
Research note

A distance-vector routing protocol for networks with unidirectional links

F.C.M. Laua,* , Guihai Chena,b, Hao Huangb, Li Xie b

aDepartment of Computer Science and Information Systems, The University of Hong Kong, Hong Kong, People’s Republic of China
bNational KeyLab of Novel Software Technology, Nanjing University, Nanjing, People’s Republic of China

Received 8 April 1999; accepted 13 October 1999

Abstract

We propose a simple distance-vector protocol for routing in networks having unidirectional links. The protocol can be seen as an
adaptation for these networks of the strategy as used in the popular RIP protocol. The protocol comprises two main algorithms, one for
collecting “from” information, and the other one for generating and propagating “to” information. Like the RIP protocol, this one can handle
dynamic changes and tolerate node and link failures in the network.q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Routing algorithm; Distance vector; Directed graph; Undirectional link; Routing information protocol

1. Introduction

Current Internet routing protocols stand on the assump-
tion that any links between two neighboring nodes are
bi-directional. Unidirectional links (UDLs), however, are
emerging and could be as ubiquitous as bi-directional
links in future networks. Examples of systems having
UDLs include direct broadcast systems (DBSs) using
satellite [1] and mobile radio networks [2]. Impacts of
unidirectional links on routing protocols are discussed in
Refs. [2,3]. According to Ernst and Dabbous [3], adapting
current protocols for bi-directional networks so that they
also work for networks with UDLs (NUDLs) does not
seem to lead to good results. They discussed ways to
adapt existing protocols for unidirectional networks. For
distance-vector protocols, they gave an example of handling
a simple unidirectional network. But a complete protocol for
the general case is not given or discussed. New protocols
need to be designed for networks having UDLs. We propose
such a protocol in this paper.

The protocol we propose is new in the sense that it is not a
direct modification of any existing protocol. Nevertheless, it
uses a strategy similar to that of the distance-vector-based
routing information protocol (RIP) [4,5], the well-known
internet protocol that is widely deployed in internetworks
as well as single networks. The RIP strategy is to have every
node periodically send its routing table to all its immediate
neighbors who would then use the received table to update

or improve their own tables. We adopt the RIP strategy, but
not the RIP protocol itself because it does not work for
UDLs. Although newer protocols for interior gateway
routing (IGPs) have been introduced, such as the open
shortest path first (OSPF) protocol [6,7], RIP still maintains
its edge in certain aspects. In small networks, RIP has very
little overhead in terms of bandwidth used and configuration
and management time, and is amenable to distributed,
asynchronous operation. RIP is also very easy to implement,
especially in relation to the new IGPs. RIP has also been
widely adopted by many personal computer manufacturers
for use in their networking products, including Xerox,
Apple, Novel, 3Com, Ungermann-Bass, Banyan, and
Cisco. It is expected that RIP will continue to enjoy its
popularity for some period of time.

In adopting the RIP strategy, we realize that in an NUDL,
exchanges of routing tables between neighboring nodes
become difficult because information can only flow in one
direction along a UDL. We also realize, however, that if the
network is strongly connected, there must exist a path—a
series of UDLs—that goes the other way connecting exactly
the same two nodes. This latter path is sometimes referred to
as a “back channel” between two adjacent nodes in the
literature on NUDLs. Our protocol finds this back channel
for a pair of adjacent nodes dynamically during runtime. In
contrast, the modified RIP discussed in Refs. [8,9] depends
on the existence of a pre-arranged back channel between a
pair of adjacent nodes.

Clearly, in a strongly connected NUDL, between every
pair of nodes there must exist at least one circuit-i.e. a cycle
of nodes. Each of the two nodes should be able to reach the

Computer Communications 23 (2000) 418–424
www.elsevier.com/locate/comcom

0140-3664/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(99)00196-6

* Corresponding author. Tel.:1852-2859-2170; fax:1852-2559-8447.
E-mail address:fcmlau@csis.hku.hk (F.C.M. Lau).

other node by following this circuit. Any protocol that is
going to work for NUDLs can very much be viewed as a
circuit discovery protocol. Ernst and Dabbous have
proposed such a circuit discovery protocol [3]. Using their
protocol, each node maintains and manages a set of circuits;
multiple circuits could exist for the same destination node.
A simple procedure can then be used to generate the
necessary routing table from the circuits. They gave,
however, only a high-level overview of the protocol.
Considering the fact that even a small graph could have
many cycles, it is important that the protocol would select
only the best or appropriate circuits to keep in a node. It is
not clear how this is exactly done using their protocol. We
find it difficult therefore to give an evaluation of the protocol
in terms of its correctness, and bandwidth and space
requirements.

On the other hand, the protocol described in this paper
attempts only to discover one circuit for every pair of
adjacent nodes connected by a UDL. The circuit gives the
receiving node a back channel for propagating its routing
information to the feeding node. The circuit represents also
the best routes from the feeding node to all the other nodes
on the circuit.

The protocol recently proposed by Prakash and Singhal
[2] in the context of mobile ad-hoc networks requires
maintaining in every node a table of size O(n2), wheren
is the number of nodes in the network, and the table needs to
be sent around from time to time. In contrast, the protocol
we propose requires O(n) space in a node, and the messages
the nodes send out are of size O(n).

We present the protocol in Sections 3 and 4. The discus-
sion in these two sections assumes that the networks have
only UDLs-that is, unidirectional networksor UDNs.
Section 5 then shows that the protocol works also for
networks having both UDLs and bi-directional links, also
known asarchipelagoswhere clusters of bi-directional links
are like “islands” in a large space.

2. Preliminaries

Given a UDN ofn nodes, the problem is to generate in
each node a routing table containing an entry for each of the
other n 2 1 nodes in the network. We consider dynamic
networks where nodes and links may go down occasionally,
the topology may change, andlink costsmay vary from time
to time. The protocol must strive to produce routing tables

that represent a good approximation of the current situation
of the network.

Every node is assumed to have a unique identity, repre-
sented by a capital letter. We denote a UDL that joins node P
to node Q by (P,Q); P is Q’sfrom-neighboror f-neighbor
and Q is P’sto-neighboror t-neighbor. Similarly, a path
from A, to B, and so on, that ends at X is written as
(A,B,…,X).

Each link has a link cost which we assume is known at all
times to the two nodes connected by this link. The link cost
of (P,Q) is denoted by d(P,Q).

Each node maintains two tables, aFROM tableand aTO
table, abbreviated FT and TT, respectively. As this is a
distance-vector protocol, the entries in both tables capture
the distances between this node and the other nodes.
Distance here actually refers to link cost. The distance
between two adjacent nodes P and Q is d(P,Q); the distance
between A and B with respect to a certain path is the sum of
the costs of those links making up the path. A node’s FT
represents the node’s current view of the shortest paths from
various nodes to this node, and its TO table the node’s
current view of the shortest paths from this node to various
other nodes. Note that it is possible that none of these is a
true shortest path because knowledge takes time to travel in
a distributed system. Only the TT is used in actual routing;
the FROM table is for a node’s internal use.

This is the format of an FT entry:

{ND ;DT;NX;TTL} :

This entry represents a path from some node ND, to this
node; the distance is DT, and the second node following ND
in this path is NX, shown graphically in Fig. 1(a). Time To
Live (TTL) is the timer value associated with this entry.
When TTL drops to zero, the entry would be deleted. An
entry, when created or when “renewed,” is given a TTL
value of T. The format of a TO (table) entry is similar,
except where ND is the destination node, i.e. the last node
of the path, and NX is the next node followingthis node, as
shown in Fig. 1(b). A field value “–” means that the field is
not important in the discussion.

In the following, we use the object-oriented “dot”
notation to represent a node’s tables, table entries, and fields
within an entry. For example, P.TT is P’s TT;e.NX is the
NX field of the entrye.

Periodically, every node packs its FT in a packet, a
FROM packet, and sends it to every t-neighbor. Every so
often, a certain event (to be discussed in the next two
sections) in a node would trigger the node to send its TT

F.C.M. Lau et al. / Computer Communications 23 (2000) 418–424 419

Fig. 1. (a) A FROM entry. (b) A TO entry.

in a TO packetto a certain f-neighbor through some back
channel. Note that if P sends out a FROM packet F, it is not
always true that F.FT would be equal to P.FT in contents in
the next moment.

3. Construction and maintenance of FROM tables

A node’s FROM table collects information about the
paths that join other nodes in the network to this node. It
is essential in the construction of the node’s routing table,
the TT.

We say that two entries,p andq, match, if p.ND� a.ND.
Algorithm FROM:

1. Initially, all FROM tables are empty.
2. Each node periodically sends to all its t-neighbors a

FROM packet containing its FROM table.
3. When a node Q receives a FROM packet F from

f-neighbor P, containing P’s FROM table,
(a) for every entry f[F.FT, Q generates an entry,e�
{f :ND; f :DT 1 d�P;Q�; f :NX;T} and executes the
procedure:

IF there exists a matching entrye0 [Q:FT
IF �e:NX � e0:NX� or �e:DT # e0:DT� replacee0

by e;
ELIF e:ND ± Q

adde to Q.FT;
(b) Q then generates the entrye� {P; d�P;Q�;Q;T}
and executes the above procedure for this entry.

4. When the times of a FROM entry expires, the entry is
deleted.

Note that the above algorithm ignores two kinds of entries
(i.e. theeabove) that can be derived from the FROM packet:
(1) entries representing alternative paths but whose DT is
longer than the DT of existing matching entries; and (2) the
entry that represents a self-cycle (form Q back to Q).

Instead of a formal proof, we use an example to demon-
strate the correctness of the algorithm. The example is as
shown in Fig. 2(a), where the number on a link is the link’s
cost. After several initial rounds of message exchanges
using the above algorithm, the FROM tables of the various
nodes have entries that are as shown in Table 1.

One can easily verify that these tables are in fact what
comes out of executing the algorithm several times after
startup. It can also be easily seen that all the entries in a
node’s FT represent shortest distances from all the other
nodes to this node. This is due to the “# ” condition in
the “procedure” that prunes away the longer paths. For
instance, suppose that node D first learned of node A
through B an C, and so it has the entry {A,6,B,– } in its
table; later on D receives the entry {A,2,C,– } in a FROM
packet from C; then the condition applies, and the entry
{A,6,B,– } is replaced by {A,5,C,T} in D.FT.

The tables given above represent astable stateof the
system which will not change as time goes by as long as
the network remains stationary. If in fact the network is a
stationary one, it is not necessary that entries be kept alive
periodically. But if the network is a dynamic one so that
links and nodes might be deleted or added and link costs
might change over time, then we need those little devices, in
particular the timers, in the algorithm to make sure that the
table entries reflect or are a close approximation to the
current situation at all times. Let’s look at how the algorithm
responds to the following possible situations, using again
Fig. 2(a) as the example.

• Node and link failures:When a node fails, all its incident
links become inoperational. Therefore, if the algorithm
can handle (single) link failures, it can handle also node

F.C.M. Lau et al. / Computer Communications 23 (2000) 418–424420

Fig. 2. (a) A simple UDN. (b) The tree at E.

Table 1
FROM tables at stable state

A B C D E

– A,1,B,– A,2,C,– A,5,C,– A,7,C,–
B,9,C,– – B,2,C,– B,5,C,– B,7,C,–
C,7,D,– C,8,D,– – C,3,D,– C,5,D,–
D,4,E,– D,5,E,– D,6,E,– – D,2,E,–
E,2,A,– E,3,A– E,4,A,– E,7,A,– –

failures. Suppose the link (A,C) in Fig. 2(a) goes down.
After a while, some of C’s timers expire, and the entry
{A,2,C,– }, as well as {D,6,E,– } and {E,4,A,– }, in
C.FT are deleted, according to Step 4 of the algorithm.
D and E, however, still think that A can reach them
through (A,C). But this knowledge will soon be proven
wrong. D will learn of the fact that (A,C) is broken when
its entry {A,5,C,– } expires and gets deleted. Subse-
quently, E’s entry {A,7,C,– } will also be deleted. The
deleted entries, {A,2,C,– }, {A,5,C,– }, and {A,7,C,– },
will soon be replaced by {A,3,B,T}, {A,6,B,T} and
{A,8,B,T}, respectively, if (A,C) does not come back
up soon enough.

We can see that the algorithm ignores all incoming
entries that are worse in terms of distance than their
matching entries in the local FT. Therefore, the entry
{A,6,B,– } that comes to D via C would not stop the
entry {A,5,C,– } in D.FT from expiring. These two
entries match, but the latter is obviously better than the
former. We should also point out the reason for the
equality part of the “# ” in Step 3(a). Suppose for a
moment that the cost of (B,C) is one instead of two.
Then, when the entry{A,5,B,– } from C shows up in
D, it would immediately replace D’s entry {A,5,C,– }
instead of having to wait for {A,5,C,– } to expire.

• Changes of link costs:A decrease in a link’s cost presents
no problem as the link will be treated like any other
newly discovered cases and will be appropriately handled
by Step 3 of the algorithm. An increase in a link’s cost, on
the other hand, is handled by the condition�e:NX �
e0:NX� in step 3. For example, if the cost of (C,D) in
Fig. 2(a) is changed from three to four, D will update
its entry {C,3,D,– } to {C,4,D,– } because of the
above condition. When this new entry is propagated to
E later on-i.e.e� {C,6,D,– }—it replaces E’s {C,5,D,– }.

It should now be clear from the examples just presented that
timers are indeed essential in a dynamic environment, and
why it is necessary to send the entire FROM table to every
t-neighbor from time to time.

In Algorithm FROM, although the entry with ND�Q is
ignored as far as updating Q’s FROM table is concerned, it
is used to trigger the execution of the other algorithm,
Algorithm TO, which will be discussed in Section 4.

Every entry in a node’s FROM table contains a link
(that highlighted in Fig. 1(a)), which is the first link in
the path represented by the entry. Interestingly, if we
connect all these links together, the resulting paths
would form a tree.

Proposition 1. The entries of a node’s FT at any time form
a tree.

Proof. Given any node P, the tree in question is rooted at
P; the branches are the different paths embedded in the table.

All the tree edges (links) are pointing backwards towards
the root.

Assume the contrary the P.FT contains a non-tree. A non-
tree has either (a) a cycle in which there is a node having
more than one parent, or (b) an “orphan” branch which does
not lead to P, or both. Either case is not possible:

(a) A node, say X, having more than one parent would
have more than one entry in P.FT with ND� X, but
clearly, by the procedure in step 3(a) of Algorithm
FROM, there cannot exist two or more matching entries
in an FT.
(b) Consider an orphan branch that terminates at a node,
say X, X± P—that is, there is no entry in P.FT with its
ND� X, while all the other nodes in this branch have
their entries in P.FT. For this to be possible, an entry
with ND� X must not have been propagated to P before.
This could not have happened because by Algorithm
FROM and by (a) above, entries for the other nodes in
the branch must have been propagated to P through X,
and X must have sent along all of its own entries includ-
ing an entry with ND� X.

A

We refer to this tree we just discussed as aFROM tree. Fig.
2(b) shows E’s FROM tree at stable state.

When E sends its FROM table, i.e. the tree in Fig. 2(b), to
its t-neighbor A, we have a cycle (a closed circuit) that joins
A to C, D, E, and then back to A. What A receives is in fact
E’s latest view of the shortest paths from A to all the other
nodes (C, D, E) in the circuit. This is useful routing infor-
mation that A should make use of. As we will see in Section
4, A would incorporate this information in its TT. On the
other hand, A could treat the path to E as found in the circuit
as its “virtual link” or “back channel” to E. A can use the
source routing method to send packets to E via this back
channel.

Note that the path (from A to E) just mentioned represents
also E’s view of the shortest path from any node (other than
A) in the path to any subsequent node in the path, for
example, from C to E. A could take the trouble of passing
this information to all these nodes in the path for incorpor-
ating in their TT. This is not necessary, however, as every
one of these nodes would have received or will receive a
similar packet from its f-neighbor like what has happened to
A.

We assume that the nodes in the network are capable of
performing source routing. The following algorithm will be
useful in the construction and maintenance of TT.

Algorithm SOURCE_ROUTE:

1. Assume that node Q has just received a FROM packet F
from its f-neighbor P and F.FT contains an entry with
ND�Q. By Proposition 1, F.FT contains a (shortest)
path from Q to P. To perform source routing from Q to
P, Q encodes this path in the packet (s).

F.C.M. Lau et al. / Computer Communications 23 (2000) 418–424 421

4. Construction and maintenance of TO tables

A node’s FROM table is not a routing table because an
entry there indicates how some other node may send packets
to this node, but not how this node may do so to that node.
The latter information is to be found in the TT. The TT is
the routing table. The following constructs and maintains
the TT. Note that when a circuit is found in a node, to follow
the RIP strategy, the node would send out its routing table to
its f-neighbor; this is done in step 2(c) in the algorithm
below.

Algorithm TO:

1. Initially, all TT are empty.
2. When a node Q receives a FROM packet F from an

f-neighbor P, if F.FT contains an entry whose ND�Q,
then

(a) Q traces the path from Q to P in F.FT:�Q�
N0;N1;N2;…;Nm � P�; m $ 1: Let e1;…; em be the
corresponding entries in F.FT whereei � { –;–;Ni ; –} :
(b) For i � 1 to m, Q generates the entrye�
{ Ni ;di ;N1;T} ; where di � di21 1 �ei :DT 2 ei11:DT�
andd0 � dm11 � 0; and executes the procedure:

IF there exists a matching entrye0 [Q:TT
IF �e:NX � e0:NX� or �e:DT # e0:DT� replacee0

by e;
ELIF e:ND ± Q

adde to Q.TT;
(c) Q sends a TO packet containing its TT to P using
Algorithm SOURCE_ROUTE.

3. When a node P receives a TO packet T from its child Q,
(a) for each entryt in T.TT, it generates an entry,e�
{ t:ND; t:DT 1 d�P;Q�;Q;T} and executes the proce-
dure given above.
(b) P then generates the entrye� {Q ; d�P;Q�;Q;T}
and executes the procedure given above.

4. When the timer of a TO entry expires, the entry is
deleted.

Steps 2(a) and (b) of the above take the circuit as the new
shortest path from Q to any other in the circuit, and try to
install that in the TT. Let’s refer to Fig. 2, and let the A there
be the Q here. That is, A receives from E a packet containing

E’s FT. Suppose E’s table is the one as shown in Table 1. A
can easily trace the path to be�N0 � A;C;D;E� N3�; and
therefore e1 � {A ;7;C;2} ; e2 � {C ;5;D; 2 } ; and e3 �
{D ;2;E; 2 } : Note that there is another entry in the table
with NX � N1� C, {B,7,C,-}, but that entry is not part of
the traced path. By Step 2(b), A then generates the following
entries fore.

{C ; d1;C;T} ;d1 � 0 1 �7 2 5� � 2

{D ;d2;C;T} ;d2 � 2 1 �5 2 2� � 5

{E ; d3;C;T} ;d3 � 5 1 �2 2 0� � 7:

The above two steps, in fact, can be omitted and the
algorithm would still work in coming up with the necessary
TT, but the process will take a much longer time because
entries like {X,– ,X,– }, where X is Q’s t-neighbor in the
circuit would have to come a full circle one link at a time via
step 3(b) of the algorithm in order to finally come to Q.

Step 3(b) is there in the algorithm because when P
receives Q’s TT, it knows that Q considers (P,Q) the shortest
path from P to Q. Imagine if there were another path from P
to Q (via other nodes) which has a smaller cost than d(P,Q),
Q would have sent its TT to a different f-neighbor instead of
P. So P takes the TT from Q both as a confirmation of Q’s
receipt of P’s FROM packet as well as an indication that
(P,Q) (in Q’s view) is a shortest path from P to Q.

We need to argue for the necessity of sending TTs around
because FTs that are being sent around seem to already
contain a fair amount of TO information, such as that
embedded in the circuit. In fact, if the network is a ring,
Algorithm TO can stop after Step 2(b). There is no need for
sending any TT around in a ring. This is easy to see because
the circuit we discussed above coincides with the physical
ring, and therefore, given a circuit, any node would be able
to generate all the necessary TO entries for itself. On the
other hand, if the network is not a ring, the FT coming from
f-neighbors might not contain all the necessary TO informa-
tion. Refer to the example in Fig. 2 again, where the network
consists of two rings. The FROM table A receives from C
does not contain the entry {A,– ,B,– } and so A cannot
deduce from C.FT its path to B. As a result, B must send
its TO table to A, which takes place when A sends its FROM
table to B and B finds a circuit. The following proposition
does not need a proof.

Proposition 2. The FT a node Q receives from its
f-neighbor P contains at most one path that goes from Q
to P.

5. Archipelagos

We need to show that the algorithms work for bi-
directional links. We can treat a bi-directional link as a
pair of UDLs. Therefore, each bi-directional link is a

F.C.M. Lau et al. / Computer Communications 23 (2000) 418–424422

Fig. 3. (a) An archipelago. (b) Another view.

cycle, asimple cycleinvolving only two nodes. Fig. 3 shows
two views of an archipelago, where each bi-directional link
appears as a simple cycle in the one on the right. In Section
4, we have shown that the algorithm works for cycles having
more than two nodes. We give an example below to
illustrate that the algorithms also work for simple cycles.

Consider the simplest UDN, as shown in Fig. 4. Initially,
both FT are empty. After the first exchange of FT, P and Q
each has an entry in their FT: {Q,– ,P,– } and {P,– ,Q,– },
respectively. The next exchange would therefore “close a
circuit” for both P and Q. P and Q would insert {Q,– ,Q,– }
and {P,– ,P,– }, respectively, into their TT, and then send
these tables out to their respective t-neighbors. P, upon
receiving Q’s TT, would not do anything to its own TT
except renewing the entry {Q,– ,Q,– }; similarly for Q. P
and Q will continue to exchange their tables periodically in
order to keep their table entries alive.

It seems that in the above we are sending too many tables
over a single bi-directional edge. Refer to Fig. 3(a), where
A, B, C, D, form a bi-directional subnetwork, also called an
island. For an all-bi-directional network, in fact, it suffices
to execute only the FROM algorithm, because TT can be
derived from FT. The TO algorithm seems superfluous.
Therefore, in an archipelago, one approach would be to
apply only the FROM algorithm to the islands (thus saving
some execution time and communication bandwidth), and
apply both the FROM and the TO algorithm to the rest of the
network. The difficulty with this approach, however, is that:

• in a dynamic environment, links as well as nodes might
come and go, and therefore it is not easy to discover and
to keep track of the islands;

• the protocol for the boundary nodes, those at the
perimeter of an island, could be complicated because
they have to play two roles, both as an island node and
as a regular node.

Even if we can treat islands separately, the island nodes
cannot get away with passing TTs and FTs around just like
their non-island counterparts. The reason is clear in Fig. 5

where several instances of shortest-path routing are shown.
For this simple example of an archipelago having just one
island, we see that routing cannot be easily broken into an
intra-island component and an extra-island component. For
instance: case (a) in the figure has to go through the island
even though both the source and destination are outside of
the island; case (b) has to go through some non-island edges
even though the source and destination are island nodes.
Furthermore, because of the shortest-path requirements,
we cannot treat an island as one abstract node and allow a
routing path to enter, exit, or pass through the island at any
boundary node.

6. Concluding remarks

The RIP protocol is widespread because of its simplicity.
It suffers however from convergence problems such as the
count-to-infinity problem. As our protocol is modeled after
RIP, it could run into similar problems. This can be easily
understood if we view the two connections (one UDL plus a
back channel) between every two nodes in a UDN as a
single bi-directional path. Like in traditional RIP-based
networks, the problem can be overcome using techniques
such as split horizons and poison reverse updates [10,11].

The FROM and TO tables have size equal to O(n), where
n is the number of nodes in the network, which is also the
size of messages that are being sent around periodically over
all the edges. Our approach has been a “busy” one because
of the need to keep entries alive even after the network has
reached a stable state. An alternative would be to send out
messages only when there is a change to the topology or
when a link changes cost and only those affected entries
need to be sent around. With such a message-thrifty variant,
nodes still need to keep an eye on each other by exchanging
control messages periodically and using watchdog timers.
These messages, however, would be of a much smaller size
than those messages carrying the entire table, and would be
independent of the network size.

Another space and bandwidth saving possibility would be
to send only one table, the FROM table, and to generate the
TO table from the FROM table. This requires maintaining
extra edges in a FROM table other than those of the FROM
tree. Consider Fig. 2. At some point in time, C must have
dropped the entry {A,3,B,– } because {A,2,C,– } was a
better entry. If somehow C had kept this entry (marked
special) which was then propagated to D, then E, and finally
A, A would have more than just the circuit (A,C,D,E,A) but
also the path (A,B) for computing new TO entries. We are
now in the process of designing an algorithm incorporating
both of the above possible improvements.

7. Acknowledgement

Guihai Chen is supported by a China NSF grant
(# 69803005).

F.C.M. Lau et al. / Computer Communications 23 (2000) 418–424 423

Fig. 4. The simplest UDN.

Fig. 5. Routing through an island.

References

[1] Y.-G. Zhang, S. Dao, Integrating direct broadcast satellite with
wireless local access, Proceedings of the First International Workshop
on Satellite-based Information Services, New York, November 1996,
pp. 24–29.

[2] R. Prakash, M. Singhal, Impact of unidirectional links in wireless
ad-hoc networks, Proceedings of DIMACS Workshop on
Mobile Networks and Computing, Rutgers University, NJ,
March 1999.

[3] T. Ernst, W. Dabbous, A circuit-based approach for routing in
unidirectional links networks, INRIA Research Report No. 3292,
November 1997.

[4] C. Hedrick, Routing Information Protocol, Internet Request for
Comments 1058, June 1988.

[5] G. Malken, Version 2—Carrying Additional Information, Internet
Request for Comments 1723, 1994.

[6] J. Moy, OSPF Version. 2, Internet Request for Comments 1247, 1991.
[7] J.T. Moy, OSPF: Anatomy of an Internet Routing Protocol, Addison-

Wesley, Reading, MA, 1998.
[8] W. Dabbous, E. Duros, T. Ernst, Dynamic routing in networks with

unidirectional links, Proceedings of the Second International Work-
shop on Satellite-based Information Services, Budapest, Hungary,
October 1997.

[9] E. Duros, C. Huitema, Handling of unidirectional links with RIP,
Internet Draft, INRIA Sohpia-Antipolis, March 1996 [http://
www.inria.fr/rodeo/udlr/documents/draft-udlr-rip-00.txt].

[10] C. Huitema, Routing in the Internet, Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[11] G. Malken, M. Steenstrup, Distance-vector routing, in: M. Steenstrup
(Ed.), Routing in Communictions Networks, Prentice-Hall,
Englewood Cliffs, NJ, 1995, pp. 83–157.

F.C.M. Lau et al. / Computer Communications 23 (2000) 418–424424

