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Abstract

Some results in the monotone comparative statics literature tell us that if a
parameter increases, some old equilibria are smaller than some new equilibria. We
give a sufficient condition such that at a new parameter value every old equilibrium
is smaller than every new equilibrium. We also adapt a standard algorithm to
compute a minimal such newer parameter value and apply this algorithm to a game
of network externalities. Our results are independent of a theory of equilibrium
selection and are valid for games of strategic complementarities.
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1 Introduction

In a parameterized model we often want to know how an equilibrium changes if we
change the parameter. If the parameter space is a partially ordered set and the state
space or the decision space is also a partially ordered set, we often want to know when
raising the parameter increases the equilibrium. In economics, some models in this
framework arise as games of strategic complementarities (as defined in Milgrom and
Shannon (1994)). These games include supermodular games (as defined in Topkis (1979),
in Milgrom and Roberts (1990) and in Vives (1990)). Classes of such games are games
of coordination (for example, games of macroeconomic coordination failure and games of
network externalities) and games of industry behavior (for example, games of Bertrand
Oligopoly when the products of the firms are substitutes). For other examples, see
Milgrom and Roberts (1990), Topkis (1998), and Vives (1999).

For these types of models, some of the results in the recent literature on monotone
comparative statics give us conditions from which we can conclude that if a parameter
increases, some old equilibria are smaller than some new equilibria. For example, Lipp-
man, Mamer, and McCardle (1987) show that there is an old equilibrium that is smaller
than some new equilibrium. In a more general framework, Milgrom and Roberts (1990)
and Sobel (1988) show that the smallest old equilibrium is smaller than the smallest new
equilibrium and the largest old equilibrium is smaller than the largest new equilibrium.
Milgrom and Shannon (1994) prove the same result in an even more general framework.
But we may not be able to say that a given equilibrium at a lower parameter value is
smaller than another given equilibrium at a higher parameter value. In the absence of
a widely accepted theory of equilibrium selection, one way to unambiguously determine
that an old equilibrium is smaller than a new equilibrium is if every old equilibrium is
smaller than every new equilibrium. In this paper, we give a sufficient condition which,
when satisfied at a higher parameter value, allows us to conclude that every old equi-

librium is smaller than every new equilibrium. We also give an algorithm to compute



a minimal such higher parameter value and as an example, apply this algorithm to a
game of network externalities. Our results are independent of any theory of equilibrium
selection and apply to games of strategic complementarities.

In the next section, we formalize the concepts and prove the results mentioned above.
In the last section, we give an application of the algorithm for a game of network exter-

nalities.

2 Model and Results

In this section, we first formalize a notion of a parameterized model and an equilibrium
in it. Then we provide a sufficient condition to conclude that at a higher parameter
value, every old equilibrium is smaller than every new equilibrium. Finally, we provide
an algorithm to compute an approximation to a minimal such higher parameter value.

The notion of a parameterized model that we use is formalized in the definition of
an increasing family of correspondences given below. For a given parameter value, an
equilibrium in this model is a fixed point of the section of the correspondence determined
by the given parameter value.

Let X be a partially ordered set and A, B be two subsets of X. We shall say that A is
weakly smaller than B if for every a € A there is b € B with a < b and for every b € B
there is a € A with a < b. A correspondence ¢ : X — X is weakly increasing if for
every z,z' € X, z < 2’ implies that ¢(z) is weakly smaller than ¢(z'). We shall say that
A is strongly smaller than B if for every a € A and every b € B, a < b. Notice that
if A has a largest element @ and B has a smallest element b then A is strongly smaller
than B if and only if a < b.

For the sake of completeness, let us also define some preliminary concepts. A detailed
discussion of these concepts can be found in Topkis (1998). A partially ordered set X
is a lattice if whenever z,y € X, both x Ay = inf {z,y} and x V y = sup {z,y} exist

in X. It is complete if for every nonempty subset A of X, inf A,sup A exist in X. A



nonempty subset A of X is a sublattice if for all z,y € A, x Ax y,x Vx y € A, where
x Ax y and z Vy y are obtained taking the infimum and supremum as elements of X (as
opposed to using the relative order on A). A nonempty subset A C X is subcomplete
if BC A, B # () implies infy B,supy B € A, again taking inf and sup of B as a subset
of X.

Now, suppose X is a complete lattice and T a partially ordered set. An increasing
family of correspondences, denoted (¢, : t € T'), is a correspondence ¢ : X X T — X
such that (1) for every ¢, the correspondence x — ¢:(x) is weakly increasing, up-
per hemicontinuous and subcomplete sublattice valued and (2) for every z, the cor-
respondence t +— ¢;(z) is weakly increasing. For each ¢, the equilibrium set at t is
E(t) ={x € X : z € ¢4(x)}, the set of fixed points of ¢;. For example, in games of strate-
gic complementarities, the product of the best response correspondences of the players
is an increasing family of correspondences and for a given parameter value, the set of
Nash equilibria in the game is the set of fixed points of the section of the correspondence
determined by this parameter value. (See Lemma 4.2.2 in Topkis (1998) and Lemma 1
in Echenique (2002).)

For a given parameter value, we are interested in higher parameter values such that
the equilibrium set at the given parameter value is strongly smaller than the equilibrium
set at the higher parameter value. For notational convenience, we use the following
definition for these higher parameter values. Let (¢; : t € T') be an increasing family of
correspondences and ¢, € T. At € T with t, < t is large enough for t, if £(ty) is
strongly smaller than £(). As, for every ¢, the equilibrium set is a complete lattice (by
Theorem 2.5.1 in Topkis (1998), for each ¢, £(t) is a complete lattice), (o) is strongly
smaller than £(#) if and only if sup £(¢;) < inf £(#). The following theorem tells us when

a t is large enough for .

Theorem. Let (¢, : t € T) be an increasing family of correspondences, to € T, e =

inf £(ty) and € = sup E(ty). For every t € T with ty < 1, if € < inf ¢;(e) then t is large



enough for ty. Also, if t is large enough for ty then so is every t' € T such thatt < t'.

Proof: Using a slightly generalized version of Theorem 2.5.2 in Topkis (1998) — see the
lemma in the appendix of this paper — we can say that if ¢, < # then e < inf £(#). As the
correspondence = +— ¢;(z) is weakly increasing, we have inf ¢;(e) < inf ¢;(inf £(£)). As
£(t) is a complete lattice, we have inf £() € ¢;(inf £()) and therefore, inf ¢;(inf £ (£)) <
inf £(f). We conclude that if € < inf ¢;(e) then & < inf ¢;(inf £(£)) < inf £(£) so that £ is
large enough for ¢3. Applying the lemma in the appendix once more, we conclude that
for every t' € T, if { < ¢’ then sup &(ty) < inf £(#) < inf £(¢') so that ¢ is large enough
for t,. A

Insert Figure 1

In Figure 1, we highlight the condition given in this theorem. Figure 1 has three
sections of an increasing family of correspondences, determined at t, < ¢’ < ¢. These
sections are singleton-valued. The equilibrium set at ¢y consists of three points where ¢,
intersects the diagonal. The smallest equilibrium is labeled e and the largest equilibrium
is labeled e. From the figure we can see that the condition in the theorem is satisfied for
t so that £ is large enough for ¢, whereas it is not satisfied for #' and #' is not large enough
for t,.

In the remainder of this paper, we present a computational alternative to the theorem
that helps us compute a £ large enough for t;. When 7 is an order interval, and this is the
case on which we shall focus in the rest of this paper, there is a distinguished value such
that for each given value, if this distinguished value is not large enough for the given value
then there is no point in 7" that is large enough for the given value. Formally, suppose
T=1[ttl={teT|t=<t=t}, (¢ :t € T) is an increasing family of correspondences
and t, € T. Then it is obvious that there exists a t € T large enough for ¢, if and only

if ¢ is large enough for t,.' Therefore, in this case, to determine if there is a point in T

Tt is easy to generalize this condition to the case where T is an arbitrary partially ordered set with
supT € T. In this case, there exists ¢ € T large enough for ¢ if and only if sup T is large enough for #,.



large enough for ¢y we need only determine if the largest point in T is large enough for

to. We can do this by using the following algorithm.

Algorithm 1. (Topkis (1979)) Let (¢ : t € T) be an increasing family of correspon-

dences andt € T. Fizrx € X.

1. Set k=0 and ¢y = .

2. If ¢i(xk) has a smallest element set xiy1 = inf ¢;(xx) and go to next step. Else

stop.

3. Set k =k + 1. Return to step 2 and continue.

From Theorem 4.3.3 in Topkis (1998) we know that if (¢; : ¢ € T') is an increasing
family of correspondences, ¢ € T, = inf X then the sequence (x) generated by Algo-
rithm 1 converges to inf £(#). Also, if we let t = o, £ = sup X and in step 2 of Algorithm
1 change the word smallest to largest and inf to sup then the sequence generated by this
modified algorithm converges to sup &(ty). Thus, given two points ¢y and # in T with
ty < t we can determine whether £ is large enough for ¢, or not. In particular, when
T = [t,t] we can determine if there is a point in T large enough for ¢, by determining if
t is large enough for .

Once we know that ¢ is large enough for 5, we can invoke any of a number of al-
gorithms to determine a minimal ¢ that is large enough for t,. We present one such
algorithm. Our algorithm is slightly different from one that invokes Algorithm 1 in a
standard way (that is, by using Theorem 4.3.3 in Topkis (1998)). We use some of the in-
formation computed in earlier iterations whereas applying Algorithm 1 in a standard way
does not. Elementary versions of our algorithm occur frequently in numerical analysis.

For example see Section 3.4 in Press, Flannery, Teukolsky, and Vetterling (1989).

Algorithm 2. Let (¢, :t € T) be an increasing family of correspondences and ty € T =
[t,t] C R™. Using Algorithm 1, set e = infE(ty) and &€ = sup E(ty). Fiz a convergence

criterion, € > 0. Let K > 1 be such that QLK <e.
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1. Set k=0,ty=ty, to =1 and ey = e.
2. Set typ1 =ty + 5Tk — 1))
3. Using Algorithm 1 with t =3, and v = e, set €pi1 = inf & (fg41).

4. If e ey setty =ty thyr = fkﬂ and e 1 = e, and go to next step. Else set

tpo = tes1 and Ty = T and go to neat step.

5 If k < K —1 set k=k+ 1, return to step 2 and continue. Else stop.

This algorithm searches for the smallest point in the line segment from ¢ to ¢ that
is large enough for ¢y3.2 It does this by dividing this line segment into halves and using
Algorithm 1, testing whether the highest point in the lower half is large enough for ¢, or
not. If it is then the algorithm changes the starting point in Algorithm 1 and proceeds to
divide the lower half into halves and repeats the loop. Otherwise it does not change the
starting point in Algorithm 1, divides the upper half into halves and repeats the loop.

In this algorithm a standard way to invoke Algorithm 1 is to use Theorem 4.3.3
in Topkis (1998) and always start Algorithm 1 from z = inf X. This does not use
information computed in earlier iterations. We use this information by starting Algorithm
1 at an earlier minimal fixed point. This can make our algorithm better than the one
constructed in a standard way.

It is obvious that the sequences (t,) and (Z;) generated by this algorithm are respec-
tively, weakly increasing and weakly decreasing. It is easy to see that for every k, t, < t
and g1 — by = 5(tk — ) (and hence &y — t, = 5 (t — to)). It is also easy to see that
if ¢ is large enough for ¢y then for every k, t; is large enough for ¢y and if ¢, is not large
enough for ¢y, then for every k, ¢, is not large enough for ¢y. Each of these statements

can be proved easily using induction.

2The line segment from to to f is the convex hull of these two points.



Recall that if £ is not large enough for ¢, then there is no point in T that is large
enough for to. Also, if ¢y is large enough for ¢y 3 then ¢y is a minimal parameter value
large enough for ¢;. When either of these conditions hold, we don’t need the algorithm

given above. When neither of these conditions holds, we have the following proposition.

Proposition. Let (¢, : t € T) be an increasing family of correspondences and ty € T =
[t, 1] C R™. Suppose t is large enough for to and ty is not large enough for ty. Then,

(1) For every € > 0, there is t € T such that t is large enough for to and t — e(t — to) is
not large enough for ty and

(2) The sequences generated by Algorithm 2 converge to the infimum of those points in

the line segment from ty to t that are large enough for t,.

Proof: To prove the first statement fix € > 0, let K, {x and £; be as in the previous
algorithm and let £ = #x. We know that Zx is large enough for ¢y and t, is not large
enough for ty. Also, { — €(t —tg) < tx — 5x(t —t) = g so that if { — e(t — to) is
large enough for ¢y then so is Z;, a contradiction. To prove the second statement, notice
that if we do not stop Algorithm 2 after finitely many steps, we get a weakly increasing
sequence (t;) that is bounded above (by ¢) and a weakly decreasing sequence (f;)that
is bounded below (by %) and hence both these sequences converge. Also, for every k,
t, <tpand ty —t, = 2%(7?— to), so that both the sequences converge to the same point,
say t*. Suppose there is a point £ in the line segment from t, to ¢ that is large enough
for ty. If t < ¢* then for some k sufficiently large, ¢ < ¢, so that ¢, is large enough for %,
a contradiction. Therefore, t* < { and t* is a lower bound. The convergence of t; to t*
implies that t* is a greatest lower bound. W

A corollary of this proposition is that if there is a point in the line segment from ¢,
to ¢ that is the lowest element in this line segment that is large enough for ¢y then the

sequences generated by Algorithm 2 converge to this point.

3This happens when £(tg) is singleton-valued



3 Example

As an application of Algorithm 2 we perform a comparative statics analysis of a version
of Farrell and Saloner’s (1985) game of network externalities. In this game there are two
agents, indexed 7 = 1,2. Each agent chooses a degree or probability of adoption of a
new technological standard and depending on a parameter, is subsidized for technology
adoption. Formally, agent ¢ chooses a number z; from the unit interval [0, 1] and for a

subsidy level ¢ € [0, 1], gets a payoff of tz;. Agent 1’s payoff is given by
9 1
U (21, To; t) = 22129 + txy + 221 (T2 — 1/2) — 27 + M [log(x1) + log(1 — z1)].

The first term reflects the fact that the gain to agent 1 is higher when agent 2 adopts
more of the technology, the second term is agent 1’s subsidy, the third term shows
that the gain is increased more when agent 2 adopts a higher technological standard,
the fourth term is a quadratic cost of technology adoption and the term in brackets
prevents corner solutions. This functional form, especially the third term, helps us obtain
multiple equilibria in a simple way. Agent 2’s payoff is given symmetrically, that is
uo (1, To;t) = ui(xe, z1;t). A model with incomplete information will yield our example
as a reduced form.

It is easy to see that this is a supermodular game parameterized by t € T = [0, 1] C R.
Suppose the current level of the subsidy is o = 0.15 and we want to find out if increasing
the subsidy will increase the equilibrium. (Notice that an increase in the equilibrium
choices of the agents implies a Pareto improvement over the old equilibrium.) We want
to know what the new level of subsidy must be so that we can unambiguously conclude
that both agents are better off. That is, we want to find a £ large enough for t,.

Note that all extremal equilibria are symmetric. Using Algorithm 1, we find that
inf £(ty) = (0.06,0.06) and sup &(ty) = (0.88,0.88). Using Algorithm 2 with K = 5 we
obtain, at £ = 0.81, inf £(0.81) = (0.94,0.94). There is no significant improvement even

after increasing the number of iterations to K = 20 so we conclude that with a relatively
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small number of iterations (K = 5) the performance of Algorithm 2 is good. The C

programming code for these computations is available from the authors on request.

Appendix

In this appendix we prove a lemma that is a slightly generalized version of Theorem 2.5.2
in Topkis (1998). We want to prove this version because our definition of an increasing

family of correspondences is weaker than the one given in Topkis (1998).%

Lemma. Let (¢, : t € T) be an increasing family of correspondences. For every t,t' € T,

if t Xt then infE(t) X inf E(') and sup E(t) < supE(t').

Proof: By Theorem 2.5.1 in Topkis (1998), we know that £(t) is a complete lattice
and sup £(t) = sup{z € X : ¢;(z) N [z,sup X]| # 0}. Thus, supE(t) € ¢¢(sup&(t)) and
hence sup £(t) < sup ¢;(sup £(t)). As the correspondence t — ¢;(z) is weakly increas-
ing, we have sup ¢ (sup £(t)) = sup ¢y (sup E(t)) € ¢p(sup&(t)) so that ¢y (sup £()) N
[sup&(t),sup X| # 0. Thus, sup&(t) € {z € X : ¢p(z) N[z,sup X] # 0} and hence
sup £(t) < sup&(t'). The result for inf £(t) follows analogously. B
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