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Abstract

The scheduling of parallel tasks is a topic that has received a lot of attention in recent years, in particular, due to the
development of larger HPC clusters. It is regarded as an interesting problem because when combined with performant
hardware, it ensures fast and efficient computing. However, it comes with a cost. The growing number of HPC clusters
entails a greater global energy consumption which has a clear negative environmental impact. A green solution is thus
required to find a compromise between energy-saving and high-performance computing within those clusters. In this
paper, we evaluate the use of malleable jobs and idle servers powering off as a way to reduce both jobs mean stretch time
and servers average power consumption. Malleable jobs have the particularity that the number of allocated servers can
be changed during runtime. We present an energy-aware greedy algorithm with Particle Swarm Optimized parameters
as a possible solution to schedule malleable jobs. An in-depth evaluation of the approach is then outlined using results
from a simulator that was developed to handle malleable jobs. The results show that the use of malleable tasks can
lead to an improved performance in terms of power consumption. We believe that our results open the door for further
investigations on using malleable jobs models coupled with the energy-saving aspect.
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1. Introduction

The current world is massively abundant with valuable
data. This by itself represents a reason -among others-
for the increasing number of High-Performance Comput-
ing (HPC) clusters, data centers, and cloud computing ser-
vices seen in the past few years. This need for constantly
processing enormous loads of data requires not only phys-
ical means but also software actors capable of using the
hardware capabilities to its fullest. These actors should
act in an objective-oriented way when handling data. This
is a scheduling problem that is not considered new, neither
in applied fields nor in research. Indeed it has been a hot
topic for years since it touches various domains such as in-
dustrial processes, manufacturing, computing and trans-
portation planning. In most of these applications, it is
mainly concerned with how to dispatch a set of process-
able resources over a finite set of processing resources, in
a way that optimizes one or several objectives. Unsurpris-
ingly it is the topic of this paper as there is a growing
interest in parallel and distributed computing where it is
critical to ensure a smooth execution for the distributed

applications. Another related matter that rises is energy
efficiency, as more HPC clusters and data centers increase
the CO2 emission rate. As a matter of fact [1] states that
digital technologies account for between 2.5% to 3.7% of
the global greenhouse gas emissions. Data centres rep-
resent 19% of the total energy required for the produc-
tion and use of digital devices. The energy consumed by
data centres is expected to increase by about 4% per year.
Clearly reducing the energy consumption should be a goal
and this issue should be approached from different angles.
Moreover it has been shown that servers account for up to
75% of a data center energy consumption[2], and within
this value, 50% can be due to idle servers [3]. The total
energy consumed is not the only issue, the rate at which
energy is consumed (power) must also be considered as it is
bounded. For example the US Department of Energy EISC
(Exascale Initiative Steering Committee) has set 20 MW
as the upper limit for a buildable exascale system [4].

The energy saving problem can be solved from different
perspectives, such as the hardware one or the software one.
From the software part, a scheduler implementation can
play a key role in the energy consumption of a data centre.
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Usually, there are two main requirements to consider when
building a scheduler; fairness and energy consumption. A
scheduler is fair when it guarantees that every submitted
job has a chance to be executed within a reasonable time.
This is known as fair-share mechanisms [5].

Hence, the combined cost of a fair, performant and
energy-efficient scheduler should be optimised to achieve
an efficient use of servers and a lower energy and power
consumption within data centers and HPC clusters. In
the following section, a brief review of the literature is
made. Next, the optimization problem is formally pre-
sented by outlining the objectives and the performance
criteria. Afterward, the used approach is thoroughly ex-
plained along with the adopted assumptions and the op-
timisation process. Following, the experimental setup is
described. Lastly, the experimental results are presented
and discussed.

2. Literature Review

Since scheduling parallel jobs is an NP-Hard problem
[6] no known algorithm can solve it in polynomial time,
and only approximations can be used to find near-optimal
solutions. Consequently, the matter has been approached
from different perspectives and setups depending on the
used scheduling algorithm and the nature of the tasks to
perform. Trystram-Mounié et al. [7] described approxima-
tions for algorithms taking into account diverse paradigms
of jobs; rigid ones, moldable ones, and malleable ones, an-
alyzing and comparing the theoretical performance of each
paradigm. Rigid jobs have a fixed number of required re-
sources that cannot be changed once a job has been sched-
uled. Furthermore, if this number is greater than the num-
ber of available resources, the job may not be scheduled.
Similarly, for moldable jobs, the number of required re-
sources cannot be changed during runtime. However, the
number of resources to allocate is defined by the scheduler
before the job starts its execution. Lastly, malleable jobs
are the most flexible ones since they behave like moldable
jobs with the exception that the scheduler can adapt the
number of their required resources even during execution
[8]. For malleable jobs, the process of changing the number
of required resources at runtime is called a reconfiguration.
An example depicting malleable jobs and rigid jobs can be
seen in Figure 1.

Figure 1: Scheduling of moldable jobs (left, middle)
and of malleable jobs (right) (from [8])

An approach from literature [9] uses the malleable jobs
paradigm because of its flexibility and efficiency. However,

assumptions are made about the homogeneity of the clus-
ter, and PTGs (Parallel Task Graphs or Directed Acyclic
Graphs) are considered as perfect malleable tasks. These
assumptions do not reflect real-life setups. In reality, mal-
leable jobs cannot be perfect, and their reconfiguration
necessarily induces overheads such as communication be-
tween nodes and time for data to be transferred. An-
other work [10] addressing cloud computing services fo-
cuses more on the optimisation aspect of providing high
QoS and the improvement of energy consumption. It also
provides a comparison of the Mixed Integer Linear Pro-
gramming (MILP) approach against the Genetic Algorithm
approach for the same objectives.

Finally, cutting-edge simulators such as Batsim [11] or
SimGrid[12] do not support the scheduling of malleable
jobs. Consequently, researchers are restricted from exper-
imentally investigating potential improvements of perfor-
mance offered by this paradigm.

3. Formulation of the problem

This section formally introduces the optimization prob-
lem, that is given a set of malleable jobs, the goal is to
find a scheduling strategy that optimizes the performance
and the power consumption by respectively using job re-
configurations and turning off idle servers. We define the
following useful notions:

• A job is a set of identical parallel tasks submitted
at the same time and that can be run on n distinct
servers.

• The submission time is the time at which a job enters
the queue of the scheduler.

• The speed-up factor α, is a real number between 0.5
and 1 indicating how parallelisable the computations
within a job are.

• The mass corresponds to execution time of the job
if it were to be run on a single server. In a rigid job
context, the mass is directly related to the required
time to complete the job, as it would be run over a
fixed number of servers.

• The makespan is the time needed to complete a job
once it starts executing. In a malleable job context,
the completion time of a job also depends on factors
such as the number of used servers n, the speed-up
factor α and whether the job has been reconfigured.
For a constant number of servers n it is defined sim-
ilarly as in [13]:

makespan =
mass

nα

• The data D is the amount of data to transfer from
n to m servers in case a reconfiguration takes place.
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Measure Value

Power idle 95.00 W
Power while computing 190.74 W
Power while turning on 125.17 W
Power while turning off 101.00 W
Power while off 9.75 W
Time to turn on 151.52 s
Time to turn off 6.10 s

Table 1: Reference values for servers power consump-
tion

• The reconfiguration time Tn→m is the time needed
to transfer data from n to m servers. It is given by:

Tn→m =

{
D
n (d nme − 1) if n ≥ m
D
m (dmn e − 1) if n ≤ m

3.1. Criteria

The goal of this study is to reduce the average rate of
energy consumption or power without compromising the
fairness of the scheduler.

Classically, the objective of the scheduler is to minimise
either the total makespan (the time to complete all the
given jobs) or the mean or maximum stretch time. Due to
the distributed aspect of the problem, the stretch time is
potentially a more beneficial metric than the makespan, as
it takes into account the time a job spends waiting in the
queue. In a rigid job context, the stretch time is defined
as the ratio of the difference between the termination time
and the submission time to the actual job execution time.
As outlined earlier, the execution time of malleable jobs
can vary as it depends on the number of used servers as
well as whether the job has been reconfigured. So the
definition of the stretch time is adapted to:

stretch time =
termination time − submission time

mass

The other criterion to take into account is the power con-
sumption of all the servers. Realistic energy consumption
approximations of the different server states were used in
this study and are shown in Table 1. These values cor-
respond to measurements made on the Tarus Grid’5000
cluster which was composed of 16 Dell PowerEdge R720
nodes each with two Intel Xeon E5-2630 [14]. It can be
easily shown that saving energy by turning off a server is
only profitable when the shutdown duration is of at least
260 s. This implies that a cycle of turning off, staying off
for the minimum span of 260 s, and restarting a server
lasts for about 362 s. In the model, the minimum allowed
duration for a power-off is 362 s.

As a second metric, the normalized mean power con-
sumption is considered. It is defined as the mean power
consumption divided by the power consumption of an idle

server.

normalised mean power =
mean power

idle server power

3.2. Objective

Under the following scheduling constraints:

• A job must eventually be scheduled and completed.

• No two jobs can be scheduled at the same time on
the same servers.

• A job can only be scheduled or reconfigured on servers
that are powered on and idle.

The goal is to minimise the combined cost of the mean
stretch time and the normalized mean power consumption.
Therefore the objective function can be formalized as an
energy-delay-product (EDP), which is a metric that had
been used in [15], and that expresses the trade-off between
the performance and the power consumption of our model.
Thus the objective function is expressed as:

Minimise:mean stretch time × normalizedmean power

4. Optimisation strategy

This section presents the adopted approach for min-
imising the objective function under the previously men-
tioned constraints.

4.1. Assumptions

The following assumptions were made when implement-
ing the simulation environment supporting malleable jobs.

• The user submits a job request and the scheduler
handles it.

• The attributes of a job request are the submission
time, the speed-up factor α, the mass, the minimum
and the maximum number of servers required to run
the job. All these parameters are considered known
to the scheduler.

• The data amount D of a job can be queried by the
scheduler at any time. This is a reasonable assump-
tion as in reality, it should be possible to know how
much data a program is using at a given time.

• There is an upper limit Dmax to the amount of data
a job can have, and this limit is known to the sched-
uler.

• The scheduler has no knowledge about any future
states, it only knows about the current and past
states.

• The mass submitted by the user is only an estimate.
Hence, the scheduler cannot use it to make exact
predictions about the termination time.
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4.2. Greedy Algorithm

Adding job reconfigurations and server power-offs to
the capabilities of the scheduler increases the complexity of
the scheduling problem. Therefore the selected approach
to tackling the problem is to implement a greedy algorithm
and use a meta-heuristic to tune its parameters.

Greedy algorithms are heuristic-based algorithms that
always take the best immediate, or local, solution while
finding an answer. Greedy algorithms find the overall
or globally optimal solution for some optimization prob-
lems but may find less-than-optimal solutions for some in-
stances of other problems [16]. The implementation steps
are described in Algorithm 1.

Algorithm 1: Greedy algorithm

Input: A set of job requests
Output: A greedy scheduling with statistics
servers available ← list of idle servers at time t
active jobs ← list of running jobs at time t
j by mass ← empty list
while queue and servers available do

FIFO schedule(queued jobs)
end
if servers available then

j by mass ←
sort by biggest mass left(active jobs)

while j by mass and servers available do
if reconfig decision then

attempt reconfiguation(j by mass)
end

end

end
if queue is empty and servers available then

if shutdown decision then
shutdown(servers available, some duration)

end

end

The scheduler’s implementation is based on three main
parts. The first one prioritises the scheduling of the jobs
in the queue per order of time submission. Once the queue
is empty and there are still some idle servers, the sched-
uler will try to reconfigure the running jobs by prioritis-
ing the ones with the highest remaining mass. The third
part takes place when the queue is empty, and there is
no possibility of reconfiguring any of the running jobs, at
that moment, the scheduler will shut down the unused
servers. Again the scheduler’s main challenge is that it has
no knowledge about the submission time of the upcoming
jobs nor their parameters. Consequently, it cannot esti-
mate in advance whether a reconfiguration would actually
improve the performance as the servers that will be used
for the reconfiguration may be required at any time for a
new job. For a similar reason, shutting down idle servers
may not always improve power consumption. Hence, in the
next two sections, an explanation of the decision processes

mentioned as reconfig decision and shutdown decision in
Algorithm 1 is presented.

4.2.1. Handling Reconfigurations

Finding a good representation of the decision-making
process of the reconfigurations is not a trivial problem.
Therefore, three inequalities are introduced as candidates
to model the condition at which a reconfiguration should
take place. The first condition is considered the most ba-
sic one. It takes into account the main factors that are as-
sumed to directly impact the outcome of reconfiguration:
that is the number of used servers and the speed-up factor
α of the job. It is also considered as the least complex as
it introduces only three parameters. It is used later in the
report within the setup Swarm1. The common attributes
to the three conditions are: nnew which is the new number
of servers that a job would be running on after a recon-
figuration, nmax is the maximum number of servers a job
can be assigned to (specified in the job request), and the
speed-up factor α. Consequently, the condition1 is met if:

(
nnew
nmax

)wn × αwα × sreconfig > 0.5

where wn is a weight between 0 and 1 and that is given
to the ratio nnew

nmax
. The speed-up factor α also carries a

weight wα. sreconfig is a scaling factor between 0 and 1.
The second condition is paired with the setup Swarm2. It
is slightly more complex as it introduces an extra parame-
ter wD that needs to be tuned. The idea is that since the
duration of a reconfiguration is impacted by the amount
of data to transfer between the servers, it would be fair
to embed such amount in the decision-making process. In
that way, a reconfiguration takes place if the following con-
dition2 is met if:

(
nnew
nmax

)wn × αwα × (
D

Dmax
)wd × sreconfig > 0.5

where D is the amount of data of the job, and Dmax is the
maximum amount of data any job can have. This ratio
carries a weight wD ranging from 0 to 1, and that should
be also tuned.
Finally condition3 introduces a bias term instead of the
scaling factor sreconfig which is in the range of -0.5 and
0.5. It also relies on the tanh function and the previously
mentioned parameters to decide whether a reconfiguration
should be performed. It is used in the setup Swarm3, and
is met if:

tanh((
nnew
nmax

)wn × αwα × (
D

Dmax
)wd + bias) > 0.5

For condition1 and condition2, the value of 0.5 in each of
the conditions is arbitrary, other values were tested and it
did not seem to affect significantly the results. For con-
dition3, 0.5 was chosen over 0 to push the decision pro-
cess towards using reconfigurations more often as the tanh
function is not symmetrical around 0.5.
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4.2.2. Handling Power-offs

For power-offs, it is assumed that the main factor that
affects whether it is beneficial to shut down the idle servers
is the ratio of available servers to the total number of
servers. This decision, referred to as shutdown decision
in Algorithm 1, is based on the following condition:

(
nav
ntot

)woff × soff > 0.5

where nav is the number of available servers, ntot the total
number of servers, woff a weight between 0 and 1 that re-
flects the importance of this ratio when making the shut-
down decision and soff is a scaling factor on the previ-
ous ratio. Additionally, instead of always powering off the
servers for the same constant amount of time, two differ-
ent shutdown durations are proposed; t1 off and t2 off .
Indeed, the scheduler does not know in advance whether
the shutdown will be beneficial, so a probability pt1 off for
choosing t1 off over t2 off is introduced.

4.2.3. Greedy algorithm parameters

The decision process is thus influenced by the combi-
nation of the previously mentioned parameters from the
shutdown process and the chosen condition of the job re-
configuration. The weights and scaling factors range be-
tween 0 and 1. The bias term range is between -0.5 and
0.5. The powering off times are only constrained by the
362 seconds value that is the minimum duration that guar-
antees energy saving. Thus during the optimization pro-
cess, either eight or nine parameters need to be tuned. A
summary of these parameters can be found in Table 2. Ad-
ditionally, it is worth mentioning that when tests were run,
it was more challenging to find a condition that models the
decision-making process of the reconfigurations than find-
ing a condition modelling power-offs. The latter condition
seemed to be effective, as it explicitly uses the ratio of idle
servers to the total number of servers.

The next step is to find the combination of parameter
values that minimises the objective function. Since they
are continuous and relatively numerous, the search space
is very large. Thus to explore it and find an optimal so-
lution a meta-heuristic algorithm, namely Particle Swarm
Optimisation (PSO), is used.

4.3. Particle swarm optimization

As mentioned in the previous section, the goal of the
particle swarm optimization (PSO) is not to directly find
an optimal solution to schedule the different jobs but rather
to find an optimal set of parameters that could improve
the decision processes of the greedy algorithm.

PSO is a nature-inspired algorithm that imitates the
behaviour of animal flocks. A Swarm is a group of particles
which are mobile entities characterised by their position,
velocity and cost. A swarm converges towards an ideal
location as its individuals move with respect to the group
best-known position and their respective best-known po-
sition. This technique enables for an exploration of the

Overall reconfiguration parameters
wn wα sreconfig wD bias

Servers
count
weight

Speedup
factor α
weight

Scaling
factor

Data
weight

Bias
term

Power off parameters
woff soff t1off t2off pt1off

Available
servers
count
weight

Scaling
factor

Duration
1

Duration
2

t1off
proba-
bility

Table 2: Overall parameters of the greedy algorithm

search space while converging towards an optimal solution
[17]. The used algorithm is similar to the one described
in [18]. It uses the reflect method to deal with boundary
escape from [19]. The used PSO algorithm is outlined in
Algorithm 2.

Algorithm 2: PSO algorithm

Initialise population position vectors (~xi)
randomly
for number of steps do

for i=1 to Population Size do
~vi = χ(~vi + φ1(~pi − ~xi) + φ2( ~pg − ~xi))
~xi = ~xi + ~vi
if f(~xi) < f(~pi) then

~pi = ~xi
end
handle boundaries()

end
for i=1 to Population Size do

if f(~xi) < f( ~pg) then
~pg = ~xi

end

end

end

In our experiments, the set of parameters is either rep-
resented as an 8-dimensional vector or a 9-dimensional
vector. ~xi depicts the position of the ith particle. Each
particle has a velocity vector ~vi, used to update the vector
~xi, at every step. ~vi is calculated using:

~vi = χ(~vi + φ1(~pi − ~xi) + φ2( ~pg − ~xi))

where χ is a constant influencing the magnitude of update.
It was found that a value of 0.1 works well compared to
higher values that tend to push particles out of bounds
too quickly. ~pi is the particle best-known position, ~pg is
the global best position. φ1 and φ2 are random numbers
between 0 and 2 generated for each particle at each time
step. The cost function f for a particular configuration
is a function mapping a position vector to a real number.
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Figure 2: Visual output from the simulator

As for boundary escape, if a parameter j of ~xi goes below
or above the xj min/max thresholds then it is handled as
follows:

xij = xjmax − (xij − xjmax) if xij > xjmax

xij = xjmin + (xjmin − xij) if xij < xjmin

5. Experimental setup

5.1. Simulation environment

As there are no known simulators -to our knowledge-
supporting the scheduling of malleable jobs, a simulation
environment was developed using python to test the per-
formance of the designed scheduling strategy. At the time
of writing this paper, it only provided reconfiguration of
jobs from a smaller to a larger number of servers as it
was thought to be more relevant in decreasing the mean
stretch time. An example of the visualisation output of
the simulator can be seen in Figure 2.

5.2. Jobs Generation

To simulate a realistic environment, Google data centres-
like jobs were generated similar to [20]. The only difference
lies in the way a job is defined. In [20] jobs are sets of small
sequential tasks schedulable in a particular order. In our
approach, a job is a single parallelisable task. A uniform
random distribution is used to generate parameters such
as the speed-up factors, the data and the required number
of servers. All the undertaken experiments generated 50
jobs to be scheduled on ten servers. A summary of the job
generation parameters is shown in Table 3 where the dy-
namism is the average duration between two consecutive
jobs and the disparity is the ratio of the average makespan
to the median makespan. The values for the mass and dis-
parity correspond to the average values obtained in [20].

Parameter Used value

Server count 10
Job count 50
Dynamism 500
Mass 1700
Disparity 3.8
speed-up factor (α) U(0.5, 1)
Data U(10, 500)

Table 3: Parameters used for the generation of jobs

5.3. Particle Swarm search of parameters

Since the number of parameters to tune is based on
which condition is used for reconfiguration, three differ-
ent swarms of 30 particles each were trained. Swarm1
(training), Swarm2 (training) and Swarm3 (training) use
respectively condition1, condition2 and condition3. Each
particle of each trained swarm was assigned set of valid
parameters following the laws described in [20] and the
values in Table 3. At each epoch k a set Gk is generated,
where Gk = {S1, S2, .., S50} and Si is a set of 50 different
jobs. Every particle had to schedule Gk independently.
This partitioning of the set of jobs Gk into smaller subsets
Si is used to prevent the parameters within particles from
overfitting a particular set of jobs. It also ensures that the
job generator is updated with newer seeds guaranteeing
diversity among the jobs. The scheduling of one set Si is
further referred to as an experiment. The cost function is
evaluated for each particle, by taking the average cost of
the 50 Si within Gk. Also, every set of generated jobs Gk
at epoch k is different from the one generated at epoch
k+ 1. The total number of used epochs is 100. This value
was chosen as it was noticed that all particles had con-
verged towards the same set of parameters and there was
little change from one epoch to the next.

The mean cost of all the particles as a function of the
number of epochs for each trained swarm is depicted in
Figure 3.

The graph shows that for each of the swarms, the pa-
rameter search went through three different phases. From
epoch one to about 20, there is a clear improvement in min-
imizing the cost function. Then from epoch 20 to about
70, particles still have quite different sets of parameters.
Yet, these parameters tend to get closer to one another.
At this point, the swarm is exploring the neighbourhood
of the minimum it would later settle in, which justifies the
flattening of the cost values from about epoch 40 to 70.
From epoch 70 to 100, the mean cost slowly decreases until
convergence, and the swarm finds a minimum optimising
the cost function. So the three trained swarm converged
at around the same range of epochs. Moreover, those sim-
ilarities in the cost pattern can be explained by the fact
that the training took place under the same seed and that
the job generator had not been modified, which resulted in
having the same job distribution for each of the swarms.
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Figure 3: Mean cost of all the particles against the
number of epochs during training

Reconfiguration parameters
Swarm1 Swarm2 Swarm3

wn 0.175 0.348 0.529
wα 0.742 0.833 0.645

sreconfig 0.331 0.579 N/A
wD N/A 0.730 0.289
bias N/A N/A -0.106

Power off parameters
Swarm1 Swarm2 Swarm3

woff 0.455 0.516 0.494
soff 0.760 0.814 0.813
t1 off 899 528 632
t2 off 1405 2962 1233
pt1 off 0.717 0.959 0.615

Table 4: Configuration of parameters found by PSO of
each of the trained swarms

This shows that the performance of the scheduler is highly
dependent on the set of jobs to be scheduled. The found
parameters are shown in Table 4.

The implication of the found results will be discussed in
more details in the next section. Nevertheless, it is already
worth noting that even though every particle’s parameters
are initialised randomly, every trained swarm learned two
different shutdown time durations a short one for t1off and
a long one for t2off , and whenever a power-off takes place
at least 60% of the times, it lasts for a shorter amount
of time. The difference in values for the shutdown times
found by Swarm2 is quite large. In fact t1 off is close to
the minimum required duration for energy-saving whereas
t2 off is more than twice as large as the values found by
Swarm1 and Swarm3. However the probability for choos-
ing t1 off over t2 off in Swarm2 is about 96%, meaning
that longer shutdown times will be rare. No indication
was given in the initial values of the particles that one
time should be longer than the other.

5.4. Comparison setups
To evaluate the performance of the scheduler, ten dif-

ferent experimental setups are introduced and run under
identical conditions. In each of these setups, jobs are gen-
erated such there is only one big set of sets of jobs G1 that
is composed of 100 subsets Si, and where each Si contains
50 different jobs to be scheduled on ten identical servers.
The main distinction between the first four setups and the
last six lies within the decision-making process, which is
based on the parameters defined in Table 2. In the first
four setups, the reconfigurations and power-offs are per-
formed whenever possible without any involvement of the
parameters. Whereas the last six setups rely on those pa-
rameters to make a decision.

• FIFO (FIFO): The base case. It is only the first
step of the greedy algorithm, a naive FIFO sched-
uler where the jobs are scheduled according to their
submission time.

• FIFO & Reconfigurations (FIFO-Rcfg): A FIFO sched-
uler that always reconfigures jobs whenever servers
are available.

• FIFO & Power off (FIFO-Poff ): A FIFO scheduler
that always shuts down idle servers -when possible-
for a constant downtime of 900 seconds.

• FIFO & Reconfigurations & Power off (FIFO-Rcfg-
Poff ): A FIFO scheduler combining reconfigurations
and power-offs in the same fashion as in FIFO-Poff
and FIFO-Rcfg.

• Random parameters (Rand-Param1 ): A FIFO sched-
uler that uses condition1 to reconfigure jobs and
shuts down idle servers based on randomly gener-
ated parameters.

• Random parameters (Rand-Param2 ): A FIFO sched-
uler that uses condition2 to reconfigure jobs and
shuts down idle servers based on randomly gener-
ated parameters.

• Random parameters (Rand-Param3 ): A FIFO sched-
uler that uses condition3 to reconfigure jobs and
shuts down idle servers based on randomly gener-
ated parameters.

• With Swarm1 parameters (Swarm1 ): A FIFO sched-
uler that uses condition1 and that is capable of re-
configuring jobs and shutting down servers based on
the PSO parameters found by Swarm1 (training).

• With Swarm2 parameters (Swarm2 ): A FIFO sched-
uler that uses condition2 and that is capable of re-
configuring jobs and shutting down servers based on
the PSO parameters found by Swarm2 (training).

• With Swarm3 parameters (Swarm3 ): A FIFO sched-
uler that uses condition3 and that is capable of re-
configuring jobs and shutting down servers based on
the PSO parameters found by Swarm3 (training).
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6. Results

In this section, the method used for ranking the differ-
ent setups is outlined. The results of the experiments are
analysed by first looking at the number of power-offs and
reconfigurations performed by each setup. Then, the indi-
vidual components of the cost are investigated. Following,
a statistical analysis of the overall costs is performed. Fi-
nally a resilience test on the best performing setup along
with a scale-up test are presented.

6.1. Ranking methodology

To draw conclusions from the results, a ranking be-
tween each of the setups is established. In this section, the
statistical method for the ranking is described. The first
step of the approach is to rank each setup for each sched-
uled set of jobs. A rank of 1 denotes the best performing
setup (lowest mean cost) and a rank of 10 the worst per-
forming one. As one hundred sets Si of jobs were used for
the experiment, one hundred rankings are obtained. Then,
the average ranking of each setup is calculated. To evalu-
ate whether those average ranks are significantly different
from the mean rank (5.5), the Friedman χ2

F and its corre-
sponding p − value are used. Thus for a confidence level
of 95% corresponding to an α value of 0.05, it is mean-
ingful to perform post-hoc tests as described in [21] if the
p−value is less than 0.05. The post-hoc tests make it pos-
sible to identify significant pairwise differences among the
different setups. This is done by first finding the standard
error (SE) between two setups using:

SE =

√
k(k + 1)

6N
=

√
10× 11

6× 100
= 0.265

where k is the setup count and N the number of exper-
iments. Using the average ranks and the standard error
the z − values are computed using:

z =
Ri −Rj
SE

where Ri and Rj are the average ranks of two different
setups. From the z− values, the corresponding probabili-
ties (p−values) are found. The null hypothesis is that the
difference in ranks is due to chance. However, if a p−value
is below α = 0.05, then the null hypothesis can be rejected
with level of confidence of 95%.

6.2. Reconfigurations and Power-offs results

Table 5 shows the average number of reconfigurations
and the average number of power-offs per setup. The most
striking result is that the average number of reconfigura-
tions performed by the setup Swarm1 is zero. This implies
that the parameters do not allow for any reconfigurations
to take place for the generated jobs. The parameters from
Swarm2 allow for very few reconfigurations to take place.
This is also an unexpected result as one would expect that

µreconfigs µPoff
FIFO 0.00 0.00
FIFO-Rcfg 3.07 0.00
FIFO-Poff 0.00 228.38
FIFO-Rcfg-Poff 13.30 458.51
Rand-Param1 3.69 82.92
Rand-Param2 0.00 56.33
Rand-Param3 0.04 0.00
Swarm1 0.00 139.11
Swarm2 0.01 216.50
Swarm3 5.04 160.21

Table 5: Average number of reconfigurations and
power-offs of each setup

reconfigurations could improve the average stretch time.
This result seems to highlight the difficulty of deciding
when to perform reconfigurations and that if they are not
carefully undertaken the performance might not improve.
The average number of reconfigurations made by the three
setups Rand-Param show that the improved cost reached
by the Swarm setups is due to the optimization process
and not just the choice of the equation describing the de-
cision process. The average numbers of power-offs for the
three Swarm setups are of the same order of magnitude
which can be explained by the fact that the equations
and parameters governing the power-off decision process
for those three setups are the same. The different Swarm
based set-ups allow for a relatively large number of power-
offs. It may seem that this could cause power spikes and
have a negative impact on the energy saved. However mod-
ern hardware can slightly shift the time of powering dif-
ferent servers on and off so that they do not all take place
at the same time and therefore avoiding power spikes.

6.3. Ranking by the mean stretch time

Figure 4 shows the distributions of the mean stretch
time metric obtained from conducting 100 experiments for
each of the different setups. Although it cannot be seen
on the graphs, the setup FIFO-Rfcg-Poff has a maximum
mean stretch time (around 80) that is much higher than
in any of the other setups. The distribution from FIFO-
Poff also suggests that mean stretch time was higher than
for the other setups in some instances. The distributions
of the mean stretch times of the setups using the decision
equations seem to have similar shapes for random param-
eters and PSO-obtained parameters. Another setup pair
with similar distributions corresponds to FIFO and FIFO-
Rcfg. This is not surprising as the logic between these two
setups is quite similar. Using the statistical methodology
previously described, the Friedman χ2

F is found to be equal
to 442.05 which corresponds to a p− value of 1.43×10−89

which signifies that it is meaningful to perform post-hoc
tests to identify significant pairwise differences. The rank-
ing obtained with a confidence level of 95% is shown in
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Rank Setup

1 Swarm2
2 Swarm3 and Swarm1
3 FIFO and Rand-Param1 and Rand-Param3
4 FIFO-Rcfg and Rand-Param2
5 FIFO-Rcfg-Poff and FIFO-Poff

Table 6: Setups ranking by the mean stretch time

Rank Setup

1 FIFO-Poff and Swarm1
2 Swarm2 and Swarm3
3 FIFO-Rcfg-Poff and Rand-Param2
4 Rand-Param1
5 FIFO and Rand-Param3
6 FIFO-Rcfg

Table 7: Setups ranking by the mean normalised power

Table 6. Clearly, the setups using the PSO-obtained pa-
rameters ranked better than the other setups. The setups
with the worst performances are FIFO-Poff and FIFO-
Rcfg-Poff. This result can be explained by the fact that if
the power-offs are not scheduled properly then the mean
stretch time increases as the servers may be off at times
when there is high demand.

6.4. Ranking by the mean normalized power consumption

Similarly to the previous section, Figure 5 shows the
different distributions of the average normalised power met-
ric of each setup. The range of values seems to vary over
a smaller range from one setup to another compared to
the stretch times shown in the previous section. This is
expected as power is a measure of the rate of energy trans-
formation, and there is a narrower range of allowed val-
ues (with respect to the states of the servers) at a given
time. Unsurprisingly the setups that do not allow perform-
ing power-offs have a higher minimum average normalised
power. The Friedman χ2

F is found to be equal to 831.72
which corresponds to a p − value of 3.15 × 10−173 which
signifies that it is meaningful to perform post-hoc tests to
identify significant pairwise differences. The ranking ob-
tained with a confidence level of 95% is shown in Table 7.
As expected, the FIFO-Poff setup that allows performing
power-offs whenever possible ranks best on this metric.
The setups that did not allow for any power-offs rank last.
Again the three Swarm setups rank among the best ones.

6.5. Ranking by the overall cost

In this section the obtained cost values are compared
to identify which setup may lead to a better overall perfor-
mance. As a reminder, the cost function is defined as the
product of the mean stretch time and the mean normalised
power.

Figure 4: Histograms of the mean stretch time of each
setup
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Figure 5: Histograms of the mean normalised power of
each setup

Figure 6: Boxplots of the cost of each setup

Figure 7: Heatmap of the performance pairwise com-
parisons between setups on the cost criterion

Figure 6 shows the distribution of the overall cost val-
ues obtained from conducting 100 experiments in each
setup. It seems that the cost values of Swarm1, Swarm2
and Swarm3 are more skewed towards a lower cost than
in the other setups.

Figure 7 shows pairwise comparisons of the number of
times a particular setup obtained a lower cost value than
an another setup. Clearly the three Swarm setups perform
better than all the other setups on the majority of the
experiments.

The average ranking over the 100 experiments can be
seen in Table 8. It can be noted that no setup has an aver-
age rank that is close to 1, meaning that there is probably
no setup that outranks all the others on most occasions.

The Friedman χ2
F is in this case equal to 448.09 which

corresponds to a p−value of 7.33×10−91. Thus for a con-
fidence level of 95% corresponding to an α value of 0.05, it
is meaningful to perform post-hoc tests to identify signifi-
cant pairwise differences among the different setups. The
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Setup Average ranking

FIFO 5.49
FIFO-Rcfg 7.22
FIFO-Poff 7.58
FIFO-Rcfg-Poff 9.02
Rand-Param1 4.97
Rand-Param2 6.72
Rand-Param3 5.07
Swarm1 3.12
Swarm2 2.45
Swarm3 3.39

Table 8: Average ranking of each setup over the 100
experiments

Rank Setup

1 Swarm1 and Swarm2 and Swarm3
2 FIFO and Rand-Param1 and Rand-Param3
3 Rand-Param2 and FIFO-Rcfg and FIFO-Poff
4 FIFO-Rcfg-Poff

Table 9: Setups ranking by the overall cost

weak ranking among the six setups is shown in Table 9.
The worst performing setup is FIFO-Rcfg-Poff. It im-

plies that reconfigurations and power-offs require a care-
ful decision-making process to ensure an increase in per-
formance, and that it is not beneficial to perform them
whenever it is possible. The three Swarm setups are all
ranked first, which can be explained by the exploration of
the parameter space that allowed the algorithms to ’learn’
to react to the job generator’s distribution. Interestingly,
there is no statistical evidence that FIFO performs bet-
ter than Rand-params1 or Rand-params3 as they are all
ranked second. To evaluate the significance of this rank-
ing, a resilience test is described in the next section.

6.6. Resilience of PSO parameters

To test the ability of the three Swarm setups to respond
to changes in the job generator’s distribution, the setups
were re-run under identical conditions to the ones in the
previous section. The parameters of the job generator were
slightly adjusted to simulate an environment where the
frequency, the mass and the data of the jobs increased.
Thus simulating an increase in the demand. The change
of values can be found in Table 10.

Table 11 shows that this time the Swarm1, Swarm2,
Rand-Param2 and Rand-Param3 allowed performing re-
configurations. This shows that the decision process of
reconfigurations is sensitive to the distribution of the jobs
and that a slight change in the job’s parameters results in
a different scheduling strategy.

Figure 8 displays the different distributions of the costs.
It can be seen that the setup FIFO-Poff that allows for

Parameter Previous Value New Value

Server count 10 10

Job count 50 50

Dynamism 500 300

Mass 1700 1900

Disparity 3.8 4.5

Speed-up factor α U(0.5, 1) U(0.5, 1)

Data U(10, 500) U(10, 800)

Table 10: Jobs generator parameters used in the re-
silience test

µreconfigs µPoff
FIFO 0.00 0.00
FIFO-Rcfg 4.34 0.00
FIFO-Poff 0.00 297.33
FIFO-Rcfg-Poff 5.77 189.25
Rand-Param1 2.92 20.27
Rand-Param2 3.63 11.19
Rand-Param3 2.50 0.00
Swarm1 7.53 87.32
Swarm2 1.23 184.27
Swarm3 4.85 128.89

Table 11: Average number of reconfigurations and
power-offs of each setup in the resilience test

power-offs to be performed whenever possible seems to
have an overall cost distribution skewed towards lower val-
ues. This can be explained by the fact that this setup is the
one that performs the highest number of power-offs per set
of jobs thus entailing a lower average power consumption.
This does not necessarily imply that it is a beneficial setup
as the mean stretch time can be very large. The Fried-
man Chi-square value χ2

F = 165.67 and its corresponding
p− value (4.93× 10−31) suggest that post-hoc testing can
be meaningful. This time the ranking cannot be as clearly
established as in the previous section and the weak rank-
ing displayed in Table 12 was produced using a confidence
level of 90%. This time again Swarm2 ranks first. How-
ever, the other two setups Swarm1 and Swarm3 did not
perform as well as they rank third. It is worth mention-
ing that the simple FIFO scheduler that performs neither
reconfigurations nor power-offs ranks second. Unsurpris-
ingly using random parameters for the decision processes
leads to a poor overall performance.

6.7. Scale up test

The scale-up test aims at simulating a more realistic
environment by increasing the number of servers from 10
to 100 while keeping the average number of submitted jobs
per server per unit time the same as before. Similar to the
resilience test, the goal is to test how the different setups
would behave in an environment that is different from the
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Figure 8: Cost of each used setup in the resilience test

Rank Setup

1 Swarm2
2 FIFO

3
Swarm3 and FIFO-Rcfg and Swarm1 and

FIFO-Poff

4
FIFO-Rcfg-Poff and Rand-Param1 and

Rand-Param3
5 Rand-Param2

Table 12: Setups ranking during the resilience test

one in which the optimization process took place. The
change in the parameters made during the scale-up test
can be found in Table 13.

As shown in Table 14, the average number of recon-
figurations and power-offs performed by the three Swarm
setups during the scale-up test are similar to the ones of
the initial experiment. This shows if the jobs distribution
is kept the same on a larger scale, the three Swarm setups
behave consistently. However, this is not the case for the
setups using random parameters, as Rand-Param2 that
did not initially allow for reconfigurations, now performs
a large average number of reconfigurations.

Figure 14 shows the cost distribution of the different
setups. The three Swarm setups have a whisker in the

Parameter
Previous
Value

New Value

Server count 10 100

Job count 50 500

Dynamism 500 50

Mass 1700 1700

Disparity 3.8 3.8

Speed-up factor α U(0.5, 1) U(0.5, 1)

Data U(10, 500) U(10, 500)

Table 13: Scale-up parameters

µreconfigs µPoff
FIFO 0.00 0.00
FIFO-Rcfg 76.35 0.00
FIFO-Poff 0.00 266.17
FIFO-Rcfg-Poff 75.40 233.41
Rand-Param1 0.00 180.01
Rand-Param2 30.74 0.00
Rand-Param3 0.00 0.00
Swarm1 0.00 150.76
Swarm2 0.11 192.80
Swarm3 12.63 170.75

Table 14: Average number of reconfigurations and
power-offs during the scale-up test

Rank Setup

1 FIFO-Rcfg
2 Rand-Param2
3 Rand-Param3 and FIFO
4 Swarm1 and Swarm2 and Swarm3
5 FIFO-Poff
6 Rand-Param1
7 FIFO-Rcfg-Poff

Table 15: Setups ranking by overall cost in the scale-up
test

lower costs that is longer than in Figure 6 and Figure 8.
This implies that the lower quartiles spreads over a larger
range of costs than in the previous two tests. There is some
overlap of the different distributions and further analysis
needs to be conducted to establish a ranking. The Fried-
man Chi-square value χ2

F = 358.68 and its coresponding
p− value (8.80× 10−72) suggest that post-hoc testing can
be meaningful. The weak ranking is shown in Table 15.
The result is rather unexpected as the setup FIFO-Rcfg
that allowed for reconfigurations to take place whenever
possible ranks first. A large number of servers provides a
larger number of possible ways to schedule a given job. A
reconfiguration is less likely to have a large effect on the
fractional number of servers being used if the number of
servers is large. This result can also be explained by the
fact that the setup FIFO-Rcfg performed really well under
the mean stretch time metric, it did however perform very
poorly on the average power metric. The different three
Swarm setups ranked equally well at rank 4 despite a be-
havior that is consistent with the initial test. When scaling
up there does not seem to be a significant advantage in us-
ing one of the decision equation over any of the other ones.
The setup that allows for reconfigurations and power-offs
to take place whenever possible ranks last similar to all
the previous tests.
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Figure 9: Cost of each used setup in the scale up test

6.8. Discussion of results and limitations

The results show that using a decision process for re-
configurations and power-offs can lead to a low overall cost.
This decision process is based on the scheduler state and
made use of parameters that were tuned using PSO. How-
ever, this performance was found to be sensitive to changes
in the way jobs are submitted and the total number of
servers in the HPC cluster. The difficulty with taking
energy consumption as a metric is that minimising it by
turning off servers can have a negative impact on the jobs
waiting time in the queue. Therefore a setup that ranks
well on one of the metrics does not necessarily rank well on
the other. It would be interesting during the PSO train-
ing to have variable weights over the metrics within the
objective function. It would prevent that one metric gets
favoured over the other. This was probably the case with
the setups that did not allow for reconfigurations to take
place. One of the limitations is that the PSO training can
take a long time, especially if the number of servers and
jobs are large. Our implementation could be improved
by using multi-processing and generating jobs in advance
so that they do not have to be re-generated every time a
swarm has to be trained. This would increase the speed
of experimentation with the proposed equations for the
decision process. In this investigation, the job generator
simulates a realistic distribution for the frequency at which
jobs are submitted and their mass. But, both the speed-
up factors and the data amount are drawn from uniform
random distributions. Using a more realistic distribution
for those parameters might improve the ability of the PSO
to find patterns in the jobs. Finally, another aspect that
is not taken into consideration in this investigation is that
turning servers on and off frequently may affect their life-
time. This is particularly important when considering the
environmental aspect, as energy is not only required when
the servers are used but also when they are manufactured
and disposed of.

7. Conclusions & Perspectives

This paper presented a solution that aims at improving
the performance of HPC schedulers by lowering both the
mean stretch time and the average power consumption by
relying on malleable job reconfigurations and server power-
offs. As current simulators do not support the scheduling
of malleable jobs, we implemented our own simulator. The
job generator’s distribution was modelled based on real
data. The proposed algorithm consisted of three steps:
FIFO scheduling, reconfiguration attempts and powering
off of the remaining idle servers. Various parameters and
conditions were used to decide whether reconfigurations
and power-offs should be performed. It was assumed that
the scheduler has no knowledge about any future states
and used only local context knowledge to make decisions.

Three different equations were used to decide whether
a reconfiguration should take place and the parameters of
those equations were tuned using PSO. It was found that
the three different setups using the PSO-obtained param-
eters performed equally well and better than the other se-
tups as long as the distribution of jobs is similar to the one
it was trained on. If the frequency at which jobs are sub-
mitted as well as their average masses are increased, one
of the setups using PSO-obtained parameters ranks first
with a level of confidence of 90%, but the other two did
not perform so well. If the number of servers is increased
to a more realistic number (100) then it was found that
the setup that only used the FIFO scheduling as well as
reconfigurations whenever possible performed best. How-
ever, this performance was at the expense of the average
power metric.

We believe that the malleable job paradigm should be
investigated further by, for example, allowing jobs to be as-
signed to a lower number of servers if the queue becomes
too long. This would require keeping some statistics about
the average length of the queue at a given time. Being able
to accurately predict the remaining mass of a job at a given
time would facilitate the evaluation of whether a reconfig-
uration could be beneficial. Probably one of the biggest
challenges remains to find a suitable encoding for mal-
leable tasks so that other meta-heuristic algorithms could
be used to find more optimal solutions.
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