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Pricing strategies under heterogeneous service
requirements

ABSTRACT

This paper analyzes a communication network, used by customers with heterogeneous service
requirements. We investigate priority queueing as a way to establish service differentiation. It is
assumed that there is an infinite population of customers, who join the network as long as their
utility (which is a function of the queueing delay) is larger than the price of the service. We focus
on the specific situation with two types of users: one type is delay-sensitive (‘voice'), whereas
the other is delay-tolerant (‘data’); these preferences are reflected in their utility curves. Two
models are considered: in the first the network determines the priority class of the users,
whereas the second model leaves this choice to the users. For both models we determine the
prices that maximize the provider's profit. Importantly, these situations do not coincide. Our
analysis uses elements from queueing theory, but also from microeconomics and game theory
(e.g., the concept of a Nash equilibrium). We conclude the paper by considering a model in
which throughput (rather than delay) is the main performance measure. Again the pricing
strategy exploits the heterogeneity in service requirements and willingness-to-pay.
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1 Introduction

Current usage of data-networks, such as the Internet, is still dominated by ‘traditional’ data
services: web browsing, file transfer, remote terminal, electronic mail, etc. These applications
do not impose severe requirements on the network, in that they tolerate relatively large packet
delays. New Internet applications, e.g., real-time applications such as interactive voice and
video, can be characterized as delay-sensitive, and are consequently considerably more demand-
ing. This heterogeneity of the service requirements makes it necessary that the delay-tolerant
and delay-sensitive users are handled differently — otherwise all traffic must be handled ac-
cording to the requirements of the most demanding class, i.e., the real-time class, which will
inevitably lead to a network running at a relatively poor utilization level. A possible solution
is to give priority to the delay-sensitive traffic in the queues of the network. Shenker [13]

further motivates this prioritization and related design issues for the Internet.

Pricing. Without an appropriate pricing scheme, any prioritization is useless; if there were
no price difference between the priority classes, all users would opt for the high-priority class.
In other words: the prices of the priority classes should give users an incentive to join the
‘right’ priority class. In terms of the delay-tolerant user (or, shortly, the data user) and the
delay-sensitive user (or, shortly, the voice user): voice users are encouraged to use the high-
priority class, whereas data users are given an incentive to join the low-priority class. This is
done by imposing a higher charge on the high-priority class. A next question is: how should
the network provider choose the prices for both classes in order to maximize its profit?

Here two models can be distinguished. In the first model the provider assigns a priority class to
each user type — for instance, the provider can decide that the voice customers are directed to
the high-priority queue, and the data users to the low-priority queue. This model of ‘dedicated
classes’ (or ‘implicit supply of service’, in Shenker’s [13] terminology) is relatively simple to
analyze, as the network users have only two alternatives: joining the network or not.

The harder, but perhaps more realistic, model is the model with ‘open classes’ (or ‘explicit
supply of service’, as it is called in [13]), in which the users can choose between the priority
classes. It is not clear beforehand whether the prices that optimize the profit in the dedicated-
classes model, are also profit optimizing for the open-classes model. The reason is that the
prices found in the dedicated-classes model might lead to a situation in which data (voice) users
might appreciate the high-(low-)priority class more. In other words: it is not a priori clear
whether the optimal prices from the dedicated-classes model lead to an incentive-compatible

situation in the open-classes model.

Incentive-compatibility. In economic terms, in the model with open classes, the users of



the network are agents, who individually choose between the three alternatives offered, that
is, joining the high-priority class, joining the low-priority class, or not using the network at
all. The situation in which no user has any incentive to unilaterally change his policy is called
a Nash equilibrium [14].

It is not obvious that by making high-priority transfer more expensive than low-priority trans-
fer the voice customers will use the high-priority class and the data customers will use the
low priority class; this strongly depends on the price difference between the queues, and the
delay performance of both queues. This statement can be made more precise as follows. Let
for both types of traffic the mean delay determine the utility experienced by the users. Now
the utility curves for data and voice are denoted by wug(-) and wu,(-), respectively, and are
decreasing in their argument, i.e., the mean delay. Clearly, this mean delay is affected by the
number of customers of both types who join both service classes. Suppose that data (voice)
customers are assigned to the low-(high-)priority class, leading to mean delays EDy, and EDy,
respectively. Assume that customers are ‘infinitely divisible’; i.e., we do not restrict ourselves

to integer numbers of customers. Then we have a Nash equilibrium if

ug(EDy) — pL, >max {ug(EDy) — pu,0}; uy(EDy) — py >max {u,(EDy) — pr,,0}. (1)

Literature. The problems of price selection and incentive-compatibility in priority queues
were dealt with in Mendelson and Whang [10]. They consider the special case in which the
penalty functions — which can be interpreted as minus the utility functions — are linear in

the mean delays. Conditions (1) become
v - EDy, + pr, < min {vq - EDy + pu, 0} 5 vy - EDy + pu < min {v, - EDy, + py,, 0} .

In [10] prices are derived which are optimal and incentive compatible: the prices maximize the
system’s ‘net value’, where the choice what class to join is left to the individual users (and the
solution is a Nash equilibrium). Importantly, [10] shows that the optima for dedicated classes
and open classes coincide.

We believe that some aspects of the model of [10] do not apply to the situation of competing
data and voice users described above. In the first place, clearly the choice of the penalty
functions in [10] is restrictive. As argued above, for low values of the delay the delay-sensitive
voice users have a higher utility than the delay-tolerant, whereas for high delay the opposite
holds. This cannot be modeled in the framework of [10], as it is not clear whether vq should
be larger than v, or vice versa. In other words, the utility curves (and hence the penalty
functions) should not have a monotonous relation: they should intersect.

Another interesting approach to service differentiation can be found in Odlyzko [11, 12]: he

proposes to offer multiple qualities by using multiple logically separated networks with different



prices. The idea is that the expensive network attracts the delay-sensitive users, whereas the
delay-tolerant users opt for the cheap network. Using game-theoretic techniques, [2] argues
that this mechanism, known as Paris Metro Pricing, does not work if there are multiple
competing providers: in order to maximize profits the providers rather focus on one user type.
Principles behind congestion pricing are given in, e.g., [3, 6]; the former reference explicitly
covers heterogeneous users. There are many references with more practical reflections on

pricing in multiservice networks, see for instance [1, 15], and several articles in [8].

Contribution and organization. This paper looks at the situation in which the utility
curves do intersect: for ED € (0,1) it holds that u,(ED) > wug(ED), whereas for ED > 1
the opposite holds: u4(ED) > u,(ED). First we look at the situation in which there are large
populations of ‘potential’ voice and data users sharing a FIFO queue. We see that, depending
on the value of the link speed p, the network population will consist of just one class. For small
u (i.e., the link is relatively slow) data will dominate, whereas for fast links voice will push
aside data. This situation is considered in Section 2. We focus on prices that maximize the
provider’s profit, which is slightly different from the ‘net value’ maximization problem solved
in [9, 10] (cf. social welfare maximization).

An important conclusion of our paper is that under our utility curves the solutions of the open-
classes model and the dedicated-classes model do not coincide (which did hold in the setting
of [10]). Section 3 analyzes the profit maximization problem for the model with dedicated
classes, whereas Section 4 focuses on the situation with open classes. As could be expected,
Section 4 is more involved: the customers have more options, and therefore the incentive-
compatibility requirement is more involved. We find that, depending on the value of the link
rate u, different regimes are optimal: for small y only data users will be present, for moderate
u the high-priority class is used by voice and the low-priority class by data, whereas for large
1 voice users dominate.

Strikingly, even in the cases where only one type of traffic is present (i.e., small and large u),
it is optimal (i.e., profit maximizing) to use both the high-priority and low-priority queue. In
other words, even for homogeneous users it is beneficial to introduce service differentiation (and
price differentiation). This somewhat counterintuitive result is further explained in Section 5.
This section also contains a discussion on the specific shape of the utility function, as well as
a numerical example.

The paper is concluded by a model in which throughput (rather than packet delay) is the main
performance measure. We consider a stream of jobs that is served according to the processor
sharing discipline [5, Ch. IV]. For a job of given size x, we can (given the load of the queue

and the service speed) compute the required transmission time, and hence the throughput



during the transmission. The utility is an increasing function of the throughput; we assume
that the utility curve U, (-) is parametrized by the job size x. Section 6 analyzes the situation
in which a volume charge is imposed on the jobs (i.e., a fixed price per byte). It shows that
under specific assumptions on the ordering of the utility curves, it is beneficial to discriminate
the jobs on the basis of their size: if U,(-) decreases in x, the small jobs (usually referred to
as web mice) are preferred over the larger jobs (elephants).

2 No service differentiation — tragedy of the commons

Data and voice users — utility. Consider a system with an infinite population of (potential)
customers. The wutility they get depends on the level of congestion. Obviously, generally
speaking, the larger the number of users in the network, the lower the utility. Throughout
this paper we will use the mean packet delay, ED, as the measure of congestion, unless stated
otherwise.

The price per packet transmission is p. Customers want to use the service as long as utility
minus price — or compensated utility — is positive. When customers join the level of congestion
increases. In other words, customers join as long as the compensated utility is positive, cf. [9].
A complication is that we have two types of users. In the first place there are users who
strongly prefer low congestion or, equivalently, low packet delay. We will refer to these users
as to voice users. On the other hand, there are users who do not mind so much about the
delay: compared to voice users, they assign less utility to low delay, but more utility to high
delay. We call these customers data users. To model these specific preferences, we define the
(compensated) utility curves of both types of users by

Ua(ED) := uq(ED) —p, with ua(y) ==y~ "
U’U(ED) = UU(ED) —p, with uv(y) =y,
with 0 < ag < a,. Notice that both expression are equal for ED = 1.

A system without service differentiation. Both data and voice users generate information
packets that they feed into the system. Each data (voice) user generates packets at rate Ay
(A\y, respectively). In this section we let both types of customers use a single server queue that
does not make any distinction between the packets of both sorts, a FIFO queue. We assume
that the service times of the individual packets are i.i.d. exponentially distributed random

variables, with mean p=!.



In an M/M/1 queue, with N (independent) customers that generate packets according to a
Poisson process with rate A, and service times that are i.i.d. exponential with mean p~", the
mean delay is
1
ED = ——

p— AN’
provided that AN < p [5]. We now compute how many users of each type will subscribe to
the network, as a function of the packet transmission price p.

Equilibrium for fixed price. Consider first two hypothetical cases.

e Suppose there are only data users. They enter as long as their (compensated) utility
is non-negative. For simplicity, we do not restrict ourselves to an integer number of

customers. It is not hard to show that this number equals

n— /P
Na(p) = )\7/\1/_ (2)
d
This holds if p < p®?; otherwise N4(p) = 0.

e Similarly, with only voice users,

A 74

Ny(p) Ay

This holds if p < p®v; otherwise N, (p) = 0.

Now consider the situation that both groups are competing for service. Suppose N4(p) cus-
tomers are present, with Ny(p) given by (2). We may ask ourselves if there is any incentive for

voice users to join? Notice that the utility an infinitesimally small voice user would experience

= ogp\\" oo feg
Uv3:<u_)\d<T€/_>> —p=p™/* —p.

is

Using that a, > agq, it is easily seen that if p > 1 this number is positive, so voice users would
join. If p < 1 there is no incentive for voice users to enter when N4(p) data users are present.
Conversely, if N,(p) voice customers are present, data users join if and only if p < 1. In fact

we have found a Nash equilibrium [14].

Tragedy of the commons. From the above, we conclude that if prices are low, data users

dominate over voice users; the opposite happens when prices are high.



This describes, albeit it in a stylized sense, the current situation in the Internet. Prices are
low, or, more precisely, there is a usually a flat fee, i.e., the amount of money charged does not
depend on usage. Customers who require low packet delay (voice) are excluded. In fact, so
many delay-indifferent users join, that the congestion is unacceptably high for the delay-averse

users. This phenomenon is commonly referred to as the tragedy of the commons [4].

The price selection problem. The network operator will choose the price such that his
profit is maximized. The customers pay for every packet they transmit. We define profit as
the expected number of packets sent (by the users who subscribe to the network) per unit
time, multiplied by the price per packet. From the above, this profit function II(p, x), for a

given price p > 0 and service rate pu, reads

Ad-Na(p)-p = falp) = (u— =¢/p)p ifpe(0,1];
Ao No(p) -p= fo(p) := (n— =/p)p ifpe(1,00).

Notice that in fact this profit function II(-,-) should have been decreased by the provider’s

(p,p) = {

costs. Important components of these costs are

e The service costs, for instance the costs related to the billing and invoicing process. These
are increasing in the usage (most notably the numbers of customers V). We neglect these
costs, as taking them into account does not really provide additional insight, whereas it

makes the resulting expressions less explicit.

e The equipment costs, i.e., the costs of (the purchase of) the router. These are increasing
in the link rate pu. We assume that the time scale on which the provider can adapt his

capacity p is relatively long, so u is not a decision variable.

Hence the provider wishes to maximize II(p,u) over p > 0. Notice that this function is

continuous in p = 1.

Proposition 2.1 The profit function is given by

Qg Qy
ey I frey I
I = I = .
(1) 111713())( (P, 1) maX{(ad+1> (ad+1>’<av+1> <av+1>}

Proof. We prove this proposition in two steps.

STEP 1. We first derive an elementary expression for the profit as a function of service rate u.

e It is not hard to verify that, on p € Ry, the function f4(p) attains its maximum at

_ [ _pmaa \*
b= ag+1 ’




Notice that pg is indeed smaller than p®¢, as desired. Hence, with pg := 1+ a4 !, the
maximum value of II(p, ) on p € [0,1] is

ax I(p,p) =
nax (p, 1)

Qg
fa(p) == (Caiofl) (ﬁ) if p < pg, attained at p = pg;
nw—1 otherwise, attained at p = 1.

e Similarly, on Ry, f,(p) is maximized by

o \T
Po: <av+1> ’

which is smaller than p®v. Hence, with p, := 1 + a, !, the maximum value of II(p, i)

onp € [1,00) is

Qy
folp) = (%) (ﬁ) if u > py, attained at p = py;

PpE[L,00) max{0, p — 1} otherwise, attained at p = 1.

max Il(p, p) = {

Recall that p, < pg; we get that II* () = max,so II(p, 1) equals

max {p — 1, fa(p)} 0 < p < puos
g(p) = ¢ max{fa(p), fo(w)}  if py <p < pg;
max {0, u — 1, fu(u)} if p > pa-

STEP 2. We now prove the following two properties.

e It is trivial to show that fy(pa) = pa — 1. Also,

gt = (L2 <

ag+1

on [0, 1g). So both curves cannot intersect. This proves that fq(u) > p—1 for p € [0, pg)-

e Also f,(py) = py — 1. With

s = (L£2)7 >0

oy +1

on (py,00), this yields f,(u) > p— 1 for p € [py, 00).



We arrive at

" (p) = g(p) = max { fa(n), fo(n)} .

This completes our proof. O

The following corollary states that for small (large) link rates data users (voice users, respec-
tively) dominate. We can compute the critical service rate pu* at which the system changes

from the data-regime to the voice-regime.

Corollary 2.2 With pu* € [y, pa) defined by

1
. Oéd Qg av + 1 (075} av + 1 ay—ag
p= ag+1 Qy ag+1 ’

for all

o u < p* it holds that fq(p) > fo(p). This implies that \yJNg = p/(cq +1) > 0 and
N, =0, and the price per packet transmission p equals pg < 1;

o > p* it holds that fq(p) < fo(r). This implies that Ng = 0 and Ay N, = p/ (0 +1) > 0,

and the price per packet transmission p equals p, > 1.

3 Service differentiation by priority queueing:

dedicated classes

In the previous section we concluded that — in case of heterogeneous traffic classes — the
network will serve only one of them. It depends on the specific values of the link rate p and
the ‘utility-parameters’ ay and «, which type of customers will dominate. In this section
we concentrate on ways to satisfy the demands of both classes. Adhering to the principles
explained in [13], we do this by using a priority queueing system. We will argue that this
solution is beneficial for the network (as its profit increases compared to the FIFO solution),
the dominating class (as the service will be offered against a lower price), and the excluded

class (as it will receive service).

A priority queueing model; dedicated and open classes. Let us assume that we are
in the regime that u < p*, so in a FIFO system the voice users would not get any service.
We now suppose that they get strict service priority over the data sources. We assume that
the voice users are directed to the high priority queue, and the data users to the low priority

queue. As identified in the Introduction, this is the dedicated-classes model; this is in contrast



with the open-classes model, in which the customers themselves choose the most attractive
queue (based on the expected delays in both queues and the respective prices). We return to
the issue of dedicated and open classes in Section 4.

Standard queueing theory [5] gives that the mean packet delay for both classes is given by

1 4

ED, = — d EDg; = .
AN, 4 = Mo No) (i — Ao Ny — AaNg)

Here we assume that the service of a low-priority packet can be interrupted when high-priority
packets arrive; the service is resumed as soon as the high-priority queue gets empty.

Equilibrium for fixed price. Suppose a packet in the high priority queue is charged an
amount pr, and a packet in the low priority queue pr,. Clearly, as seen in Section 2, the number

of voice users joining is given by

P — “%/PH
Ny(pL,pu) = S W
v
if pp < p® and 0 otherwise. Similarly, data users join as long as their compensated utility
exceeds 0. This results in

At (/P — pog/PL/ =/PR) it pu < P p and py < po;
Na(pL,pu) = §Aa~ " (1 — =¢/PL) if pr, < p** and py > p*e; (3)
0 otherwise.

Notice that Ny4(prL,pu) decreases in py, and increases in py, as expected.

The price selection problem. Again the provider wants to achieve maximum profit. Notice

that the priority system cannot lead to lower profits than the FIFO system. The reason for

this is that the FIFO queue is a special case of the priority queue — this is seen by taking
— an _ 2ag/ay aq

pu = p* or pL = py o [ ue.

To obtain the optimal prices, we have to perform the following optimization:

I1% = II
D(:u) pL>H(}3))1.(1>0 D(pLapHau)a

with
p (pL, pu, 1) = Aq - Na(pL,pu) - pL + Ao - No(pL, PH) - PH,

where the subscript ‘D’ denotes the regime of dedicated classes. Let us for the moment assume

that both services are in a regime in which customers get service. We get

“¢/PL
a - @ + | = — . 4
pL>II&p>§>O(u {/PH)pH < /P — p o) (4)

10



We compute this maximum in two steps. First we find the optimizing value of py, for given

pu- Subsequently, we maximize over py.

STEP 1. First find the optimal py, for a given value of py. Differentiation to py, and equating
to 0 yields
aq o, /
200g /oy
pu\pa)=\| 7 p )
= ()

20q /)y

which is indeed smaller than py /p%e. Directly from (3) and (4), we get that II}(p) equals

Qq
. ad 1 :

. (g e ) cpaat)/ow (g
0<;111§>;% g(pu) with g(p) (u Vp)p+ (H(QUH_ 1)) ag+1 P )

STEP 2. Now we find the profit-maximizing value of py. It is straightforward that g(0) = 0
and ¢'(0) > 0. Moreover,

, a, +1 Qg M 20q+1 1 (20g+1) /ay—1
= — . oy + . . d v ,
g(p) = n oy P <,u(ad + 1)> ag+1 b

a,+1 1 _
g//(p):_v—__.pl/ozv 1+
Qy Qy

Qg ad-Zad—}—l.QOéd—Oéu‘f-l.i. (200q+1) Jay—2
pulag +1) ag+1 o s p '

It is not hard to verify that the function g”(-) changes sign at

- ((H(ad + 1))ad Qg + 1 s + 1 ) 2a:_iau

b g 20y +1 204 —ay, +1

if 2aq + 1 > ay; if 2ag + 1 < @, there is not such a point. More detailed inspection yields the
following corollary.

Corollary 3.1 The function g(-), as defined in (5), increases in the origin. Also,
e if 204 < @y < 2aq + 1 the function g(-) shifts from convezity to concavity at p;
o if 204 > v, the function g(-) shifts from concavity to convewity at p;

o if 24 + 1 < a, the function g(-) is concave on [0, 00).

11



We are now in a position to characterize the optimizing py; we do this in Lemma 3.2 and
Lemma 3.3. We first define

1
. ag " 204+ 1) v e
g = aqg+1 ag+1 '

It is easy to verify that pu* < p* and that p* < 1.

Lemma 3.2 For p € (p*, pu*) the function g(-) is first increasing and then decreasing on the

interval p € [0, p®].

Proof. Applying Corollary 3.1, it suffices to show that ¢'(u®) < 0 for p € (p*, p*). This is

a matter of straightforward calculus. a
Lemma 3.3 For p € (0, u*) the function g(-) is non-decreasing on the interval p € [0, p®*].

Proof. We prove this lemma by considering the cases that 2a4 is smaller and larger than o,

separately.

e First observe that for 2a4 < «,, Corollary 3.1 entails that ¢'(u®*) > 0 for p € (0, u*)
implies the stated. This is easy to verify.

e Now consider 2ay > «,. Write for ease p = 8% u®>. We have to show that ¢’(5% u®*) >0

for all g € ]0,1]. Elementary calculations give that an equivalent condition is

g >ad 200 + 1

. 20— +1 6
ag+1 aqg+1 p ’ ( )

(6= (1 =Pay) - p* < <

for all g € [0,1] and p € (0, u* ). The stated is clearly true for § < 8, := a,/(ay +1); in
this case the left hand side of (6) is negative, whereas the right hand side is positive.

Now concentrate on 3 € [y, 1]. Because the left hand side of condition (6) is increasing
in p, we have to verify it only for 4 = p* . For this value of pu, the condition reduces to

n(B) = (B — (1= flay) — g7+ <0.

As n(By) = —p22¢~t < 0 and n(1) = 0, it is sufficient to prove that 7/(3) > 0 for
B € [Buv, 1]. Since 2a4 > ay,

1+a, — (2aq —a, +1) - g2
> l1+a,— 2ag—a, +1) =2(ay, —ag) > 0.

' (B)

12



This proves the lemma. O
The following proposition follows immediately from the Lemmas 3.2 and 3.3.

Proposition 3.4 Assume pu € (0, u*) and suppose that the provider can prioritize voice. We
distinguish between two cases.
o u€(0,u*): A FIFO queue is optimal for the provider. Only data users enter.

On the interval [0, u®*], the function g(-) attains its mazimum at the upper limit, p*».

The profit-mazximizing prices are

Qd
Hag
= Qv d = .
b = p anad  pr <ad+1>

o i€ (u*,u*): The provider gives voice priority over data. Both types of users enter.

On the interval [0, u®*], the function g(-) attains its mazimum in the interior; there is a

unique pr € [0, u®] with ¢'(pu) = 0. The profit-mazimizing prices are

Qq
Qq ) _ 204/

=P d = —7=
PH bu ana pL <M(ad+1 H

The proposition implies that for u € (0, u* ) the provider maximizes profit by having just a
FIFO queue. Prices will be relatively low, so that only data users enter the system. In fact,
the system is so slow that prioritizing voice does not help increasing the provider’s profit. For

€ (p, u*) profit is increased by giving voice priority over data.

A similar analysis can be done for the situation in which voice is dominant, i.e., p > p*. Again
we find that it is not always benificial to prioritize traffic: for very fast link rates a ‘voice-only

solution’ generates higher profit; there is a threshold link speed p .

4 Service differentiation by priority queueing:

open classes

In the previous section, an essential assumption was that the network (i.e., the provider) selects
the queue for both types of users; more specifically: the voice customers are forced to use the
high-priority queue, whereas the data users are directed to the low-priority queue. In other
words: we focused on the situation of dedicated classes.

The opposite situation relates to open classes. There the provider offers a network with a

certain queueing discipline and prices, and the customers have to decide themselves what class
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to join. In the situation of a priority queue, the customers can select the queue (or decide
not to join any queue at all) based on the prices of high priority and low priority py and
pL, and the expected quality of service (i.e., delay): they select the queue with the highest
compensated utility.

It is easy to check that if pg < 1 the high priority queue will be used exclusively by data
users, and if pg > 1 by voice users; the same holds for the low priority queue. The procedure
of Section 3 does not guarantee that py, < 1 and pg > 1. For that reason, if the customers
were to choose the most attractive queue themselves, the solution of Proposition 3.4 would
not persist. Put in a game-theoretic language [14]: unilateral changes may lead to increase of
the compensated utility, and for that reason the solution is possibly not a Nash equilibrium.
If for instance both p;, and py are smaller than 1, in the model with open classes, the data

users would drive away the voice users from both queues.

Equilibrium for fixed price. Like in Section 2 and 3, we first analyze the network population

for given prices. For all combinations of prices (pL,pu) we analyze the type of equilibrium.

e R_. Trivially if both prices are smaller (larger) than 1, the network will be populated
exclusively by data (voice) users. Hence in this regime both types of users will not coexist

in the system. If both prices are smaller than 1, the profit function reads

pL
o (pL, pu, ) := (1 — ¢/pu)pu + ( “¢/PH — 1 “ﬁ/ p_H) DL,
to be maximized over the set R_ with prices p;, < 1 and py < 1 such that pr, < pf/u*?
and pg < p®?. The subscript ‘O’ refers to the situation of open classes.

e R, . If both prices are larger than 1, ay is replaced by «,:

Db
o (pr, pu; p) = (1 = *¢/Pu)pu + <af/p_H—N Ry p_;> pL,

to be maximized over R with prices p, > 1 and py > 1 such that p, < p}/p® and
pa < po.

e Now consider the situation in which p;, > 1 and pg < 1. Hence, the low-priority queue
will be used by voice customers, and the high-priority queue by data customers. Similarly

to the analysis of Section 3, both types of users are present if

20, /g

pu < p®t and pp < }LT (7)
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If p is smaller than 1, suppose that the first condition in (7) is met. Then it is easy to
conclude that the second requirement is violated:

200, /0tg Iu2av
b <<

If p is larger than 1, the first condition in (7) is automatically satisfied, whereas the

second is violated:

20, /g

Ca,

o < p <1l

e Ry. The remaining regime is py, < 1 and pg > 1. It is not hard to verify that in this
case the an equilibrium is possible in which voice users (in the high-priority queue) and
data users (in the low-priority queue) coexist only if u > 1. We have to maximize

o (pL, pu, p) == (1 — */Pr)pH + <°‘€/IEN :gg) pL,

over a region Ry that is given by

p2ad/av
pL € Oamin 17 H'uad y DH € (LNM]- (8)

The resulting admissible region is depicted in Figure 1, with the R_, Ry, and Ry defined

above. Notice that Ry and R4 are empty for p < 1; then a situation with only data users
(R-) is the only persistent solution.

The price selection problem. From the above, it is clear that we have to evaluate

106 (1) = max {115 (), 115 4 (), 115 (1) }

with II ; (1) = max(y, p)er, Lo (pL, pu, p), for i € {—,+,0}. We now compute these three
maxima subsequently, in Subsections A, B, and C. First an auxiliary result is proven in Lemma
4.1.

Lemma 4.1 II} (1) is non decreasing and convex in .

Proof. It suffices to prove that the IIf) ;(u) are non decreasing and convex in y, i € {—,+,0}.

e First notice that Ilo(pr, pu, 1) is a linear function of .
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pL : pL

Figure 1: Admissible region. Left panel corresponds to u < 1, right panel to u > 1.

The o (pL,pu, p) are non decreasing in p. This is seen as follows for Ry (a similar

reasoning applies to R_ and Ry ). In Ro the coefficient of p is given by

“¢/PL N
pu — pL = pu— pt/ " >0,
¥/ PH
as follows from pr, < pffd/o‘v [ucd = p?‘ld/“” . (p?‘ld/o‘v Ju) < pgd/o"’, in conjunction with
pa > 1.

As the 11 ;(p) are maxima (over (pr,pn) € R;) of non decreasing, linear (and hence convex)

functions, they are non decreasing and convex as well. O

A. Maximization over R_

The maximum over R_ reduces to maximizing g_ (pg) over 0 < pg < min{u®¢,1}, where

9-(p) = (u*pl/‘”)p+ LTI N S (9)
S plaqg +1) ag+1 '

The price for the low priority service is given by

p(pu) = Ba(pw)pii, with Ba(p) := (ﬁ) d'
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With (_(p) := ¢’ (1), it is shown in the Appendix (Section 7.A) that

> Ay. For p € (0,1] the optimum over R_ is reached at a price py in the interior of (0, u®?];
this pu is the unique solution of g’ (p) = 0 in (0, u*]. Also, pr = Ba(u)p¥.

> Ay. Let v_ be the unique solution to (_(u) =0 in (1,00). For p € (1,00) the optimum over
R_ is reached at a price pg

(i) in the interior of (0,1] if u € (1,v_); this Py is the unique solution of g" (p) =0
n (0,1]. Also, pr. = Ba(p)piy;
(ii) equal to 1 if p € (v—,0). Also, pr, = Ba(p).

B. Maximization over R,

The region Ry is empty if p < 1; we therefore concentrate on p > 1. We have that
. Ay v
pL(pu) = max {1, 8, (p)p% ), with A, = <7> .
L (Ph) {1, Bo(m)pii } (1) ot D)

With 1, := 14+ !, we two cases need to be considered.

o If u € (1, y), it is not hard to see that the optimal p;, equals 1. The maximizing py should
be found from

_ L 1
max  gi(pu) with g4(p) = (L — /P)p+ /P —p—r7.
pev/2<pr<pey /P

o If € (py,00), it turns out that

Qy

o + 1)>a“/2
plaw +1)

o) = ( ) it el with g o= (M2 ,

and pr,(pu) = 1 if py € [u**/?, ¢, (u)]. Define gy (-) as in (9), but with oy replaced by a,. We

have to solve

max { max g+ (pu), max g+(pn) } .
pev /2 <pr<qy (p) 4+ () <pr<psv

With (4 (i) := g, (p*) and §4 (1) = ¢/ (g4 (), it is shown in the Appendix (Section 7.B)
that

> By. Let vy 1 be the unique solution to (4 () =0 in (1, uy). For p € (1, uy) the optimum over
Ry is reached at a price pu
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(i) equal to p* if p € (1,v41). Also, pr. = 1;
(i) in the interior of [u® /%, u®] if w € (vy1,umy); this pu is the unique solution
of g, (p) =0 in [uee/? ue]. Also, pr, = 1.

> By. Let vy o be the unique solution to &4 (u) = 0 in (py,00). For p € (uy,00) the optimum

over R is reached at a price py

(i) in the interior of [u®/?,q4 (1)) if p € (o, V4 2); this pu is the unique solution

of g (p) = 0 in [pu*/%,q1(p)]. Also, pr, = 1;
(ii) in the interior of g4+ (1), p*] if p € (v4,2,00); this pu is the unique solution

of g, (p) = 0 in [qr(n), p*]. Also pr, = By (1)D};-

C. Maximization over Ry

Again we first perform the optimization over py, for given py. It is straightforward to obtain

that the optimum is attained at

pL(pn) = min {1; ﬁd(H)Pf{ad/a” } :

Defining pg := 1+ ogl, two cases need to be distinguished.

o If 11 < g, it is not hard to verify that it holds that

Qd
— ) g/ <1 for all py € (1, p®

so that, with go(-) defined as g(-) in (5), the optimization reduces to

ma. .
| max go(pu)

o If p1 € (p1q4,00), we have that

,u(ad + 1)>av/2

ﬁd(u)p?{ad/au <1, ifandonlyif pg <gqo(p) := ( ”

Notice that go(p) is smaller than p* (as pg = (aq +1)/aq < ). So we get the optimization

max max , max g ,
{1<pH<qo<u> 0, B go(pH)}
where g (") = g+ ()
With (o(p) := g4(1) and & (1) = g4(go(p)), it is shown in the Appendix (Section 7.C) that
> C1. Let vp,1 be the unique solution to (o(p) = 0 in (1, pg). For p € (1, pg) the optimum over

Ry is reached at a price pg
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(1) equal to 1 Zf:u € (171/071)' AlSO: pL = Bd(u%
(ii) in the interior of [1,pu*] if p € (Yo, H1a); this Pu is the unique solution of

2aq/ay

go(p) = 0 in [1, u]. Also, pL = Ba(p)py

> Cy. Let vy be the unique solution to &(p) = 0 in (pg,00). For p € (pg,00) the optimum

over Ry is reached at a price py

(i) in the interior of [1,qo(w)] if 1 € (pa,vo,2); this pu is the unique solution of
96(p) = 0 in [L,a0(w)]. Also, pr. = Ba(u)piy '™ ;
(ii) n the interior of [qo(p), p®*] if p € (vo,2,00); this pu is the unique solution of

=/

go(p) =0 in [qo(p), p®*]. Also, pr = 1.

Characterization of the solution. We are now in a position to prove that there are two
possible situations. In the first there are service rates v* and v} such that (for the profit-
maximizing prices) voice will dominate in the network for all p < v*, data will dominate for
p > v}, and there is a ‘mixed scenario’ (with priority for voice) for p € (v*,v%). The second

possibility data dominates for g smaller than some v*, and voice dominates otherwise.

Theorem 4.2 For p < vy, = min{vo1,v1 2}, ‘data-only’ mazimizes the profit: Iy (p) =
15 _(W); for pp > Vimax := max{v_, vy 2}, ‘voice-only’ mazimizes the profit: 11t (n) = 11§ | (1)

Proof. First notice that vy < vp,2, implying that vmin < Vmax. The stated follows imme-
diately from the inequalities (i) II§ o(p) > II§ _(p) for p > v, (ii) II§ o(n) > I , (u) for
p < vy, (i) g () < 10§ () for p < woa, and (iv) II§ o(p) < 15 | (p) for p > vo .
These inequalities are almost trivial to prove from the maximizations over R_, R4, and Ry
that were described above.

Consider for instance the first inequality. For p larger than v_, the optimum Haf(,u) over
R_ is attained at pg = 1 and a pr, < 1, with profit g_(1). As this price vector lies on the
boundary of R and Ry, it equals go(1), which is, by definition, majorized by II§ (u1). The

other inequalities are proven similarly. O

Theorem 4.2 in conjunction with Lemma 4.1 (i.e., the convexity of the functions II§ ;(-), with
i € {—,+,0}) implies the following corollary.

Corollary 4.3 The global profit mazimization can be characterized as follows. Two regimes

are possible:
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1% (1)

7

Figure 2: Profit as a function of link speed, for p € (0,4].

o There exist service rates v* and v} such that

g (1), pe0,v1);
HB(N) = Hg,O(H): 1% € (l/t,IJ_T_);
H6,+(/1’)7 12 € (V_T_,OO).

o There exists a service rate v* such that

woy = ) 6 (), pe(0,07);
o {H6,+(u), B e (v*,00).

5 Discussion and example

In this section we start by giving a numerical example that demonstrates the theory of the
previous sections. Then we motivate the somewhat paradoxical fact that in this model it is
beneficial to use both queues, even if the user population is homogeneous. Finally we provide

some reflections on the utility functions and the queueing model.

Example. This example gives numerical results for the model with open classes. We choose
ay = 2aq = 2. The values of the ‘critical’ service rates, as introduced in Section 4, are
given by v_ = 1.500; vy 1 = 1.325; vy o = 2.422; 15 = 1.183; and vp» = 3.948. Applying

the inequalities used in the proof of Theorem 4.2, it is not so hard to prove that, due to
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bu
Figure 3: Relation between pr, and py. The bullets correspond to p =1,---,5.

vy < V- < Vi < V2, five regimes can be distinguished:

I _ (W), p € (0,v0,1);
maX{HB,f(u);HB,o(M)}; € (vo,1,v-);
o) = ¢ 10§ o (n), € (v—, vy 2);
maX{HB,o(u),H67+(u)}, € (V4,2,10,2);
H6,+(H): € (v0,2,00).

In Figure 2 the three lines depict the maxima over R_, 