 11 11 12 12 11 11 93.75
Elephant 4 1 7 7 3 5 6 3 7 6 4 6 40.97
Face 12 12 12 12 12 12 12 12 12 12 12 12 100
Fork 3 2 7 4 5 1 3 5 6 5 8 8 39.58
Fountain 12 12 12 12 12 12 12 12 12 12 12 12 100
Hammer 9 11 9 11 11 8 5 8 8 8 8 10 73.61
Key 11 12 9 9 11 9 12 12 11 9 11 12 88.89
Ray 4 12 12 12 12 12 12 5 5 11 11 5 78.47
Turtle 6 9 6 6 6 5 10 6 7 4 6 5 52.78
% 100 94.44 91.67 90.74 87.04 81.02 76.85 75.93 69.44 62.96 64.35 56.94

The last row of Table 1 provides the precision of each nearest match for all categories. It is clear that

the categorization is not as good as that given in [42] where the precision of each nearest match for all

categories are reported as (100, 100, 100, 100, 99, 97, 99, 96, 96, 95, 91, 80). However, it should be noted

that the proposed RFM descriptor is not intended nor designed to work solely with binary patterns as

in [42]. It is designed, instead, to work also with grayscale patterns under RST transformations allowing

a certain level of additive noise. Furthermore, methods such as [42] cannot work with noisy patterns

and need “clean” images for feature extraction, which the proposed one does not. Comparison of the

proposed RFM descriptor with commonly used descriptors in this direction is given in Fig. 14. The

performance of the RFM descriptor outperforms the performance of R-signature and is comparable to

the performance of ART, GFD, Zernike, and R2DFM descriptors.

A better insight into the performance of proposed descriptor is by using the confusion matrix plotted

as an image Fig. 14(b). The value in each table cell of row i and column j corresponds to the number of

shape images of actual category j being predicted as shape images of category i. Thus, it is easy to see

if the system is confusing two classes, i.e., commonly mislabeling one as another. In the case of the

Shapes216 dataset, it is observed that:

22



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

ART
GFD
R−sig

Zernike
R2DFM
RFM

(a) Precision–recall curves

 

 
Bone

Glass

Heart

Misk

Bird

Brick

Camel

Car

Children

Classic

Elephant

Face

Fork

Fountain

Hammer

Key

Ray

Turtle

B
o

n
e

G
la

s
s

H
e

a
rt

M
is

k

B
ir
d

B
ri
c
k

C
a

m
e

l

C
a

r

C
h

ild
re

n

C
la

s
s
ic

E
le

p
h

a
n

t

F
a

c
e

F
o

rk

F
o

u
n

ta
in

H
a

m
m

e
r

K
e

y

R
a

y

T
u

rt
le

Actual category

P
re

d
ic

te
d

 c
a
te

g
o

ry

0

20

40

60

80

100

120

140

(b) Confusion matrix of the RFM descriptor

Figure 14: (a) The precision–recall curves of different descriptors on the Shapes216 dataset. The

proposed RFM descriptor has similar performance with ART, GFD, Zernike, R2DFM and outperform

R-signature. (b) The confusion matrix of the proposed RFM descriptor on the Shapes216 dataset

mapped to the full range of the ‘Jet’ colormap in MATLAB (ranging from blue to red, and passing

through the colors cyan, yellow, and orange).

• Low performance on Fork is due to its high confusion with Hammer and Key, the value in the

cells of column Fork and rows Hammer, Key is high. This is understandable as the shapes of

Hammer and Key are quite similar to the shapes of Fork.

• There is no high confusion between Elephant and any other category. However, low performance

on Elephant is due to the diffusion of the values in the column Elephant. Noticeable values are in

the cells of column Elephant and rows Misk, Bird, Camel, Car, Ray, and Turtle.

7 Conclusions

This paper presents a novel pattern descriptor defined based on the Radon, Fourier, and Mellin transforms.

The proposed descriptor is obtained by applying 1D Fourier–Mellin and Fourier transforms on the

radial and angular coordinates of the pattern’s Radon image respectively and has been proved to

be invariant to rotation, scaling, and translation, without the need of any normalization step. The

proposed descriptor’s computation is reasonably fast and correct, based mainly on the fusion of the

Radon and Fourier transforms and on a modification of the Mellin transform. It is proved to be robust

to additive noise both theoretically and experimentally. Experimental results show that, when compared

to commonly used pattern descriptors, the proposed RFM descriptor has comparable performance on a

occlusion/deformation dataset and outperforms on noisy datasets. Future work will investigate possible

combinations of the RFM descriptor with local descriptors. In our perspective, due to the orthogonality

between these two type of descriptors, the combination may potentially boost the performance of pattern

recognition and image retrieval systems.
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