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ABSTRACT 

We characterize the optimal dynamic price policy of a monopolist who faces "viscous" 
demand for its services. Demand is viscous if it adjusts relatively slowly to price changes. 
We show that with the optimal policy the monopolist stops short of achieving 100% market 
penetration, even when all of the consumers have the same long-run willingness to pay for the 
service. Furthermore, for certain parameter values in the model, the price policy requires rapid 
oscillations of the price path. 
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Monopolists and Viscous Demand 

1. Introduction and Summary 

1.1. Introductory Remarks 

"Viscous demand7' refers to a phenomenon common to many markets, in which demand adjusts 

relatively slowly to changes in prices and quality. There are many reasons for the viscosity of 

demand, depending on the type of good or service being sold, and on the organization of the 

market. In this paper we focus on the case of a service, such as a subscription to a magazine, 

newspaper, or long-distance carrier, that does not absorb a major part of the customer's 

budget. We also focus on responses to price changes, rather than changes in marketing or 

quality, or the introduction of innovations. In a sense, in this case the viscosity of demand 

is due to a certain type of bounded rationality and myopia on the part of the consumers. 

Although this case is somewhat special, we hope that the approach we introduce here will be 

helpful in other models. In particular, one of the parameters of our model can be interpreted as 

the effectiveness of marketing in inducing consumers to change behavior. {For a more general 

introduction to the concept and causes of demand viscosity, see Radner, 1997.) 

The presence of demand viscosity creates a temporary monopoly power for a supplier of 

the service. In such a case, the time path of a firm's prices acquires added significance, and 

the problem of optimal pricing becomes significantly more complex, compared with the case 

of instantaneous demand response. In particular, as one might expect, the sequential-game- 

theoretic problems inherent in a thorough and rigorous treatment of oligopolistic markets are 

an order of magnitude more difficult than in the instantaneous-demand case. In fact, there 

is very little previous theoretical literature on this topic, and - in our opinion - the models 

described in this literature have not been satisfactory. (For a review of this literature, and an 

analysis of a model of duopoly, see Radner, 1997.) 

For these reasons, we focus in this paper on the case of a monopolist selling a service that 

can be bought by each consumer at a fixed rate per unit of time, or not at all. (The precise 

model is described below.) In spite of the simplicity of the situation described by the model, 

and the relatively small number of parameters, we shall see that the monopoiist7s optimal 

pricing strategy can be radically different for different parameter values. Roughiy speaking, 

we can summarize our results as follows. In one region of the parameter space, call it A, the 
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monopolist has a "target" market penetration, which is less than 100 percent. If the initial 

penetration is below the target, then the firm charges a minimum price (say zero) until the 

market penetration reaches the target, and then switches to a price that stabilizes the market 

penetration at the target level. If the initial market penetration is above the target, then a 

price is charged that stabilizes the market penetration at the initial level. In particular, the 

parameters will be in the region A if the firm's discount rate is not too high compared to the 

inverse of the demand viscosity, and the price is bounded above by a sufficiently low bound. 

In the complementary region of the parameter space, call it B, the firm's price oscillates 

rapidly between its lower and upper bounds, maintaining its average market penetration at 

a low level. In fact, strictly speaking there is no optimal policy in the usual sense; we may 

say that in  the "optimal" policy the price oscillates infinitely fast between i.ts lower and upper 

bounds! (We provide a precise meaning to this statement.) Such a situation is hardly realistic, 

and provokes a reconsideration of the behavioral assumptions of the model when it has these 

parameter values. In particular, if prices are oscillating very quickly, one would not expect 

consumers to react so myopically as they do in the first postulated model. For example, one 

might expect (boundedly rational) consumers to forecast prices in some "adaptive" manner, 

e.g., with a moving average of past prices. We formulate this idea in a second model. Although 

a complete characterization of the monopolist's optimal policy in the face of consumers with 

adaptive expectations is not known, we show that (1) an optimal policy exists, (2) the maximum 

profit in the "adaptive expectations" model approaches that in the "myopic behavior" model 

as the speed of adaptation increases without bound, and (3) the optimal adaptive-expectations 

price policy is nearly optimal for the first model if the speed of adaptation is large enough. 

This last point implies that in the adaptive-expectations model the optimal price may oscillate, 

but at a finite frequency. 

In the remainder of this section, we summarize the assumptions and results for the two 

models. In Section 2 we present a detailed statement of the models and the main results, 

and show how the first, or L'main," model is a limiting case of the second, or "adaptive- 

expectations," model. In Section 3 we derive the characterization of the value function and 

optimal price policy for the main model. 
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1.2. Summary of Results for the Main Model 

A monopolist sells a service. The population of consumers is a continuum, with total mass 

one. Time is continuous. At each instant of time each consumer is purchasing the service at a 

rate of either 0 or 1; in the latter case the consumer is called a customer. (Note that here and 

henceforth 'customer' refers to a customer of the service.) 

For each time t 2 0, let Q(t) denote the mass of customers, and P( t )  denote the price of 

the service per unit time. The mass of customers evolves according to the differential equation 

where 

and X and w are strictly positive constants. (We will use upper case to denote dynamic variables 

and lower case for static and 'dummy' variables.) The essential character of (1.1)-(1.2) is that 

customers do not respond instantaneously to a change in the price. Thus suppose that in some 

time interval the price is held constant at the level p. If p < w then the firm will gain customers 

at a rate proportional to the difference, (w - p), and to the mass of remaining noncustorners, 

(1 - q). On the other hand, if p > q, then the firm will lose customers at a rate proportional 

to (p - w) and to the mass of remaining customers. The constant of proportionality, lambda, 

is the inverse of the viscosity. We may interpret w as the consumers' "long-run" or "static" 

willingness to pay for the service. (Note that w is here the same for all consumers.) 

The monopolist's instantaneous cost per unit of time at t is 

where k, c 2 0. The magnitude of k (the fixed cost) does not affect the optimal pricing policy, 

although it does influence whether the monopolist's profit is positive or not. Hence we shall 

take k = 0. 

The monopolist's total discounted profit is therefore 

where p > 0 is the discount rate. Given the initial mass of customers, Q(O), the monopolist 

wants to choose the price path P j t )  to maximize (1.3). For reasons that will become apparent 
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below, we make the following assumptions: 

(In place of (1.4a), one could modify (1.2) so that f (p, q) = -co for p > p.) 

We will present a complete solution to this problem in the next section. Since the problem 

is time invariant we need only consider Markov policies, i.e., P(t)  = 4(Q{t)), by Blackwell's 

Theorem. There are essentially two candidate optimal strategies. The first is 

where 

and h = p+ Xw + 2w), and at q = a the policy is to oscillate between p and 0 such that 

q = a is a stationary point. (This will be made more precise in the next section.) The second 

candidate is 

Each of these strategies has associated to it a return, i.e., a discounted profit, V1{Qo), V2(Qo) 

respectively. This is the main result of this paper: it is optimal to choose whichever of the two 

strategies gives the largest return. Depending on the parameters, either one strategy domi- 

nates the other for all Qo, or there is a single value Qo = x such that for @dominates for 

Qo > x and 4 2  dominates for Qo < x. Furthermore, if Q(0) 3 x then ~ ( t )  3 x for all t under 

the optimal policy, so there is no switching between strategies. 

Remark 1. Call Q(t) the (market) penetration, and call a the target penetration under policy 

qj2. If the initial penetration is strictly less than the target, then, under the policy #2, the 

penetration will increase monotonically to the target, reaching it in finite time. On the other 

hand, any penetration greater than or equal to the target is a steady state. These conclusions 

hold even if the target does not satisfy (1.8), i.e., even if it is not optimal. 

Remark 2. The optimal target, in {1.8), is decreasing in the marginal cost, c, so that, under 
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policy +2, the monopolist increases his steady-state penetration if he reduces his marginal cost. 

Remark 3. Under policy 56' the target penetration is a. If Q(O) is larger than a then it is op- 

timal to charge a high price (p), loosing customers until, in finite time, the penetration reaches 

a. Here we clearly see the optimal policy taking advantage of the viscosity of the customer 

base. 

Remark 4. As jj -+ m the target penetration a in (1.5) goes to 0 like jj(-i). Furthermore, 

policy dominates policy +2 for p large enough. Here we see a degeneracy in the model. In 

reality, too large a price would cause a mass exodus of the customer base. To keep the model 

tractable we let jj be the price above which all customers leave instantaneously. 

Remark 5. It is interesting to note that in the event V1(x) = V2(x) for x E (0 , l )  then if 

Q(0) > x, i.e. if the customer base is relatively large, then the optimal strategy is to hold or 

increase the customer base. If the customer base is small, i.e. Q(0) < x, then it is optimal to 

take advantage of its viscosity by overcharging. 

1.3. Adaptive Expectations 

There is perhaps something unnatural about the solution described above. This unnatu- 

ralness lies in the implied behavior of the customer when Q(t) = a and &tl is optimal. From 

the customer's perspective prices apparently fluctuate infinitely fast. Consequently, customers 

flow to and from the service, the net flow being equal to zero. In reality customers will not 

respond this way. Nevertheless, the 'oscillating' fixed point has significance. If some smoothing 

mechanism is introduced into the model then the 'infinite' oscillation may disappear and yet 

the basic character of the oscillation will remain. 

We will consider a particular modification to our model. This modigcation is referred to as 

"adaptive expectation" and the resulting optimization problem will be referred to  as the y-AR 

problem. Here y is a new parameter. We will use m-AR to refer to t+e problem described 

earlier in which adaptive expectation is absent. 

The modification is the following, we put 

in place of (2.1) where P( t )  solves 

P ( t )  = y(P(t) - Pjt))  , P(o) = IS, . 

Here, as before, P(t)  E + is the price we set and we assume Po € [O, jj]. 

5 
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There are two possible interpretations for this modification. The first is that customers 

do not track prices exactly but have some estimate P based on the recent past. The second 

interpretation is that some regulatory mechanism dampens price fluctuations and that this 

mechanism can be modeled as adaptive expectation. In the later case we should optimize 

V(Qo, p), rather than V(Qo, P )  since P is the price actually paid. However, for large y we 

will see that the two are nearly the same (see Eq. (2.2)). 

We are not able to solve the y-AR model explicitly. However, we can and will prove that the 

y-AR model admits a real valued optimal solution. That is, unlike the oo-AR model, infinitely 

fast oscillations are never required. We will also prove that the y-AR model approximates the 

co-AR model in the sense that &(t) is nearly optimal for co-AR if y is large enough. This will 

imply the optimal pricing in the y-AR can require oscillation (at a finite rate) between high 

(p) and low (0) prices. Periods of low prices, i.e. sales, draw in customers. Subsequently prices 

are raised; customers leave, but not instantaneously and profits are reaped. This behavior can 

be seen in the 'real world.' 

2. Formulation and Statement of Main Results 

We will now present a mathematically precise statement of our oo-AR problem. Let .cl, 

denote the set of measurable functions from 10, oo) to [O,p]. Given P E .SD and Qo E [0, 11 let 

Q(t) be the solution to 

QW = f (P(t) ,  QO)) 7 

where 

Define 

and 

VOPt (QO) := sup V(QO, P )  . 
J'E* 

Our goal is to find VOpt and, if possible, find a Markov policy P( t )  = Q(Q(t)) which achieves 

VOpt. By this we mean a measurable function q5 : [O, 11 --, [O,p] such that if Q{t) solves (2.1) 

with P ( t )  formally set to  q5(Q(t)) then V(Qo, c$(Q(t))) = VOpt(Qo). It  will turn out that this is 
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not possible in general and it is necessary to broaden the class of admissible controls to admit 

measure valued controls [Ga]. 

Typically in problems of this type one broadens the class of admissible controls in order 

to obtain existence results and then proves that a 'regular' optimal control can be found in 

the original class. This is usually achieved by virtue of certain convexity properties of the 

functional to be minimized. Our functional, it turns out, lacks these properties so that P( t )  

must necessarily be replaced by a measure valued control pt. We can then find an optimal 

Markov policy of the form pt = @(Q(t)). 

2.1. The Weak Formulation: Measure Valued Pricing 

Let pt be a family of probability measures on [O,jJ] depending on the parameter t E 10, a). 

Let g(t,p) be a continuous function on [O,co) x [0,4.  We define the function 

where Pt denotes a random variable with law pt. If h(t) is Lebesgue measurable for an arbitrary 

continuous g then we say pt, t E [0, co) is weakly measurable with respect to t. Such an object 

is said to be a generalized control. We denote the set of generalized controls by O. 

The weak formulation of the optimization problem is the following. Maximize 

where Q(t) solves 

Define 

Vopt.(&o) = sup ~ ( Q O ,  pt) . 
pt EO 

There are a few fundamental results relating the weak formulation to the original formulation. 

The first is 

V 0 p t ( ~ ~ )  = vOPt(QO) . 

The inequality VOpt(Qo) > VOPt(QO) follows from the fact that Jp(,) E O for P E $. Here 6, is 

the Dirac delta function at p E [O,jJ]. The inequality V O P ~ ( Q ~ )  < VOPt(Qo) can be proved by 

finding a sequence Pn(t)  converging "weakly" (in the sense of generalized controls) to pt  and 

showing that V(Qo, Pn ( t ) )  --, Vij(~0,pt).  The advantage the weak formulation has over the 
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original formulation arises from the fact that O is a convex space whereas is not. General 

lower semicontinuity and compactness properties of generalized controls [Gaj allow us to assert 

Theorem 2.1. For any Qo E [O, 11 there exists an optimal generalized control p$" i e . ,  

It turns out that our problem has a piecewise affine structure which allows us to restrict 

to a small subclass of O. Given a probability measure p on [0,jj] there exist constants mo 2 

0, my >_ 0 satisfying mo + my < 1 such that, for any continuous function g on [0,p] which is 

affine on [0, w] and on [ w , ~ ] ,  we have 

Now, f (p, q) and p - c are piecewise affine in this sense (in p). Thus, any generalized control 

pt can be replaced by a control 

without altering Q(t) or V ( Q ~ ,  4 ) .  (Strictly speaking we should verify Gt E O: It can easily be 

verified that mo(t) and my (t) are measurable.) Define 

We now have 

Theorem 2.2. For any Qo E [O,1] there exist a measurable function (mo,mp) : {O, cm) -+ 52 

satisfying 

vopt(Qo) = ~ ( Q O ,  @zpt) , 

We will look for a Markov optimal policy, that is 4 : {0,1] -+ $2 such that setting (mo(t), mp(t)) = 

@(Q(t)) yields an optimal control. By Blackwell's theorem this is sufficient. 

2.2. Statement of Main Result: Optimal Policy 

We are now ready to present the optimal value function VOpt and an optimal policy 6. 

Define 

a>(.) = f ( 0 , ~ )  - f ( P ,  x) 
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and the quadratic function 

Lemma 2.3. & has exactly one root a in [O, 11 and sgn(Q(x) - a) = -sgn(x - a) on [0, I]. 

Proof. Since &{O) = ( ~ w ) ~ ( l  - %) > 0 and &{l) = -(Xw + p)(X(g - w)) -  ED^(^) < 0, we 

see that & has exactly one root in {O, 11. I7 

Remark. We have given a formula for a in (1.6). 

We now define two possible value functions V1 and V2. The function V1 is the value 

associated with the following policy 

and the function v2 is associated with the policy 

where 

Closed form expressions for V1 and V2 can be easily obtained. Let qYpt be a policy where 

qYpt = 41 when V1 > V2 and qYpt = #I* when V2 > V1 and @'pt is either 4l or 42 when 

v1 = V2. The following is the main result to be proved. 

Theorem 2.4. [Optimality] The policy qYpt is optimal and 

Furthermore either VOpt = V1 or VOpt = v2 or there exists x E (a, 1) such that VOpt = V1 on 

10, x] and VOpt = V* on {x, 11. 

Remark. The function VOpt is C2 except at x where it fails to be differentiable. 

2.3. Regularization Via the y-AR Model 

Our primary purpose in considering the y--4R model is to lend credence to the limiting case 

where we have a complete solution. With y < m the solution is "regularized" while retaining 

its basic structure. 
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2.4. Existence of Optimal Control for the y-AR Model 

Establishing existence of optimal control functions for the y-AR model is straightforward. 

Let pt be the "weak" limit of a minimizing sequence from 7 ) .  It follows easily that pt is a weak 

minimizer. However, P ( t )  := E ( p t )  is obviously equivalent to pt with respect to the 7-AR 

model. This establishes existence. 

An alternative proof that avoids generalized controls proceeds as  follows. Since &(t) is 

Lipshitz (with constant yp)  we can extract a minimizing sequence which converges uniformly on 
1 d j j *  [0, T ]  for any T < cm to some Lipshitz function P,'(t). We then define P ( t )  = P,'(t) + ( t )  

and verify P ( t )  E [O,p] for almost all t .  It  follows that P ( t )  is optimal. 

2.5. Approximation Results 

It is fairly easy to prove that V,OPt approximates V$Pt for large y.  

Theorem 2.5. For any P ( 0 )  E [0,p] we have 

lim v;Pt(Qo , P ( 0 ) )  = VLPt (Qo) 
Y-CO 

Proof. If P ( t )  is a CCO function then it is easy to prove 

lim V Y ( C O ~  P ( ~ ) ,  ~ ( t ) )  = V C O ( Q ~ t  P ( t ) )  . 
Y--+CO 

Since there exist P ( t )  E CCO such that V$Pt(Qo) 5 VCO(Qo, P ( t ) )  + 6, where E > 0 is arbi- 

trary, we have limy-, VqPt(Qo, P ( 0 ) )  2 V&Pt ( Q o ) .  The opposite inequality is trivial since 

V,(QO, P(@, ~ ( t ) )  = V,(QO, & t ) )  . a 

Now, suppose { P y  (t))y=1,2... is a sequence of optimal pricing strategies for the initial condi- 

tion Qo,P(0) .  By weak compactness of generalized controls there exists pt, a generalized 

control which is the "weak" limit of some subsequence of {6(t))y=1,2, . . . .  It follows that 

pt is optimal for the non-adaptive problem. To see this: By integrating by parts we have 

1 Jr e-pt ~ - , ( t )  P-, (t)dtl < C for some constant C .  Hence, 

Applying this inequality we obtain 

We conclude that pt is optimal from Theorem 2.5. Thus, we have proved 

Theorem 2.6. Any "weak7' cluster point (in the sense of generalized controls) of optimal 

{ P y ( t ) }  as y -+ oo is optimal for the GO-AR problem. 
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3. Main Result 

In this section we prove our solution to the oo-AR problem. Herein we shall therefore dispense 

with the y-m distinction. 

3.1. The Value Function: Viscosity Solutions 

For J, q, p E 1 define 

G(J7 q, P )  := <f ( P ,  q )  + k - c)q 

and 

For future reference we also define 

Further, for u E 1, we define the 'Hamiltonian' 

Formally, the value function VOpt satisfies the Hamilton-Jacobi-Bellman equation, 

where U is a function on [0, 11. This equation does not have a solution in the classical sense, in 

general. Fortunately, in the last 15 years the theory of "viscosity solutions" has been developed. 

We will not define the concept of a viscosity solution here and refer the interested reader to 

[FS] [Li] [LS] [CHL].l The main point is the following 

Theorem 3.1. VOpt is the unique viscosity solution to HJB. 

Any classical, i.e. C" solution to HJB is a viscosity solution, hence must be VOpt. For our 

problem VOpt will not be C1 in general and the classical theory of such equations is insufficient. 

It turns out that VOpt is locally a classical solution except possibly at the point x. Only for 

this point are we required to verify non-classical 'viscosity7 conditions of the solution. It turns 

out that a continuous piecewise C1 function which satisfies HJB in the classical sense on those 

(closed) intervals determined by the finite number of points where the function is not locally 

C1 is automatically the viscosity solution (see [Li] or [LS]). 

'The references use the formalism of minimization rather than maximization to  define the value function. 
Hence, appropriate sign changes are required to  correctly interpret them. 
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3.2. Proof of Main Result 

Define the function 

H 1 ( q )  := m ( 9 )  F - c 
4 ,  

P 

where m ( q )  := f (01 9 )  
f (079) - f (P ,  9 )  ' 

If we choose mo = 1  - m ( q )  and ma = m ( q )  then q  is a stationary point under ( m o ,  mp), and 

the corresponding value at q  is H 1  ( q ) ,  i.e., 

Let us also define 

H 2 [ g )  := ( w  - 4 9  
P 

This is the value under the stationary policy m o  = 0 ,  mp = 0 .  Note that V 1 ( a )  = H 1 ( a )  and 

V 2  ( q )  = H 2 ( q )  for q  E [a, I]. 

We will consider the policies 

I m o  = 1 ,  mp = 0 ,  q < b ,  

4; := mo = 1 - m ( b ) ,  m p  = m ( b ) ,  q  = b ,  

m o  = 0 ,  mp = 1 ,  q > b ,  

and the value function V ( q ,  4;). Note that V ( b ,  4;) = H 1 ( b )  and V 1  = V ( & ) .  

Lemma 3.2. F o r b  # a  we have V(+b)  < v1 and, furthermore, V 1  1 H 1  with  equality holding 

only  at  a .  

Proof. We claim 

s g n  ( A v ( ~ .  4;) )  = s g n ( a  - b)  . 

The claim proves the lemma since 

and 

We now prove the claim. In general we have 
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where T ( q )  = min{t : Q ( t )  = b). If q > b then e-X(p-w)T(q)q = b and if q 5 b then e-XwT(q)(l - 
q)  = 1 - b. Assume for convenience that q # b. We obtain 

a 1 a according to q < b or q > b. By calculating Now1 % T ( P )  = or = 

and noting that & ( -pH1(b)  + ( p  - c)b) = h ( - p H 1 ( b )  - cb) = 5, we obtain 
D(b) 

a pe-~Ttq)  
% v ( q 1  mi) = pD2(b) Q(b) * 

Since this formula is continuous at q = b it holds there also. By Lemma 2.3 equation (3.1) 

holds. 

We now define the policies 

Lemma 3.3. For all r E [O,  11 we have V($!) 5 V 2 .  Furthermore V 2  2 H 2  with equality 

holding only on {a, 11. 

Proof. For q > max{cr,r) we have V(q,&!)  = v 2 ( q ) .  For q < max{cr,r) we have v 2 ( q )  - 

V ( q ,  6;) = Jt ( $ v ( q ,  m:)) ds. If q < r then V ( q ,  4,) = e-pTH2(r) + e - p L ( - c ) ~ ( t ) d t  where 

Q ( t )  solves o ( t )  = Xw(1 - Q l t ) ) ,  Q ( 0 )  = q, and T is given by Q ( T )  = r. Hence, in this case 

we have a a a 
( q  a r  4 )  = -e-pT-H2(r) d r  -k e - p T ( - p ~ 2 ( r )  - CT)-T a r  

- - e - ~ ~ ~ ( g  - . 
XP('--r) 

For q > r we have ; ~ ( q ,  4:) = 0 ,  hence ~ ( 4 : )  5 v2. To prove the last statement we note 

H 2 ~ =  

Lemma 3.4. V 1  satisfies HJB at q i f  and only zf V V ' ( q )  2 H2(q) .  

Proof. Let 

I.' (9 ,  mo mg) := B{vd(q) 1 q1 m~ mp) . 

For V 1  to satisfy HJB on 10, a) it is sufficient to show that & ~ ' ( q ,  mo, mp) 2 0 and &F' 
a 

(9 ,  mo, mp) 2 F' (q ,  mo, mp). The first condition reduces to V;(q) f ( 0 ,  q)  2 wq. Since, on 

[0, a] we have p ~ ' - ( ~ )  = vd-jq) f (0 ,  q)  - cq the condition further reduces to pV1(q) 2 (w- c)q, or 
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~ ' ( q )  > H ~ ( ~ ) .  Similarly, the second condition reduces to ~ : (q ) (  f (0, q) - f (p, q)) > pq which 

reduces to ~ ' ( q )  > ~ ' ( q ) .  Since the second condition is satisfied, according to Lemma 3.2, we 

see that ~ ' ( q )  > H2(q) is necessary and sufficient to guarantee HJB. 

For q = a the same argument holds but we require $$F1(q,mo7mp) = &F1(q,mo, mp), 

or V y a )  = H1(a) which holds by Lemma 3.2. 

a a For q E (a, 1) we require F1(q, mo, mi) > 0 and =F1(q7 mo, mp) > &F1 (q, mO7 mp). 

Note that here V' satisfies pV1(q) = V:(q) f (jii, q) f (p - c)q. A calculation shows that the 

two conditions reduce to the same conditions as those above, namely V1(q) L: ~ ~ ( q )  and 

~ ' ( q )  2 H1(q) respectively. By Lemma 3.2, the proof is complete. 0 

Lemma 3.5. V2 satisfies HJB at q E [0, a) if and only if v2(q) > H3.(q). 

Proof. Define 

~ ~ ( 4 7  m ~ 7  mp) := G(v:(q), q, mo> mp) . 

For v2 to satisfy HJB at q E [O, a) it is necessary and sufficient that &F2(q, mo,mp) 2 0 

a a and %F2(q7 mo, mp) > -F2(q, mo,mp). Since v2 satisfies p ~ 2 ( q )  = v;(q) f(0, q) - cq 

here these conditions reduce to v2(q) > H2(q) and v2(q) > ~ ' { q )  respectively exactly as in 

Lemma 3.4. By Lemma 3.3 the first condition holds in general. 0 

Lemma 3.6. V2 satisfies HJB on [a, 11 if and only if a > $. 
Proof. Here we require &F2 < 0 and & F2 5 0 where F2 is as in the proof of Lemma 3.5. 

Since v2(q) = I I2( r )  these conditions easily reduce to q > a and cr > $ respectively. The first 

condition is given, thus, the proof is complete. 

Lemma 3.7. If a < $ then V' > v2 with strict inequality unless a = a = i. 
Proof. Assume a < $ and consider the policies {assume r > a )  

m o = 1 ,  m p = O  q < a  

mo = 0, mp = 0 q 6 [a, r] 

mo=O, m p = l  q > r .  

For q E 10, a] we have V(q, 4;) = v2(q). For q > a we have V(q7 4:)-v2(q) = - jz ( g ~ ( ~ ,  4:)) dr 

Since, here, V(q, #!') = e-pTIY2(r) + J: e-Pt(p - c)Q(t)dt where Q(t) solves ~ ( t )  = -X(g - 
w)Q(t), Q(0) = q and 2' is given by Q(T) = r, we easily obtain 

Thus, V(q5:) _> V2 with strict inequaiity unless a = $. 
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We now recall the policies 4; defined above. Since u 5 $ we have H 1 ( u )  > l I 2 ( a )  hence 

V(b&) > V(gi:). The analysis in the proof of Lemma 3.2 shows that V(q5;) > V{&)  with 

strict inequality unless a = c ~ .  Since v1 = V(4&)  the proof is complete. O 

Lemma 3.8. If a, a  > $ then li2 2 V' with strict inequalzty unless a  = $. 
Proof: Consider the policies 

I m o = 1  mp=O, q < a  

&"(q):= mo=O mp=O a F q < r  

mo=O m p = l  r < q .  

Since a > i we have H 2 ( a )  _> ~ ' ( a ) ,  hence V ( 4 r )  > V 1  and the inequa1ity is strict unless 

a = $. As in Lemma 3.7, for q > r  we obtain 

Hence V(&)  = V(q5y) > V(+r). By Lemma 3.3 we have v2 > V(gi:). This completes the 

proof. 0 

Lemma 3.9. Assume a  < a. Then there esists at most one point x  E [a, 11 such that V 1 ( x )  = 

V 2 ( x ) .  If q  E [a, 11 satisfies q  < z then V 1 ( q )  > V 2 ( q )  and i f  q  > z then V2(¶) > V 1 ( q ) .  For 

q  E [0, a )  we have s g n ( V 1  ( q )  - V 2 ( q ) )  = s g n ( V 1 ( a )  - V 2 ( a ) ) .  

Proof: We will prove the last statement first. For q E [0, a] we have V 1 ( q )  = e-pT(q)vl(a)  
V 1  a )  and V 2 ( q )  = e-pT(q)v2(a) where T ( q )  is given by e-AwT("(l - p) = 1 - a. Thus = &. 

If a < 3 then V' > V 2  by Lemma 3.7. We assume cr > $. Let q E [a, 11, then we 

have v 2 ( q )  = k5 .k  and V;(q) = -pV1(q)+(p-c)q.  It follows that if V 2 ( q )  = ~ ' ( q ) ,  then 
P x.(ls-w)s 

w-C = - 
P 

V: ( q )  > V: ( q )  = i. We can now conclude that if V 1  ( x )  = v 2 ( x )  for any x  E {a,  11 then 

V 1 ( q )  > V 2 ( q )  for q E [a, x )  and V 1 ( q )  < V 2 ( q )  for q E ( x ,  11. 

~ v ~ t s ) + ~ s  > PV1 (q)+cs * Since Now, let q E [a,  a] and assume v 2 ( q )  2 V 1 j q ) .  Then, V:(q) = 
J ( O , q )  - 

pV1 C?)-PP+~V we have v:(~) 2 v'( ) if pv1(q)+~q > P ~ ~ ( P ) - " + C ' ? ,  which reduces to v8q) = $(P,q)  9 cl J ( 0 7 9 )  - f ( P t 9 )  

V 1  ( q )  > H 1  (q) .  Furthermore, equality can hold only if v 2 ( q )  = V1-(q)  = H 1 ( q ) ,  which implies 

q = a. The Lemma now follows from Lemma 3.2. 0 

We are now ready to prove the main result. 

Proof of Theorem 2.4. Let V = max(V1, V2) .  In the case V = V' or V = V 2  we see that 

V is sufficiently regular2 to proceed along classical lines. Both V 1  and V 2  are easily verified 

'v' and V Z  are in fact both C2 but we require only 47'. 
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to be C1. Lemmas 3.2 to 3.7 show that if V = V1 or V = V2 then V satisfies HJB everywhere 

on [0,1]. Classical "verification theorems" [FS] can be applied proving that V = VOpt. Since 

the policy @Opt achieves V it is optimal. The classical verification theorems can be extended 

to prove optimality of V even when V # V1 and V $I v*. However, we can also quote the 

viscosity theory: since V is piecewise C1 (by Lemma 3.9), V is the viscosity solution to HJB 

and it is therefore equal to VOpt. C) 

4. Analysis and Simulation of the 7-AR Model 

In this section we collect some ideas concerning the analysis of the y--4R model. Since we 

do not have a solution we will be somewhat informal. By Blackwell's Theorem we can restrict 

to stationary policies P = $(Q, P ) .  

Assuming VqPt = VqPt(Qo, Po) is C1 at (Qo, Po), it satisfies the Hamilton-Jacobi-Bellman 

equation there, 

where V ,  denotes partial differentiation with respect to the ith argument. Since the expression 

inside the brackets is linear in p we see that we can assume p = 4(Qo, Po) E ( 0 , ~ )  without loss 

of generality. However, in so doing we may be forced to generalize the notion of the solution 

to P = y ( P  - P )  to admit weak solutions: if (Q(t), P( t ) )  tracks a boundary between (4 = p) 

and (4 = 0) then P( t )  'oscillates' between 0 and p. In this case it is possible to redefine 4 

along the boundary so that a classical solution admits. In fact, if for some optimal P ( t )  we 

have P( t )  E (O,p), Q(t) # 0 for t E (a, b) then we can apply the calculus of variations to 

to obtain a differential equation for Q on (a, b). (This is possible since we can express both P 

and P as functions of Q, Q, and Q.) This will in turn determine P(t)  on' (a, b). Furthermore, 

such a 'tracking boundary7 between (4 = 0) and (4 = p )  determines a solution to this 

differential equation. Simulations indicate that the optimal value function is piecewise C1 in 

general. Corresponding to the point x in the oo-AR solution there arises a 1-dimensional curve 

along which the gradient of V,Opt appears discontinuous (see Fig. 4.8.) 

Our simulations results were computed as follows. To each discrete point z in the (Q, P )  
space we assign a value v(z) and an price, p ( s ) .  We let Q and P evolve according to their 

differential equations with initial condition s and P = p{z) over a short interval t E [O, E ]  so 
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that .(Q(c), p(c) )  is still close to z. VITe then evaluate, 

where ~ ( Q ( E ) ,  ES(c)) is computed by locaily interpolating v. For each point z we compute the 

above for all possible choices of p(z) and then assign to v(z) the maximum attained among 

the choices for p(z). Initializing v = 0 and iterating the above described computation over all 

2 we obtain an increasing sequence of v which converge to an approximation to V,OPt. 

In view of the results above we restrict p(z) E {O,P) except on the set p = w where we 

admit p(z) = w. The latter is admitted since we expect stationary points along this set, in 

view of our convergence results. (We experimented with allowing p(z) E (0, w , ~ )  in general, 

and the solutions presented here were only slightly modified with p(z) = w in a neighborhood 

of the tracking boundary, as we would expect.) 

The following table lists various sets of parameter values which we have used for simulation. 

Table 1: Parameter Values for Simulation 

Fig. 4.1 shows both V' and V2 for the w-AR problem parameter sets 1 and 2. Note that for 

parameter set 1 V2 > V1 while for parameter set 2 the two functions cross. 

We have plotted optimal vector fields for parameter sets la,lb,lc,2a, and 2b in Figs. 4.2-4.6. 

The optimal price is overlaid at each point in the discrete space. Oscillatory limit cycles can be 

seen in Figs. 4.5 and 4.6 corresponding to the oscillating solution of the w-AR problem arising 

in parameter set 2. Surprisingly such a limit cycle also appears in Fig. 4.2, corresponding to 

parameter set la. This indicates that small values of y favor oscillating limit behavior. In 

Figs. 4.3 and 4.4, corresponding to parameter sets l b  and lc, the oscillating limit is absent. 

This is to be expected from our approximation results. 

The limit cycle in Fig. 4.5 (parameter set 2a) has larger amplitude in q then that of 4.6 

(parameter set 2b) as we would expect from our approximation results. In the limit y. -. m 

this amplitude goes to 0. 

All of the vector fields have some stable stationary set along the line = w. This is also 

to be expected from our approximation results. 

a b c  
Y 

1.0 2.0 5.0 
2.0 5.0 * 

Parameter Set 
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1 
2 

X p c w p  
0.5 0.1 0.0 0.6 2.0 
0.5 0.1 0.0 0.5 2.0 



Figs. 4.7 and 4.S plot the value function for two extreme values of y for parameter sets 1 

and 2. Here we see the smoothness of the value function and also the convergence to V&pt. 

Acknowledgements. The authors thank Hsueh-Ling Huynh and Peter Linhart for many 

viscous discussions. 
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Parameter Set 1 

Parameter Set 2 

Figure 4.1: Value Functions. 
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Figure 4.2: Optimal Vector Field for Parameter set la.  
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Figure 4.4: Optirnal Vector Field for Parameter set 3c. 
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Figure 4.5: Optimal Vector Field for Parameter set 2a. 

Center for Digital Economy Research 
Stern School of Business 
W o r h g  Paper IS-99-07 





0 

Parameter Set l a  

Parameter Set l c  

Figure 4.7: Optimal Value Functions: Dependence on y. 
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Parameter Set 2a 

Parameter Set 2b 

Figure 4.8: Optimal Value Functions: Dependence on y. 
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