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Abstract

We consider the modeling of non-stationary discrete signals whose amplitude and

frequency are assumed to be nonlinearly modulated over very short-time duration.

We investigate the case where both instantaneous amplitude and frequency can be

approximated by orthonormal polynomials.

Previous works dealing with polynomial approximations refer to orthonormal

bases built from a discretization of continuous-time orthonormal polynomials. As

this leads to a loss of the orthonormal property, we propose to use discrete or-

thonormal polynomial bases: the discrete orthonormal Legendre polynomials and a

discrete base we have derived using Gram-Schmidt procedure. We show that in the

context of short-time signals the use of these discrete bases leads to a significant

improvement in the estimation accuracy.

We manage the model parameter estimation by applying two approaches. The first

is maximization of the likelihood function. This function being highly nonlinear,

Preprint submitted to Elsevier Science 21 September 2007

ha
l-0

02
00

11
5,

 v
er

si
on

 1
 - 

20
 D

ec
 2

00
7

Author manuscript, published in "Signal Processing 88, 7 (2008) 1636-1655"

http://hal.archives-ouvertes.fr/hal-00200115/fr/
http://hal.archives-ouvertes.fr


we propose to apply a stochastic optimization technique based on the simulated

annealing algorithm. The problem can also be considered as a Bayesian estimation

which leads us to apply another stochastic technique based on Monte Carlo Markov

Chains. We propose to use a Metropolis Hastings algorithm. Both approaches need

an algorithm parameter tuning that we discuss according our application context.

Monte Carlo simulations show that the results obtained are close to the Cramer-

Rao bounds we have derived. We show that the first approach is less biased than

the second one. We also compared our results with the Higher Ambiguity Function-

based method. The methods proposed outperform this method at low signal to noise

ratios in terms of estimation accuracy and robustness. Both proposed approaches are

of a great utility when scenarios in which signals having a small sample size are non-

stationary at low signal to noise ratios. They provide accurate system descriptions

which are achieved with only a reduced number of basis functions.

Key words: Polynomial phase signal, time-frequency analysis, parameter

estimation, simulated annealing, Metropolis Hastings algorithm.

1 Introduction

Estimation of the amplitude and frequency of non-stationary signals is a fun-

damental task, which has applications in a wide range of fields such as speech,

music, seismic, radar, sonar, biomedicine and mechanics [1–3]. We are particu-

larly interested in the signals where the frequency and amplitude modulations

are fast. Real examples of such signals can be of a long time duration [4] or

of a short-time duration (few samples) [5,6]. In [5,6], the cumulative annual

mass balance data for several glaciers in the Alps over fifty years (from 1949

to 2000) are presented. Their fluctuations are considered as an evidence of

the climate change in the Alps. These data are non-stationary signals with
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non-linear instantaneous amplitude and frequency and only fifties samples are

available.

The instantaneous amplitude and frequency of the signals are frequently pre-

sented as time-varying functions [7–15] where polynomial function models

have been assigned to the signal phase. In [12], Francos and Porat’s algorithm

combined a time-frequency distribution of a minimum-cross-entropy with the

Higher Ambiguity Function (HAF) [7] to achieve the model parameter estima-

tion. The HAF technique, which is a suboptimal compared to the maximum

likelihood procedure, transforms a signal of a M th− order polynomial phase

written as

Φ[n] =
M
∑

m=0

ϕmnm (1)

into a single harmonic at a frequency proportional to the M th order coefficient

ϕM and to a constant lag τ . This comes from the fact that (Φ[n]−Φ[n− τ ]) is

a (M −1)th order polynomial. When an estimation ϕ̂M is computed, the HAF

technique is repeated for the signal multiplied by e−j ϕ̂M nM

which becomes a

signal of a (M − 1)th− order polynomial phase, its higher-order coefficient is

ϕM−1. This step is restarted at lower orders.

Despite its low computational complexity, the robustness of the HAF tech-

nique is considerably limited by the lag choice and the propagation error

phenomenon [15] which occurs in the presence of a higher-order polynomial

modeling and/or a strong noise. Consequently, the Francos and Porat’s algo-

rithm [12] fails at low Signal to Noise Ratios (SNRs) and high model orders.

Moreover the resolution of the time-frequency distribution worsens and makes

this algorithm unusable in the case of very short-time signals.

In this paper, we propose to process very-short-time signals with nonlinear

amplitude and frequency modulations. Examples of real cases of short-time
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signals are presented in [5,6]. Since in this context the data samples are few

(less than 65 samples), each of the following assumptions is very important

for decreasing the estimation variance. First, the model origin and the initial

phase are referenced at the center of the time window. Then, contrary to [7–

15], the instantaneous frequency instead of the phase is approximated by a

discrete polynomial function. We compare different polynomial bases and we

show that a discrete orthonormal base induces a significant improvement in

the parameter estimates since it achieves amplitude parameter decoupling.

We then discuss and compare two methods for estimating the model parame-

ters. The first is based on maximization of the likelihood function in order to

preserve optimality. As this function is highly nonlinear, we use a stochastic

optimization technique based on Simulated Annealing (SA) algorithm. In the

second approach, we extend a Bayesian method [16] to short-time signals, the

amplitude and frequency of which are modeled by nonlinear polynomials. A

posterior probability distribution on the model parameters is defined by as-

suming them to be random variables with uninformative prior distributions.

To overcome the common problem due to the evaluation of high dimensional

integrals, we use a Markov Chain Monte Carlo method with a Metropolis

Hastings algorithm (MH-MCMC). Both proposed approaches are of a great

utility in the context of short-time non-stationary signals at low SNRs [5,6].

They provide accurate system descriptions which are achieved with only a

reduced number of basis functions.

The approaches proposed offer great interest when addressing scenarios in

which long-time signals are highly non-stationary at low SNRs. The basic

idea consists in segmenting a long signal on short-time windows, each window

being approximated with a low-order polynomial model of the instantaneous

amplitude and frequency. The estimation of the local-model parameters is then
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achieved using the approaches described in the present paper, for example by

maximizing the likelihood function using the simulated annealing technique.

We already proposed segmentation and merging procedures of several local

models in [4,17,18], so higher orders are not necessary for modeling entire sig-

nal modulations. This method seems to be quite flexible for modeling a wide

range of modulations, whatever the approximation order and the data size.

This method is developed in [4] and applied to a canary song.

In the present paper, we focus on short-time signals, the model of which is

given in Section 2. Section 3 describes the two proposed approaches to estimat-

ing the model parameters. In Section 4, we give the appropriate Cramer-Rao

Bounds (CRB) and we discuss the discrete polynomial base choices in Section

5. Section 6 is devoted to Monte Carlo simulations for assessing the algorithm

performance in terms of Minimum Squares Errors (MSE), a comparison with

the HAF-based method is also given. Lastly, the conclusion and work progress

are given in Section 7.

2 Polynomial amplitude and frequency Model

The discrete signal to be dealt with is a single component having a short-time

duration and is given by

y[n] = s[n] + e[n] for
−N

2
≤ n ≤ N

2
, (2)

s[n] = A[n]ejΦ[n]. (3)

where y[n] represents the noisy signal, s[n] is the deterministic signal and e[n]

is a white complex Gaussian noise with zero mean and unknown variance σ2
e .

A[n] and Φ[n] are the instantaneous amplitude (IA) and the instantaneous
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phase respectively. j is the complex number verifying j2 = −1. The time

reference is set to the center of the window and the sample size (N +1) is low,

about 30. In the following, N is assumed to be even to simplify the algorithm

implementation.

The signal phase Φ[n] is obtained by numerical integration of Instantaneous

Frequency (IF) F [n]

Φ[n] = ϕ0 + 2π(
n

∑

k=−N
2

F [k] −
0

∑

k=−N
2

F [k]). (4)

The initial phase ϕ0 = Φ[0] is referenced to the time-window center to mini-

mize the estimation error [19]; ϕ0 is not set to zero contrary to all literature

examples [7–15]. We assume ϕ0 ∈ ] − π, π ].

In order to avoid the ambiguity definition [20] on the signal model of (3), we

assume a non-discontinuous phase and a positive-definite IA

for n = −N

2
, . . . ,

N

2
, A[n] > 0. (5)

The IF verifies

for n = −N

2
, . . . ,

N

2
, 0 < F [n] <

Fs

2
, (6)

where Fs is the sampling frequency.

A positive definite amplitude resolves the ambiguity on the phase definition.

This ambiguity occurs if the amplitude is zero at certain instant of time.

For those time instants, the phase may incur a discontinuity, and induces an

instantaneous frequency definition with infinite jumps. The non-discontinuity

of the phase ensures an instantaneous frequency definition without infinite

jumps.

In [7–15] the polynomial phase signal models are motivated by Weierstrass’
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theorem. The amplitude A[n] is constant in [7,10,15], random in [13] and

linear time functions in [8,11] and the IF estimate is obtained by derivation of

a phase polynomial model in a continuous time. Consequently, an error on the

mth phase coefficient produces an m−fold error on the (m− 1)th IF coefficient

and hence the IF estimate can be drastically affected in the context of very

short-time signals. Therefore we choose to model IF instead of the phase and

we approximate both the IA and IF by polynomial functions as follows

A[n] =
∑p

m=0 am gm[n],

F [n] =
∑q

m=0 fm gm[n].

(7)

p and q are the approximation orders of IA and IF respectively and gm[n] is

a polynomial of order m. am and fm are the amplitude and frequency para-

meters respectively. The choice of the polynomial base (gm[n])m=0,...,max(p,q) is

discussed in Section 5.

To sum up, a vector of p + q + 3 parameters needs to be estimated

θ =[a0, . . . , ap, ϕ0, f0, . . . , fq]
T

=[θ0, θ1, . . . . . . . . . . . . . . . , θp+q+2]
T
,

(8)

where T denotes the transpose symbol. In the particular case of short-time

signals, we assume p and q are limited to low orders

0 ≤ (p, q) ≤ 3. (9)

Therefore, 9 parameters at most are to be estimated. The signal length must

be larger than p+ q +3 and should be about at least one or two periods of the

signal to ensure the uniqueness of the solution of the polynomial model. In the

next section, the approaches that we propose to estimate (8) are discussed.
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3 Proposed Estimation Approaches

In order to estimate the model parameter vector θ (8) of a short-time signal, we

propose two different methods. The first one is a deterministic approach, the

likelihood function is maximized by means of a stochastic technique based on

the SA algorithm. In the second method a Bayesian approach is adopted and a

MH-MCMC algorithm, random walk with a one-variable-at-a-time technique,

is used to perform the Bayesian computation. These two approaches will be

compared and the best one in terms of variance and bias will be employed in

future work for estimating long-time signals by merging different short-time

segments [4,18] and for estimating multicomponent short-time signals [21].

3.1 Maximum Likelihood Approach

3.1.1 Maximum likelihood estimation

In the case of very short-time signals, the number of model parameters is

assumed low (9) and a maximum-likelihood estimation can therefore be per-

formed in a reasonable computing time thanks to substantial advances in

numerical analysis. In the presence of Gaussian noise (e[n] (2)), the maximum

likelihood procedure is equivalent to minimization of the Least Squares (LS)

function ℓLS(θ) given by

ℓLS(θ) =

N
2

∑

n=−N
2

|y[n] − s[n]|2, (10)

where the signal model s[n] is evaluated for each θ by substituting (4) and

(7) into (3). This produces a multidimensional and nonlinear functional with
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respect to θ (8) to be minimized in R
p+q+3

θ̂ = arg min

θ ∈ R
p+q+3

ℓLS(θ). (11)

Parameter estimation by direct minimization of ℓLS(θ) is extremely difficult

and classical optimization techniques such as gradient descent, Gauss-Newton

and EM algorithm do not ensure convergence to the global minimum in the

presence of many local minima. To overcome this problem, there is a vari-

ety of meta-heuristic approaches for escaping local minima. We propose to

use the SA algorithm since it is adapted to continuous optimization problems

(θ ∈ R
p+q+3). The proposed SA algorithm is detailed in the next paragraph.

3.1.2 Simulated-Annealing-based algorithm

The SA algorithm based on Metropolis algorithm was initially proposed by

Kirckpatrick et al. [22]. It is suitable for large-scale optimization problems, es-

pecially when a desired global extremum is hidden among many local extrema

[23]. It has an analogy with thermodynamics in the way that metal cools and

anneals [24,25]. The main steps of the SA algorithm include the initialization

of the model parameters denoted θ(0), an iterative loop controlled by a temper-

ature T in order to generate new candidates that minimize ℓLS(θ) and finally

the verification of a stop criterion of the algorithm run. In this paragraph we

discuss about the tunning of these steps according to our context.

Generally, initialization θ(0) = [a
(0)
0 , . . . , a(0)

p , ϕ
(0)
0 , f

(0)
0 , . . . , f (0)

q ]T can be ran-

domly chosen. However, good starting values of the parameters are helpful in

9
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reducing ”wanders” among local minima. Therefore, we initialize the parame-

ter vector using the Fourier Transform of the discrete noisy signal y[n], given

by Fy(f) =
∑

N
2

n=−N
2

y[n] e−2πjfn. The expression of the initialization of f0, a0

and ϕ0 are given as follows

f
(0)
0 = arg max

f0

|Fy(f)|,

a
(0)
0 = |Fy(f

(0)
0 )|,

ϕ
(0)
0 = arg Fy(f

(0)
0 ).

(12)

The remaining parameters {a(0)
1 , . . . , a(0)

p , f
(0)
1 , . . . , f (0)

q } are initialized with ze-

ros. We could also determine a good initialization of the amplitude and fre-

quency parameters by using the spectrogram of y[n]. Since the signal is a single

component the spectrogram presented one energy ridge which is extracted and

decomposed on the chosen polynomial base to obtain parameter initialization

[4]. The effect on the SA algorithm performance is the same as initialization

using (12).

In the iteration loop, the generation of new candidates is a procedure con-

trolled by the temperature T for taking a random step from θ to θ + ∆θ,

where ∆θ = [∆θ0, . . . , ∆θi, . . . , ∆θp+q+2]
T. Several schemes [23] for choosing

∆θ are possible but we use a Gaussian random move with a variance σ2
i for

each parameter θi of (8)

∆θi ∼ N(0, σ2
i ), for i = 0, . . . , p + q + 2 (13)

and we define the monitoring vector by

σ2 =
[

σ2
0, σ2

1, . . . , σ2
i , . . . , σ2

p+q+2

]

T

. (14)

10
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According to this Gaussian move (13), the new generated candidate has more

probability to belong to the neighboring of the current candidate than to the

outside. Hence this move is a good compromise between selective and unin-

formative laws such as uniform, Jeffreys law ...

The change in the energy system is then evaluated with respect to the tem-

perature T as follows

ξθ = exp(
ℓLS(θ) − ℓLS(θ + ∆θ)

T
). (15)

The generated candidate is accepted using the Metropolis law: we generate a

random variable ξ from a uniform distribution law U on [0, 1]. If ξ ≤ ξθ, the

generated candidate is accepted.

A successful search for an acceptable candidate is determined by the choice of

the temperature T and the monitoring vector σ2. Both T and σ2 are gradually

reduced to allow better solution explorations. Indeed, at high T and large

σ2, a parameter research into a wide range is allowed and both increases and

decreases of ℓLS(θ) can be accepted to escape local minima. At low T and small

σ2 the research is more focused in order to provide better local explorations

when progressing towards a solution. Several schemes to reduce both T and σ2

are possible, we propose an original one. We generate a random variable u from

a Bernoulli distribution law B with parameter ρ, if u = 1, σ2 = (1 − ǫσ) σ2

and T = (1 − ǫT)T. ǫσ, ǫT and ρ are determined by experiment.

An other strategic point to remember when monitoring the algorithm is to

re-initialize both T and σ2 after T iterations [23,26], T is fixed and chosen by

the users. This avoids staying in local minima when the stop criterion is not

verified.

As stop criterion for the SA-algorithm, we propose to supervise the power of

the noise
∑

N
2

n=−N
2

|e[n]|2where e[n] = y[n] − s[n] (2). From knowledges about
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the noise distributions, 2
σ2

e

∑

N
2

n=−N
2

|e[n]|2is a χ2 variable with 2(N + 1) degrees

of freedom. This distribution law tends toward a Gaussian since 2(N + 1)

is large. The expectation and variance of the variable
∑

N
2

n=−N
2

|e[n]|2 are EN =

σ2
e(N + 1) and ΣN = σ4

e(N + 1) respectively. Hence, we define a stop criterion

for α−significance level by

∑

N
2

n=−N
2

|y[n] − s[n]|2 ∈
[

EN − zα

√
ΣN , EN + zα

√
ΣN

]

, (16)

where zα is the α−quantile of a unitary Gaussian distribution. For example

zα = 1.96 corresponds to α = 5%.

Table 1 shows the main steps of the SA-based algorithm. T(0) denotes the ini-

tialization of T determined by experiment whereas σ2 (0) is the initialization

of σ2 and must be larger than the constraints defined in Section 5 which are

functions of the polynomial base.

Many papers [27,28] have investigated the SA convergence in the discrete

optimization problems. However few studies are addressed in the case of con-

tinuous parameters [26] which is our case since θ ∈ R
p+q+3 (11).

From the theoretical point of view, some assumptions described in [26] guar-

antee the theoretical convergence in probability of the SA algorithm to reach

the global optimum value with a given accuracy:

• For example, over a number of iterations the tendency to sample better

candidates (with a better objective function values) is stronger than the

acceptance of worse candidates.

• Also, the objective function can be approximated by a strictly convex quadratic

function in a neighborhood of the global optimum.

• To help the SA convergence, the choice of the way of reducing the tempera-
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Table 1

Simulated Annealing based algorithm

a- Initialization θ = θ(0),

Evaluate s[n] for θ using (4), (7) and (3).

Set e[n] = y[n] − s[n].

b- Repeat until e[n] verifies the whiteness criterion (16),

b.1- Set σ2 = σ2 (0) and T = T(0).

b.2- Iterations from t = 1 to T

- Generate ∆θ as given in (13).

- Evaluate ξθ using (15). Draw ξ∼U[0, 1].

If ξ < ξθ, set θ to θ + ∆θ, otherwise θ is not modified.

- Sample u ∼ B(ρ). If u=1, set σ2 = (1 − ǫσ)σ2 and T = (1 − ǫT)T.

- Go to b.2-.

b.3- Evaluate s[n] for θ using (4), (7) and (3). Set e[n] = y[n]− s[n]. Go to b-.

ture T and monitoring vector σ2 must be done according to the variability

of the objective function.

The assessment of the theoretical convergence of the proposed SA algorithm is

out of the scope of the present paper. However from the practical point of view

the SA algorithm proposed, which generates at each iteration a Gaussian ran-

dom candidate over a sphere and accept or reject it according to the Metropolis

acceptance function, has been experimentally tested in [29] with quite encour-

aging results. The tests have been done using simulated AM/FM signals the

model parameters of which are randomly generated. The choice of the reduc-

ing way of both the temperature T and the monitoring vector σ2 seems quite

adapted to the variability of the objective function and the stop criterion (16)

13
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helps to avoid staying at local optimum.

3.2 Bayesian Approach

In this paragraph we present the Bayesian model we adopt in the context of

short-time non-stationary signals. The Metropolis Hastings algorithm is also

detailed.

3.2.1 The Bayesian Model

Authors in [16,30] employed MCMC methods to estimate the parameters of

a polynomial phase signal with constant amplitude. In [31], estimation of the

constant frequencies of harmonic signals was studied but, to the best of our

knowledge, estimation of both amplitude and frequency parameters of short-

time signals with nonlinear polynomial IA and IF has never been addressed

using a Bayesian approach based on the MH-MCMC method.

In this section, we adopt a Bayesian approach where unknown parameters θ

and the noise variance σ2
e are regarded as random variables. An appropriate

prior distribution is assigned to each parameter. Then an expression of the

posterior distribution is obtained, up to a normalizing constant.

Let y =
[

y[−N
2
], . . . , y[N

2
]
]

T

be the observation time-vector and Ip the prior

information. According to Bayes’ theorem, the joint posterior distribution of

all unknown parameters conditional on y and Ip is given by

p
(

θ, σ2
e |y, Ip

)

=
p (y|θ, σ2

e , Ip) p (θ, σ2
e |Ip)

p (y|Ip)
, (17)

where p (y|θ, σ2
e , Ip) is the likelihood function, p (θ, σ2

e |Ip) is the parameter

prior distribution and p (y|Ip) is the probability of the data given Ip, a nor-
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malization constant here. Using (3), (4), (7) and the knowledge of noise prob-

ability, the likelihood writes

p
(

y|θ, σ2
e , Ip

)

= (πσ2
e)

−(N+1)
exp






− 1

σ2
e

N
2

∑

n=−N
2

|y[n] − s[n]|2





. (18)

As prior independence of the parameters is supposed, the parameter prior

distribution is written

p
(

θ, σ2
e |Ip

)

= p
(

σ2
e |Ip

)

p+q+2
∏

i=0

p (θi|Ip) , (19)

where θi is given in (8). We use uninformative prior distributions to express

ignorance about the parameter vector in the absence of data: the classical

Jeffrey distribution for σ2
e [31]

p
(

σ2
e |Ip

)

∝ 1

σ2
e

, (20)

and a uniform distribution with a wide definition domain (40) for θi

p (θi|Ip) ∝ constant for i = 0, . . . , p + q + 2. (21)

Hence using (18),(19),(20) and (21), we obtain the following expression for the

posterior distribution, up to a normalizing constant

p
(

θ, σ2
e |y, Ip

)

∝ π−(N+1)

σ
2(N+2)
e

exp






− 1

σ2
e

N
2

∑

n=−N
2

|y[n] − s[n]|2





. (22)

The integration of σ2
e yields

p (θ|y, Ip) ∝







N
2

∑

n=−N
2

|y[n] − s[n]|2






−(N+1)

. (23)

This posterior distribution is highly nonlinear and a closed form can not be

obtained by conventional numerical integration methods. We therefore use a

MH-MCMC algorithm to sample from this distribution. The Minimum Mean-

square Error Bayesian Estimators (MMSE) [32] are subsequently used for all
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model parameters.

3.2.2 Metropolis Hastings MCMC method

The idea of MCMC methods [33] is to construct a Markov chain, the invariant

distribution of which is the target distribution from which samples are desired

(23). To generate samples, the methods find and use a transition kernel whose

tth iterate converges to the target distribution for large t. This transition kernel

represents a conditional probability function of moving from a current state

of the Markov chain to another state. Under certain regularity conditions [34],

the Markov chain sample path mimics a random sample from the target dis-

tribution. In [35], a tutorial review of some of the most MCMC methods is

provided and some implementation issues are detailed.

One of the usefulness MCMC methods is the Metropolis Hastings (MH) algo-

rithm which is more general than the Gibbs sampler. As we deal with joint

distributions (23) of p + q + 3 parameters, a one variable-at-a-time MH algo-

rithm combining p+q+3 updates is proposed. This simplifies the search of the

suitable joint kernel transition and allows us to take draws in succession from

each of the kernels, it is easier to find several conditional kernels that converge

to their respective distributions than to find one kernel that converges to the

joint [36].

The MH-MCMC algorithm begins with a candidate generating density which

depends upon the current state of the chain θ
(t−1)
i , we denote it by p(θi|θ(t−1)

i ).

We use subscript (i) for the ith parameter and superscript (t) for iteration t.

In order to ensure the reversibility of the kernel transition [35,36] the new
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candidate θi is accepted with the probability αi(θi, θ
(t−1)
i ) defined by

αi(θi, θ
(t−1)
i ) = min

{

1,R
(t)
i

}

, (24)

with

R
(t)
i =

p(θi | θ
(t)
0,...,i−1, θ

(t−1)
i+1,...,p+q+2, y, Ip) p(θ

(t−1)
i |θi)

p(θ
(t−1)
i | θ

(t)
0,...,i−1, θ

(t−1)
i+1,...,p+q+2, y, Ip) p(θi|θ(t−1)

i )
(25)

and θ
(t)
0,...,i−1 =

(

θ
(t)
0 , θ

(t)
1 . . . , θ

(t)
i−1

)

. In our context to simplify (25), we use a

generating distribution that is symmetric and easily simulated p(θi|θ(t−1)
i ) =

p(θ
(t−1)
i |θi) written as

θi|θ(t−1)
i ∼ N(θ

(t−1)
i , σ2

RW,i). (26)

This normal distribution describes a random walk around the current para-

meter value θ
(t−1)
i with variance σ2

RW,i. The random-walk MH algorithm is

relevant in our case since it does not require the precise location of the target

distribution.

The main steps of the proposed MH-MCMC algorithm are described in Ta-

ble 2. The initialization of the parameter vector is provided by a Fourier

Transform of y[n] as in the SA algorithm (12). The MH-MCMC algorithm

with one-variable-at-time technique converges to the target distribution after

T0 iterations. Therefore the first T0 draws are ignored and we collect the next

(T−T0) draws to approximate the posterior distribution, T being the total iter-

ation number and is large. T , T0 and σ2
RW,i (26) can be deduced experimentally

and the acceptance rate (24) may be 0.45 [36]. Finally, the MMSE estimators

of the model parameters are calculated using samples θ(t) =
[

θ
(t)
0 , . . . , θ

(t)
p+q+2

]

T

obtained from iteration t = T0 + 1, . . . , T .

In Table 3, we sum up the principle elements of the approaches proposed for
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Table 2

A one variable-at-time MH algorithm with a random walk

1- Parameter initialization, θ(0) =
[

θ
(0)
0 , θ

(0)
1 , . . . , θ

(0)
p+q+2

]

T

(12)

2- Iteration from t = 1 to T

2.1- Iteration from i = 0 to p + q + 2

2.1.1- Generate a candidate θi ∼ N

(

θ
(t−1)
i , σ2

RW,i

)

(26).

2.1.2- Evaluate αi(θi, θ
(t−1)
i ) (24).

2.1.3- Draw u ∼ U ([0, 1]) .

If u ≤ αi(θi, θ
(t−1)
i ), update θ

(t)
i = θi, otherwise θ

(t)
i = θ

(t−1)
i .

2.2- θ(t) =
[

θ
(t)
0 , . . . , θ

(t)
p+q+2

]

T

, t = t + 1, go to step 2.

3- θ = 1
T−T0

∑T
t=T0+1 θ(t).

estimating the model parameters (8) of a short-time signal with a nonlinear

polynomial IA and IF. Concerning the first approach, our contribution consists

in using the maximum likelihood function maximized using the SA algorithm.

We give an initialization of the parameters and of the monitoring vector σ2 (see

Section 5), we define a stop criterion of the SA algorithm and finally we propose

an original way in reducing the temperature and the σ2. In the Bayesian

approach, we extend the existent approaches [16,30,31] to signals whose IA and

IF are both nonlinear polynomials. Both approaches that we proposed have the

main advantages: they give a direct estimation of all polynomial coefficients,

contrary to the existent algorithms [7,15] which iteratively estimate them.

In the next section, we give the CRB for assessing the performance of the

proposed algorithms.
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Table 3

The principle differences between the two proposed algorithms.

Proposed approach deterministic: LS + SA Bayesian: MH-MCMC

Objective function ℓLS(θ) (10) p (θ|y, Ip) (23)

Initialization θ(0) (12) θ(0) (12)

Candidate generation:

random walk

σ2 (14) reduced σ2
RW,i (26) given

Acceptance/rejection eq.(15) + Metropolis law eq.(24) + Metropolis law

Parameters of control T, ǫT, ǫσ, ρ and T T0 and T

Estimators Maximum likelihood MMSE

4 Cramer-Rao Bounds

In [8], CRBs of phase and amplitude parameters are derived for polynomial

phase signals, whatever the polynomial function bases. We adapt the formula

given in [8] for the frequency and amplitude parameters of a single-component

signal modeled by (7). We distinguish two types of CRBs : parameter CRB

which are functions of SNR and IA/IF CRBs which are time-varying functions

at given SNRs. The former is interesting to evaluate the robustness of the

proposed algorithms at low SNRs whereas the latter is to check the algorithm

robustness through time.
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4.1 Parameter CRBs

To give the explicit Fisher Information Matrix (FIM) expression, we intro-

duce the following notations. First, the primitives of the polynomial functions

(gm[n])0≤m≤q (7) are denoted ηm[n] and are written for n = −N
2
, . . . , N

2
and

m = 0, . . . , q

ηm[n] = 2π(
∑n

k=−N
2

gm[k] − ∑0
k=−N

2

gm[k]). (27)

We also define η−1[n] = 1. Then, the time vectors s, Φ, gm and ηm of the

noise-free signal s[n], the signal phase Φ[n] and the polynomial functions gm[n]

and ηm[n] are defined respectively by

s =
[

s[−N
2

], . . . , s[N
2
]
]

T

,

Φ =
[

Φ[−N
2

], . . . , Φ[N
2
]
]

T

,

gm =
[

gm[−N
2

], . . . , gm[N
2
]
]

T

,

ηm =
[

ηm[−N
2

], . . . , ηm[N
2
]
]

T

.

(28)

We then calculate the FIM of θ using (7), (27) and the formula given in [8]

FIM(θ) =
2

σ2
e

Re



































A† A A†
Φ

Φ
† A Φ

†
Φ



































, (29)

where σ2
e is the noise variance (2), † is the transpose conjugate symbol and

Re is the real part symbol. We introduce the following matrices

A = [g0.e
jΦ, g1.e

jΦ, . . . , gp.e
jΦ], (30)

Φ= j [η−1.s ,η0.s, . . . . . . , ηq.s], (31)
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where (.) denotes the element by element multiplication of vectors. The CRBs

for θ are the diagonal elements of the FIM matrix inverse. From (29), the

FIM depends on the polynomial base, the signal and the phase waveforms

only. In the case of a single-component signal, A† Φ is purely imaginary and

the FIM is a block diagonal matrix. Thus amplitude parameters are decoupled

from frequency ones. Moreover, an orthonormal base makes A†A a diagonal

matrix and consequently, the amplitude parameters are also decoupled and

the estimation is improved. In this case the FIM expression is written

FIM(θ) =
2

σ2
e

















Ip 0

0 Φ†Φ

















, (32)

where Ip is the identity matrix of (p + 1) × (p + 1) size and Φ†Φ is a matrix

of (q + 2) × (q + 2) size.

4.2 IA/IF CRBs

Since we are also interested on the evaluation of the algorithm performance

for the estimation of the IA and IF waveforms, we give the CRBs of both of

them by adapting formula of [8] to the signal model of (7)

CRB(A[n]) =
σ2

e

2
g†

(

A†A
)−1

g, (33)

CRB(F [n]) =
σ2

e

2
h†

(

Φ†Φ
)−1

h, (34)

where g = [g0[n], g1[n], . . . , gp[n]]T and h = [0, g0[n], g1[n], . . . , gq[n]]T. For an

orthonormal polynomial base, eq. (33) is reduced to the following expressions
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CRB(A[n]) =
σ2

e

2

p
∑

m=0

gm[n]2, for
−N

2
≤ n ≤ N

2
(35)

since A†A = Ip. These CRBs (33), (34) and (35) are time-varying functions

and consequently sensitive to SNR variations due to the non stationarity of

the signal amplitude. We shall see in Section 6.1 that the local decrease of the

SNR has a strong effect on the IF and IA estimates.

In the next section, we give the discrete orthonormal polynomial bases that

make A†A a diagonal matrix.

5 Discrete orthonormal polynomial-bases

An orthonormal polynomial base is useful for providing uncoupled parameters

(32), thereby improving the estimation. Previous works [7] refer to orthonor-

mal bases built from a discretization of continuous-time orthonormal polyno-

mials (Legendre, Tchebychev, Hermite ...). However the orthogonal property is

lost when discretizing these functions. Consequently, the smaller the data size

(N + 1), the more significant the parameter coupling. Therefore, we propose

two discrete orthonormal polynomial bases: the discrete orthonormal Legen-

dre polynomials and a discrete base we have derived using Gram’ Schmidt

procedure.

The discrete Legendre polynomial base [37], denoted gDL
m [i], is given for 0 ≤

i ≤ N + 1 by

gDL
m [i] =

1

CN
m

m
∑

l=0

(−1)l (l
m) (l

m+l)
i{l}

(N + 1){l}
, (36)
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where i{l} = i(i − 1) . . . (i − l + 1) is the backward factorial function of order

l, CN
m = ( (N+2+m){m+1}

(2m+1) (N+1){m} )
1

2 is the normalization coefficient and (l
m) = m!

l!(m−l)!

is the binomial coefficient. In [38] a fast algorithm is proposed to evaluate the

polynomial coefficients of (36) since they need computation.

At low approximation orders, we can also derive a discrete orthonormal poly-

nomial base using the Gram’ Schmidt procedure. So, let

gm[n] = bm,0n
0 + bm,1n

1 + . . . + bm,m−1n
m−1 + bm,mnm

be a mth order polynomial defined over [−N
2

, N
2
]. The polynomial coefficients

are calculated using the Gram-Schmidt procedure

< gm, gl >=

N
2

∑

n=−N
2

gm[n] gl[n] = δm,l, (37)

where <,> is the scalar product, δm,l is the Kronecker symbol and gm defined

in (28). For example, the second-order coefficients (m = 2) are as follows

b2,0 =
−
√

5N(N+2)

2
√

(N+3)(N+1)(N−1)
, b1,0 = 0, b0,0 = 1√

N+1
,

b2,1 = 0, b1,1 = 2
√

3√
N(N+1)(N+2)

,

b2,2 = 6
√

5√
(N+3)(N+2)(N+1)N(N−1)

.

(38)

After some calculation steps, we find that at low approximation orders the

discrete Legendre polynomials and the derived base are linearly dependent

gm[n] = (−1)m gDL
m [n +

N

2
]. (39)

Therefore, the amplitude and frequency parameters calculated using the de-

rived base (38) are equal to those obtained using the discrete Legendre base

(36) up to a multiplicative constant (−1)m. In the following, we only consider

the base given by (38).
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Using (5), (6) and (38), the constraints on A[n] and F [n] are then transformed

into constraints on the model parameters, which give a good initialization of

the monitoring vector σ2 (14) of the SA algorithm. For example, for a second-

order polynomial modeling (p=q=2) the definition domains of the frequency

parameters are

|f0| ≤ Fs
2|b0,0|(1 + 4|b2,0|

N2|b2,2|) = σ2
4,

|f1| ≤ Fs
2|b1,1|(

1
N

+ 4|b2,1|
N2|b2,2|) = σ2

5,

|f2| ≤ 2 Fs
N2|b2,2| = σ2

6,

(40)

where Fs, σ2
i and bm,i are given by (6), (14) and (38) respectively. The same ex-

pressions are obtained for the amplitude parameters by substituting max
n

|s[n]|

for Fs
2

and ai for fi into (40). This gives initializations of σ2
0, σ2

1 and σ2
2. The

initial phase verifies |ϕ0| ≤ π = σ2
3.

In the next section, we give some simulation results for assessing the perfor-

mance of the proposed approaches.

6 Simulation Results

To study the robustness of the proposed algorithms, we pay attention to the

following points. First, we study the effect of the SNR variation through time

on the estimation accuracy. Second, we show that the algorithm performance

differs according to the polynomial base choice. We then compare the ap-

proaches proposed with the HAF-based method. Finally, we discuss the effects

of the model order limitation on the estimation results. Two single component

signals with quadratic polynomial IA/IF are considered. These signals denoted

by s1 and s2, their parameter vectors θs1
and θs2

, defined in the discrete or-
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thonormal base (38), are as follows

θs1
= [a0 =16, a1 =−3, a2 =2,ϕ0 =0.4,f0 =2, f1 =−0.2, f2 =−0.5]T , (41)

θs2
= [a0 =16, a1 =10.4, a2 =4.5,ϕ0 =0.4,f0 =1.5,f1 =−0.2, f2 =−0.5]T .

(42)

Here p and q equal two, the sample number is 33 and the sampling frequency

Fs is equal to 1Hz. Figure 1 shows the signals s1 and s2 having different

modulation rates.

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Time

Fr
eq

ue
nc

y

−15 −10 −5 0 5 10 15
0

2

4

6

8

Time

Am
pl

itu
de

Fig. 1. IA and IF of signals: (—) s1 and (. . .) s2 with two different frequency mod-

ulation rates.

We introduce two different SNR definitions interesting for the algorithm per-

formance study. First, the mean SNR is defined as the ratio of the energy of

a constant amplitude signal (equal to that of the time-varying amplitude sig-

nal) to the noise variance. The mean SNR is different from the operative SNR

(instantaneous SNR) which is a time-varying function due the IA changes. We

define the operative SNR as the ratio of the energy of a constant amplitude

signal (equal to that of the time-varying signal) on a sliding window of a small
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sample size (about N
4
) to the noise variance. Figure 2 displays the operative

SNR of s1 and s2 versus the mean SNR=5 dB. In the following Monte Carlo

noise simulations are performed over 200 runs at each mean SNR and for each

signal.

−10 −5 0 5 10

−2

0

2

4

6

8

Op
era

tive
 SN

R (
dB

)

Time

Fig. 2. Operative SNR of (—) s1 and (. . .) s2 versus (−−) the mean SNR=5 dB.

Operative SNR is calculated with a sliding window of 8 samples, the total sample

number being 33.

6.1 Time-varying SNR effects

The aim in this section is to study the effect of the time-varying SNR on the

estimation accuracy in the case of short-time signals. We consider the signals

s1 (41) and s2 (42) and we compare the estimation results obtained using the

SA-based algorithm. We choose by experiment ǫσ = ǫT = 0.03, T = 50000 and

ρ=0.01 (see Table 1). The polynomial base considered is the discrete ortho-

normal (38).

The MSE values for the estimated IAs and IFs of signals s1 and s2 and the

corresponding time-varying CRBs (33) are depicted in Fig. 3 at a mean SNR
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Fig. 3. Operative SNR effect on the estimation efficiency of the IF (left side) and IA

(right side) at a mean SNR=5 dB: MSE (- -) in the case of s1 versus the appropriate

CRB (—) and MSE (...) in the case of s2 versus the appropriate CRB (- -⋄).
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Fig. 4. Operative SNR effect on parameter estimation: (left side) the MSE (−−o)

of f1 estimate of signal s1 versus the appropriate CRB (—o) and the MSE (...△)

of f1 estimate of signal s2 versus the appropriate CRB (—△). (right side) the bias

(−−o) of f1 estimate of signal s1 and the bias (...△) of f1 estimate of signal s2.

equal to 5 dB. By comparing the different curves, we observe that the differ-

ence between the IF MSE and the corresponding CRB is larger for s2 than

for s1. Figure 4 depicts the MSE and bias of frequency parameter f1 versus

mean SNRs varying from −5 dB to 30 dB in cases of s1 and s2. The parameter

CRBs (32) evaluated for f1 of signal s2 and f1 of signal s1 are also plotted.

We note that the difference between MSE of parameter f1 of signal s2 and the

corresponding CRB is higher than that in the case of signal s1. Moreover the
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threshold effect in the case of s1 appears at mean SNR below 8 dB whereas,

in the case of s2 it appears at mean SNR lower than 15 dB. This difference in

the estimation accuracy in cases of s1 and s2 is essentially due to the signifi-

cant variation in the operative SNR. Indeed, as shown in Fig. 2, the operative

SNR for the signal s2 is much lower than 5 dB especially for the left side of

the time window; which consequently induces estimation accuracy differences

according to time as shown in Fig. 3. The more the significant variation of the

operative SNR, the more the estimation accuracy decreasing.

6.2 Base influence on the parameter estimation

In this section, three different bases are compared: the proposed orthonormal

base (38), the canonical base (gm[n] = nm) and the discretized Legendre base.

The latter is obtained from the classical Legendre polynomials which are de-

fined on continuous time (on [−1, 1]), then translated and sampled to obtain

expressions on [−N
2
, N

2
] [7]. This discretized base is different from the discrete

Legendre base (36). The canonic base and the discretized Legendre one are

not orthogonal. The SA-based algorithm is used to achieve the maximum like-

lihood estimation of the model parameters of signal s1 (41) and the results

obtained are compared to the derived CRBs (32). We note that it is difficult

to theoretically demonstrate the strong influence of the polynomial base on

the algorithm running, therefore we perform Monte Carlo simulation studies.

Figure 5 displays the MSE and the bias of the estimated parameters a0, f2

and θ0 of the signal s1 versus the CRBs (29). The bias (in percent) is normal-

ized by the known parameter values. Actually, the amplitude parameters are
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Fig. 5. Influence of the base choice on the estimated parameters: (—) CRB, (–⋄)

discrete orthonormal base, (–o) discretized Legendre base and (..⋆) canonical base:

the MSEs and biases of s1 parameters (41) versus the mean SNRs. The estimation

is achieved by using the SA algorithm.

coupled in the case of the discretized Legendre and canonical bases albeit they

are not coupled in the orthonormal proposed base (38), as shown by (32). As

may be seen from Fig. 5, the orthonormal property enhances the efficiency of

the parameter estimation by significantly reducing the MSE. Indeed, we gain
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more than 10 dB on the MSE of the amplitude parameters and more than

5 dB on the frequency ones. The discrete orthonormal base outperforms the

other bases in terms of variances and bias. From Fig. 5, we also note that the

SA algorithm leads to a biased estimation of all the parameters, especially at

low SNRs. This is mainly due to the small sample size. As the CRB is the

lowest bound for the variance of an unbiased estimator, estimation errors are

not directly comparable to the CRB but the latter is used as a reference in

evaluating the performance of the algorithm. Moreover the likelihood function

is a nonlinear function of the frequency parameters, which explains the thresh-

old that appears at SNR below 5 dB. This threshold effect is well-known in

the literature [19].

6.3 Algorithm Comparison

In order to compare the performance of the algorithms presented in Section

3 and the existing HAF-based method in terms of estimation accuracy, we

consider the short-time signal s1 (41), the IF and IA of which are quadratic

polynomials. However, parameter ϕ0 is assumed to be known in the HAF

algorithm. Indeed, the HAF technique is not able to correctly estimate the

initial phase, and the estimation error of the phase is stretched over the am-

plitude parameter estimation. All algorithms are coded using MATLAB and

simulations are performed on ’bi-Pentium IV 1 , 3.2 GHz, 4 Go of RAM’. Each

processing of one realization takes an average of 120s, 320s and less than 1s

using the SA algorithm, the MH-MCMC method and the HAF-based method,

respectively.

1 25593.00 Bogomips.
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Fig. 6. Algorithm performances at mean SNR = 10 dB: (left column) The MSE of

the IF and IA using (. . .) MH-MCMC, (−−) SA and (− .−) HAF. (right column)

The bias of the IF and IA: (—) MH-MCMC, (+++) SA and (***) for the HAF.

Figures 6 and 7 show the MSE and the bias of the IF and IA estimates using

these three techniques at 10 dB and 0 dB. As expected, the HAF technique

fails at low SNR. For this technique, the MSE and bias obtained are larger than

those of the MH-MCMC or the SA technique. Each of the approaches pro-

posed outperforms the HAF in term of estimation accuracy at low SNR. The

MH-MCMC estimators have the smallest MSE but are very biased. However

Fig. 8 shows the Markov Chain, generated using the proposed MH-MCMC

algorithm, is sufficiently mixed, the acceptance rate is 0.4432. The SA-based

method is a good compromise between small MSE, bias and CPU time.

In Table 4, the empirical means, bias and STandard Deviation (STD) of es-
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Fig. 8. The Markov Chain generated for the parameter a1 at mean SNR=30 dB using

the proposed MH-MCMC algorithm. The algorithm converges to the distribution

target after T0 = 5000 iterations. T = 8000 is the total iteration number.
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timated parameters f0, f2 and a2 are reported at a mean SNR equal to 5 dB.

Using the SA, the estimates are significantly closer to the true values than

those obtained using the MH-MCMC method or the HAF.

Table 5 compares the mean SNR evaluated from the residue obtained with the

Table 4

Algorithm comparison: mean, bias and STD of f0, f2 and a2 estimates at SNR=5

dB.

f0 f2 a2

True value 2 −0.5 2

Simulated Mean 2.0015 -0.4995 2.0290

Annealing Bias 0.0015 0.0005 0.0290

STD 0.0251 0.0351 1.7572

MH-MCMC Mean 2.0034 -0.4915 1.7150

Bias 0.0034 0.0085 0.2850

STD 0.0199 0.0319 1.1865

HAF Mean 0.9433 -0.5621 1.8326

Bias 1.0567 0.0621 0.1674

STD 7.6622 1.6436 1.4775

three algorithms, to the true mean SNR (10 dB and 0 dB). The HAF-based

method totally fails at SNR equal to 0 dB. As a result, we conclude that the

SA-based method gives the best approximation, which means that it performs

better at finding the global extremum of the likelihood function in the case of
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Table 5

Algorithm comparison: Estimated SNR evaluated from residue obtained with the

three algorithms for the true SNR values 10 dB and 0 dB.

mean SNR (dB)

True value 10 0

SA Estimated SNR 9.8421 -0.2383

MH-MCMC Estimated SNR 9.8048 -1.8771

HAF Estimated SNR 9.7519 -7.1053

few sample numbers and low SNR.

The approaches proposed give a better accuracy compared to the HAF and to

the spectrogram when estimating non-stationary signals with both non-linear

IA and IF and having a very short-time duration. The MSE and bias of the

parameter estimates are larger using the HAF than using the approaches pro-

posed. The HAF fails at low SNR and/or at high-order polynomial modeling

(2nd order polynomial IA and IF with a high frequency modulation rate), this

is mainly due to the error propagation phenomenon. The spectrogram is a

non-parametric method which has a very bad resolution because of the small

sample number. Moreover the IF and IA cannot be reconstructed using the

spectrogram at the beginning and ending of the time window.

Three particularities of the approaches proposed contribute considerably to

reducing the estimation errors. The first is that the polynomial model is more

adapted to approximate non-linear AM and FM signals than that used in the

existing techniques. Indeed, we model the IF instead of the phase and the
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initial phase is referenced to the center of the time segment. The second par-

ticularity is that the discrete orthonormal polynomial base helps improving

the estimation accuracy by decoupling the amplitude parameters. Finally, to

achieve the parameter estimation, we use techniques which are robust in the

presence of noise: the MCMC method using the Metropolis Hastings algo-

rithm and the maximization of the likelihood using the simulated annealing

technique. The model parameter are simultaneously estimated thus avoiding

the error propagation phenomenon known with the HAF method [15].

6.4 Effects of low-order polynomial modeling

In this section, we aim to study the effects of the low-order polynomial mod-

eling on signals whose phase is a high-order polynomial and on signals whose

phase is non polynomial. Indeed the estimation error of the IA and IF is due

not only to the errors in the estimation parameters caused by noise but also to

this low-order approximation. The SA-based algorithm is employed to provide

parameter estimation and the orthonormal base (38) is used. A total of 200

runs of Monte Carlo noise simulations are performed at each mean SNR.

We consider two different signals:

• a synthetic long-time signal whose IF and IA are both fifth-order polyno-

mials. This signal, denoted s3, is highly nonlinear with a phase of order six.

The total sample size is 256.

• a sinusoidal IA/IF signal, denoted s4, whose frequency and amplitude are
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given by

F [n] = 0.25 + 0.1cos(2πn
256

)

A[n] = 5 + 5 sin( πn
256

)

for 0 ≤ n ≤ 256. (43)

In both cases of s3 and s4, we model the IA and IF locally by second-order

polynomials. Then the SA algorithm is locally applied to short-time segments

chosen from the entire signal. Figure 9(a) displays the estimation of two dis-

joined segments with lengths of 37 samples (index (1)) and of 33 samples

(index (2)) in the case of signal s3. Figure 10(a) shows the local segments

considered in the case of signal s4, whose length is 51 samples (index (1)) and

71 samples (index (2)) respectively. The CRBs are computed using (33) and

(34) for the mean SNR evaluated on the chosen segments.
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Fig. 9. (a): A non stationary signal with a fifth order IA/IF polynomial modulation

(. . .) and the two segments considered (—). Fig. (b) and (c): the CRB (—) and the

MSE (. . .) of the IF and IA of each segment are plotted.
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Fig. 10. (a) A nonstationary signal with sinusoidal modulations (. . .) and the two

segments considered (—). Figs.(b) and (c): CRB (—) and the MSE (. . .) of the IF

and IA of each segment.

Figures 9(b) and (c) display the MSE of the local IA and IF estimates in the

case of signal s3 whereas Figs. 10(b) and (c) display the MSE in the case of

signal s4. These figures show a good estimation accuracy of the local IA and

IF, the MSEs are close to the derived CRBs. We can see differences in the

performance from one segment to another due to significant changes in the

operative SNR and due to amplitude variations. Therefore the estimation of

each segment depends strongly on the SNR variations. Reconstructed curves

of IA and IF of the high-order polynomial signal s3 are plotted versus the orig-

inal ones in Fig. 11 (left side), the estimated curves are close to the original

ones. Normalized biases are depicted in Fig. 11 (right side).

From these examples, we illustrate the great interest of the approaches pro-
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posed when addressing the estimation of highly non stationary signals with

long-time duration. Indeed, a low-order (second-order) polynomial model suf-

fices to locally model the non-stationarity on short-time segments [4]. The

results obtained on each segment using the SA algorithm proposed are close

to the CRB and the estimation accuracy is high.
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Fig. 11. Approximation of the IA and IF, which are 5th−order polynomials, by

low-order polynomials: (left column) original curves of the IA and IF (. . .) and the

estimated curves (—). (right column) bias of the IA and IF estimates.

7 Conclusion

In this paper, we have investigated the estimation of short-time signals with

nonlinear amplitude and frequency modulations. We have proposed and com-

pared two different approaches to process single-component signals whose both

the IA and IF could be modeled by low-order polynomial models. In the

first approach, a Maximum-Likelihood procedure, which has the advantage

of preserving the optimality, is maximized. To perform the maximization ef-

ficiently, we had to evaluate a highly nonlinear equation, for which we used
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a SA algorithm. The second approach is based on a Bayesian approach. A

MH-MCMC method, one variable at a time, was used together with a random

walk technique to sample from the posterior distribution. Monte Carlo simu-

lations showed that the SA offers a good compromise between small variances

and low bias compared to the MH-MCMC method. These two methods out-

perform the well-known HAF technique.

In the context of short-time signals, we also showed the importance of the

orthogonal property in the choice of polynomial model by comparing differ-

ent discrete polynomial bases. The discrete orthonormal base proposed is the

best in terms of the estimation accuracy, since the orthogonality property in

discrete time reduces the parameter coupling.

We also studied the influence of low-order polynomial modeling on the IA

and IF estimation. We considered two cases: a signal whose true phase is a

polynomial of high order, and a signal whose phase is non-polynomial. For

each, we considered only short-time segments, where the IA and IF are lo-

cally approximated by second-order polynomials. The MSE obtained using

the proposed approaches are close to the CRBs. This approach is employed

to estimate long-time signals with high non-stationarity at low SNR [4]. The

long-time signal is segmented in short-time windows. A low-order polynomial

model is assigned for each window, as described in the present paper. We have

already presented the first results of segmentation [4,17,18], where a procedure

for segmentation and merging of different local models is described. Thus, we

do not need higher order to model the entire signal phase. Error propagation

phenomena will be avoided. The great advantage of this method is its flexi-

bility for modeling a wide range of highly non-stationary signals whatever the

modulation order and signal length. In [4], we present an example of a real

canary song where variations in the signal are so fast that the proposed local
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short-time modeling is necessary.

We would also like to point out possible extensions of this work. Given the

small sample number and the biased estimators, it will be interesting to study

other statistical bounds such as Barankin bounds [39]. We can also focus on

the case of multicomponent signals with more challenging problems such as

crossing or closely spaced frequencies in colored noise. The first results of

short-time multicomponent signals embedded in Gaussian noise are given in

[21] and [40]. We also aim to make comparisons with other existent techniques

[41,42] which do not suppose polynomial modeling of the IA and IF.
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