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Abstract

Dominance constraints are logical descriptions of trees that are widely used in
computational linguistics. Their general satisfiability problem is known to be NP-
complete. Here we identify normal dominance constraints and present an efficient
graph algorithm for testing their satisfiability in deterministic polynomial time.
Previously, no polynomial time algorithm was known.
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1 Introduction

The dominance relation of a tree is the ancestor relation between its nodes.
Dominance constraints are logical descriptions of trees talking about the dom-
inance relation.
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Dominance based tree descriptions were first used in automata theory in the
sixties [3], rediscovered in computational linguistics in the early eighties [4],
and investigated from a logical point of view in the early nineties [5]. Since
then, they have found numerous applications in computational linguistics: they
have been used for grammar formalisms [6–9], in natural language semantics
[10,11], and for discourse analysis [12].

The two most important computational tasks for dominance constraints are
satisfiability testing – does the constraint describe a tree? – and enumerating
solutions, i.e. the described trees. But as shown recently [13], testing satisfia-
bility is an NP-complete problem. Earlier attempts at processing dominance
constraints [14–16] all suffer from this fact. This has shed doubt on their prac-
tical usefulness.

In this article, we identify normal dominance constraints, a natural subclass of
dominance constraints whose restrictions should be unproblematic for many
applications. We present an efficient graph algorithm that decides satisfiability
of normal dominance constraints in deterministic polynomial time. Previously,
no polynomial time algorithm was known.

We derive the graph algorithm for testing satisfiability as follows. First, we
introduce dominance graphs and define their configuration problem (investi-
gated in [1]). Second, we show that the configurability of dominance graphs
is linear time equivalent to the satisfiability of normal dominance constraints
(first shown in [2]). Third, we characterize the configurability of dominance
graphs as the absence of certain cycles, which we finally test for by reduction
to a matching problem.

We also discuss how to use the efficient satisfiability test to enumerate solu-
tions. We apply a choice rule exhaustively while checking for satisfiability after
each step. Both procedures have been implemented in C++ using the LEDA
library [17] and applied to scope ambiguities in natural language semantics in
the CLLS framework [11,18,19].

To complement our results, we finally investigate a close variant of the con-
figuration problem of dominance graphs where closed leaves are permitted in
addition. This variant is more general but also relevant for applications in
computational linguistics [20,21]. We show that configurability is already NP-
complete for the more general dominance graphs. Nevertheless, the presented
algorithms can still help to solve this alternative problem more efficiently.

Plan of the paper. The first part of the paper introduces dominance constraints:
We motivate using them in computational linguistics in Section 2; then we
define them in Section 3, discuss their satisfiability problem, and introduce the
concepts of normal dominance constraints and of solved forms. In the second
part of the paper, we turn to a discussion of dominance graphs. We define
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∀x •

→ •
linguist •

x •

•

∃2y •

∧ •
lang •

y •

•

speak •
x • y •

Fig. 1. A simple dominance constraint.
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∃2y •

∧ •
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y •

∀x •

→ •
linguist •

x •

speak •
x • y •

Fig. 2. Readings represented by the constraint in Fig. 1.

them and relate them to normal dominance constraints in Section 4. Section 5
presents a basic algorithm for enumerating the solved forms of a dominance
graph. Then we derive the abovementioned characterization of configurability
in Section 6, show how to test for this property efficiently in Section 7, and
plug this efficient algorithm into the enumeration algorithm in Section 8. In the
final part of the article, we apply this efficient enumeration algorithm back to
normal dominance constraints and discuss an implementation (Section 9), and
prove that the more general configurability with closed leaves is NP-complete
(Section 10). Section 11 concludes and discusses further work.

2 Motivation

As one application of dominance constraints in computational linguistics, we
will give a brief introduction to scope underspecification [18,22,23,20].

This application is concerned with coping with ambiguous sentences such as
the following:

(1) Every linguist speaks two languages.

Sentence (1) is ambiguous because it has two different possible meanings,
indicated by the continuations

(2) . . . namely, English and Chinese.
(3) . . . but not necessarily the same ones.
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In the first reading, each linguist must speak the same two languages. In
the second, no two linguists necessarily speak a common language, but each
speaks at least two. We can represent the two possible meanings logically
as the following first-order formulas, which can be represented as trees as in
Fig. 2.

(4) ∀x.(linguist(x) → ∃2y.lang(y) ∧ speak(x, y))
(5) ∃2y.lang(y) ∧ ∀x.(linguist(x) → speak(x, y))

Ambiguity is a real problem to language processing because the number of
readings of a sentence grows quickly with the number of “quantifiers” such
as “every linguist” and “two languages”, and interacts with other sources
of ambiguity besides. The sentence (6) has already 56 readings, and larger
examples are easy to construct. 2

(6) John says that some representative of every department in a company
saw a sample of each product.

The key observation to scope underspecification is that the differences between
the readings are very systematic; all contain the same “semantic material”
(e.g. representations of the constituents “every linguist”, “two languages”,
and “speak”), which is only combined in different ways. The constraints on
these combinations can be specified using dominance constraints.

An example is Fig. 1. This constraint graph is a description of the two readings
of (1), shown in Fig. 2; it can be seen as a graphical representation of a
dominance constraint. Similarly, the 56 readings of (6) can be represented by
the graph in Fig. 3. In the paper, we will use constraint graphs to link the
(logic) work on dominance constraints to graph algorithms.

Pictures as in Fig. 3 are being drawn in most modern approaches to scope
underspecification. However, they are not always interpreted as dominance
constraints [23,20]. The subtle difference in meaning has the surprising effect
of making these other approaches NP-complete even when the graphs fall into
the class where dominance constraints have polynomial satisfiability. We will
show this in Section 10.

2 The following sentence from [24], which is interesting both in form and in content,
has around 200 readings: “Many people feel that most sentences exhibit too few
quantifier scope ambiguities for much effort to be devoted to this problem, but a
casual inspection of several sentences from any text should convince almost everyone
otherwise.”
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say •
john • •

∃u •

→ •
cmp •

u •

•

∀w •

→ •
∧ •

• dept •

w •

•

∃x •

∧ •
∧ •

• repr •

x •

•

∃y •

∧ •
• ∧ •

spl •

y •

•

∀z •

→ •
prod •

z •

•

in •
w • u •

of •
x • w •

see •
x • y •

of •
y • z •

Fig. 3. A dominance constraint describing the meaning of (6).

3 Satisfiability of Dominance Constraints

In this section, we define the the language of dominance constraints and recall
known results on satisfiability. The variant of dominance constraints we employ
describes constructor trees – ground terms over a signature of function symbols
– rather than feature trees as considered in [25,5,26,27].

3.1 Trees and Constructor Trees

We assume a finite or infinite signature Σ with function symbols f, g, . . ., each
of which is equipped with an arity ar(f) ≥ 0. Constants are function symbols
of arity 0 denoted by a, b. We assume that Σ contains at least one constant
and one symbol of arity at least 2.

A constructor tree can be defined either as a term or equivalently on the basis
of directed graphs. The ground term f(g(a, a)), for instance, corresponds to
the directed graph in Figure 4. Throughout this article, we will employ the
graph based definition.

f •

g •

a • a •

Fig. 4. f(g(a, a))

An (unlabeled) tree is a forest with exactly one root.
A forest is a finite directed graph (V,E) where V is a
finite set of nodes denoted by u, v, w, and E ⊆ V ×V
a set of edges such that the indegree of each node is
at most 1 and there is no cycle. Each forest has at
least one root, i.e. a node with indegree 0. We call the nodes with outdegree 0
the leaves of the forest.

A (finite) constructor tree τ is a triple (V,E, L) consisting of a tree (V,E)
and a labeling function L : E ∪ V → Σ ∪

�
s.t. L(E) ⊆

�
(edge labels) and

L(V ) ⊆ Σ (node labels). The edge labels in a constructor tree determine the
order of the children of a node: for each node u ∈ V and each natural number
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1 ≤ k ≤ ar(L(u)), there is exactly one edge (u, v) ∈ E with L((u, v)) = k.

We draw constructor trees as in Figure 4, by annotating nodes with their
labels and ordering the edges such that their labels increase from left to right.

3.2 Constraint Language

The language of dominance constraints is a logical language that is interpreted
over the class of tree structures. Tree structures are first-order model structures
which specify certain relations between the nodes of a construtor tree.

Let τ = (V,E, L) be a constructor tree with nodes u, v, v1, . . . vn ∈ V . The
dominance relation u�

∗v holds in τ iff there is a path from u to v; the la-
beling relation u:f(v1, . . . , vn) holds in τ iff u is labeled by the n-ary symbol
f and has the children v1, . . . , vn in this order; that is, L(u) = f , ar(f) = n,
{(u, v1), . . . , (u, vn)} ⊆ E, and L((u, vi)) = i for all 1 ≤ i ≤ n.

Definition 1 (Tree Structure) The tree structure of a constructor tree τ
with node set V is a first-order structure with domain V which provides the
dominance relation �

∗ of τ and the labeling relation of τ for each function
symbol f ∈ Σ.

Let Vars be an infinite set of (node) variables X,Y, Z, . . . A dominance con-
straint ϕ is a conjunction of dominance, inequality, and labeling literals of the
following form where ar(f) = n:

ϕ ::= ϕ ∧ ϕ′ | X�
∗Y | X 6=Y | X:f(X1, . . . , Xn)

We freely identify a constraint with the set of its literals. Let Var(ϕ) be the set
of variables of ϕ. A pair of a tree structure τ with node set V and a variable
assignment α : Var(ϕ) → V satisfies ϕ iff it satisfies all its literal in the
obvious way. We say that (τ, α) is a solution of ϕ in this case; ϕ is satisfiable
if it has a solution.

For instance, the following constraint that happens to be unsatisfiable:

X:f(X1, X2) ∧ X1�
∗Y ∧ X2�

∗Y.

It requires that node values of X1 and X2 are sisters that are both ancestors
of the node value of Y . This is clearly impossible in a tree, since trees cannot
branch upwards.
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3.3 Constraint Graphs

We usually draw a dominance constraint as a constraint graph. For instance,
the unsatisfiable constraint from above is drawn in Figure 5. It illustrates
clearly that the constraint requires upward branching and thus cannot be
satisfied by any tree.

f • X

• X1 • X2

• Y

Fig. 5. The unsatisfiable con-
straint X:f(X1,X2) ∧ X1�

∗Y

∧X2�
∗Y

The nodes of a constraint graph are the vari-
ables of the corresponding constraint. Label-
ing constraints relate to solid edges called
tree edges. Dominance constraints are drawn
as dashed lines called dominance edges. As
for trees, we annotate labels to nodes of the
graph and order tree edges from left to right.
Note that we ignore inequalities in constraint graphs.

We sometimes annotate variable names to the graph nodes. This is not always
necessary since all occurences of the same variable are always represented by a
single node in a constraint graph. We may thus freely omit variable names. In
the motivating example (Figure 3), for instance, we have omitted all variable
names.

Constraint graphs motivate the following notions to talk about constraints.
We call a variable X labeled in a constraint ϕ if there exists a literal X:f(. . .)
in ϕ. A (solid) fragment of constraint ϕ is a maximal set of variables in ϕ that
are pairwise connected by labeling literals. A variable X is called a root of a
fragment in ϕ if it does not occur in child position of a labeling literal in ϕ,
i.e. if there is no Z such that Z:f(. . . X . . .) belongs to ϕ. A hole of a fragment
is a variable in ϕ that is unlabeled in ϕ. A leaf of a fragment is either a hole
or a variable labeled by a constant, i.e. a variable X with X:a in ϕ.

3.4 Satisfiability

We are interested in two natural problems concerning dominance constraints
that are both motivated by our application: first of all we would like to test sat-
isfiablity, and second, we would like to enumerate all solutions of a satisfiable
dominance constraint.

The complexity of the satisfiability problem of dominance constraints was
investigated in [13] and shed doubts on their usefulness.

Theorem 2 Satisfiablitiy of dominance constraints is NP-complete.
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Deciding satisfiability in non-deterministic polynomial time is quite simple:
In a first step one guesses whether X�

∗Y or ¬X�
∗Y for each two variables

X,Y in a given constraint. In a second step, one tests the consistency of these
relationships.

The NP-hardness proof relies on the fact that solid fragments of a constraint
graph may overlap in a solution. This means that distinct labeled variables
may be assigned to the same node of a tree.

2
XX

1

Y f
X

f
Y1 Y2

Fig. 6. Overlap

For illustration, consider the constraint X:f(X1, X2) ∧
Y :f(Y1, Y2) ∧ Y �

∗X ∧ X�
∗Y1 whose graph is shown in

Figure 6. Every solution must map X to the same node
as either Y or Y1. We say that X overlaps with Y or Y1

in a solution of this constraint.

We call an overlap proper if it involves two labeled variables. In the appli-
cations in computational linguistics, we typically do not want proper overlap
(but may accept overlaps of roots with holes). The subclass of dominance con-
straints that excludes proper overlap (and fixes some minor inconveniences)
is the class of normal dominance constraints.

3.5 Normal Dominance Constraints

We next distinguish a fragment of dominance constraints which we will show
to have a polynomial time satisfiability problem.

Definition 3 (Normal dominance constraint) A dominance constraint ϕ
is called normal iff for all variables X,Y ∈ Var(ϕ):

(1) There is no proper overlap in solutions of ϕ: X 6=Y in ϕ if X and Y are
distinct variables that are labeled in ϕ.

(2) Solid fragments are tree shaped or cyclic: every variable in ϕ appears at
most once as a parent and at most once as a child in a labeling literal of
ϕ.

(3) Dominance edges go from holes to roots: if X�
∗Y in ϕ then X is unlabeled

in ϕ whereas Y is labeled but does not occur in child position in ϕ.
(4) There are no empty fragments: every hole of ϕ occurs in some child po-

sition.

Conditions 1 and 4 say that only roots and holes have the permission to overlap
in a solution of a normal constraint. Distinct holes cannot overlap since they
must have distinct parents, which are labeled variables that cannot overlap.
For a similar reason, it is impossible that a hole overlaps with a labeled node
that has a parent.
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Condition 2 requires acyclic fragments to be tree shaped. This excludes many
constraints, as for instance X:f(Y, Y ), X:f(Y1, Y2)∧X:f(Z1, Z2) or Y :f(X)∧
Z:f(X). The last two examples are particularly difficult to treat when sub-
sumed by a larger constraint: they entail equations (Y1=Z1, Y2=Z2, respec-
tively Y =Z ) whose global consequences are difficult to predict. W.l.o.g we can
always restrict ourselves to normal constraint with acyclic fragments. Other
constraints are unsatisfiable anyway.

Condition 3 forbids to express equality through two side dominance: X�
∗Y ∧

Y �
∗X is not normal since a variable cannot be at the same time a root

and a hole. Condition 3 is also violated by the dominance edge X�
∗Y1 in

the constraint from overlap example in Fig. 6. It goes from a root to a hole,
instead vice versa.

In the following theorem we state the main result of this article, which will
follow from the results presented in the succeeding sections.

Theorem 4 Satisfiability of normal dominance constraints can be decided in
deterministic polynomial time.

3.6 Solved Forms

We stated above that we would like to have an algorithm that enumerates all
solutions of a given normal dominance constraint. Interpreting this proposition
literally makes not much sense as the reader already might have noticed. For
instance, we can solve the constraint X:a by all trees that have a node labeled
by a. Indeed, every satisfiable constraint has an infinite number of solutions,
so that we probably do not want to enumerate all of them.

What we want to do is to enumerate all solved forms of a normal dominance
constraint instead of all solutions. The idea behind a solved form is that it
should be similar to a solution but not describe its irrelevant parts. For in-
stance, X:a is a perfect solved form since all its solutions can be easily read
off from this constraint.

We will now define an appropriate notion of solved forms. In particular, it
should hold that a normal dominance constraint has a solution if and only
if it has a solved form. Given a constraint ϕ we define a relation Rϕ on the
variables of ϕ that we call the reachability relation of ϕ. This relation is the
transitive closure of the following relation:

{(X,Y ) | X:f(. . . , Y, . . .) ∈ ϕ or X�
∗Y ∈ ϕ}

We say that Y can be reached from X if (X,Y ) ∈ Rϕ. In this case, it clearly

9



holds that ϕ entails the dominance X�
∗Y .

Definition 5 (Solved Form) A normal dominance constraint ϕ is in solved
form if it satisfies the following two properties for all variables X,Y, Z in
Var(ϕ):

(1) Dominance edges do not branch upwards: if X and Y are distinct then
not both X�

∗Z in ϕ and Y �
∗Z in ϕ.

(2) The graph of ϕ is acyclic: (X,X) 6∈ Rϕ.

In other words, a normal dominance constraint ϕ is in solved form if and only
if its constraint graph is a forest.

A solved form of a normal constraint ϕ is a normal constraint ϕ′ that is
in solved form, contains the same labeling literals as ϕ, and has a stronger
reachability relation, which means Rϕ ⊆ Rϕ′ .

Lemma 6 Every normal dominance constraint in solved form has a solution.

PROOF. We have to construct a tree solution for a solved form ϕ. The idea is
that the constraint graph of a solved form is already a forest. It is sufficient to
transform this forest into a tree without dominance edges. This is quite simple
given the transformation illustrated in Figure 7. (Note that we assumed Σ to
contain a function symbol f of arity at least two and a constant a.)

In the first step, we turn the forest into a tree by adding a top most fragment.
Let Y1, . . . , Ym be the minimal elements in the reachability order Rϕ which
exist since Rϕ is acyclic. We can then define a new solved form ϕ1 with a
top most fragment, by adding a new fragment to ϕ with a single hole with
dominance edges towards all roots Y1, . . . , Ym.

In the second step we repeatedly transform dominance edges into tree edges.
We stop, once no dominance edge is left. The idea is illustrated in Figure 7.
Recall that we assumed that our signature contains a constant a and a function
symbol f of arity n ≥ 2. We will also use a function dist on constraints,
which is defined for all constraints ϕ′ by dist(ϕ′) = ϕ′ ∧

∧

{X 6= Y | X,Y ∈
Var(ϕ′) distinct}. Suppose that there still exists a hole X in ϕ1 from where
dominance edges start. Let Y1, . . . , Ym be all the roots of ϕ1 such that the
dominance literal X�

∗Yi belongs to ϕ1 for i = 1, . . . ,m. We construct ϕ2 by
removing all these literals from ϕ1 and distinguish two cases:

• If m > n, we fix a fresh variable Z and define:

ϕ3 = dist(ϕ2 ∧ X:f(Y1, . . . , Yn−1, Z) ∧
∧m

i=n
Z�

∗Yi)

10
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Fig. 7. Transforming dominance edges into tree edges. Here, 4 dominance edges are
transformed while using a function symbol of arity 3.

ϕ3 is a solved form that entails ϕ, and it contains n − 1 dominance literals
less than ϕ1.

• If m ≤ n, we fix fresh variables Zm+1, . . . , Zn and define:

ϕ3 = dist(ϕ1 ∧ X:f(Y1, . . . , Ym, Zm+1, . . . , Zn) ∧
∧n

j=m+1
Zj:a)

ϕ3 is a solved form that entails ϕ, and it contains m dominance literals less
than ϕ1.

By applying the above transformation repeatedly, we obtain a solved form ϕ∗

which entails ϕ and contains no dominance literals.

In the third step we can easily satisfy ϕ∗ by the constructor tree that corre-
sponds to ϕ∗ itself. 2

In the construction of a solution of ϕ we had to ”invent” variables that are not
present ϕ. Thus the constructor tree in the solution contains nodes that do not
correspond to variables of ϕ. In the following lemma we will show that every
satisfiable normal constraint has a solved form and that it can essentially be
obtained by removing the invented material.

Lemma 7 Every solution of a normal dominance constraint ϕ also satisfies
some solved form of ϕ.

PROOF. Let (α, τ) be a solution of ϕ. In order to construct a solved form,
we define a partial function hole on the root variables of ϕ. Consider a root
Y , the function is defined if there is a hole X with α(X)�∗α(Y ). Since τ is a
tree, there is hole Z such that α(Z)�∗α(Y ) and α(X)�∗α(Z) for all holes X
with α(X)�∗α(Y ) 3 . We set hole(Y ) = Z. Let ϕl denote the conjunction of
the labeling and inequality literals of ϕ, then the following is a solved form of
ϕ:

ϕ′ = ϕl ∧
∧

{hole(Y )�∗Y | Y is a root for which hole is defined}

3 So either α(Z) = α(Y ) (i.e. Y is plugged into Z) or α(Z) is the lowest proper
ancestor of α(Y ) for which α−1 is defined (i.e. which is not ”invented”).

11



Clearly, ϕ′ is a normal constraint in solved form. We have to show Rϕ ⊆ Rϕ′.
Since both constraints have the same labeling literals, it suffices to prove for
every dominance literal X�

∗Y in ϕ that (X,Y ) ∈ Rϕ′. We will show a stronger
statement: if X is a hole and Y is a root with α(X)�∗α(Y ), then (X,Y ) ∈ Rϕ′.

We proceed by induction on the length of the path from α(X) to α(Y ). For
Z = hole(Y ), we have α(X)�∗α(Z). If X = Z, the claim holds. Otherwise,
let R denote the root of the fragment of Z. The hole X can only overlap with
a root, so we get α(X)�∗α(R). As α(R) 6= α(Z), we can apply the induction
hypothesis and obtain (X,R) ∈ Rϕ′ . Since (R,Z) and (Z, Y ) belong to Rϕ′,
the claim follows from the transitivity of the reachability relation. 2

f • X

• X1 X2 •

f • Y

• Y1 Y2 •

a • Z1 a • Z2

The validity of Lemma 7 heavily depends on the ab-
sence of proper overlaps (Condition 1 of Def. 3). This
is illustrated by the following example:

X:f(X1, X2)∧Y :f(Y1, Y2)∧
2

∧

i=1

(Xi�
∗Zi∧Yi�

∗Zi∧Zi:a)

This constraint satisfies all normality conditions except for the overlap restric-
tion. It also has a solution but no solved form. The reason for this problem is
that X and Y overlap properly in all solutions of this constraint.

The combination of Lemmas 6 and 7 yields the following proposition, which
justifies computing with solved forms instead of solutions:

Proposition 8 A normal dominance constraint has a solved form if and only
if it is satisfiable.

4 Configurability of Dominance Graphs

For the satisfiability problem it turns out that we do not have to consider
any labels. If we delete all labels from the constraint graph but keep the
information whether an edge is a tree or a dominance edge, we get a dominance
graph (given two minor assumptions):

Definition 9 (Dominance Graph) A dominance graph is a directed graph
G = (V,E ∪̇ D) satisfying the following two conditions:

(1) The graph G = (V,E) defines a collection T of node disjoint trees of
height at least 1.

(2) Each edge in D goes from a leaf of some tree in the collection to the root
of some tree in the collection.

12



We will use analogous notions for dominance and constraint graphs: The edges
in E are called tree edges, and the edges in D are called dominance edges. A
leaf is a node with no outgoing tree edge and a root is a node with no incoming
tree edge. A dominance edge d = (v, w) is redundant if there is a path from v to
w in G\d. The reachability relation RG of a dominance graph G = (V,E ∪̇D)
is the set of all pairs (u, v) such that there is a (directed) path from u to v in
G, i.e. RG is the transitive closure of the binary relation induced by the edge
set of G.

We need a new notation that replaces the notion of a solution in the logical
sense. Now the idea is that we want to assemble the trees in T by plugging
roots into leaves.

Definition 10 We say that a dominance graph G is a configuration iff it is
a forest and the edges in D form a matching, i.e. every node of G is incident
to at most one edge of D. 4

We call a dominance graph G′ = (V ′, E ′ ∪̇D′) a configuration of G iff V = V ′,
E = E ′, G′ is a configuration, and RG ⊆ RG′, i.e. G′ realizes all dominance
edges in G. A dominance graph is configurable if it has a configuration.

4.1 Solved forms

In the sequel we will prove the equivalence of the configurability problem
for dominance graphs and the satisfiability problem for normal dominance
constraints (Lemma 13). In order to do so, we extend the notion of solved
forms to dominance graphs.

Definition 11 A dominance graph G is in solved form iff it is a forest.

By definition, every configuration is a solved form. Unlike a configuration, a
solved form does not require its dominance edges to form a matching.

We call a dominance graph G′ = (V ′, E ′ ∪̇ D′) a solved form of G iff V = V ′,
E = E ′, G′ is a solved form and RG ⊆ RG′ . A dominance graph is solvable
if it has a solved form. The following lemma shows that configurability and
solvability are equivalent for dominance graphs.

Lemma 12 Every dominance graph in solved form is configurable.

4 And hence D defines a partial function from roots to holes which specifies for
every matched root where to plug it.
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Fig. 8. Application of Rule 1: All dominance edges of l′ except for (l′, r) are shifted
down to the leaf l.

PROOF. For the proof, we define a problem leaf to be a leaf with more than
one outgoing dominance edge; our aim will be to eliminate problem leaves
from solved forms.

The proof is by induction on weights (d, a) of graphs G, where d is the negative
minimum depth of a problem leaf of G (or −∞ if there is none), and a is the
total number of dominance edges emanating from problem leaves of minimum
depth (potentially 0). We consider the lexicographic order on these weights.

Solved forms without problem leaves (i.e. with weight (−∞, 0)) are configu-
rations, so the lemma is trivially true in this case. So let G be a solved form
that does have problem leaves. Let G have weight (d, a), and assume that we
know that all solved forms of lower weight do have configurations. Then we
can apply the following rule to a problem leaf l′ of minimum depth:

Simplification Rule 1 Let e = (l′, r) be a dominance edge from the leaf l′

of a tree t′ to the root r of a tree t. Let l be an arbitrary leaf of t. Change any
dominance edge (l′, z) with z 6= r into (l, z), see Figure 8.

The result G′ is still in solved form, and its weight is strictly lower than
that of G; so by the induction hypothesis, G′ has a configuration Gc. But Gc

also realizes all dominance edges of G. This is obvious for (l′, r) and for all
dominance edges which do not start in l′. For an edge (l′, z) with z 6= r we
note that this edge is realized because there is a path from l′ to l in G′ and
Gc realizes the edge (l, z). So G has a configuration as well. 2

4.2 Dominance Graphs of Normal Constraints

We now map normal dominance constraints to dominance graphs while ignor-
ing labelings.

14



Let ϕ be a normal dominance constraint. We define a graph G(ϕ) = (Var(ϕ), E∪̇
D), where the set of tree edges E and dominance edges D are defined as fol-
lows:

E = {(X,Xi) | X:f(X1, . . . , Xn) in ϕ, 1 ≤ i ≤ n}

D = {(X,Y ) | X�
∗Y in ϕ}

Lemma 13 For a normal dominance constraint ϕ the following holds if none
of its roots is labeled by a constant and if all its fragments are acyclic.

(1) The graph G(ϕ) is a dominance graph.
(2) The relations Rϕ and RG(ϕ) are equal.
(3) ϕ is in solved form iff G(ϕ) is.
(4) If ϕ′ is a solved form of ϕ then G(ϕ′) is a solved form of G(ϕ) and vice

versa.

PROOF. We will proof the statements one by one:

(1) Conditions 1 and 2 of Definition 3 ensure that all acyclic fragments of ϕ
are trees. Since we assumed all fragments to be acyclic, it follows that
(Var(ϕ), E) is a collection of node-disjoint trees. The roots of these trees
must also be roots of fragments in ϕ since there are no empty fragments
by Condition 4. This shows that the height of all trees in G(ϕ) is at least
one. And finally, from Condition 3 we can conclude that dominance edges
can only go from leaves to roots.

(2) We have equality since both relations are defined as the transitive closure
of the same set.

(3) Only the roots of the normal constraint ϕ may have more than one in-
coming edge in G(ϕ) all of which are dominance edges. But every root
in a solved form has by definition at most one incoming dominance edge.
Since solved forms are acyclic by definition, it follows that their graphs
are always forests and thus in solved form. The converse implication is
obvious.

(4) This an immediate consequence of the previous statements and the defi-
nitions of solved form for normal dominance constraints and dominance
graphs.

2

We call a dominance graph G arity consistent if for all nodes v of G there
exists a function symbol f ∈ Σ such that the number of tree edges emanating
from v is equal to the arity of f .
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Lemma 14 For every arity consistent dominance graph G there exists a nor-
mal dominance constraint ϕ such that G(ϕ) = G.

This lemma is obvious. The following theorem summarizes our results of the
previous two lemmas:

Theorem 15 The following four problems are linear time equivalent:

(1) Satisfiability of normal dominance constraints.
(2) Existence of solved forms for normal dominance constraints.
(3) Existence of solved forms for dominance graphs.
(4) Configurability of dominance graphs.

PROOF. We verify that we can apply Lemmas 13 and 14, i.e. we check that
their conditions can be fulfilled.

(1) We can always assume fragments to be acyclic. The existence of cycles
can be checked easily in linear time, and normal constraints with cycles
are unsatisfiable anyway.

(2) We can assume that normal dominance constraints do not contain roots
that are labeled by constants. Otherwise, we can replace the fragment X:a
by X:f(X1, . . . , Xn) ∧

∧n
i=1 Xi:a for some fresh variables X1, . . . , Xn and

sufficiently many inequalities. This operation requires constant time and
clearly preserves normality,but also satisfiability as the inner structure of
fragments is anyway irrelevant for the satisfiability of normal constraints.

(3) We can make all dominance graphs arity consistent with a similar trans-
formation as in the proof of Lemma 6 (see also Figure 7). We use the
fact that we have a function symbol of arity n ≥ 2 and a constant sym-
bol (which has arity 0). Let u denote a node in a dominance graph G
with children v1, . . . , vm. If m 6= n and m 6= 0, we can apply one of the
following transformations:
• Case 0 < m < n:

Add new nodes vm+1, . . . , vn and the edges (u, vm+1), . . . , (u, vn) to G.
Then u and the newly added nodes are arity consistent.

• Case m > n:
Add a new node u′ and make u′ a child of u by adding the edge (u, u′).
Then shift the children vn, . . . , vm of u down to u′ by replacing the
edges (u, vn), . . . , (u, vm) with the edges (u′, vn), . . . (u′, vm). After that
u is arity consistent, and the out-degree of u′ is less than that of u. If u′

is not arity-consistent, we apply the appropriate transformation to u′.
We see that the transformations preserve satisfiability because only the
inner structure of the fragments changes, but the reachability relation
(restricted to the original nodes) remains the same. Since n is a con-
stant, the time required to make u arity consistent (including recursive

16
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transformations) is O(m).

2

5 Enumeration of Minimal Solved Forms

Now that we have reduced the problem of solving normal dominance con-
straints to the problem of finding solved forms of dominance graphs, we show
in this section how to enumerate solved forms of a dominance graph G. We
are interested in solved forms that contain no unnecessary dominance edges.
Let G′ be a solved form of G that is transitively reduced. We call G′ a minimal
solved form of G if there is no solved form of G whose reachability relation is
strictly contained in RG′. Our algorithm below enumerates exactly the min-
imal solved forms of G. However, the algorithm may take exponential time
to produce even a single solved form because it blindly enumerates all cases.
Using the efficient configurability test we derive in Sections 6 and 7, we will
optimize this algorithm to enumerate solved forms in polynomial time per
solved form (Section 8).

The enumeration algorithm applies the following simplification rules:

Simplification Rule 2 (Redundancy Elimination) All redundant domi-
nance edges, i.e. edges that are implied by transitivity, can be removed. In
particular, parallel edges can be combined into one.

Simplification Rule 3 (Choice) Let v be a root with at least two incoming
dominance edges (l, v) and (l′, v) and let r and r′ be the roots of the trees
containing leaves l and l′, respectively. Generate two new graphs H and H ′ by
adding either (l′, r) or (l, r′) to D, see Figure 9.

The enumeration of the solved forms can be carried out by a recursive algo-
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rithm:

(1) Make the graph reduced, i.e. apply Rule 2.
(2) If the graph contains a (directed) cycle, terminate this recursion since the

graph has no configuration.
(3) If the graph is in solved form, report it and terminate this recursion.
(4) Otherwise, apply the choice rule and apply the algorithm to the two newly

generated graphs.

We will now prove that the algorithm is correct. First we observe that if the
algorithm does not report a solved form in the third step, then the graph is
acyclic, but not a forest. And hence, there must be node v with two incoming
edges. It is easy to see that this can only be root, which implies that the choice
rule can be applied to v.

Now we analyze the effect of the simplification rules on the set of solved forms.
The removal of redundant edges (Rule 2) does not change the reachability rela-
tion, which implies that the solved forms remain the same, too. An application
of the choice rule (Rule 3) increases the reachability relation and partitions
the set of solved forms in two disjoint sets: In a solved form S of G the nodes l
and l′ are both ancestors of v and therefore either l′ is ancestor of l and hence
of r or vice versa. This implies that S is either a solved form of H or of H ′.

From this we conclude that every enumerated solved form is indeed a solved
form of the original graph. On the other hand, we see that for every solved
form S there exists exactly one solved form S ′ such that S ′ is enumerated by
the algorithm and its reachability relation has the property RS′ ⊆ RS. If S is
minimal, we get RS′ = RS, and since both graphs are transitively reduced and
acyclic, we obtain S ′ = S. Thus the algorithm enumerates at least all minimal
solved forms.

What remains to show is that all enumerated solved forms are minimal. So
let S be solved form that is reported by the algorithm. Assume that S is not
minimal, i.e. there exists a solved form S ′ with RS′ ⊂ RS. Since both S and S ′

are enumerated there must be a step in the computation which ”separated”
the two graphs. This means there is an application of the choice rule which
generated two graphs H and H ′ such that RH ⊆ RS and RH′ ⊆ RS′ . From
RS′ ⊂ RS we infer RH′ ⊆ RS. Since RS cannot contain both RH′ and RH , we
have a contradiction.

To prove termination, we derive an upper bound for the maximum recursion
depth. We reconsider the reachability relation RG of a graph G. If G is acyclic,
the cardinality of RG is at most

(

n

2

)

≤ n2, where n is the number of nodes

in G. Thus, whenever the size of the relation becomes greater than
(

n

2

)

, the
recursion terminates immediately. But if we apply the choice rule to a reduced,

18



acyclic dominance graph, the size of the relation increases strictly, i.e. |RG| <
min(|RH |, |RH′ |). This is because RH ⊇ RG, and (l′, r) ∈ RH but (l′, r) cannot
be in RG, otherwise (l′, v) would have been redundant. A similar argument
holds for H ′.

6 Characterization of the Existence of Solved Forms

We give a graph theoretic characterization of solvability; as this is equivalent
to configurability by Lemma 12, the result carries over to configurability.

The undirected dominance graph Gu = (V,Eu ∪̇Du) corresponding to the dom-
inance graph G = (V,E ∪̇ D) is the undirected graph obtained by making all
edges of G undirected. More precisely, we set Eu = {({u, v}, tree) ; (u, v) ∈ E}
and define Du = {({u, v}, dom) ; (u, v) ∈ D}. This explicit distinction is im-
portant. Consider the dominance graph consisting of the two nodes r and l,
the tree edge (r, l) and the dominance edge (l, r). If there were no explicit
distinction, then both edges would correspond to the same undirected edge.
However, when we talk about undirected edges in the sequel, we will only state
the first component because it will be clear whether we refer to a tree or a
dominance edge.

Now, we want to define the notion of a cycle in an undirected graph, which
may differ from the reader’s usual notion. A cycle C in an undirected graph is
a sequence [v0, e0, v1, e1, . . . , en−1, vn] of nodes v0, . . . , vn and edges e0, . . . , en−1

with n ≥ 2 such that v0 = vn and for i = 0, . . . , n − 1 the edge ei is incident
to vi and vi+1, and ei 6= e(i+1)mod n. This means we require a cycle to consist
of at least 2 edges, we do not exclude that a cycle uses a node or an edge
more than once, however any two consecutive edges must be distinct. We call
C edge-simple if the edges in the sequence are pairwise different. C is said to
be simple if all the visited nodes v0, . . . , vn−1 (and hence also the edges) are
pairwise different. Usually, we are not interested in the sequence of nodes and
we identify C with the sequence e0 ◦ e1 ◦ . . . ◦ en−1 of its edges.

6.1 Hypernormal Dominance Graphs

Let us first investigate a simpler subproblem of the solvability problem. A
dominance graph G = (V,E ∪̇ D) is hypernormal if for every leaf l in (V,E)
there is at most one dominance edge (l, .) in D.

Proposition 16 Let G = (V,E ∪̇ D) be a hypernormal dominance graph. If
Gu contains a cycle then G is unsolvable.
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Fig. 10. A solvable dominance graph and one of its solved forms. The graph contains
an undirected cycle, but no hypernormal cycle.

PROOF. The proof is by induction on the minimal number k of dominance
edges in a simple cycle C of Gu. Clearly, the case k = 0 cannot occur. If
k = 1 then there exists a dominance edge from a leaf l to the root of the
fragment of l, and hence G is not solvable. For k > 1, assume that we know
the result to be true for k − 1. C either does not contain any nodes at which
its edges change directions; then it is also a cycle in G and hence, G is clearly
unsolvable. Or C does change directions, then it must contain two dominance
edges (l, r) and (l′, r) into the same root. Both results of applying the choice
rule produce graphs with a simple cycle containing k− 1 dominance edges, so
both are unsolvable. But then, G must be unsolvable as well. 2

The converse of the above proposition is also true. If G is not solvable, then
Gu contains a cycle. This statement will be a corollary of Theorem 17, which
we will prove below.

6.2 Dominance Graphs

The Proposition 16 does not carry over literally to the general case: Figure 10
is a counterexample. In order to state our theorem for the general case, we call
a subgraph Hu of Gu hypernormal if the corresponding directed subgraph H
of G is hypernormal. In particular, a hypernormal cycle in Gu is a cycle that
contains for every leaf l at most one incident dominance edge.

Theorem 17 Let G = (V,E ∪̇ D) be a dominance graph.
(a) G is solvable iff Gu does not contain a hypernormal cycle.
(b) G is solvable iff every hypernormal subgraph of G is.

Note that this implies that a graph G is configurable iff Gu has no hypernormal
cycle, by Lemma 12.
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PROOF. Part (b) follows immediately from part (a). If some hypernormal
subgraph of G is unsolvable, G is unsolvable. If every hypernormal subgraph
of G is solvable, Gu contains no hypernormal cycle, and hence G is solvable
by part (a). We turn to part (a).

Assume first that Gu contains a hypernormal cycle C. Let D′ be the dominance
edges of G corresponding to edges in C. Then G′ = (V,E∪̇D′) is a hypernormal
dominance graph such that G′

u contains C. By Proposition 16, G′ is unsolvable
and hence G is unsolvable.

It remains to prove the converse: If G is unsolvable, Gu contains a simple
hypernormal cycle. Suppose we run the algorithm of Section 5 on G. The
computation of this algorithm can be modeled as a binary tree. We label every
node x with a dominance graph D(x). The root of the computation tree is
labelled with G. Whenever the algorithm applies the choice rule and generates
two new dominance graphs, we grow the tree by attaching two new nodes at
the current node and label each node with one of the two new dominance
graphs. Since G is unsolvable, the leaves of the tree are labelled with graphs
that contain directed cycles.

For every node x in the tree we will show that D(x)u contains a simple hyper-
normal cycle. We prove this by induction on the height of x in the computation
tree. If the height is 0, then x is a leaf and the claim clearly holds, for any
simple directed cycle translates to an (undirected) simple hypernormal cycle.
Assume now, that the height is greater than 0. So x has two children labelled
with the graphs H and H ′. The two graphs have been generated by an appli-
cation of the choice rule to D(x). And by the induction hypothesis we may
assume that both Hu and H ′

u contain a simple hypernormal cycle. Suppose
that v is the root and that (l, v) and (l′, v) are the edges considered in the
above application of the choice rule. Let r be the root of the tree with the leaf
l and r′ be the root of the tree with the leaf l′. We have a simple hypernormal
cycle C1 in Hu which uses the dominance edge {r, l′}. So the tree edge {l′, r′}
must also belong to C1, and hence we may assume C1 = {r, l′} ◦ {l′, r′} ◦ P1.
Similarly, H ′

u contains a simple hypernormal cycle C2 = {r′, l} ◦ {l, r} ◦ P2.

If P1 or P2 visits v, we can construct a hypernormal cycle in Gu. Suppose
P1 = P ′ ◦ P ′′ such that P ′ ends in v. Then P ′ ◦ {v, l′} ◦ {l′, r′} is a simple
hypernormal cycle because P ′ avoids l′. (If P2 visits v, we can apply a similar
argument.)

So we may assume that both C1 and C2 avoid v. Let w denote the first node
on P1 different from r′ that also lies on P2. (The node w may be equal to r.)
We decompose P1 and P2 such that Pi = Qi ◦ Ri, Qi ends at w and Ri starts
at w. Q1 is a path from r′ to w, and R2 is a path from w to r′. By the choice
of w, we have that Q1 ◦ R2 is a simple cycle.
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If it is not hypernormal, then we are in the situation of Figure 11: w is a leaf,
Q1 ends with a dominance edge and R2 starts with a dominance edge. Since
P2 is hypernormal, Q2 ends with the tree edge incident to w. Now we consider
the cycle C = Q2 ◦ Qrev

1 ◦ {r′, l′} ◦ {l′, v} ◦ {v, l} ◦ {l, r}. Obviously, any two
consecutive edges on C are hypernormal. So it remains to prove that C is
simple, i.e. we have to show that Q1 and Q2 avoid l′ and l. Since P1 avoids l′

and P2 avoids l, we have l′ 6= w 6= l, Q1 avoids l′ and Q2 avoids l. We show
now that Q1 also avoids l. Assume the hypernormal cycle C1 visits l, then it
must use the tree edge e = {l, r}. As C1 is simple, P1 ends with e. Recall that
Q1 ends with w. Since w 6= l and w 6= r (w is a leaf), the prefix Q1 of P1 ends
before l is visited by P1. A similar argument proves that Q2 avoids l′. Thus C
is a simple hypernormal cycle in D(x)u. 2

l’

w r

l

r’

v root

root

root

Q2

Q1

R2

Fig. 11. Construction of a simple hypernormal cycle in the proof of Theorem 17.

7 Testing for Hypernormal Cycles

Now we show how to test for the presence of hypernormal cycles in a domi-
nance graph in polynomial time. This immediately gives us a polynomial algo-
rithm for testing solvability (and hence, configurability) of dominance graphs.

We reduce the problem to a matching problem in an auxiliary graph. First,
we want to recall some basic definitions from matching theory. A matching
M in a graph H is a set of edges of H such that every node of H is incident
to at most one edge in M . We call the edges in M matching edges and the
other edges non-matching edges. An alternating path with respect to M is
a (simple) path which alternately uses a matching edge and a non-matching
edge. An alternating cycle is a cycle (of even length) which is an alternating
path.

For the test we construct the following auxiliary graph A. For every edge
e = {v, w} ∈ Gu we have two nodes ev = ({v, w}, v) and ew = ({v, w}, w) in
A. Before we define the edges of A, we want to introduce some more definitions.
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Let v denote a node of Gu, we call a pair of distinct edges e = {u, v} and
f = {v, w} incident to v a bend at v and denote it by 〈e, v, f〉. The bend is
called a hypernormal bend if either v is not a leaf or v is a leaf and either e or
f is the tree edge incident to v. Now we are ready to define the edge set of A.
We have two types of edges:

(a) For every edge e = {v, w} we have the edge a(e) = {ev, ew}.
(b) For every hypernormal bend 〈e, v, f〉 we have the edge b(〈e, v, f〉) =
{ev, fv}.

Clearly, the edges of type (a) form a perfect matching M in A. The following
lemma shows how hypernormal cycles in Gu are related to the auxiliary graph
A:

Lemma 18 The graph Gu contains a hypernormal cycle iff the graph A con-
tains an alternating cycle with respect to M .

PROOF. Suppose first that Gu contains a hypernormal cycle C. We may
assume that C is simple. Every pair of consecutive edges on C is a hypernormal
bend. Suppose C = e0 ◦ e1 ◦ . . . ◦ en−1, where ei = {vi, v(i+1)mod n} for i =
0, . . . , n−1. Then C ′ = a(e0)◦b(〈e0, v1, e1〉)◦a(e1)◦. . .◦a(en−1)◦b(〈en1

, v0, e0〉)
is an alternating cycle in A.
Suppose next that A contains an alternating cycle C ′. Look at an edge of type
(b) and its neighboring edges of type (a): a(e) ◦ b(〈f, v, g〉) ◦ a(h). From the
construction of A we can conclude that either e = f and h = g, or e = g
and h = f . Hence 〈e, v, h〉 is a hypernormal bend at node v. So if we delete
all the edges of type (b) from C ′ we get a sequence a(e0) ◦ . . . ◦ a(en−1) of
type (a) edges. Then C = e0 ◦ . . . ◦ en−1 is an edge-simple cycle and any pair
of consecutive edges is a hypernormal bend. Now fix any leaf l visited by C.
Every hypernormal bend at l contains the tree edge incident to l, and since C
is edge-simple, we can conclude that C visits l only once and hence contains
only one dominance edge incident to l. This proves that C is a hypernormal
cycle in Gu. 2

Gabow et al. [28] gave an algorithm which can decide whether A contains an
alternating cycle with respect to M in time O(m′), where m′ is the number
of edges in A. Now, we want to bound the size of the auxiliary graph A. We
assume that all non-leaves in the dominance graph G have outdegree at most
two 5 . Observe that we have one edge of type (a) for every edge of G. For the
edges of type (b) we count the number of hypernormal bends at a node v. For

5 We can replace each non-leaf with outdegree more than two and its children by a
small binary tree. This construction increases the number of nodes and the number
of edges only by a constant factor.
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a leaf we get outdegv, and for a non-leaf we have
(

degv

2

)

. Thus the auxiliary

graph A has n′ = 2m nodes and m′ = O(m +
∑

v∈V (indegv + 2)2) edges. Let
us assume that G is transitively reduced. Then we have no parallel edges, and
hence a root r with indegree greater than n must have two dominance edges
from different leaves of the same tree to r, which is trivial to recognize in time
O(m). So we can assume that the indegree of any root is at most n. Let us say
that we have r ≤ n roots and let di be the indegree of the i-th root. We have
∑r

i=1 di ≤ m and di ≤ n. What is the maximum value of S =
∑

i(2 + di)
2? We

have S = O(n+m)+
∑

i d
2
i . The sum

∑

i d
2
i is maximized if we make the dis as

unequal as possible. So we attain the maximum if we set m/n of the dis equal
to n and all others equal to zero. Thus

∑

v∈V (2+indegv)
2 = O(n+m)+O(m/n·

n2) = O(nm). The dominance graphs that arise in our linguistic applications
have the following properties: m = O(n) and the indegrees are bounded (the
outdegrees are not), and hence the auxiliary graph has n′ = O(n) nodes and
m′ = O(n) edges.

We summarize the results of this chapter in the following theorem.

Theorem 19 The existence of a hypernormal cycle in a dominance graph can
be decided in time O(m′), where m′ = O(m) +

∑

v∈V (2 + indegv)
2 = O(nm).

8 Efficient Enumeration

A first application of the solvability test from the previous section is to make
the enumeration of solved forms more efficient. We modify the enumeration
algorithm from Section 5 by testing for (undirected) hypernormal cycles in step
2 instead of directed arbitrary cycles. The recursion will terminate immediately
once the graph becomes unconfigurable, and we know that the recursion depth
is bounded by n2. Thus:

Corollary 20 A solved form of a solvable dominance graph can be constructed
in time O(n3m). If a dominance graph has N minimal solved forms, they can
be enumerated in time O(Nn3m).

Note that N can still be exponential in n. Also note that we can get con-
figurations instead of solved forms in the same asymptotic time, by applying
Lemma 12: Simplification Rule 1 can only be applied at most n2 times either,
by a similar argument about the reachability relation.
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Fig. 12. Embedded chain of length k.

8.1 Incremental Redundancy Elimination

The enumeration algorithm in Section 5 has to maintain the transitive reduc-
tion of the dominance graph G. This can be done in time O(nm) (see [29,30]).
But for all recursive calls of the algorithm the reduction can be computed
much faster, only the top-level needs to do the full-fledged reduction. This is
because the instances on which recursive calls work are just reduced graphs
where one irredundant edge has been added.

So we are faced with the following problem: We are given a reduced dominance
graph G and an irredundant dominance edge d = (s, t) which is not contained
in G, and we are to compute all edges of G which become redundant by the
insertion of d into G. An edge e = (v, w) of G becomes redundant iff there is
a path P from v to w in the graph G∪ d. Since G is reduced, P must use the
edge d. And hence e is redundant iff in G there is a path from v to s and a
path from t to w. Further, we observe that if G ∪ d is cyclic then any cycle
must use the edge d. And hence G ∪ d is cyclic iff there is a node v such that
in G there is a path from v to s and a path from t to v. Thus we can make
G ∪ d reduced and test its acyclicity with the following algorithm:

• Start a depth first search in G at the node t and color all reachable nodes
red.

• Start a depth first search in Grev at the node s and color all reachable nodes
green. (Grev is obtained from G by reversing all the edges.)

• If there is a two-colored node v, report that G ∪ d is cyclic and stop.
• Delete all edges with red target node and green source node, and insert the

edge d.

It is easy to see that the running time of the algorithm is O(n+m). Note that
this improvement does not lead to a better asymptotic running time of the
enumeration algorithm, but it has shown considerable impact in practice.
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k N Time (new) Time (old)

3 5 20 180

4 14 190 670

5 42 1210 5900

6 132 4130 12740

7 429 16630 46340

8 1430 255000 n/a

Fig. 13. Runtimes on embedded chains of length k. N is the respective number of
configurations. Times are in milliseconds CPU time.

9 Implementation and Evaluation

Going back to the application in computational linguistics described in the
introduction, the algorithm for enumerating solved forms that we have just
sketched gives us a straightforward algorithm for enumerating the minimal
solved forms 6 of a normal dominance constraint ϕ: We only need to run it on
G(ϕ) and translate the solved forms back to solved forms of the constraint. We
have implemented this algorithm, and this gives us a significant improvement
in runtimes over earlier solvers for dominance constraints. By way of example,
consider the dominance graph in Figure 12. This graph is an embedded chain
of length k. Such graphs appear in the application; for instance, the graph for
“John says that every linguist speaks two languages” is an embedded chain
of length 2. Runtimes for enumerating all configurations of embedded chains
of various lengths (on a 550 MHz Pentium III) are displayed in Figure 13. In
the table, “new” refers to the algorithm sketched above; “old” refers to the
dominance constraint solver described in [31].

10 Dominance Graphs with Closed Leaves

A slight extension of the configuration problem by closed leaves becomes NP-
complete again. This is interesting in its own right because it shows where
the frontier between polynomial and NP-complete is. It is also interesting in
the application to computational linguistics because some approaches inter-
pret graphs as in Fig. 3 as dominance graphs with closed leaves instead of
dominance constraints.

6 A solved form ϕ′ of ϕ is called minimal iff G(ϕ′) is a minimal solved form of
G(ϕ).
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Fig. 14. The dominance graph constructed in the reduction of 3-partition.

A dominance graph with closed leaves is given by a dominance graph G =
(V,E ∪̇D) and a set L of leaves. The members of L are called closed, all other
leaves are called open. Closed leaves cannot be the source of dominance edges.
A solved form of (G,L) with closed leaves L is a solved form G′ = (V,E ∪D′)
of G which has the additional property that there is no edge (l, v) ∈ E ′ with
l ∈ L, but there is an edge (l, v) ∈ D′ for every l /∈ L. In other words, it is not
allowed to attach a tree to a closed leaf, and every open leaf must be “plugged”
with some other tree. We show that the configuration problem of dominance
graphs with closed leaves is NP-complete by reducing the 3-partition problem
to it. 7

Fact 21 (3-partition) Let A denote a multiset {a1, . . . , a3m} of integers and
B ∈

�
such that B/4 < ai < B/2 for all i; and

∑3m
i=1 ai = mB. The question is

whether there is a partition A1 ] . . .]Am of A such that for all i,
∑

a∈Ai
a = B.

The problem is NP-complete in the strong sense [32, problem SP15, page 224].

We describe the reduction now, which is shown in Figure 14. The tree T has
m leaves. Each leaf wants to dominate B + 1 closed subtrees (i.e., subtrees
which have only closed leaves). T is required to be the child of some node l.
This node l also wants to dominate the trees t1, . . . , t3m. For all i, the tree ti
has ai + 1 open leaves.

Theorem 22 The configurability problem for dominance graphs with closed
leaves is NP-complete.

PROOF. Consider an instance (A,B) of the 3-partition problem and the
dominance graph G constructed in the reduction. We show that the instance
(A,B) has a solution iff G is configurable.

Assume first that the 3-partition problem has a solution. Observe that each of

7 Exactly the same reduction works if we do not require open leaves to have outgoing
dominance edges in solved forms; so this modified problem is NP-complete as well.
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the sets Ai must have cardinality three. Let Ai = {axi
, ayi

, azi
} be one of the

sets in the partition. Then axi
+ ayi

+ azi
= B. We plug txi

as child into the
i-th leaf of T , tyi

into some leaf of txi
and tzi

into some leaf of tyi
. Then the

tree T has axi
+1+ayi

+1+azi
+1−2 = B +1 open leaves below its i-th leaf.

These leaves are plugged with the B + 1 closed subtrees which the i-th leaf of
T wants to dominate. Finally, we plug l with T and obtain a configuration of
G.

Assume next that the dominance graph G has a configuration. Consider the
subtree plugged to the i-th leaf of T . It contains a subset Ai of the trees
{t1, . . . , t3m}. We must have

∑

tj∈Ai
(aj + 1) ≥ B + 1 + |Ai| − 1, which can be

seen as follows. B + 1 closed subtrees must be plugged into some open leaf.
Every subtree in Ai also requires an open leaf where its root can be plugged.
And one of these leaves is the i-th leaf of T .
We next show that |Ai| ≥ 3 for all i. It is clear that Ai cannot be empty (since
B > 0). If Ai is a singleton, i.e. Ai = {tx}, we have a contradiction since tx

has ax +1 < B/2+1 ≤ B +1 leaves. Now consider the case, where Ai consists
of two elements tx and ty. By attaching tx and ty below the i-th leaf of T , we
obtain ax +1+ ay +1− 1 < B/2+1+B/2 = B +1 open leaves, which is also
a contradiction.
Since each set Ai has cardinality at least three, since we have m sets, and
since there are 3m elements to distribute, we conclude that |Ai| = 3 for all
i. Thus

∑

tj∈Ai
aj ≥ B for every i. Finally, we observe that we have equality

since
∑

a∈A a = mB. And hence, we also have a solution for the 3-partition
problem. 2

Note that for solvability of dominance graphs with closed leaves, Theorem 17
still holds. That is, solvability is still a polynomial problem. The difference
with the unrestricted problem is that Lemma 12 breaks down: All the graphs
we construct in the encoding of 3-partition are in solved form, but they may
well be unconfigurable.

The relevance of this result is again in its relation to computational linguistics.
There are alternative approaches to scope [20] which require that the holes
and roots of the trees must be paired uniquely: The roots must be “plugged”
into the holes, and every hole must be plugged. This corresponds to making
the holes open leaves, and all others closed leaves. Hence, we can show that the
satisfiability problems of these alternative approaches must be NP-complete
as well.
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11 Conclusion

We have have distinguished the large and natural fragment of normal domi-
nance constraints and shown that it has a polynomial time satisfiability prob-
lem. We have shown that this satisfiability problem is equivalent to the config-
uration problem of dominance graphs, we introduced. Configurability was then
reduced to the existence of particular cycles, which could finally be checked
by solving a weighted matching problem.

The efficient graph algorithm we presented eliminates any doubts about the
computational practicability of dominance constraints which were raised by
the NP-completeness result for the general language [13] and expressed e.g.
in [33]. First experiments confirm the efficiency of the new algorithm – it is
superior to the NP algorithms especially on larger constraints.

Two main directions are to be pursued in the future. On the one hand side,
one might want to extend the presented graph algorithm to more expressive
languages than normal dominance constraints. In particular, one might try to
find a polynomial time fragment of parallelism constraints [19] that are also
useful for computational linguistics [18]. On the other hand side, it might be
worthwhile in general to investigate graph algorithms for other problems in
the areas constraint programming or computational linguistics.
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