
HAL Id: hal-00200786
https://hal.science/hal-00200786v1

Submitted on 5 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptative Hausdorff Distances and Dynamic Clustering
of Symbolic Interval Data

Francisco de A.T. de Carvalho, Renata M.C.R. de Souza, Marie Chavent,
Yves Lechevallier

To cite this version:
Francisco de A.T. de Carvalho, Renata M.C.R. de Souza, Marie Chavent, Yves Lechevallier. Adap-
tative Hausdorff Distances and Dynamic Clustering of Symbolic Interval Data. Pattern Recognition
Letters, 2006, 27 (3), pp.167-179. �10.1016/j.patrec.2005.08.014�. �hal-00200786�

https://hal.science/hal-00200786v1
https://hal.archives-ouvertes.fr


Adaptive Hausdorff Distances and Dynamic

Clustering of Symbolic Interval Data

Francisco de A.T. de Carvalho a,∗, Renata M.C.R. de Souza a

, Marie Chavent b , Yves Lechevallier c
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Abstract

This paper presents a partitional dynamic clustering method for interval data
based on adaptive Hausdorff distances. Dynamic clustering algorithms are iterative
two-step relocation algorithms involving the construction of the clusters at each it-
eration and the identification of a suitable representation or prototype (means, axes,
probability laws, groups of elements, etc.) for each cluster by locally optimizing an
adequacy criterion that measures the fitting between the clusters and their corre-
sponding representatives. In this paper, each pattern is represented by a vector of
intervals. Adaptive Hausdorff distances are the measures used to compare two inter-
val vectors. Adaptive distances at each iteration change for each cluster according
to its intra-class structure. The advantage of these adaptive distances is that the
clustering algorithm is able to recognize clusters of different shapes and sizes. To
evaluate this method, experiments with real and synthetic interval data sets were
performed. The evaluation is based on an external cluster validity index (corrected
Rand index) in a framework of a Monte Carlo experiment with 100 replications.
These experiments showed the usefulness of the proposed method.
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1 Introduction

Cluster analysis seeks to organize a set of items (usually represented as a
vector of quantitative values in a multidimensional space) into clusters such
that items within a given cluster have a high degree of similarity, whereas
items belonging to different clusters have a high degree of dissimilarity (Bock
(1993), Jain et al (1999)). Cluster analysis techniques can be divided into
hierarchical and partitional methods (Spaeth (1980), Gordon (1999), Everitt
(2001)).

Hierarchical methods yield complete hierarchy, i.e., a nested sequence of par-
titions of the input data. Hierarchical methods can be agglomerative or di-
visive. Agglomerative methods yield a sequence of nested partitions starting
with trivial clustering in which each item is in a unique cluster and ending
with trivial clustering in which all items are in the same cluster. A divisive
method starts with all items in a single cluster and performs a splitting pro-
cedure until a stopping criterion is met (usually upon obtaining a partition of
singleton clusters).

Partitional methods seek to obtain a single partition of the input data into a
fixed number of clusters. They usually produce clusters by (locally) optimizing
an adequacy criterion. To improve cluster quality, the algorithm is run multiple
times with different starting points and the best configuration obtained from
the total runs is used as the output clustering.

This paper addresses the partitioning of interval data often present in real
applications. Table 1 shows an example of an interval data table.

Table 1
Cardiological interval data set

u Pulse rate Systolic blood pressure Diastolic blood pressure

1 [44-68] [90-100 [50-70]

2 [60-72] [90-130] [70-90]

. . . . . . . . . . . .

10 [86-96] [138-180] [90-110]

11 [86-100] [110-150] [78-100]

This kind of data have been studied mainly in Symbolic Data Analysis (SDA),
a new domain in the area of knowledge discovery and data management related
to multivariate analysis, pattern recognition and artificial intelligence. The
aim of SDA is to provide suitable methods (clustering, factorial techniques,

Agency) for its financial support.
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decision trees, etc.) for managing aggregated data described by multi-valued
variables, where the cells of the data table contain sets of categories, intervals,
or weight (probability) distributions (Diday (1988), Bock and Diday (2000),
Billard and Diday (2003)).

SDA has provided partitioning methods for clustering symbolic data. Diday
and Brito (1989) proposed a clustering approach based on a transfer algo-
rithm. El-Sonbaty and Ismail (1998) proposed a fuzzy k-means algorithm for
clustering different types of symbolic data. Verde et al (2001) introduced a
dynamic cluster algorithm for symbolic data considering context-dependent
proximity functions. Gordon, A. D. (2000) presented an iterative relocation
algorithm that minimizes the sum of the description potentials of the clusters.
Bock (2002) gives clustering strategies based on a clustering criterion and
presents a sequential clustering and updating strategy for constructing a Self-
Organizing Map in order to visualize symbolic interval-type data. Chavent
and Lechevallier (2002) proposed a dynamical clustering algorithm for inter-
val data where the prototype is defined by the optimization of an adequacy
criterion based on the Hausdorff distance. Moreover, in Souza and De Carvalho
(2004), an adaptive dynamic clustering algorithm is presented for interval data
based on City-block distances.

The main contribution of this paper is the proposal of a new partitional dy-
namic clustering method for interval data based on the use of an adaptive
Hausdorff distance at each iteration.

The partitioning dynamical cluster algorithms (Diday (1971)) are iterative
two-step relocation algorithms involving the construction of clusters at each it-
eration and the identification of a suitable representation or prototype (means,
axes, probability laws, groups of elements, etc.) for each cluster by locally op-
timizing an adequacy criterion between the clusters and their corresponding
representations (Diday and Simon (1976)). An allocation step is performed
to assign individuals to classes according to their proximity to the prototypes.
This is followed by a representation step where the prototypes are updated
according to the assignment of the individuals in the allocation step, until the
convergence of the algorithm, when the adequacy criterion reaches a stationary
value.

The idea of dynamical clustering with adaptive distances (Govaert (1975),
Diday and Govaert (1977)) is to associate a distance to each cluster, which
is defined according to its intra-class structure. The advantage of this ap-
proach is that the clustering algorithm recognizes different shapes and sizes of
clusters. In this paper, the adaptive distance is a weighted sum of Hausdorff
distances. Explicit formulas for the optimum class prototype, as well as for the
the weights of the adaptive distances, are found. When used for dynamic clus-
tering of interval data, these prototypes and weights ensure that the clustering
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criterion decreases at each iteration.

In this paper, we present a dynamic clustering method with adaptive Hausdorff
distances for partitioning a set of interval data. This method is an extension of
the dynamic clustering algorithm based on non-adaptive Hausdorff distances
proposed in Chavent and Lechevallier (2002). In Section 2, a description
is given of the classical dynamic clustering method with adaptive distances.
This is followed by the presentation of the dynamic clustering method based
on adaptive Hausdorf distances for interval data (Section 3). To validate this
new method, Section 4 presents experiments with real and synthetic interval
data sets. In Section 5, the concluding remarks are given.

2 Introduction to partitional dynamic clustering with adaptive dis-
tances

Let Ω be a set n of objects indexed by i and described by p variables indexed by
j. Each object i is represented by a vector of feature values xi = (x1

i , . . . , x
p
i ).

Throughout this paper, we consider the problem of clustering Ω into K dis-
joint clusters C1, ..., CK such that the resulting partition P = (C1, ..., CK) is
optimum with respect to a given clustering criteria.

In dynamic clustering (Diday and Simon (1976)), we represent each cluster
Ck ∈ P by a prototype yk, which is also a vector of feature values. We measure
the quality of this cluster by the sum of the dissimilarities d(xi,yk) between
objects i ∈ Ck and the prototype yk. This measure of quality

∑
i∈Ck

d(xi,yk)
is called the adequacy criterion of the cluster Ck. The classification problem is
to find a partition P and a set L of K prototypes that minimize the following
clustering criterion:

∆(P, L) =
K∑

i=1

∑
i∈CK

d(xi,yk) (1)

over all partitions P = (C1, ..., CK) of Ω and all choices of set L = (y1, ...yK)
of cluster prototypes.

In this context, the dynamic clustering algorithm iteratively performs both a
representation step and an allocation step:

a) Representation step (the partition P is fixed).

Finding L that minimizes ∆(P, •) is equivalent to finding for k = 1, ..., K, the
prototype yk that minimizes the adequacy criterion

∑
i∈Ck

d(xi,yk). For con-
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tinuous quantitative data in �p and the city-block distance, yk is the median
vector of the cluster Ck.

b) Allocation step (the set of prototypes L is fixed).

Finding P that minimizes ∆(•, L) is equivalent to finding for k = 1, ..., K, the
cluster Ck = {i ∈ Ω | d(xi,yk) ≤ d(xi,ym) , ∀m = 1, ..., K}

Once these two steps properly defined, the partitioning criterion (1) decreases
at each iteration and the algorithm converges to a stationary value of this
criterion under the two following conditions:

i) Unicity of the choice for the cluster affectation of each object of Ω;
ii) Unicity of the choice of the prototype yk that minimizes the adequacy cri-

terion
∑

i∈Ck
d(xi,yk)

The main idea of dynamic clustering with adaptive distances is to associate a
distance dk to each cluster Ck (and its prototype yk) such that the sum of the
distances dk(xi,yk) between objects i ∈ Ck and the prototype yk is as small
as possible. The distances used in the dynamic algorithm are therefore not
determined once and for all. Moreover, they are different from one cluster to
another. The clustering criterion is:

∆(P, L) =
K∑

k=1

∑
i∈Ck

dk(xi,yk) (2)

where P = (C1, ..., CK) and now L = (G, d), where G = (y1, ...,yK) and
d = (d1, . . . , dK).

In our context, the distance dk is a weighted sum of distances dj, where dj

compares a pair of objects according to variable j:

dk(xi,xi′) =
p∑

j=1

dj(xj
i , x

j
i′) =

p∑
j=1

λj
k d(xj

i , x
j
i′) (3)

with dj(xj
i , x

j
i′) = λj

k d(xj
i , x

j
i′), λ

j
k > 0 and

∏p
j=1 λ

j
k = 1.

According to the definition of dk given in (3), the set L is written L = (G, λ)
where λ = (λ1, . . ., λK), with λk = (λ1

i , ..., λ
p
i ) being the vector of weights

of the fixed distance d. The adaptivity of the distance dk is expressed by the
vector of weights λk.

When using adaptive distances, the representation step is divided in two
stages:
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a1) Stage 1 (the partition P and λ are fixed).

Find for k = 1, ..., K, the prototype yk that minimizes the adequacy criterion∑
i∈Ck

dk(xi,yk) =
∑

i∈Ck

∑p
j=1 λ

j
k d(xj

i , y
j
k) =

∑p
j=1 λ

j
k

∑
i∈Ck

d(xj
i , y

j
k).

a2) Stage 2 (the partition P and the set of prototypes G are fixed).

Find for k = 1, ..., K, the vector of weights λk that minimizes the adequacy cri-
terion

∑
i∈Ck

dk(xi,yk) =
∑p

j=1 λ
j
k

∑
i∈Ck

d(xj
i , y

j
k) =

∑p
j=1 λ

j
kΦj where Φj =∑

i∈Ck
d(xj

i , y
j
k).

The allocation step of the algorithm is once again:

b) Allocation step (the set of prototypes G and and the vector λ are fixed):

Find for k = 1, ..., K, Ck = {i ∈ Ω | dk(xi,yk) ≤ dm(xi,ym) , ∀m = 1, ..., K}.

Once these two steps have been properly defined, the partitioning criterion (2)
decreases at each iteration and the algorithm converges to a stationary value
of this criterion under the three following conditions:

i) Unicity of the choice for the cluster affectation of each object of Ω;
ii) Unicity of the choice of the prototype yk that minimizes the adequacy cri-

terion
∑

i∈Ck
dk(xi,yk)

iii) Unicity of the choice of the vectors of weights λk that minimizes the ade-
quacy criterion

∑p
j=1 λ

j
k

∑
i∈Ck

d(xj
i , y

j
k).

3 Dynamic clustering method with an adaptive Hausdorff distances

In this paper we are concerned with objects that are represented by a vector
of intervals (we consider a point as an interval with equal lower and upper
bounds). Let Ω be a set of n objects indexed by i and described by p interval
variables indexed by j. An interval variable X (Bock and Diday (2000)) is a
correspondence defined from Ω in � such that for each i ∈ Ω, X(i) = [a, b] ∈ 
,
where 
 is the set of closed intervals defined from �.

Each object i is represented as a vector of intervals xi = (x1
i , · · · , xp

i ), where
xj

i = [aj
i , b

j
i ] ∈ 
 = {[a, b] : a, b ∈ �, a ≤ b}. In this paper, an interval data

table {xj
i}n×p is made up of n rows that represent n objects to be clustered and

p columns that represent p interval variables. Each cell of this table contains
an interval xj

i = [aj
i , b

j
i ] ∈ 
.

A prototype yk of cluster Ck ∈ P is also represented as a vector of intervals
yk = (y1

k, · · · , yp
k), where yj

k = [αj
k, β

j
k] ∈ 
.
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It is now a matter of choosing an adaptive distance between vectors of intervals
and properly defining the representation step of the dynamic algorithm with
adaptive distances given in the previous section. In other words, we will give
an explicit formula for the prototype yk and for the vector of weights λk that
minimizes both the adequacy criterion

∑p
j=1 λ

j
k

∑
i∈Ck

d(xj
i , y

j
k).

3.1 The adaptive Hausdorff distances for interval data

A number of proximity measures have been introduced in the literature for
interval data (as well as for other types of symbolic data). Gowda and Diday
(1991) and Gowda and Diday (1992) introduced, respectively, dissimilarity
and similarity functions with components based on position, span and content.
The component based on position indicates the relative positions of two fea-
ture values on a real line. The component based on span indicates the relative
sizes of the feature values without referring their common parts. The compo-
nent based on content is a measure of the common parts between two features
values. Ichino and Yaguchi (1994) presented the generalized Minkowski met-
rics for mixed feature variables. Similarity and dissimilarity measures between
symbolic data restricted by dependency rules between feature values can be
found in De Carvalho (1994), De Carvalho (1998) and De Carvalho and
Souza (1998).

We have seen that the distance dk associated with the cluster Ck is defined as
a weighted sum of distances dj, where dj compares a pair of objects according
to variable j:

dj(xj
i , x

j
i′) = λj

k d(xj
i , x

j
i′)

Here, the two feature values xj
i and xj

i′ are, respectively, the two intervals
[aj

i , b
j
i ] and [aj

i′, b
j
i′ ]. The distance d (see equation 3) chosen to compare two

intervals is the Hausdorff distance. The Hausdorff distance (Nadler (1978),
Rote (1991)) is often used in image processing (Huttenlocher et al. (1993))
and is defined to compare two sets of objects A and B. This distance depends
on the distance chosen to compare two objects u and v respectively in A and
B. We consider the euclidean distance and the Hausdorff distance is defined
by:

dH(A,B) = max(h(A,B), h(B,A))

where:

h(A,B) = sup
u∈A

inf
v∈B
||u− v||
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At times, h is called the directed Hausdorff distance.

In this work, A and B are two intervals xj
i = [aj

i , b
j
i ] and xj

i′ = [aj
i′ , b

j
i′ ]. The

previous Hausdorff distance is simplified to:

dH(xj
i , x

j
i′) = max{|aj

i − aj
i′ |, |bj

i − bj
i′ |} (4)

Finally, the adaptive distance dk associated with the cluster Ck and defined
in equation (3) is:

dk(xi,xi′) =
p∑

j=1

λj
k dH(xj

i , x
j
i′) =

p∑
j=1

λj
k max{|aj

i − aj
i′|, |bj

i − bj
i′ |} (5)

with λj
k > 0 and

∏p
j=1 λ

j
k = 1.

3.2 Definition of the best prototypes

In section 2, we saw that the representation step of the dynamic clustering
algorithm with adaptive distances was divided into two stages, corresponding
to two minimization problems. The first problem, when the partition P and the
vector λ are fixed, is to find for k = 1, ..., K the prototype yk that minimizes
the adequacy criterion

∑
i∈Ck

dk(xi,yk). With dk defined in (5) and with xi =
(x1

i , · · · , xp
i ) and yk = (y1

k, · · · , yp
k), the adequacy criterion is:

∑
i∈Ck

dk(xi,yk)=
∑

i∈Ck

p∑
j=1

λj
k dH(xj

i , y
j
k)

=
p∑

j=1

λj
k

∑
i∈Ck

dH(xj
i , y

j
k) (6)

The vector of weights being fixed, the problem is now to find for j = 1, . . . , p
the interval yj

k = [αj
k, β

j
k] that minimizes:

∑
i∈Ck

dH(xj
i , y

j
k) =

∑
i∈Ck

max{|aj
i − αj

k|, |bj
i − βj

k|} (7)

According to Chavent and Lechevallier (2002), an explicit formula for the
components yj

k of the best prototype is found by transforming the previous
minimization problem into two well-known L1 norm problems.
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Let mj
i = (aj

i + bj
i )/2 be the midpoint of the interval xj

i = [aj
i , b

j
i ] (for j =

1, . . . , p) and lji = (bj
i − aj

i )/2 be half of its length. From this we have:

aj
i = mj

i − lji and bj
i = mj

i + lji (8)

Also, let µj
k = (αj

k + βj
k)/2 be the midpoint of the interval yj

k = [αj
k, β

j
k] (for

j = 1, . . . , p) and ρj
k = (βj

k − αj
k)/2 be half of its length. We have:

αj
k = µj

k − ρj
k and βj

k = µj
k + ρj

k (9)

From the equations (7), (8) and (9), the equation (6) can be written as:

∑
i∈Ck

dH(xj
i , y

j
k)=

∑
i∈Ck

max{|(mj
i − lji )− (µj

k − ρj
k)|, |(mj

i + lji )− (µj
k + ρj

k)|}

=
∑
i∈Ck

max{|(mj
i − µj

k)− (lji − ρj
k)|, |(mj

i − µj
k) + (lji − ρj

k)|}

According to the following property defined for x and y in �,

max(|x − y|, |x+ y|) = |x|+ |y|

Then:

∑
i∈Ck

dH(xj
i , y

j
k)=

∑
i∈Ck

(|mj
i − µj

k|+ |lji − ρj
k|)

=
∑
i∈Ck

|mj
i − ρj

k|+
∑
i∈Ck

|lji − ρj
k| (10)

This yields two well-known minimization problems in L1 norm: find µj
k ∈ �

and ρj
k ∈ � that respectively minimize:

∑
i∈Ck

|mj
i − µj

k| and
∑
i∈Ck

|lji − ρj
k|

The solution µ̂j
k and ρ̂j

k are, respectively, the median of the set {mj
i , i ∈ Ck}

(the midpoints of the intervals xj
i = [aj

i , b
j
i ], i ∈ Ck), and the median of the set

{lji , i ∈ Ck} (the half-lengths of the intervals xj
i = [aj

i , b
j
i ], i ∈ Ck). Finally, the

solution ŷj
k = [α̂j

k, β̂
j
k] is given by

α̂j
k = µ̂j

k − ρ̂j
k and β̂j

k = µ̂j
k + ρ̂j

k (11)
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3.3 Definition of the best distances

The second stage of the representation step of the dynamic clustering algo-
rithm with adaptive distances, when the partition P and the set of prototypes
G are fixed, is to find for k = 1, ..., K the vector of weights λk that minimizes
the adequacy criterion defined in (6) by:

∑
i∈Ck

dk(xi,yk) =
p∑

j=1

λj
kΦj where Φj =

∑
i∈Ck

dH(xj
i , y

j
k)

Following Diday and Govaert (1974) and Govaert (1975), the weights λj
k are

calculated by the Lagrange multiplier method:

∂

∂λj
k

(
p∑

j=1

λj
kΦj − µ

p∏
h=1

λh
k) = 0 for j = 1, . . . , p (12)

From equation (12), we have the following result:

Φj − µ

∏p
h=1 λ

h
k

λj
k

= 0⇒ λj
k =

µ

Φj
(

p∏
h=1

λh
k) (13)

Remembering that Πp
h=1λ

h
k = 1, the parameter λj

k in equation (13) is given by

λj
k =

µ

Φj

The restriction Πp
h=1λ

h
k = 1 can be written as:

1 =
p∏

h=1

µ

Φh
=

µp

∏p
h=1 Φh

and then µ = (
p∏

h=1

Φh)
1
p

Finally, the solution λ̂j
k to the parameter λj

k is:

λ̂j
k =

µ

Φj

=

[∏p
h=1(

∑
i∈Ch

max{|ah
i − α̂h

k |, |bh
i − β̂h

k |})
] 1

p

∑
i∈Ck

max{|aj
i − α̂j

k|, |bj
i − β̂j

k|}
(14)

3.4 The algorithm

The algorithm schema of dynamic clustering algorithm with Hausdorff adap-
tive distances for interval data is as follows:

10



Schema of adaptive dynamic clustering algorithm

(1) Initialization
Choose a partition {C1 . . . , CK} of Ω randomly or choose K distinct ob-
jects y1, . . . ,yK belonging to Ω and assign each object i to the closest
object yk∗ (k∗ = arg mink=1,...,K

∑p
j=1 max{|aj

i − αj
k|, |bj

i − βj
k|} to con-

struct the initial partition {C1, . . . , CK}.
(2) Representation step

a) For i = 1 to K compute the prototype ŷk = ([α̂1
k, β̂

1
k ], . . . , α̂

p
k, β̂

p
k ]) with

α̂j
k = µ̂j

k − ρ̂j
k and β̂j

k = µ̂j
k + ρ̂j

k where µ̂j
k is the median of the set

{mj
i , i ∈ Ck} and ρ̂j

k is the median of the set {lji , i ∈ Ck}
b) For j = 1, . . . , p and k = 1, . . . , K, compute λ̂j

k with equation (14)
(3) Allocation step

test← 0
for i = 1 to n do

define the winning cluster Ck∗ such that

k∗ = arg mink=1,...,K
∑p

j=1 λ̂
j
k max{|aj

i − α̂j
k|, |bj

i − β̂j
k|}

if i ∈ Ck and k∗ �= k
test← 1
Ck∗ ← Ck∗ ∪ {i}
Ck ← Ck \ {s}

(4) Stopping criterion
If test = 0 then STOP, otherwise go to (2).

For classical dynamical clustering methods, the initialization step and stop-
ping rules can be modified. For example, the points chosen randomly at ini-
tialization can be chosen in such a way that they are as dissimilar as possible.
Concerning the stopping rule, a minimum value for the clustering criterion or
a maximum number of iterations can also be given.

Another remark is when all the weights λj
k are fixed to 1, the distances are non-

adaptive and the previous algorithm is equivalent to the dynamic clustering
algorithm of interval data proposed in Chavent and Lechevallier (2002). This
remark will be used in the next section for evaluating the adaptive dynamic
clustering algorithm.

4 Experimental results

To show the usefulness of this method, two synthetic interval data sets with
linearly non-separable clusters of different shapes and sizes have been drawn.
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Real applications are then considered.

Our aim is to achieve a comparison of the dynamic clustering algorithm con-
sidering different distances between vectors of intervals: adaptive Hausdorff
distance proposed in this paper, non-adaptive Hausdorff distance (Chavent
and Lechevallier (2002)), one component adaptive city-block distance (Souza
and De Carvalho (2004)) and non-adaptive city-block distance.

To compare the results furnished by the dynamic clustering algorithm with
these different distances, an external validity index is used. For synthetic in-
terval data sets, rectangles are built from three clusters of points drawn from
three bi-variate normal distributions. Next, the a priori partition of the ob-
jects is known. For the car interval data set describing car models, it is defined
a a priori partition into four groups according to a car category. For the in-
terval data set describing species of freshwater fish, it is considered a a priori
partition of the species into four groups according to diet.

The idea of external validity is simply to compare the a priori partition with
the partition obtained from the clustering algorithm. In this paper, we use
the corrected Rand (CR) index defined in Hubert and Arabie (1985) for
comparing two partitions, the definition of which is as follows.

Let U = {u1, . . . , ui, . . . , uR} and V = {v1, . . . , vj , . . . , vC} be two partitions of
the same data set having respectively R and C clusters. The corrected Rand
index is:

CR =

∑R
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∑C
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)
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n
2

)−1 ∑R
i=1

(
ni.

2

) ∑C
j=1

(
n.j

2

)

1
2
[
∑R

i=1

(
ni.

2

)
+

∑C
j=1

(
n.j

2

)
]−

(
n
2
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(
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(
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2

) (15)

where
(

n
2

)
= n(n−1)

2
and nij represents the number of objects that are in clusters

ui and vi; ni. indicates the number of objects in cluster ui; n.j indicates the
number of objects in cluster vj ; and n is the total number of objects in the data
set. CR takes its values from the interval [-1,1], where the value 1 indicates
perfect agreement between partitions, whereas values near 0 (or negatives)
correspond to cluster agreement found by chance.

4.1 Synthetic interval data sets

In this paper, we consider the same data point configurations presented in
Souza and De Carvalho (2004). Two data sets of 350 points in �2 were
constructed. In each data set, the 350 points are drawn from three bi-variate
normal distributions of independent components. There are three clusters of
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unequal sizes and shapes: two clusters with an ellipsoidal shape and size 150
and one cluster with a spherical shape and size 50. The mean vector and the
covariance matrix of the bi-variate normal distributions are noted:

µ =



µ1

µ2


 and Σ11 =



σ2

1 0

0 σ2
2




Data set 1 shows well-separated clusters (Figure 1). The data points of each
cluster in this data set were drawn according to the following parameters:

a) Class 1: µ1 = 28, µ2 = 22, σ2
1 = 100 and σ2

2 = 9;
b) Class 2: µ1 = 60, µ2 = 30, σ2

1 = 9 and σ2
2 = 144;

c) Class 3: µ1 = 45, µ2 = 38, σ2
1 = 9 and σ2

2 = 9;

Data set 2 shows overlapping clusters (Figure 1). The data points of each
cluster in this data set were drawn according to the following parameters:

a) Class 1: µ1 = 45, µ2 = 22, σ2
1 = 100 and σ2

2 = 9;
b) Class 2: µ1 = 60, µ2 = 30, σ2

1 = 9 and σ2
2 = 144;

c) Class 3: µ1 = 52, µ2 = 38, σ2
1 = 9 and σ2

2 = 9;
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Fig. 1. Seed data sets 1 and 2 showing, respectively, well-separated and overlapping
classes

In order to build interval data sets from data sets 1 and 2, each point (z1, z2)
of these data sets is considered as the ‘seed’ of a rectangle. Each rectangle is
therefore a vector of two intervals defined by:

([z1 − γ1/2, z1 + γ1/2], [z2 − γ2/2, z2 + γ2/2]) (16)

The parameters γ1 and γ2 are the width and the height of the rectangle. They
are drawn randomly within a given range of values. For example, the width
and the height of all the rectangles can be drawn randomly within the interval
[1, 8]. Figure 2 shows two synthetic interval data sets built from data set 1 and
data set 2 when γ1 and γ2 are drawn randomly from [1, 8].
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Fig. 2. Interval data sets 1 and 2, showing, respectively, well-separated and overlap-
ping classes

In the framework of a Monte Carlo experiment, 100 replications of the previ-
ous process were carried out for parameters γ1 and γ2, drawn randomly 100
times from each of the following intervals: [1,8],[1,16], [1,24], [1,32], [1,40]. This
process has also been repeated for seeds taken from data set 1 and data set 2.

Dynamic clustering algorithms considering different distances between vectors
of intervals have been performed on these data sets. The 3-cluster partitions
obtained with these clustering methods were compared with the 3-cluster par-
tition known a priori. The comparison index used is the corrected Rand index
CR given in equation (15). For each 100 replications, the average corrected
Rand index CR is calculated.

Table 2 gives the values of the average CR index obtained with adaptive and
non-adaptive distances for interval data sets 1 and 2 as well as γ1 and γ2 drawn
from [1, 8], [1, 16], [1, 24], [1, 32], [1, 40]. As expected, in each case the average
CR indices are better with adaptive distances.

Concerning the data configurations presenting well separated classes, the Haus-
dorff (non-adaptive) distance shows better CR indices than city-block (non-
adaptive) distance regardless the range of the predefined intervals in Table 2.
Moreover, the Hausdorff distance is also the best option for data configuration
presenting overlapping classes as long as the widest intervals are considered.

For both type of data configurations (well separated classes and overlapping
classes), the average CR indices provided by the adaptive Hausdorff distance
are again better than those provided by the adaptive city-block distance for
those data configurations where the range of the predefined intervals are the
widest. Table 3 gives the corresponding values of the standard deviation for
the average CR index.

The evaluation of the performance of the dynamic clustering methods for
these different distances between vectors of intervals is achieved by an inde-
pendent Student’s t-test with a 5% level of significance. Tables 4 and 5 shows
the suitable (null and alternative) hypothesis and the observed values of the
test statistics following a Student’s t distribution with 198 degrees of free-
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Table 2
Comparison of the methods according to the average corrected Rand index

Interval Data Set 1 Interval Data Set 2

Predefined Non-Adaptive Adaptive Non-Adaptive Adaptive

Intervals Distances Distances Distances Distances

L1 Hausd. L1 Hausd. L1 Hausd. L1 Hausd.

[1, 8] 0.684 0.691 0.935 0.923 0.379 0.378 0.470 0.448

[1, 16] 0.664 0.706 0.931 0.931 0.375 0.374 0.432 0.434

[1, 24] 0.636 0.700 0.892 0.909 0.369 0.377 0.406 0.418

[1, 32] 0.622 0.685 0.773 0.912 0.361 0.385 0.389 0.412

[1, 40] 0.618 0.702 0.701 0.886 0.348 0.378 0.373 0.393

Table 3
Comparison of the methods according to the standard deviation of the corrected
Rand index

Interval Data Set 1 Interval Data Set 2

Predefined Non-Adaptive Adaptive Non-Adaptive Adaptive

Intervals Distances Distances Distances Distances

L1 Hausd. L1 Hausd. L1 Hausd. L1 Hausd.

[1, 8] 0.0127 0.0150 0.0005 0.0010 0.0013 0.0013 0.0050 0.0019

[1, 16] 0.0118 0.0184 0.0009 0.0007 0.0010 0.0012 0.0014 0.0023

[1, 24] 0.0041 0.0154 0.0058 0.0011 0.0014 0.0010 0.0015 0.0019

[1, 32] 0.0019 0.0131 0.0114 0.0011 0.0013 0.0014 0.0013 0.0017

[1, 40] 0.0014 0.0133 0.0073 0.0032 0.0010 0.0016 0.0024 0.0024

dom for interval data sets 1 and 2, respectively. In this table, µ1, µ2, µ3 and
µ4 are, respectively, the average of the CR index for the dynamic cluster-
ing algorithm considering the Hausdorff distance, city-block distance, adap-
tive Hausdorff distance and city-block (one componente) adaptive distance,
respectvely. These tables show that, in 75% of the data simulation configu-
rations considered in this work, the dynamic clustering algorithm based on
Hausdorff distance outperforms the version of this algorithm which uses the
city-block distance considering both adaptive and non-adaptive cases.
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Table 4
Interval Data Set 1 (well-separated classes): statistics of Independent Student’s t-
tests comparing methods

Interval Data Set 1

Predefined Non-Adaptive Decision Adaptive Decision

Intervals Distances Distances

H0 : µ1 ≤ µ2 H0 : µ3 ≤ µ4

H1 : µ1 > µ2 H1 : µ3 > µ4

[1, 8] 3.76 Reject H0 -44.62 Accept H0

[1, 16] 19.49 Reject H0 0.75 Accept H0

[1, 24] 40.23 Reject H0 28.99 Reject H0

[1, 32] 47.68 Reject H0 121.03 Reject H0

[1, 40] 62.92 Reject H0 232.88 Reject H0

Table 5
Interval Data Set 2 (overlapping classes): Statistics of Independent Student’s t-tests
comparing methods

Interval Data Set 2

Predefined Non-Adaptive Decision Adaptive Decision

Intervals Distances Distances

H0 : µ1 ≤ µ2 H0 : µ3 ≤ µ4

H1 : µ1 > µ2 H1 : µ3 > µ4

[1, 8] -2.80 Accept H0 -40.19 Accept H0

[1, 16] -8.36 Accept H0 6.69 Reject H0

[1, 24] 42.65 Reject H0 50.97 Reject H0

[1, 32] 125.80 Reject H0 105.25 Reject H0

[1, 40] 158.54 Reject H0 60.39 Reject H0

4.2 Car data set

The car interval data set consists of a set of 33 car models described by 8
interval, 2 categorical multi-valued and one nominal variables (see Table 6).
In this application, the 8 interval variables - Price, Engine Capacity, Top
Speed, Acceleration, Step, Length, Width and Height - have been considered
for clustering purposes, the nominal variable Car Category has been used as
a a priori classification.
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Table 6
‘Car’ data set with 8 interval and one nominal variables

Price Engine . . . Height Category

Capacity

Alfa 145 [27806, 33596] [1370, 1910] . . . [143, 143] Utilitarian

Alfa 156 [41593, 62291] [1598, 2492] . . . [142, 142] Berlina

. . . . . . . . . . . . . . . . . .

Porsche 25 [147704, 246412] [3387, 3600] . . . [130, 131] Sporting

Rover 25 [21492, 33042] [1119, 1994] . . . [142, 142] Utilitarian

Passat [39676, 63455] [1595, 2496] . . . [146, 146] Luxury

Dynamic clustering algorithms considering different distances between vectors
of intervals have been performed on this data set. The 4-cluster partitions
obtained with these clustering methods were compared with the 4-cluster par-
tition known a priori. The comparison index used is the corrected Rand index
CR given in equation (15). The a priori classification, indicated by the suffix
attached to the car model denomination, is as follows:

Utilitarian:

1-Alfa 145/U 5-Audi A3/U 12-Punto/U 13-Fiesta/U 17-Lancia Y/U

24-Nissan Micra/U 25-Corsa/U 28-Twingo/U 29-Rover 25/U 31-Skoda Fabia/U

Berlina:

2-Alfa 156/B 6-Audi A6/B 8-BMW serie 3/B 14-Focus/B

21-Mercedes Classe C/B 26-Vectra/B 30-Rover 75/B 32-Skoda Octavia/B

Sporting:

4-Aston Martin/S 11-Ferrari/S 15-Honda NSK/S 16-Lamborghini/S

19-Maserati GT/S 20-Mercedes SL/S 27-Porsche/S

Luxury:

3-Alfa 166/L 7-Audi A8/L 9-BMW serie 5/L 10-BMW serie 7/L

18-Lancia K/L 22-Mercedes Classe E/L 23-Mercedes Classe S/L 33-Passat/L

Each clustering method is run (until the convergence to a stationary value of
the adequacy criterion) 100 times and the best result, according to the ade-
quacy criterion, is selected. The corrected Rand index CR is calculated for the
best result. Table 7 shows the clusters (individual labels) given by the non-
adaptive (L1 and Hausdorff) and adaptive (one component L1 and Hausdorff)
methods. The CR indices obtained from the results displayed in Table 7 are
0.35 and 0.38 for the non-adaptive L1 and Hausdorff methods, respectively,
and 0.56 for the adaptive (one component L1 and Hausdorff) methods. Notice
that, for this data set, the dynamic clustering algorithm with non-adaptive
Hausdorff distance outperforms this same algorithm with non-adaptive L1

distance. Moreover, for the case of adaptive distances, it is furnished the same
partition by the dynamic clustering algorithm (the adaptive Hausdorff and
one component city-block distances presented the same performance). How-
ever, for this data set, the version of the dynamic clustering algorithm with
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adaptive distances outperforms the version of this algorithm with non-adaptive
distances.

Table 7
Clustering Results for the Car data set

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4

L1 (non-adaptive) 2/B 3/L 5/U 7/L 9/L 10/L 1/U 12/U 13/U 4/S 11/S 16/S

6/B 8/B 18/L 15/S 19/S 20/S 14/B 17/U 24/U 22/L 23/L

21/B 30/B 33/L 27/S 25/U 26/B 28/U

29/U 31/U 32/B

Hausdorf (non-adaptive) 1/U 12/B 13/U 7/L 9/L 10/L 2/B 3/L 5/U 4/S 11/S 16/S

14/B 17/U 24/U 15/S 19/S 20/S 6/B 8/B 18/L

25/U 26/B 28/U 22/L 23/L 27/S 21/B 30/B 33/S

29/U 31/U 32/B

L1 (adaptive) 12/U 13/U 17/U 1/U 2/B 3/L 6/B 7/L 9/L 4/S 11/S 15/S

24/U 25/U 28/U 5/U 8/B 14/B 10/L 22/L 23/L 16/S 19/S 20/S

29/U 31/U 18/L 21/B 26/B 27/S

30/B 32/B 33/L

Hausdorf (adaptive) 1/U 2/B 3/L 12/U 13/U 17/U 4/S 11/S 15/S 6/B 7/L 9/L

5/U 8/B 14/B 24/U 25/U 28/U 16/S 19/S 20/S 10/L 22/L 23/L

18/L 21/B 26/B 29/U 31/U 27/S

30/B 32/B 33/L

4.3 Ecotoxicology data set

Several studies realized in French Guyana indicated abnormal levels of mer-
cury contamination in some Amerindian populations. This contamination was
connected to their high consumption of contaminated freshwater fish (Boudou
and Ribeyre (1998)). In order to get a better knowledge of this phenomenon,
a data set has been collected by researchers from the LEESA (Laboratoire
d’Ecophysiologie et d’Ecotoxicologie des Systèmes Aquatiques) laboratory.

This data set concerns 12 species of freshwater fish, each species being de-
scribed by 13 interval variables. These species are grouped into four a priori
clusters of unequal sizes according to diet: two clusters (Carnivorous and De-
tritivorous) of size 4 and two clusters of size 2 (Omnivorous and Herbivorous).
Table 6 shows part of the freshwater fish data set.

Dynamic clustering algorithms considering different distances between vectors
of intervals have also been performed on this data set. The 4-cluster partitions
obtained with these clustering methods were compared with the 4-cluster par-
tition known a priori. Again, the comparison index used is the corrected Rand
index CR given in equation (15). The a priori classification, indicated by the
suffix attached to the freshwater specie denomination, is as follows:
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Table 8
Freshwater fish data set described by 13 interval variables

Interval Individuals/Labels

Variables Ageneiosusbrevifili Cynodongibbus . . . Myleusrubripinis

Length [22.5 : 35.5] [19 : 32] . . . [12.3 : 18]

Weight [170 : 625] [77 : 359] . . . [80 : 275]

Muscle [1425 : 5043] [2393 : 8737] . . . [8 : 35]

Intestine [333 : 2980.06] [0 : 2653] . . . [0 : 0]

Stomach [0 : 1761.1] [478.34 : 10860.7] . . . [10.76 : 41.93]

Gills [393.71 : 853.1] [354.22 : 1976.38] . . . [0 : 9.45]

Liver [642 : 7105.77] [2684.83 : 43014] . . . [190.12 : 394.52]

Kidneys [0 : 3969.05] [1437.82 : 27514.6] . . . [72.3 : 112.54]

Liver/Muscle [0.45 : 1.41] [1.12 : 4.92] . . . [7.12 : 30.35]

Kidneys/Muscle [0 : 2.02] [0.6 : 3.24] . . . [2.42 : 10.23]

Gills/Muscle [0.15 : 0.3] [0.15 : 0.24] . . . [0 : 0.85]

Intestine/Muscle [0.23 : 0.63] [0 : 0.5] . . . [0 : 0]

Stomach/Muscle [0 : 0.55] [0.2 : 1.24] . . . [0.31 : 4.33]

Carnivorous:

1-Ageneiosusbrevifili/C 2-Cynodongibbus/C 3-Hopliasäımara/C 4-Potamotrygonhystrix/C

Detritivorous:

7-Dorasmicropoeus/D 8-Platydorascostatus/D 9-Pseudoancistrusbarbatus/D

10-Semaprochilodusvari/D

Omnivorous:

5-Leporinusfasciatus/O 6-Leporinusfrederici/O

Herbivorous:

11-Acnodonoligacanthus/H 12-Myleusrubripinis/H

Each clustering method is run (until the convergence to a stationary value
of the adequacy criterion) 100 times and the best result, according to the
adequacy criterion, is selected. The corrected Rand index CR is calculated
for the best result. Table 9 shows the clusters (individual labels) given by
the non-adaptive (L1 and Hausdorff) and adaptive (one component L1 and
Hausdorff) methods. The CR indices obtained from the results displayed in
Table 9 are 0.488 and 0.138 for the adaptive and non-adaptive distances,
respectively. Notice that, for this data set, regardless the adaptive (or the
non-adaptive) distances used, the dynamic clustering algorithm furnishes the
same partition (the Hausdorff and city-block distances presented the same
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performance). However, for this data sets, the version of the dynamic clustering
algorithm with adaptive distances outperforms the version of this algorithm
with non-adaptive distances.

Table 9
Clustering Results for the Ecotoxicology data set

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4

L1 (non-adaptive) 1/C 4/C 7/D 2/C 3/C 5/O 6/O 9/D

8/D 10/D 11/H 12/H

Hausdorf (non-adaptive) 1/C 4/C 7/D 2/C 3/C 5/O 6/O 9/D

8/D 10/D 11/H 12/H

L1 (adaptive) 5/O 6/O 9/D 11/H 12/H 1/C 2/C 3/C 4/C 7/D 8/D

10/D

Hausdorf (adaptive) 5/O 6/O 9/D 11/H 12/H 1/C 2/C 3/C 4/C 7/D 8/D

10/D

For the case of the dynamic clustering algorithm considering the Hausdorff
adaptive distances performed on the Ecotoxicology interval data set, Tables
10 and 11, respectively, give the prototype descriptions and the corresponding
weight vectors of the (Hausdorff) adaptive distances associated to each class,
according to the 13 interval variables.

Table 10
Description of each class prototype according to the 13 interval variables

Interval Prototype description

Variables Class 1 Class 2 Class 3 Class 4

Length [20.9 : 24.75] [22.5 : 35.5] [12.05 : 18.25] [19.27 : 30.82]

Weight [207.5 : 311.5] [170 : 625] [55 : 210] [229 : 602.5]

Muscle [743 : 1549] [1269.65 : 5937] [57 : 84] [490.5 : 929.73]

Intestine [22.5 : 130.6] [2.97 : 2650.03] [0 : 95] [71.59 : 927.22]

Stomach [112.25 : 434.13] [0 : 1761.1] [55.87 : 127.67] [0 : 579.80]

Gills [10 : 93.24] [346.79 : 900.02] [0 : 9.45] [55.09 : 133.98]

Liver [352.81 : 871.03] [642 : 7105.77] [101.26 : 807] [1744.57 : 8752.98]

Kidneys [538.08 : 1870.74] [1071 : 22015] [71.25 : 113.59] [1072.46 : 7709.51]

Liver/Muscle [0.41 : 0.76] [0.65 : 2.45] [1.81 : 18.82] [1.87 : 9.82]

Kidneys/Muscle [0.41 : 0.76] [0.60 : 3.24] [2.42 : 10.23] [1.08 : 11.64]

Gills/Muscle [0.02 : 0.07] [0.15 : 0.24] [0 : 0.85] [0.11 : 0.19]

Intestine/Muscle [0.09 : 0.12] [0.10 : 0.50] [0 : 2.16] [0.17 : 1.44]

Stomach/Muscle [0.12 : 0.37] [0 : 0.55] [0.31 : 4.33] [0 : 0.7]

In Noirhomme-Fraiture (2002), visualization techniques for interval data are
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Table 11
Ecotoxicology data set: vectors of weights λk of adaptive distance dk (k = 1, . . . , 4)
according to the 13 interval variables

Interval Vectors of weights

Variables λ1 λ2 λ3 λ4

Length 3.911076 3.784355 9.578303 5.855540

Weight 0.099555 0.022819 0.362272 0.022301

Muscle 0.016830 0.031758 0.375701 0.077517

Intestine 0.062889 0.146273 0.200882 0.145701

Stomach 0.042986 0.012046 0.319487 0.108850

Gills 0.158115 0.097757 0.295046 0.468606

Liver 0.032341 0.003193 0.032691 0.006864

Kidneys 0.008428 0.004982 0.082949 0.007686

Liver/Muscle 41.066313 33.423074 3.175321 2.804027

Kidneys/Muscle 28.321594 39.767796 2.033658 8.990483

Gills/Muscle 410.663114 1466.437071 12.970620 374.103973

Intestine/Muscle 68.443852 488.812463 18.866356 184.489640

Stomach/Muscle 40.064695 139.660709 9.453641 144.814440

presented, especially a type of graphic called Zoom Star. In this graphical
representation, each axis corresponds to an interval variable. In each axis,
the lower and upper bounds of the interval value assumed by an interval
variable for a given object are represented. The lower bounds (as well the
upper bounds) of the intervals assumed by each interval variable are linked
to form a polygon. The Zoom Star shows the area between the upper-bound
and lower-bound polygons. Figure 5 gives the visualization of the prototype
of each cluster from Table 10 according to the Zoom Star method.

All the interval variables for the prototype of Cluster 1 show intervals with low
spread, whereas they show intervals with medium spread for the prototype of
Cluster 4. For the prototype of Cluster 2, most of the interval variables that
do not represent ratios show a high spread, whereas the interval variables that
express ration show a low spread. Concerning the prototype of Cluster 3, the
role of the ratio and non-ratio interval variables are inverted in comparison to
their role in the prototype of Cluster 2.

In conclusion, for this data set, the performance of the adaptive methods
measured by the CR index is superior to the non-adaptive methods.
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Fig. 3. Ecotoxicology data set: description of prototypes for each cluster according
to Zoom Star method

5 Concluding remarks

In this paper, a clustering method for interval data using a dynamic clustering
algorithm with adaptive Hausdorff distances was presented. The algorithm lo-
cally optimizes an adequacy criterion that measures the fitting between the
classes and their representatives (prototypes). To compare classes and proto-
types, adaptive distances based on a weighted version of the Hausdorff distance
for interval data are introduced.

The dynamic clustering algorithm with adaptive Hausdorff distances starts
from an initial partition and alternates a representation step and an alloca-
tion step until convergence when the adequacy criterion reaches a stationary
value representing a local minimum. The representation step has two stages.
In the first stage, the partition and the Hausdorff distances are fixed and the
algorithm looks for the best prototype of each class which minimizes the ad-
equacy criterion. The solution for the best prototype of each class, presented
in this paper, is a vector of intervals whose lower bounds, for a given variable,
are the difference between the median of midpoints of the intervals computed
for the objects belonging to this class and the median of their half-lengths,
and whose upper bounds, for a given variable, are the sum of the median of
midpoints of the intervals computed for the objects belonging to this class plus
the median of their half-lengths. In the second stage, the partition and the
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prototype of each class are fixed and the algorithm looks for the best Haus-
dorff distance associated to each class which minimizes the adequacy criterion.
The Hausdorff distance associated to each class is parameterized by a vector
of weights and the best solution for this vector of weights provided by the
clustering method is also presented in this paper. In the allocation step, the
individuals are assigned to the classes according to their (minimum) adaptive
Hausdorff distance to the prototypes.

Experiments with real and synthetic interval data sets showed the usefulness
of this clustering method. The accuracy of the results furnished by the dy-
namic clustering algorithm based on adaptive Hausdorff distance is assessed
by the CR index and compared with the results provided by this algorithm
considering non-adaptive Hausdoff distance and adaptive and non-adaptive
city-block distances.

Concerning the synthetic interval data sets, the CR index is calculated in the
framework of a Monte Carlo experiment with 100 replications. For the data
configurations showing well separated classes, the Hausdorff distance outper-
forms the city-block distance for the non-adaptive version of the dynamic
clustering algorithm. Moreover, for the non-adaptive version of the dynamic
clustering algorithm, the Hausdorff distance is also the best option for data
configurations presenting overlapping classes as long as the widest intervals are
considered. For both types of data configurations (well separated classes and
overlapping classes) the adaptive Hausdorff distance outperforms the adaptive
city-block distance also as long as the widest intervals are considered.

Concerning the car interval data set, the Hausdorff distance outperforms the
city-block distance for the non-adaptive version of the dynamic clustering al-
gorithm. Moreover, these distances presented the same performance when the
adaptive version of the dynamic clustering algorithm is applied on this data
set. Concerning the ecotoxicology data set, the Hausdorff and city-block dis-
tances presented the same performance for the non-adaptive and adaptive
version of the dynamic clustering algorithm. However, for both data sets, the
version of the dynamic clustering algorithm with adaptive distances outper-
forms the version of this algorithm with non-adaptive distances.
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