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Abstract

An adaptive controller is developed for a class of nonlinear systems for which other
approaches (e.g. backstepping) may fail to be applicable. The new design employs
feedback passivation and an explicit construction of a Lyapunov function for the zero
dynamics with respect to a relative degree 1 output. As an illustration a longstanding
“nonlinear benchmark problem” is solved.
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1 Introduction

A significant development in adaptive control of nonlinear systems is adaptive integrator
backstepping [5], [6], [8], [9], [10] which applies to systems in the “pure feedback” and “strict
feedback” forms. The purpose of this work is to present a systematic design procedure for
adaptive stabilization of nonlinear systems which do not appear in either of the above two
forms.

A motivation for this study is the sixth benchmark example in [6] which cannot be
stabilized using adaptive integrator backstepping:

fl = T2 + 01’%
j/’g = I3 (11)

fgzu

In this system 6 is a constant unknown parameter. This system is not feedback linearizable
even when 6 is known. A nonadaptive solution to this problem, when a bound on é is known,
was given by Teel [15]. However, when a bound on 6 is unknown, this problem has remained
unsolved.

Our approach employs feedback passivation [1], [7] as a design tool for adaptive control
and is similar to those of [13] and [14]. The main difference is that we do not assume
the knowledge of the feedback passivating input transformation, nor the knowledge of the
Lyapunov function for the zero dynamics. Instead, we construct a Lyapunov function using
our recent method [3] which applies to a cascade of a stable system and an exponentially
stable system.

Our adaptive control design applies to nonlinear systems in the form

&= Fa+ H(E)z +h" (0 + g (2, §,y)0 y
§=AE4+0T(x,&y)0 y (1.2)
g = (x,6,y)0+u

where H (&) and h(€) satisfy H(0) = 0 and h(0) = 0. The states of the system are x € R",
£ € R y € R, input u € R, and the unknown parameters are § € RP. We assume that
the right hand side of (1.2) is C” with r > 1. The assumption that y and u are scalars
is introduced only for notational convenience. All the results apply when y and u are m
vectors. For the system (1.2) we make the following assumption:

(H1) There exist positive definite matrices Pp, P4, Q4 and a positive semidefinite matrix
() such that
FTPp+ PpF = —Qp
ATPy 4+ PyA=—Q4

This means that @ = Fa is only stable, rather than asymptotically stable, so that even
F =0 is admissible.

With a simple change of variables, the nonlinear benchmark problem (1.1) can be put in
the form (1.2) which proves that the nonlinear systems we consider here, in general, are not
feedback linearizable.



It is important to point out that the system (1.2) may fail to be controllable or even
stabilizable for every vector § € RP. In general, its stabilizability is restricted to § € Qs C
IR?. Even when § ¢ Qs our adaptive controller achieves boundedness of all the signals.
When € belongs to a set I C Qg, which will be characterized later, this adaptive controller
achieves regulation of the states to 0.

Throughout the paper we say that a system is Lyapunov stable (asymptotically stable)
to mean that its equilibrium at the origin is Lyapunov stable (asymptotically stable). We
say that a system Z = f(z) is globally stable if there exists a positive definite, radially
unbounded, function V(z) such that %f < 0 for all z. The solution of 2 = f(z) with the
initial condition z(sg) = zo is denoted by Z(s; zo, so). If the initial condition and initial time
are clear we just write z(s).

2 Lyapunov Function for the Zero Dynamics

Let us first show that the zero dynamics of (1.2) with respect to the output y, which is given
by
¢ =Fa+ H(x +hT(€)0
{= AL
is globally stable. We prove this by constructing a Lyapunov function W (x, ¢) for (2.1) using
the results of [3] (see also [4]) which apply to more general nonlinear systems than (2.1):

(2.1)

g:f;(gx)—l'h(xvg) (2‘2)

where & = f(x) is stable, h(x, ) is globally Lipschitz in x for any fixed &, and A is Hurwitz.
To achieve linear parameterization of the control law for the system (1.2) the z-dynamics in
(2.1) is restricted to be a linear function of x.

Following [3], we define a function W(z,¢) as a line integral along the solution (z,&) of

(2.1) starting at (z,£) at time 0:
i) = [ 227 (s (2.€), 0 PrIH(E5: £,0)) (53 (2,€),0) + BT (E(:£,0))0) ds (23)
The time derivative of the line integral (2.3) is
W = 27 PplH(E)a + hT(€)0)

This expression shows that W(z,§) is a convenient nonquadratic cross-term in the following
Lyapunov function candidate:

W(w,&) = o’ Ppa + 0(a, &) + £ Pag (2.4)
Thanks to this term the derivative of W along the solutions of (2.1) satisfies
W=—2"Qpa — Qa6 <0 (2.5)
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To show that W(x,¢) is indeed a valid Lyapunov function, we employ Theorems 1 and 2,
and Corollary 1 of [3] and prove the following theorem.

Theorem 2.1: If (H1) is satisfied then:
1. U is a well defined, C" function of z and ¢,
2. W(x,§) is positive definite,
3. W(x,§) is radially unbounded,
4. The system (2.1) is globally stable.

Our design of the adaptive controller requires that, possibly after reparameterization,
the control law be a linear function of the unknown parameters. This will be satisfied if the
Lyapunov function for the zero dynamics is a polynomial function of the parameters. The
above construction satisfies this requirement because, as we show below, the cross term W is
a polynomial of degree 2 in 6.

The trajectory of the system (2.1), with the initial condition (x,¢) at time s = 0, is given
by

_ : A
#(s) = (I)g(s 0) + [ @els, T (E(r))0 dr 2 @c(s,0)0 + ST (£, 5)0 26)
£(s) = ¢
t)

where ®¢(s,1) satisfies
(s, t) = [F + H(E(s)]Pe(s,t), @e(t,t) =1
Substituting z and £ into (2.3) we obtain the cross term as a quadratic polynomial in 6:
Waa&) = [ 207 I(E ) + 2" 0L (,0) PelH(E(5))(@e(s,0)a + I (€)0) + K (€(5))0] ds
2 2T (6)z 4 270, (6)0 + 070, ()0

(2.7)
where -
Wo(€) = 2/ OT PrH @ ds
Wy () = 2 /Ooo OT((PpH + HT Pp)JT + PehT] ds (2.8)
Wy(€) = 2 /OOO JPe[HJT + hT) ds
Substituting (2.7) into (2.4) we get
Wz, &) = ' Ppa + 2T Wo(E)x + 2T U (6)0 + 0T W, (6)0 + T PaE (2.9)

U,’s are globally defined functions which are differentiable as many times as the functions
H(&) and h(€) in (1.2); U,’s are analytic if these functions are analytic. In general, functions

4



U, will have to be evaluated numerically using standard approximation methods. In a number
of special cases, including the nonlinear benchmark problem (1.1), the functions W; can be
explicitly computed. In fact, closed form solutions for W;’s can always be computed for an
important subclass of (2.1) which is obtained when h(&) is polynomial in £ and H (&) = 0.

3 Feedback Passivating Control

Let us first assume that the parameter vector # is known and design a controller which
achieves global stability of the system (1.2). Our design employs feedback passivation [1]

which we briefly review. With o 2 [z £]T the system (1.2) can be rewritten as

o =q(o)+ plo,y)y
y=¢'(o,y)+u (3.1)

where the vector fields ¢, p and ¢’ are obtained from (1.2). With y as the output, the system
(3.1) is relative degree 1 and weakly minimum phase; i.e. the Lyapunov function W given
by (2.9) satisfies —Uq(a) < 0. Then the feedback transformation

, ow
u=—¢'(o,y)— a—ap(a, y)+ v (3.2)

renders the system passive from the new input v to the output y. Indeed, it is straight-
forward to check that the Lyapunov function defined by

Ve, &y) = Wl €) + 5y (3.3)

satisfies:

V= aa—lj/q + yv < yv (3.4)

By closing the loop from y to v with any strictly passive system we achieve global stability,
and, under an additional assumption, global asymptotic stability. For this, we can choose
the simplest strictly passive feedback

v=—y (3.5)
In the (z,&,y)-coordinates the control law (3.2), (3.5) takes the form
ow ow
— Tp 27T YT
u(:z;,f,y,@) - ) S‘Q(xvay) 0 ax (xvgv )0 85 b ( 7£7y)0
o OWg(
= —y—[p" + 22" (Pr+ Vo)g" + 26T Pab" + 27> 62 b"10 (3.6)
=1
T
-9 [\I}T T + le a(\gf) GTZQ 6\112 bT(g
=1

where the subscript (i) denotes the i-the column of the corresponding matrix. Without any
restriction on 6 this control law guarantees boundedness and output regulation.
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Proposition 3.1:  The states of the closed loop system (1.2), (3.6) are uniformly bounded
and ¢ and y converge to zero for all § € RP.

Proof:  Because 2% = —2TQrx — £7Q 4¢, by substituting (3.5) into (3.4) we obtain

do
V=—2"Qpa—TQu — 2 <0 (3.7)

which proves that the states of the closed loop system (1.2), (3.6) are uniformly bounded.
By LaSalle-Yoshizawa Theorem ([8], Theorem 2.1), V — 0 and, because each of the three
terms in V has the same sign, we conclude that it must converge to 0. It follows that y — 0
and, since ()4 is positive definite, £ — 0.

O

The above result holds for all 6, i.e. regardless of the stabilizability of (1.2). To prove
the global asymptotic stability of the closed loop system (1.2), (3.6), we need one additional
assumption constraining §. The set Qs of 8 for which (1.2) is stabilizable, is, in general, very
difficult to characterize. Instead, we define a set P C (s as follows:

Definition 3.2: P is the set of all § € RP for which the following condition holds:
(H2) x =0 is the only solution of the set of equations
e(QrpF*M2 =0, k=0,...,n,—1

: 3.8
LEFQU)X(:I;,Q):O, 1=0,1,... (3:8)

where x(z,0) = c,oT(:L', 0,0)0+u(x,0,0,0), Lirzyx e %Fw, and Lz;;)x 2 L(Fx)(LfFl»)X)-

The condition (H2) can be related to the controllability of the system (1.2) using the
results of [11], [12]. Indeed, it can be shown that if the controllability distribution is non-
singular at every point (x,{,y) where £ = 0,y = 0, then the condition (H2) is satisfied.
For our purpose it is more significant that, under this condition, the largest invariant set
E C IR™1"¢*1 of the closed loop system (1.2), (3.6) where V = 0 is just the origin. Another
important point is that even when the closed form solution for the control law cannot be
obtained, the equations (3.8) are given in the closed form as illustated in Example 4.

With the characterization of the set of feasible parameter vectors # given by Definition
3.2, we can prove the following result:

Proposition 3.3:  If § € P then the closed loop system (1.2), (3.6) is globally asymptoti-
cally stable.

Proof:  Boundedness of the states follows from Proposition 3.1. By LaSalle’s Invariance
Principle ([8], Theorem 2.2), the states converge to F, the largest invariant set of the closed
loop system (1.2), (3.6) where V = —2TQpax — €TQ4€ — y> = 0. We immediately obtain
that, for (x,¢,y) € F,



1. £=0,y=0
2. 2= Fux
3. 2TQrz =0

4. y=x(z,0)=0

To prove the proposition, it suffices to show that the above four conditions can be satisfied
only for # = 0. From 2 and 3, we conclude that, in F, i—i(:z;TQFx) =21 (QpF*)z =0, k=
0,...,n, — 1. From 2 and 4 we have that %X(:p,@) = LéFx)X(x,G) =0, 1=0,1,.... Thus,
(3.8) holds in E and, if § € P, x must be equal to 0. This proves the global asymptotic

stability of the closed loop system.
O

Example 1: Using the results of this section we design a controller which achieves global
asymptotic stability for the benchmark system (1.1).
We first transform (1.1) into the form (1.2) with the change of coordinates y = x5 + x3:

Ty = x9 + 023 + 0(y — 229)y
y=—r2+y+u

The zero dynamics with respect to the output y is in the form (2.1):

fl = T2 + 01’%
j/’g = —I2

To construct the Lyapunov function (2.4) we let Pr = 1 and compute

Uy, as) = /OOO Z1(s)(Ta(s) + 022(s)) ds
where

T1(s) =z + /S(:che_T + Ox5e™?7) dr

To(s) = wge™* ’
Integrating we obtain

U(xy,29) = —2; + (21 + 79 + %0:1;3)2

Thus, our Lyapunov function for the zero dynamics is
1
Wiy, x9) = (21 + 22 + 50:1;%)2 + 2

When 6 is known, the control law (3.6) is implementable and is given by

1 1
u=—-2y—x;—x3—0[(x1+ x2)(y —x2) + 5:1;%] — 502@ — :1;2):1;3 (3.10)



By Proposition 3.1 the control law (3.10) achieves boundedness of the states and convergence
of x5 and y to 0. To characterize the set P we check (H2). For this system F' =0, Qr =0,
¢ =0, so that the only nontrivial equation in (3.8) is

x(x1,0) = u(21,0,0,0) = —2, =0

Because, 1 = 0 is the only solution to this equation independently of , we have that P = IR
and the global asymptotic stability is achieved for all 6.

O
Example 2: The benchmark system (1.1) is stabilizable for any value of the parameter 6.
That this is not always the case is illustrated by

:J%;:§+01y
E= 4y (3.11)
Y =u

This linear system with two parameters is in the form (1.2). From %(:1; +&)= (01 + 0r)y it

is obvious that (3.11) is not stabilizable for #; + 6; = 0. Nevertheless, the boundedness and
regulation of £ and y is achieved for any 6; and ;.

The zero dynamics with respect to y is

i=¢
f=—¢

With Pr =1 the Lyapunov function (2.4) is

Wiz, £) = a® + 2a¢ + 267
and the control law (3.6) becomes

According to Proposition 3.1, this control law achieves the boundedness of the states and
convergence of ¢ and y to 0.
In this example the only nontrivial equation in (H2) is

x(x,8) = u(x,0,0,0) = —=2x(0, + 03) =0 (3.12)

If = 0 is to be the only solution of (3.12) we must restrict § to belong to P = {(0y,0,) €
IR* : 0, + 0, # 0}. Thus, according to Proposition 3.3, if # € P the global asymptotic
stability of the closed loop system is achieved.
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4 Adaptive Controller Design

The control law (3.6) is a cubic polynomial in #. To design an adaptive version of (3.6) we
resort to overparameterization by introducing a new parameter 9J; for every product of 8;’s
which appears in (3.6). Thus: 0, 2 0:0;, 9y, 2 0,00, etc. In this way we have defined the
augmented vector ©F = [07 97] € IR? where ¢ < L(p®+ 6p* + 11p).

We rewrite the control law (3.6) as

U(l’,f,y, 6) ="Yy—- wT(:L',f,y)G) (41)

where the function w can be obtained from (3.6). Because the parameter vector is not known,

we replace it with our estimate OT £ [47 §7):

u(:z;,f,y,é)) = —Yy—- wT(x7§7y)é) (42)

Next we modify the Lyapunov function (3.3) to include the parameter estimation error
020-6:

. 1 1 a s
Volir, €. 0) = W(a, ) + 5u* + 5076 (43)

Its time derivative is
Vo= —2"Qpa — €7Qaé — y* + yu' (,6,y)0 + 670

Thus, by choosing the parameter update law

A

0 =w(z,{y)y (4.4)

we achieve ‘
V.= —alQpa — TQas —y* <0 (4.5)

Using (4.5) it is easy to prove that the designed adaptive controller achieves boundedness of
all the signals and regulation of ¢ and y to 0. Again it is not required that the system (1.2)
be stabilizable.

Proposition 4.1:  For any § € RP the system (1.2) with the adaptive controller (4.2),
(4.4) is globally stable and ¢ and y converge to 0 as ¢t — oo.

When the parameters are unknown the adaptive version of (3.6), given by (4.2), (4.4),
achieves the same basic properties as (3.6). Additional properties can be deduced by ana-
lyzing E’, the largest invariant set of the closed loop system (1.2), (4.2), (4.4) where V. =0.
In general, E' is different from F and the analysis is more difficult than in Proposition 3.3.

We still want to examine whether the condition (H2) can guarantee the regulation of  to
0, possibly with a modified adaptive controller. We will do it in two steps. First we remove
the dependence of E’ on 3 by introducing the following assumption:



(H3) ¢(x,0,0) =0 and either 2—2(0) =0 or b(x,0,0) = 0.

It will be clear in the sequel that this assumption is needed only for the uncertain parts of ¢, h,

and b. For example, if instead of AT (£)0 we had ho(€)+hy(€)70, then (H3) applies only to h;.

Proposition 4.2:  If (H3) is satisfied then

%(x7 0,0,0) =
Bl

that is, the certainty equivalence control law (4.2) is independent of J when E=0,y=0.

Proof:  Recall that ¥ stands for the terms quadratic and cubic in € in the control law
(3.6). To prove the proposition it suffices to show that the functions multiplying these non-
linear terms vanish when ¢ = 0, y = 0. The portion of the control law (3.6) which is nonlinear
in 6 1s

8\112

Ny T
GT[\IlngT + Z%L\Iég) HTZH
=1

Under assumption (H3), expression (4.6) vanishes when £ = 0, y = 0. To see this, note that

U, () is at least linear in & because J and h are both at least linear in . Also %1(0) = 0 be-

cause U, is at least quadratic in €. Finally, from (H3), either 8%15( (0) = 0 (when 8—5(0) 0)

or b7 (2,0,0) = 0. Therefore, when £ = 0 and y = 0, the terms nonlinear in # vanish and the
adaptive control law (4.2) depends only on 6.

@y (4.6)

a

Proposition 4.2 shows that the set £’ is independent of J. Note that, in £, y = 0 in
which case the estimate § is a constant vector denoted by 0. To achieve the regulation of x
to 0 under (H2), we will make sure that § € P. To this end we introduce a projection in
the parameter update law which will keep f e I1, a closed and convex subset of P. We note
that the set II need not be bounded.

Conformal with the partition of © into 8 and ¥, we let w” (z,&,y) = [wl (2, &, y) wl(x, & y)).
Then we modify the update law (4.4) as

é:PTOJH{wl( &Yy} (4.7)
V= wy(x, & y)y

where Projp{-} is the standard projection operator (c.f. Section 4.4 in [2]) which guarantees
that the vector é(t) remains in the set II.

Now we are ready to state the theorem which connects the condition (H2) with the adap-
tive regulation of z to 0.

Theorem 4.3: If the assumption (H3) is satisfied and if the closed and convex set II C P
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contains 6, then the system (1.2) with the adaptive controller (4.2), (4.7) is globally stable
and x, £, and y converge to 0 as t — oo.

Proof: An important property of the projection used in the parameter update law is that if
the set IT contains the true parameter vector  then 07 Projy{w(z, &, y)y} > 0T wi(z, &, y)y.
Using this inequality we obtain

= —2TQpz — ETQ & — y? + ywl 0 — 07 Projy{wi(z, &, y)y}
< —2TQpa —TQ46 —y* <0

By the LaSalle-Yoshizawa Theorem the states of the system are uniformly bounded and y

Vi

and ¢ converge to 0.
Now we examine the largest invariant set £’ where the following must hold:

1. 6=0,y=0,0=0

2. 0(t)=0ellcP

3. 2= Fx

4. 2TQpl*2 =0, k=0,...,n, — 1
5.0 =g = u(z,0,0,0).

The last item follows from (H3) because y = 70 + u and ¢’ vanishes when £ = 0, y = 0.
By Proposition 4.2, u(x,0,0,0) is independent of J. Thus, u(z,0,0,0) = y(x,0) and the
items 2, 3, and 5 imply that LfFl,)X(:Jc,é) =0 fori=0,1,.... Since § € P, condition (H2)
must hold and the only point which satisfies 3 through 5 is + = 0. By LaSalle’s Invariance

Principle, the regulation of x to 0 is achieved.
O

Example 3: Returning to the benchmark system (1.1) we now allow that the parame-
ter # be unknown. Our adaptive control law is a certainty equivalence version of the control
law (3.10) with 6 replaced by 6 and #* replaced by an independent new estimate ¥:
) L, L, 2

u= =2y — a1 =y = (e + w2)(y — 22) + G = SU(y — @)y (4.8)
In Section 3 we have shown that for this problem P = IR. Because the purpose of the
projection in (4.7) was to keep 6 in P, we conclude that in this case it is not needed. Thus,
the parameter update law is given by (4.7) with the projection removed

)= yl(or + 22)(y - 22) + a3

4.9
(y — 51?2)51/'% 4

Y
Y

SN
I

N

By Proposition 4.1 the adaptive controller (4.8), (4.9) achieves boundedness of x1, x3,y, 0,
¥ and the regulation of z3 and y to 0. By comparing (1.2) and (3.9) we conclude that

11



assumption (H3) holds because ¢ = —x3+y and b = 1 do not include parametric uncertain-
ties. Since P = IR, Theorem 4.3 establishes that the regulation of x; to 0 is also achieved. O

Example 4: To illustrate several prominent features of this adaptive design let us consider
the following nonlinear system

T = x& + 0, sin* € + 22y?
y = bza(y)z® +u

Selecting W (x) = 22, the cross term W in the Lyapunov function for the zero dynamics

:i;z:z;f—l—@lsinQéb

ie s (4.11)

becomes - B
U(x,§) :/ 20,7 sin? € ds
0

After substituting the solution (z, ) of (4.11) into the integral, rearanging terms, and defin-

ing u = £e™*, we obtain
2
U(a,€) = —a + (wc + 01p(6)) (4.12)
where
& et
p( ):/ — sin” p dp
o p

Even though this integral cannot be evaluated in the closed form, it globally defines an
analytic function which can be either precomputed and approximated by one of the standard
curve fitting techniques or computed on-line by integration.

From (4.12) we obtain the Lyapunov function for the zero dynamics (4.11)

Vi, &) = (ecf + 01p(6)) + € (4.13)

and the control law for the system (4.10)

U(l‘, 57 0) = —03a(y):1:2 - Y- 88_Vx2y - %02
2 x& 13 2 sin® ¢ (414)
= —0Osa(y)z* —y — 2e (:L'e + (91,0(5)) (:1; y + Oz + 0102?)
The algebraic conditions (H2) reduce to
x(2,0,0,0) = —20,2°
providing the set
P={0cIR”:0,#0} (4.15)

Note that when 63 = 0 the system (4.10) is not stabilizable.
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Case 1: If a(0) = 0, the condition (H3) is satisfied, so the adaptive controller (4.2),
(4.7) achieves boundedness of the signals and regulation of (z,&,y) to 0 provided that we
can find an appropriate closed and convex set Il for the projection. From (4.15) we conclude
that 6, is the only parameter which requires projection for which we need to know the sign
of 0, and a lower bound on |0;|. The resemblance to linear adaptive systems, where the sign
of the high-frequency gain is a standard assumption, is not accidental. The projection in
our adaptive design serves exactly the same purpose: to avoid the set of parameter values
for which the system cannot be stabilized.

Case 2: If a(0) # 0 the condition (H3) is not satisifed. Nevertheless, we can run the
adaptive controller (4.2), (4.4) which, by Proposition 4.1, guarantees boundedness of the
signals and regulation of ¢ and y to 0. To guarantee the regulation of @ we need that

(05 — 05)a(0) — 0 # 0

This expression and some apriori boundes on #5 and f5 can still be used to find an appropriate
set for projection, but because it involves the estimates of § (in general, it will also involve
19) it is much more difficult to manage. Assumption (H3) allowed us to avoid this problem
and use (H2) to find a set for projection. O

5 Conclusion

In this paper we have developed a feedback passivation approach to the design of adaptive
controllers for a class of cascade nonlinear systems which, in general, are not feedback lin-
earizable. A key feature of this approach is a systematic construction of a parameterized
Lyapunov function for the zero dynamics subsystem. This construction has allowed us to
solve the longstanding nonlinear benchmark problem (1.1) which was formulated in [6]. A
direction for further research is to extend the recursive design methods of [3] to the problem
of adaptive control of feedforward systems which are more general than the cascade form
(1.2) considered here.

References

[1] C.I. Byrnes, A. Isidori, J.C. Willems, “Passivity, Feedback Equivalence, and the Global
Stabilization of Minimum Phase Systems,” IEEE Trans. Automatic Control, 36, (1991),
1228-1240.

[2] P.A. loannou, J. Sun, Stable and Robust Adaptive Control, Prentice-Hall, Englewood
Cliffs, 1995.

[3] M. Jankovic, R. Sepulchre, P.V. Kokotovic, “Constructive Lyapunov stabilization of
nonlineare cascade systems,” to appear in [EEE Transactions on Automatic Control.

13



[4]

[10]

[11]

[12]

[13]

[14]

[15]

M. Jankovic, R. Sepulchre, P.V. Kokotovic, “Global stabilization of an enlarged class of
cascade nonlinear systems,” Proceedings of 34-th IEEE CDC, New Orleans, LA, (1995),
993-998.

I Kanellakopoulos, P.V. Kokotovic, A. 5. Morse, “Systematic Design of Adaptive Con-
trollers for Feedback Linearizable systems,” IEEE Trans. Automatic Control, vol. 36,
(1991), 1241-1253.

I Kanellakopoulos, P.V. Kokotovic, A. S. Morse, “Adaptive Feedback Linearization of
Nonlinear Systems,” 311-346, Foundations of Adaptive Control, P.V. Kokotovic ed.,
Springer-Verlag, 1991.

P.V. Kokotovic, H.J. Sussmann, “A Positive Real Condition for Global Stabilization of
Nonlinear Systems,” Systems & Control Letters, 13, (1989), 125-133.

M. Krstic, I Kanellakopoulos, P.V. Kokotovic, Nonlinear and Adaptive Control Design,
Wiley, New York, 1995.

M. Krstic, I Kanellakopoulos, P.V. Kokotovic, “Adaptive Nonlinear Control without
Overparameterization,” Systems and Control Letters, 19, (1992), 177-185.

M. Krstic, P.V. Kokotovic, “Adaptive Nonlinear Design with Controller-Identifier Sep-
aration and Swapping,” IEEE Trans. Automatic Control, vol. 40, (1995), 426-440.

K.K. Lee, A. Arapostathis, “Remarks on Smooth Feedback Stabilization of Nonlinear
Systems,” Systems & Control Letters, 10, (1988), 41-44.

W. Lin, “Global Asymptotic Stabilization of General Nonlinear Systems with Stable
Free Dynamics by Using Passivity and Smooth Saturation,” to appear in Automatica.

A Rodriguez, R. Ortega, “Adaptive Stabilization of Nonlinear Systems: The Non-
feedback Linearizable Case,” Proceedings 11th IFAC Congress, Tallinn, 1990, vol 2,
303-305.

M.M. Seron, D.J. Hill, A.L. Fradkov, “Adaptive Passification of Nonlinear Systems,”
Proceedings 33rd CDC, Lake Buena Vista, F1, 1994, 190-195.

A.R. Teel, “Feedback Stabilization: Nonlinear Solutions to Inherently Nonlinear Prob-
lems,” PhD Dissertation, University of California, Berkeley, 1992.

14



