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Estimating Local Multiple Orientations 

 

Franck Michelet, Jean-Pierre Da Costa, Olivier Lavialle, Yannick Berthoumieu, 

Pierre Baylou, Christian Germain 

1- Introduction 
In the last decades, orientation estimation has often been investigated for instance in the 

domain of still image analysis for feature extraction [5] or in the context of video stream 

processing for motion analysis [10] [20] [27]. Applications of orientation estimation vary, for 

example, from the enhancement of ancient engravings to the analysis of fingerprint images or 

seismic data [8]. 

Orientation relates to the direction of the apparent structures in the observed area. At a given 

location in an image, orientation depends on the size of the observation window, which 

corresponds to the scale of analysis. Statistical techniques applied to orientation vectors (as 

for instance PCA [8], Rao’s algorithm [5][22] or the tensor-based framework proposed by 

Knutsson [14]) allow to compute orientations at a large scale from orientations at a local 

scale. Given the capabilities of such techniques, we focus specifically on local orientation 

estimation. 

Local orientation estimation is often based on the computation of local derivatives [6][7][8] 

[17][22], assuming that orientation is orthogonal to the gradient vector. Nevertheless, gradient 

based approaches rely on the unicity of orientation at a given point and are not suitable if 

several orientations occur at a given location. As an illustration, the texture in Fig. 1.a shows 

two components with different orientations, one at 20° the other one at 60°. The spatial period 

of both components is 10 pixels. A structure tensor with a computing support size of 55 pixels 

estimates the main orientation of the texture at approximately 32° (Fig. 1.b). Indeed, this 

Fig.1 
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estimation does not depict any of the principal orientations of the texture, but rather a non 

linear mixture of these orientations, the characteristics of which depend on the nature of the 

texture components (period, cyclic-ratio, etc.). 

In the case of multiple orientations, methods based on oriented filter banks (Fig. 1c) are an 

alternative to local derivatives. They consist in finding the orientation corresponding to the 

maximum response of a filter bank. Each filter is obtained from a rotation of a basis filter. 

Examples of oriented filters are quadrature filters [1][12], Gabor filters [2][4] and Steerable 

filters [11][21][24]. For such methods, accuracy and selectivity usually depend on the number 

of filters, on the size of the computing support and on the kernel basis filters [4][21]. 

Concerning quadrature filters, the monogenic signal representation introduced in [9] was 

initially designed to operate if only one orientation appears at a given location. Applying that 

representation, orientation estimation is delivered for free without any steering. But the 

monogenic signal extension to multiple orientation estimation is not straightforward. 

Nevertheless recent works try to overcome this drawback [28]. 

Other interesting works can be found in the context of motion estimation. Indeed motion 

estimation is comparable to 3D orientation estimation. Although most of the motion 

estimation methods deal only with one motion vector at each location, some recent attempts 

have been dedicated to multiple motion estimation. Among them, [20] propose a tensor 

method which allows to detect situations where two different orientations appear 

simultaneously. As the tensor can not distinguish between these orientations, a specific 

estimation scheme has been developed. In the same context, [10] proposes the Channel 

Matrices representation which allows multiple motion estimation. 

These methods are well suited to multiple orientation estimation, but the size chosen for the 

computing support usually results from an awkward compromise between local estimation 

and angular selectivity. 
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Therefore, in the framework of the local estimation of multiple orientations in 2-D images, we 

propose a new operator which aims at providing both angular selectivity and noise robustness, 

using a compact computing support. 

The remainder of the paper is organized as follows. In section 2, a new definition of 

orientation is provided, and oriented neighborhood models are proposed. In section 3 we 

introduce the Isotropic and Recursive Oriented Network (IRON), an operator which evaluates, 

at a given location, a distance between the image and the neighborhood model, and selects the 

angles which reveal the smallest distance. The choice of the shape and size of the network is 

discussed and a feature for evaluating the distance between the neighborhood and the model is 

proposed. The recursive implementation of IRON is also discussed. In the fourth section, we 

exercise our operator on both synthetic and natural images and compare it to other orientation 

estimation methods regarding noise robustness, selectivity and bias. 

2- Orientation and oriented image models 
As orientation relates to visual perception, it is difficult to propose a universal and formal 

definition of image orientation. Nevertheless, orientation exhibits several noteworthy 

characteristics:  

- Orientation does not exist everywhere. For example, in the case of uniform grey level 

images, no orientation can be estimated. 

- The scale of observation has a major influence on orientation perception. Figure 2-a. 

illustrates this phenomenon. At a small scale, the local orientation is 50°, whereas at a larger 

scale the perceived orientation is 22°. The observation scale thus determines which 

orientation has to be taken into account. 

- In some cases, several orientations exist at the same scale. Figure 2-b shows fingerprint 

minutiae where there are three different local orientations. 

Fig.2 
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Krieger and Zetzsche [15] introduced a model for multidimensional signals related to image 

orientation. The main parameter of this model is called intrinsic dimensionality. Intrinsic 

dimensionality is a local feature closely linked to the degree of freedom of the 

multidimensional signal within a small neighborhood around the pixel of interest. According 

to this model, the neighborhood 0V  of a given pixel ( )00 yx ,  belongs to one out of three signal 

classes {i0D}, {i1D} or {i2D}, depending on the following criteria: 

{ }
{ } ( ) ( ) ( ) ( )
{ }

0
2

0 0

i0D if |
i1D if , , , 0,0 | . . ,
i2D otherwise

V (x, y)
V V (x, y) h x y

γ γ
α β α β α β

⎧ ∃ ∈ =
⎪∈ ∃ ∈ ≠ = +⎨
⎪
⎩

 

where h is any real valued function called profile function. 

Regarding orientation perception, the scale of observation is related to the size of the 

neighborhood. Moreover, the existence and the number of orientations in a given 

neighborhood directly depend on the intrinsic dimensionality. 

In the first case, {i0D}, the luminance in the considered neighborhood is uniform and does 

not show any orientation (Fig. 3a). The neighborhood of the second class {i1D} shows a 

single orientation (Fig. 3b). The local model of the image corresponds to a 1D profile function 

h expanded in the direction defined by (α,β). Such a model has already been used in [16] for 

the estimation of a single local orientation. 

Finally, a neighborhood showing multiple orientations belongs necessarily to the {i2D} class. 

According to Krieger et al. [15] the two major configurations in this class are abrupt changes 

in orientation (Fig. 3c) and occlusions (Fig. 3d), i.e. areas where several 1-D profiles overlap 

each other. In each case, the neighborhood can be approximated by the linear or non linear 

combination of several {i1D} profile functions. 

Based on the definition of intrinsic dimensionality, we propose the following definition of 

local orientation: 

Fig.3 
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Let A  be an image. Let P be a point in this image and PV  a neighborhood of P with an 

intrinsic dimensionality equal to or greater than 1. 

Let ( ) ( ): , .sin .cosh x y h x yθ θ θ→ +  where h is any real valued function. 

Let ( ),
pVd f g  be any relevant distance between two functions f and g within a neighborhood 

pV . 

Finally let ( ) ( ), min , 
pVh

K P d A hθθ =  be the difference between the image A and the model, 

i.e. the most appropriate profile function  hθ  considering the local configuration of A. 

[ ]πθ 20i  , ∈  is called a local orientation at point M if iθ  is a local minimum of ( ),K P θ : 

( ),
0

i

K P

θ θ

θ
θ

=

∂
=

∂
, ( ) ( ), , 0.i iK P K P ifθ δθ θ δθ± > > . 

Since the profile function h is usually unknown, one way to estimate iθ  is to take advantage 

of the assumption that the grey levels in the direction iθ  are constant. Therefore the 

estimation of local orientations derives from a measurement of the heterogeneity of the grey 

levels of the image along all the directions θ . Finally, the expected directions iθ , will be 

obtained by finding the local minima of the heterogeneity function versus θ . 

3- Isotropic and Recursive Oriented Network 

3-1 General presentation 

IRON is an oriented operator working in the spatial domain. It has been briefly described in 

[18]. IRON operates as follows. According to our definition, for each pixel, we compute a 

difference between the image and the oriented model within the neighborhood of the pixel for 

various angles θk, in [ ]π20, . The neighborhood consists of a rectangular network of parallel 
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lines oriented at θk. The resulting angular response allows us to find all local orientations for 

each pixel of the image. 

This kind of network stems from research dealing with stereology [23], in particular the 

intercept concept, and from projection algorithms [13].  

Previous works attempted to design such a network of lines based on a differential geometry 

model [16]. In this approach, the isotropy of the operator was sacrificed to the benefit of low 

computational cost.  

3-2 IRON operator 

3-2-a IRON design 

For a given location 0 0( , )x y , the neighborhood considered for the IRON operator consists of 

a network 0 0( , , )kR x y θ  of L lines. The network orientation is θk and each line is composed of 

p points. 

The lines of the network can be built either on both sides of the considered point yielding a 

symmetric network, or on one side only, yielding an asymmetric network. The symmetric 

network provides us with orientation estimations modulo π whereas the asymmetric one 

provides orientation estimations modulo 2π. In this paper we consider only the symmetric 

version of IRON. Nevertheless, all considerations, implementations and results regarding 

symmetric IRON can easily be transposed to the asymmetric version. 

If the network is neither horizontal nor vertical (θk ≠ 0 modulo π/2), the network points do not 

line up on the pixel grid. Thus, 2-D interpolations have to be performed to estimate the grey 

level values on the network points. Note that the interpolation method has a direct influence 

on the isotropy of IRON. The more accurate the interpolation is, the better the isotropy will 

be. 

Fig.4 
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Figure 4 shows the IRON symmetric operator consisting of 3 lines and 5 points per line at 

pixel ( )000 , yxA  and for orientation θk. 

3-2-b Computed feature 

As explained in section 2, our purpose is to compute a heterogeneity feature along the 

network. 

In the case of a picture corrupted by white additive Gaussian noise, the variance of grey levels 

along the network lines is an appropriate choice for the heterogeneity feature. 

( )
0 0

2

0 0 , ,
( , ) ( , , ) 1

1 1, ,
p

i j k j
i j R x y k

D x y v v
pL pθ

θ
∈ =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑  

vi,j refers to the interpolated grey level at location (i,j) on the network 0 0( , , )R x y θ , centered 

on the location 0 0( , )x y  and oriented θ. 

Such a feature is robust to additive Gaussian noise, even in the case of a small computing 

support.  

This feature is computed for a given orientation θ. Therefore, in {i1D} cases, the global 

minimum of the feature ( ), ,D x y θ , computed along the IRON network, gives the expected 

local orientation at location (x,y). In {i2D} cases, obtaining the relevant orientations at 

location (x,y) then consists in considering all the relevant local minima of ( ), ,D x y θ . 

Note: In case of a non Gaussian perturbation of the model, i.e. impulse noise or amplitude 

modulation, some adapted features can be computed [19]. However, such features are not 

addressed in this paper. 

3-3 IRON implementation 

The computation of IRON for a specific orientation θk at a given location ( )0 0,x y  requires 

two essential steps. These steps consist in the computation of the grey level values on the 
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points of the network and the computation of the measurement feature itself. Two different 

implementations are possible depending on how the first step is carried out. 

Implementation 1 

As the network does not line up on the pixel grid, the most obvious choice to compute grey 

level values on the network points is to carry out 2-D interpolations. At each pixel location 

and for each tested orientation, the grey levels of the points of the network are interpolated. 

Then the feature is evaluated.  

For an N pixel image, using a network of L lines and p points, the computational cost for each 

orientation tested is Ο(N×p×L×I2) where I2 is the computational cost of a 2-D interpolation. 

This computational cost is acceptable only if the orientation estimation is expected for just a 

few pixels of the image. 

Implementation 2 

To avoid this drawback, instead of rotating our network and then applying it to the picture, we 

rotate the picture and then apply only horizontal and vertical networks to it.  

This approach offers two advantages. First of all, we rotate the images using a three pass 

rotation [25][26]. This algorithm requires 1-D interpolations instead of 2-D interpolations and 

the computational cost is thus reduced. Secondly, since only horizontal and vertical networks 

have to be computed, the recursive implementation of our operator becomes possible. 

The recursive computation is achieved in two steps: recursive computation of the variance 

along the lines and recursive summing of the resulting values. 

The variance on the network ( , , )R x y θ is computed using the following equation: 

( ) ( )
2

2
, ,

1 1 1, , i j i j
j i i

D x y v v
L p p

θ
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ , with ( , ) ( , , )i j R x y θ∈  
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Then, on the rotated image, knowing ( )θ,, yxD , ( )θ,,1 yxD +  is computed by merely 

updating ,i j
i

v∑  and ( )2
,i j

i

v∑ . In this case, computational time lowers down to Ο(N×I1) where 

I1 is the computational time of a 1-D interpolation.  

Table 1 shows the estimation process for a given orientation θ on the entire image. 

Some considerations regarding the rotation process: 

• For each point of the image, IRON gives the feature value for orientation θ, and also 

for orientation θ+π/2.  

• In order to fit the locations of the results onto the pixel grid of the initial image, the 

process requires inverse rotations of the results. 

• Since the orientations are sampled, the number of orientations to be tested (i.e. the 

quantization of θ) depends on the accuracy required by the application. 

• Various interpolation methods may be chosen to perform the rotations depending on 

the required precision and computational cost. To obtain a good trade-off between 

accuracy, isotropy and speed, the generalized interpolation method using 3rd order B-

Spline functions was chosen [26]. For more accuracy, B-Spline models of higher 

orders offer an alternative. 

3-4 IRON parameters 

In order to achieve an accurate estimation of texture orientation, the length p (number of 

points per line) and the width L (number of lines) of the network have to be chosen according 

to the local characteristics of the image. Any of these two parameters, p and L, affects both 

the size and the shape of the network, making the adjustment of the operator quite tricky. 

Therefore, instead of p and L, we propose to consider more practical parameters: the shape 

factor F and the scale S. Nevertheless, as these two couples of parameters are directly related, 

choosing F and S will provide us with the corresponding value of  p and L.  

Table 1 
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Shape of the network 

The shape factor F is herein defined as the ratio between length p and width L of the IRON 

mask. The shape factor acts both on the selectivity of the network and its noise robustness. 

Since the goal is to compute a radial feature in the direction of the network, it should always 

be greater than 1. Decreasing F increases the noise robustness of the IRON operator but 

decreases its selectivity. The choice of F is then a compromise between selectivity and noise 

robustness. If several orientations exist at the same location, it is useful to increase the 

selectivity of the network, and therefore choose higher values for F. In the case of a single 

orientation at each point of the image, lower values for F are usually chosen, increasing the 

noise robustness of IRON. 

Scale of the network 

The scale S of the network is herein defined as the radius of the circle which spans the 

different rotations of the network (Fig. 5). S is directly related to the scale of analysis. Since 

the orientation depends on the scale of analysis, the choice of S defines the scale of the 

orientations we estimate.  

IRON operator provides accurate results using a restricted computing support (size S of about 

10 pixels). S is chosen to be as small as possible since we are interested in local orientation 

estimations. But as S also affects the noise robustness of the estimation, the choice of S 

usually depends on the SNR of the image. 

Number of tested orientations 

The number of orientations to be tested obviously affects both the computation time and the 

resolution of the orientation estimation, and should be chosen accordingly. Let us note that for 

small scales, if high resolution is required, the number of tested orientations can be greater 

than the number of pixels in the computing support. For example, for S=5, the computing 

support of IRON consists of 121 pixels. To obtain a resolution of 1°, 180 orientations 

Fig.5 
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responses must be computed from these 121 measurements. These 180 data will not be 

independent, but will guarantee a resolution of 1°. 

In some cases, other implementations of IRON make possible to keep a high accuracy with 

far less rotations. For example, let us assume that the angular response is symmetric, which is 

usually the case when only one local orientation exists. Then, processing only a few rotations 

and computing the Principal Inertia Axes of the resulting angular responses, considered as 

points on a polar graph, we can obtain the principal local orientation keeping a high accuracy. 

Nevertheless, since no assumption has been made on the angular response, this 

implementation has not been used in this paper. 

3.5 Computational cost 

In order to compare the computational cost of IRON, Gabor filters and Steerable filters, let us 

consider the case of N pixels  images.  

Figure 5 shows that the size of the computing support of the Gabor and Steerable filters is 

linked to the scale S of IRON: 

2 1M S= × +   

Besides, shape factor F relates to the aspect ratio λ  of Gabor or Steerable filters [4][21].  

Using these relations, aspect ratioλ , shape factor F and computing support size are chosen 

identical for all operators, in order to make the computational cost comparable. 

For each tested orientation, assuming that the cost of the initialization of the recursive 

computation is negligible, the computational cost of IRON, using the feature described in 

section 3.2.b, and a third order Spline interpolation is: 

( )80 70 .IRONCOST Mult Add N≈ + ,  

where Mult and Add are respectively the cost of a multiplication and the cost of a sum. 

For Gabor filters, the computational cost is: 
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( )( )22 . .GaborCOST M Mult Add N≈ + . 

Since the Steerable filters use a bank of NB basis filters, instead of one filter for each tested 

orientation, the computation time for one tested orientation is divided by NO/NB, NO being the 

number of tested orientations. The cost for Steerable filters is 

( )22 . .B
Steerable

O

NCOST M Mult Add N
N

⎛ ⎞
≈ +⎜ ⎟
⎝ ⎠

. 

The computational cost of Gabor and Steerable filters is directly related to the square of their 

computing support size. Nevertheless, the Steerable filters computing time does not depend 

on the number of orientations tested but on the number of basis filters. 

On another hand, since IRON implementation is recursive, its computational cost is almost 

independent on the scale. 

Table 2 shows computing time measurements related to various image sizes and to various 

sizes of the computing support, using an Intel Pentium 4 processor (3.2GHz). Aspect ratio is 

λ =1, shape factor is F=1. E4 Steerable filters are used with 15 basis functions.  

The runtimes observed are in accordance with the theoretical computational costs. As 

expected, the processing times are almost proportional to the image size, and runtimes for 

IRON do not depend on the mask size, unlike Gabor and Steerable filters. 

 To summarize, Gabor filters and IRON computational costs are comparable at small scales, 

while Steerable filters are faster. As the scale grows, IRON becomes the fastest, taking 

advantage of its recursive implementation.  

4- Results 
In this section, IRON is applied to both synthetic and natural textures. Synthetic textures are 

chosen in order to evaluate the accuracy, the noise robustness and the selectivity of the 

method. Results obtained with IRON are compared to those obtained with Gabor filters and 

Table 2 
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Steerable filters. In order to propose fair comparisons, scale and shape of all operators are 

kept as similar as possible. Moreover, each operator is tuned to its best configuration.  

For all operators, the computation of the main orientations is done following the same 

protocol. First, the orientation histogram is estimated with an angular step of 1°. Then, 

depending on the number of orientations expected, the most significant maxima of the 

histogram are retrieved. 

Note: in the case of Steerable filters, when only one orientation is expected, a direct 

estimation can be done, using the Steerable filters as a pseudo continuous function, thus 

avoiding the quantization error. Nevertheless, this scheme is not appropriate in a multiple 

orientation scheme. 

4-1 Accuracy 

It is useful to compare the accuracy and isotropy of the three approaches. 

We exercise all the operators on {i1D} synthetic pictures produced using a sine profile 

function expanded in a given direction θ (Fig. 6). The period of the profile function is 10 

pixels with θ  in {0°, 0.1°,… 90°}.  

In order to quantify the estimation errors, the Mean Angular Deviation (MAD) indicator is 

computed: 

( ) ( )( )
( , )

1 ˆ , , ,
x y

MAD E x y x y
N

θ θ= ∑  

where N is the size of the sample (i.e. the number of pixels (x,y) considered), θ̂  is the 

estimated orientation and ( )1 2 1 2 1 2( , ) min ,E θ θ θ θ π θ θ= − − −  measures the absolute 

orientation difference between ( ) [ [1 2, 0,θ θ π∈  . 

It should be noted that the computation of the MAD indicator assumes the exact orientation 

value is known. Thus, this procedure only applies to synthetic images.  

Fig.6 
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Besides, MAD takes into account the bias, the quantization error and the variance of the 

estimation. Since the synthetic images used in this experiment are not corrupted with noise, 

MAD will only depicts the bias and the quantization error. 

In the case where the orientations are uniformly distributed over the set of considered images, 

the mathematical expectation of the quantization error is: 

0

/ 2 .
4

T

T
T TE T d
T

θ

θ

θ θ
θ

θ

θθ θ
⎢ ⎥+

= − =⎢ ⎥
⎣ ⎦

∫  where .⎢ ⎥⎣ ⎦  computes the integer part. 

For Tθ=1°, the mathematical expectation of the quantization error is 0.25°.  

Finally, the accuracy of each operator is estimated by TAcc MAD E θ= − , i.e. 

0.25Acc MAD= − ° . Table 3 gives max( )Acc  and Acc  for IRON, Gabor filters and 

Steerable filters. 

The scale of analysis for IRON is set to 5 and the shape factor is set to 1 (7 lines, 7 points per 

line). Both for Gabor and Steerable filters, the mask size M=11 and the aspect ratio λ=1 were 

used.  

The Gabor filters [2] are given by: 

( )

( )

2 2 2

2 2
0

2 2 2

2 2
0

2, cos exp
2

2, sin exp
2

p

i

x yG x y y
T

x yG x y y
T

θ θ θ
θ θ θ

θ θ θ
θ θ θ

π λ
λ σ

π λ
λ σ

⎛ ⎞⎛ ⎞ ⎛ ⎞+
= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞+

= −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 with 
( ) ( )
( ) ( )⎩

⎨
⎧

+=
−=

θθ
θθ

θ

θ

cos.sin.
sin.cos.

yxy
yxx

 

The function pG θ and iG θ  are truncated in order to fit a M×M pixel mask. Considering that 

M=11, the standard deviation and the central period for Gabor filters are respectively set to 

σ =3 and T0=5 pixels. This last value is smaller than the period of the picture in order to keep 

most of the energy of the Gaussian inside the mask.  

Two kinds of Steerable filters have been used to carry out our experiments, respectively E2 

and E4. These filters and their computational scheme are described in [11]. Steerable filters 
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E2 consist in a set of 7 basis filters G2 and H2 in quadrature. They are based on the second 

derivative of a Gaussian. The following equations describes G2 and H2 for θ=0°. 

2 22( , ) [ 2( , )] [ 2( , )]E x y G x y H x y= +  

2 2

2 2

2 ( )

3 ( )

2( , ) 0.9213(2 1)

2( , ) ( 2.205 0.978 )

x y

x y

G x y y e

H x y y y e

− +

− +

= −

= − +
 

Steerable filters E4 consist in a set of 11 basis filters G4 and H4 in quadrature. They are based 

on the forth derivative of a Gaussian. The following equations describes G4 and H4 for θ=0°. 

2 24( , ) [ 4( , )] [ 4( , )]E x y G x y H x y= +  

2 2

2 2

2 4 ( )

3 5 ( )

4( , ) (0.9344 3.738 1.246 )

4( , ) (2.858 2.982 0.3975 )

x y

x y

G x y y y e

H x y y y y e

− +

− +

= − +

= − +
 

Using one set of basis filters, we can obtain the response for any orientation θ by computing a 

linear combination of the response of the basis filter.  

Table 3 shows that IRON gives an unbiased estimation, whatever the direction θ. On the 

contrary, the maximum bias is 0.37° for Gabor filters, 0.2° for E2 and it is greater than 2° for 

E4 Steerable filters. For Gabor and Steerable filters, the bias value depends on the direction θ 

of the synthetic texture.  

For larger masks (M≥21) and T0=10 pixels, Gabor filters provide an unbiased estimation. The 

biases observed with E2 and E4 filters remain non null but decrease as the sizes of the masks 

increase. 

4-2 Noise robustness 

The noise robustness of these estimators is now evaluated by adding Gaussian noise to the 

single oriented texture of Fig. 6. The estimators are computed at scales S=5, S=15 and S=45 

(i.e. the mask sizes M=11, M=31 and M=91). The shape factor remains equal to 1. The Signal 

to Noise Ratios (SNR) used for these experiments are 20dB, 10dB, 5dB and 0dB.  

Table 3 

Table 4 
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The Mean Angular Deviation (MAD) indicator is computed for various synthetic images: 

The MAD indicator is computed from 100 directions θ, uniformly chosen out of an angular 

interval of width Tθ =1° (Table 4). 

At the smallest scale, the Steerable filters E2 give the best results. At intermediate and large 

scales, Gabor filters and IRON operate better. In fact, whatever the scale and the SNR, IRON 

results are very close to the best results. Thus, estimation with IRON is less sensitive to the 

choice of the scale. Moreover, it requires no adjustment of the filter period – as is the case for 

Gabor filters – or pseudo-period – required for Steerable filters – to match the local period of 

the image. 

4-3 Selectivity 

Chen experiment 

To assess the ability of orientation operators to accurately detect multiple local orientations, it 

is essential to previously evaluate the selectivity of those operators. For this purpose, we use a 

test developed by Chen in [4]. This test consists in estimating orientations found at the same 

location. The images used for this test result from the superimposition of 2 lines respectively 

oriented at 1θ  and 2θ  (Fig. 7). The profile functions of the lines are Gaussian. The grey level 

function for each line is given by: 

( ) ( )2

, 2

.cos .sin
, exp

2.L
L

x y
G x yθ σ

θ θ
σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

For our experiment, we choose 2Lσ = . 

At a given location ( ),x y , the angular response of an oriented filter is defined such as 

( ), ,H x y θ is maximum when θ is the most significant orientation at this location.  

Fig.7 
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For such an image, the angular response ( )0,0, kH θ , obtained at the center of the image 

should show two distinct local maxima 1θ  and 2θ separated by a local minimum iθ .  

Let θΔ  be the angle between the lines. Chen introduces three indicators. minθΔ  is the 

minimum value of θΔ  for which both orientations are detected. 0θΔ  is the minimum value of 

θΔ  for which both orientations are detected with a bias less than the step angle accuracy. 

%50θΔ  is the minimum value of θΔ  for which the angular response H of the operator 

satisfies: 

( )
( ) ( )( )1 2

50%
/ 2

iH
H H

θ
θ θ

≤
+

 

In [4], the angular response H is defined as a homogeneity function. Applied to IRON, since 

( ), ,D x y θ  is rather a heterogeneity feature, we define ( ) 1, ,
( , , )

H x y
D x y

θ
θ ε

=
+

with ε  an 

arbitrary small real value used to prevent the denominator from being 0. For Gabor and 

Steerable filters, we directly use the filter response ( ), ,H x y θ .  

Tables 5, 6 and 7 show the best results obtained with IRON, Gabor and Steerable filters E2 

and E4. In each case, the shape factor of the corresponding operator is tuned in order to obtain 

the best estimation. The operators are computed at scales S=5, S=15 and S=45 (i.e. the mask 

sizes M=11, M=31 and M=91). The angular step θT  is 1°. 1θ =20° and 2θ  range from 1θ  to 

1 90θ + ° , step 1° . 

These experiments show that regarding selectivity, IRON outperforms Gabor and Steerable 

filters at small scales. At larger scales, IRON is very selective but Gabor filters operate even 

better. Nevertheless, the responses given by IRON are less biased than those provided by the 

other operators (Table 6). 

Table 5 

Table 6 

Table 7 
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Finally, in the case of multiple local orientations, IRON provides the most accurate 

estimations at any scale. It also provides the best detection at a small scale. At a large scale, 

Gabor filters offer the best detection, but with more biased orientation estimations. 

Bi-directional texture 

The next experiment compares the accuracy and selectivity of IRON, Gabor and Steerable 

filters on a texture showing 2 main directions (Fig.8.a). This texture consists in the 

superimposition of two mono-directional textures, with orientation θ1=20° and θ2=60° and 

period T1=40 pixels and T1=20 pixels. In order to estimate locally the two orientations of this 

texture, we choose to operate at a scale slightly larger than the elementary pattern of this 

texture, S=27, which is equivalent to a computing support of size 55x55. The parameters for 

IRON are then 39 lines of 39 pixels (i.e. a shape factor F=1). Note that other shape factors 

give similar results.  

For the Steerable filters, we keep M=55 and set λ=3 for E4 filters, which give the best results. 

Gabor filters are also tuned to obtain the best estimation for M=55: central period T0=11 

pixels, standard deviation σ =11 and shape factor λ=2. 

Figure 8b to 8g gives the estimation errors for θ1 and θ2, for each operator.  

Let us note that estimation errors are very different for θ1 and θ2. For this reason, the grey 

scales used in the images of the left and the right columns are not the same. 

The results obtained with IRON show 0° of error for both θ1 and θ2 (Fig. 8b and 8c). 

Both Gabor and Steerable filters also provide good estimations for θ1. The highest error is 1° 

for the Steerable filters and 5° for Gabor filters (Fig. 8d and 8f). 

Nevertheless, for this texture, Gabor and Steerable filters fail to estimate the second 

orientation θ2. For the Steerable filters, even if the estimation is perfect for more than 50% of 

the pixel, the estimation error can reach 72° in some cases (Fig. 8e). Furthermore, for the 

Fig.8 
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Gabor filters, the estimation error is greater than 70° for more than 50% of the pixels (Fig. 

8g). 

4-4 Application to real images 

Figure 9a shows an extract of texture D103 taken from the Brodatz album [3]. This image 

shows two principal orientations, one almost horizontal [ ]1 15 ,15θ ∈ − ° °  and the other one 

slightly oblique [ ]2 90 , 70θ ∈ − ° − ° . The size of the textural pattern size is around 15x15 pixels. 

Since we want to obtain two orientation maps, one for each main orientation, gradient and 

tensor approaches are not appropriate. Thus, we compute the two main orientations of this 

image with IRON, Steerable and Gabor filters. The scale is set to S=12 (M=25) in order to be 

always larger than the textural pattern. IRON network is shaped with 17 lines and 19 points 

per line, in order to fit the scale S=12. 

The Steerable filters parameters are chosen with M=25 and aspect ratio λ=1. 

Gabor filter mask size is also M=25. Other Gabor parameters are tuned at their best values for 

this experiment, T0=9, σ =4.5. 

Figure 9c and 9d show the result obtained with IRON. The orientation maps are smooth, the 

values are in the expected range. The variations of the orientation between the various regions 

of the images are clearly depicted.  

Figure 9e and 9f show the result for the Steerable filters. The results for θ1 are mostly correct, 

but in some areas no horizontal orientation is detected (black spots on Fig. 9e). The same 

phenomenon appears for θ2 and moreover Figure 9f shows some oblique spurious structures 

(45° lines) which do not appear in the original image. The orientation estimated inside these 

spurious structures show errors of 10° to 15°. 

Fig.9 
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Gabor filters provide results similar to those provided by Steerable filters (Fig. 9g and 9h), 

with some undetected vertical and horizontal orientations, and also some spurious vertical 

patterns on Figure 9h with even higher estimation errors. 

At the same scale, using more selective filters, with aspect ratio λ>1 does not improve the 

estimation. The results provided by the Steerable and Gabor filters are only improved 

increasing simultaneously the scale and the aspect ratio (i.e. M=55 and λ=2), at the cost of a 

loss of precision in a local estimation point of view. 

Experimented on other medium or high frequency textures with multiple orientations, IRON, 

Steerable and Gabor filters provide with the same kind of results. For low frequency textures, 

all methods give accurate estimations. 

Finally, applied to real textures, IRON seems to outperform the other operators. An 

explanation of this phenomenon may be found in the design of IRON. IRON relies on a 

combination of 1-D directional measurements. It requires very light assumptions on the 

profile function ({i1D} model), just assuming that the grey levels are homogeneous in the 

texture direction. On the contrary, both Gabor and Steerable filters compute a weighted 

average of the gray levels inside a square computing support. The weights used rely on the 

assumptions that the profile function is periodic and that this period is in accordance with the 

computing support size. These assumptions are seldom met in natural images. 

Conclusion 
In this paper we have proposed the Isotropic and Recursive Oriented Network (IRON), a new 

operator for simple and multiple local orientation estimation.  

Unlike classical multiple orientation methods, such as the Steerable filters or Gabor filters, 

IRON does not involve the convolution of masks based on Gaussian functions or derivatives. 

IRON relies on an estimation of the local difference between the image and an oriented 
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neighborhood model. This neighborhood model is defined as an oriented set of homogeneous 

lines. 

IRON appears to be more selective and more easily tunable than other existing methods. 

Moreover, the huge amount of computational operations required by IRON is considerably 

reduced using a rapid image rotation algorithm associated with a recursive implementation. 

The computational time becomes comparable to Steerable or Gabor filters, and even lower 

when the scale grows. 

Exercised on synthetic images, IRON appears to be suited to local orientation estimation. 

Whatever the scale and the SNR, IRON results are better than or at least very close to the best 

results provided by Gabor and Steerable filters. Moreover, IRON is less sensitive to the 

choice of the scale than are these operators, making it more effective on images showing 

directional structures of various sizes and orientations. Finally, IRON shows the best 

selectivity in the case of multiple orientations at the same location, especially at a small scale. 

Furthermore, IRON orientation estimations have been successfully applied to the estimation 

of multiple orientations on real images such as Brodatz textures on which it outperforms the 

other operators. 

Other related research concerns two extensions of IRON capabilities. The first one overcomes 

amplitude modulation affecting the directional texture. The second is a robust homogeneity 

feature which makes IRON robust to impulse noise [19]. These new functionalities only 

require the design of specific features, thus showing the flexibility of IRON approach.  
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Rotation of the image (rotation angle = –θ) 
For each pixel on the rotated image: 

Computation of the feature along the horizontal direction (corresponds to θ) 
Computation of the feature along the vertical direction (corresponds to θ+π/2) 

Inverse rotation of the horizontal results (rotation angle = θ) 
Inverse rotation of the vertical results (rotation angle = θ+π/2) 

Table 1 - The IRON algorithm. 

 

 Image size N=128×128 Image size N=256×256 

 M=7 M=25 M=55 M=7 M=25 M=55 

IRON 1.4s 1.4s 1.4s 6.3s 6.3s 6.3s 

Gabor filters 2s 29s 136s 7.9s 126s 530s 

Steerable filters  0.6s 3.8s 17s 2.3s 16.4s 67.9s 

Table 2 – Computational time for IRON, Gabor and Steerable filters (in seconds) 

using an Intel Pentium 4 (3.2 GHz). Aspect ratio λ=1, shape factor F=1. 

 

 
max( )Acc  
(degrees) 

Acc  

(degrees) 

Gabor 0.37° 0.1° 
Steerable E2 0.2° 0.01° 
Steerable E4 2.18° 1.16° 

IRON 0° 0° 

Table 3 – Accuracy of orientation estimation of IRON, Gabor and Steerable 

filters for the texture in Fig. 6.  
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 S SNR = 20dB SNR = 10dB SNR = 5dB SNR = 0dB
5 0.664 2.007 3.85 7.51 
15 0.253 0.335 0.555 0.987 

IRON 
 

45 0.250 0.250 0.252 0.259 
5 0.944 2.831 5.24 12.3 
15 0.254 0.303 0.393 0.703 Gabor 

45 0.250 0.251 0.252 0.257 
5 0.596 1.75 3.13 5.89 
15 0.548 1.58 2.82 5.56 Steerable E2 
45 44.9 45.4 45.8 44.9 
5 1.73 3.86 11.6 27.2 
15 0.699 0.831 1.09 1.65 Steerable E4 

45 44.7 45.4 44.4 45.2 

Table 4 – Noise robustness estimated using MAD  

for the texture in Fig. 6 with additive gaussian noise. 

 
 S=5 S=15 S=45 

IRON 12° 7° 4° 

Gabor 19° 9° 3° 

Steerable E2 34° 8° 14° 

Steerable E4 18° 10° 11° 

Table 5 – Selectivity minθΔ for IRON, Gabor and Steerable filters E2 and E4 for 

various scales. These values are those obtained for the best adapted shape 

factors.  
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 S=5 S=15 S=45 

IRON 63° 13° 4° 

Gabor 72° 70° 71° 

Steerable E2 72° 70° 71° 

Steerable E4 90° 72° 39° 

Table 6 – Selectivity 0θΔ for IRON, Gabor and Steerable filters E2 and E4 for 

various scales. These values are those obtained for the best adapted shape 

factors.  

 
 S=5 S=15 S=45 

IRON 17° 13° 5° 

Gabor N/A 9° 3° 

Steerable E2 46° 19° 20° 

Steerable E4 25° 17° 15° 

 

Table 7 – Selectivity %50θΔ  for IRON, Gabor and Steerable filters E2 and E4 for 

various scales. These values are those obtained for the best adapted shape 

factors.  
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two {i1D} textures). 

Figure 4 – Example of IRON symmetric network, with 3 lines and 5 points per line. 
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Figure 7 – Example of image used for selectivity assessment. Each line has a 
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Figure 9 – Estimation of the principal orientations in a natural bidirectional texture; a-
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Steerable filters orientation maps; (g, h)- Gabor filters orientation maps; 
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a                                              b                                               c            

Figure 1 - a- Bi-directional texture with 20° and 60° orientations. Periods are 10 
pixels; b- Main orientation estimation with a structure tensor gives 32°; c- Main 
orientation estimation with IRON gives 20° and 60°. (Segment lengths show the 

scale of analysis). 
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a b 
Figure 2 – Example of multiple orientations: a- At different scales; b- At the 

same scale. 
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Figure 3 – Examples of neighborhood dimensionalities. a- {i0D} (constant 
intensity); b- {i1D} (texture with a sine profile function); c- {i2D} with abrupt 

change (patchwork of textures with a sine profile function); d-{i2D} with 
occlusions (superimposition of two {i1D} textures).  
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Figure 4- Example of IRON symmetric network, with 3 lines and 5 points per 

line. 
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Figure 5 – Scale S and shape factor F of the IRON network. 
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Figure 6 – Expected orientation θ  for a texture with a sine profile function 
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Figure 7 – Example of image used for selectivity assessment. Each line has a 

gaussian profile. 
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Figure 8 – Orientation estimation on a bi-directional texture; a- bi-directional 
texture, with θ1 =20° and  θ2 =60°; b- IRON estimation error for θ1; c- IRON 
estimation error for θ2; d- Steerable filter estimation error for θ1; e- Steerable 
filter estimation error for θ2; f- Gabor filter estimation error for θ1; g- Gabor filter 
estimation error for θ2. 
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c                                                     d 

  
e                                                        f 
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Figure 9 – Estimation of the principal orientations in a natural bidirectional 
texture. a- D103 Brodatz texture; b- Color palette; (c, d)- IRON Orientation 

maps; (e, f)- Steerable filters orientation maps; (g, h)- Gabor filters orientation 
maps; 

 
 


