
UC San Diego
Technical Reports

Title
Fast and Scalable Conflict Detection for Packet Classifiers

Permalink
https://escholarship.org/uc/item/94q1s97t

Authors
Baboescu, Florin
Varghese, George

Publication Date
2002-08-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/94q1s97t
https://escholarship.org
http://www.cdlib.org/

1

Fast and Scalable Conflict Detection

for Packet Classifiers
Florin Baboescu, George Varghese

Dept. of Computer Science and Engineering

University of California, San Diego

9500 Gilman Drive

La Jolla, CA92093-0114

fbaboescu, vargheseg@cs.ucsd.edu

Abstract—Packet filters provide rules for classifying pack-

ets based on header fields. High speed packet classification

has received much study. However, the twin problems of fast

updates and fast conflict detection have not received much

attention. A conflict occurs when two classifiers overlap, po-

tentially creating ambiguity for packets that match both fil-

ters. For example, if Rule 1 specifies that all packets going to

CNN be rate controlled and Rule 2 specifies that all packets

coming from Walmart be given high priority, the rules con-

flict for traffic from Walmart to CNN. There has been prior

work on efficient conflict detection for two dimensional clas-

sifiers. However, the best known algorithm for conflict de-

tection for general classifiers is the naive O(N

2

) algorithm

of comparing each pair of rules for a conflict. In this paper,

we describe an efficient and scalable conflict detection algo-

rithm for the general case that is significantly faster. For

example, for a database of 20,000 rules, our algorithm is 40

times faster than the naive implementation. Even without

considering conflicts, our algorithm also provides a packet

classifier with fast updates and fast lookups that can be used

for stateful packet filtering.

Keywords—Packet Classification, Filter Conflicts, Classi-

fiers, IP Lookups

I. INTRODUCTION

Beyond traditional 32-bit destination IP address

lookups, many routers perform packet classification on

other IP header fields for purposes such as packet fil-

tering in firewalls, binding flows to MPLS labels for

traffic engineering, or binding flows to DiffServ code

points to provide QoS. To do so each router keeps a rule

database which consists of a finite sequence of rules,

R

1

; R

2

; : : : ; R

N

. Each rule is a combination of k val-

ues, one for each significant header field. Three kind of

matches are allowed for each packet processed by a router:

exact match, prefix match, or range match. In an ex-

act match, the header field of the packet should exactly

match the rule field—for instance, this is useful for proto-

col and flag fields. In a prefix match, the rule field should

be a prefix of the packet header field—this is useful for

blocking access from a specified subnetwork. In a range

match, the header values should lie in the range speci-

fied by the rule—this is useful for specifying port number

ranges. Ranges, however, can be converted into prefixes as

shown in [1], [2].

Each rule R
i

has an associated action a
ti, which spec-

ifies how to forward the packet matching this rule. The ac-

tion may specify if the packet should be blocked or if it is

to be forwarded, it specifies the outgoing link on which the

packet is to be sent, and perhaps also a queue within that

link if the corresponding flow has bandwidth guarantees.

We say that a packet P matches a rule R if each field of P

matches the corresponding field of R—the match type is

implicit in the specification of the field.

A problem may occur when a packet matches multiple

filters with conflicting values for the action field. Let’s

consider the simple example in Figure 1. The rules in the

tables are associated with actions to guarantee bandwidth.

The first rule R
0

assigns all packets that match the tuple

(0�; 10�) a bandwidth equal to 10 Mbps, while the second

rule R
1

assigns all packets that match the tuple (00�; 1�)

a bandwidth equal to 100 Mbps. A conflict occurs in this

case because it is unclear what bandwidth (i.e., 10 or 100

Mbps) should be allocated to packets which match the tu-

ple (00�; 10�). We call such a conflict an overlapping con-

flict because there are some packets that match R
0

and not

R

1

, some that match R
1

and not R
0

, and some that match

both.

A second type of conflict, a subset conflict, occurs be-

tween the rules R
2

and R

3

. The fields in R

3

describe a

strict subset of the fields in rule R
2

. The position of the

rules in the database in this case is used to decide which

of them is to be applied when a packet matches both rules.

Assuming the standard firewall rule where the lower the

position number, the higher the priority, a packet with a

header (1110; 1111) will only be assigned 10 Mbps ac-

cording to R
2

. The last two rules R
4

and R
5

do not have

any conflict with any of the other rules in the database.

2

Rule F ield

1

Field

2

A
tion

R

0

0� 10� 10Mbps

R

1

00� 1� 100Mbps

R

2

11� 11� 10Mbps

R

3

111� 111� 100Mbps

R

4

101� 10� 100Mbps

R

5

� 01� 10Mbps

Fig. 1. A simple example with 6 rules on two fields.

A seminal paper [3] introduced these two types of con-

flicts and showed that subset conflicts can be avoided by

positioning but overlapping conflicts cannot, in general, be

avoided by repositioning. Instead, [3] suggests introducing

a new rule for each area that is shared by multiple over-

lapping rules, for example in the case of R
0

and R

1

, the

new rule (00�; 11�). In our paper, we will not distinguish

between these two types of conflicts but describe an algo-

rithm to identify either all the conflicting pairs of rules in a

database, or to identify all rules that conflict with a newly

added rule. While some conflicts may be intentional, [3]

reports many instances of irreconcilable conflicting actions

that indicate erroneous action by managers. Thus flagging

conflicts for managers or protocols that insert filters is an

important problem.

We believe that conflict detection will become an impor-

tant problem as router vendors offer larger classifier tables

(up to 64K rules in some products) and the rules are used

for potentially conflicting purposes such as QoS, security,

and Customer Relationship Management (a form of QoS

where certain flows are dynamically identified as being im-

portant “customers” and given better service). In many of

these applications, some service (e.g., Intrusion Detection,

stateful filtering, or CRM) may dynamically insert a new

rule that can conflict with existing security or QoS policy.

While the majority of added filters will not conflict [4], a

mechanism to warn managers of potential conflicts seems

necessary to avoid breaches of the security or QoS poli-

cies.

Clearly, in the examples above the time to add filters and

detect conflicts is important, especially for large databases.

Thus the ultimate goal is to achieve a scheme that allows

both packet classification and rule updates at close to line

speed. However, in practice even the most dynamic rule

database is unlikely to add new rules more frequently than

once every 10-100 packet arrival times. For example, for a

stateful filtering application the number 10-100 could rep-

resent the number of packets in a conversation because a

filter may have to be inserted (and checked for conflicts)

when a new conversation starts.

This allows a larger time budget for conflict detection

and insertion than for pure lookup (which must complete

in a single packet arrival time [4], [5]) but is still chal-

lenging. We assume that a rule update implies both check-

ing for possible conflicts, and insertion or deletion in the

database. Thus besides the goal of fast conflict detection

our paper also addresses an important issue: fast rule in-

sertion and deletion.

A. Filter Conflict Detection - Problem Statement

We give a formal statement of the conflict detection

problem. Given a database of filters H containing N

filters with k dimensions and a new filter F with fields

(F

1

; : : : ; F

k

) list all the filters P in H such that for all the

the fields P
i

; i = 1 : : : k, P
i

is either a prefix of F
i

or an

exact match, or F
i

is a prefix of P
i

.

There are two main factors that we consider in evaluat-

ing our implementation. These are the number of memory

accesses required by an operation (the main limitation in

modern computer architectures) and the memory size oc-

cupied by data structures (because it is important to fit into

high speed memory).

II. PREVIOUS WORK

Packet filter classification has received broad atten-

tion([6], [1], [4], [2], [5], [7], [8], [9], [10]); from previous

work, it appears that the general problem is inherently hard

(in a worst-case sense) when the filters contain more than

2 fields. While Ternary CAMs [11] offer a good solution

in hardware for small classifiers, they use too much power

and do not scale well to large classifiers.

A practical solution for multi-dimensional packet clas-

sification problem is given in a paper which we refer to

as the original bit vector scheme (BV) [6]. However, it is

difficult to scale the scheme to large rule database. [12] ad-

dresses these limitation in the BV scheme and introduces

two new ideas, recursive aggregation of bit maps and filter

rearrangement, to create an Aggregate Bit Vector scheme

(ABV).

None of the papers above addresses the new problem

of conflict detection. Moreover, most of these schemes

heavily use precomputation to speed up filter search; this

makes rule updates slow. The problem of filter classifi-

cation schemes with fast updates has received only little

attention [7], [10], [13]. Filter conflict detection has re-

ceived attention only recently [14], [3]. The seminal pa-

per [3] describes a fast (linear in the length of each rule)

algorithm for two-dimensional classifiers and some other

special cases, and a slow O(N

2

), where N is the num-

ber of filters) algorithm for general classifiers. Since real

databases often use 5 or more fields, and do not fit the spe-

3

cial cases (e.g., some of the special cases in [3] restrict

prefix lengths to either 0 or 32), their fast algorithm cannot

be used for such databases. A recent paper [14] provides a

O(N

1:5

) algorithm for the 2-dimensional case only, but for

a different priority-based definition of the notion of con-

flict.

The bottom line is that previous work describes

no efficient conflict detection algorithm for general 5-

dimensional databases other than the naive one of com-

paring every pair of rules for conflicts in O(N2

) time. For

example, for 10,000 rules, assuming that each rules takes

five (Destination IP address, Source IP address, Protocol,

Dest and Source Port ranges and prefix length informa-

tion) 32-bit words to store, the naive algorithm must ac-

cess 10; 000�9999�5=2 memory words, which is roughly

250 million memory accesses. Thus it is worth looking for

faster algorithms, the subject of this paper.

A. Contributions and results

Our paper goes beyond the work in [6], [12] by ad-

dressing two important new problems: fast packet filter

conflict detection and fast rule updates. It also investigates

further the effects of aggregation introduced by [12], and

shows, perhaps surprisingly, that aggregation can also re-

duce the overall memory size. The algorithms we develop

can be used for solving the general k�dimensional prob-

lem. We evaluate them on both real firewall databases and

synthetically generated 5�dimensional databases. Our re-

sults show an order of magnitude improvement (e.g., a fac-

tor of 40 improvement for a 20,000 rule database) over the

naive O(n2) algorithm as well as simplistic extensions of

[6], [12].

While our algorithm looks superficially similar to [6] (in

the use of bitmaps) and to [12] (in the use of aggregation),

we emphasize that both the problem we solve (conflict de-

tection versus classification) and our solution (we use a

subtree semantic for computing bitmaps as opposed to a

path semantic) are completely different from these previ-

ous papers.

III. TOWARDS A NEW SCHEME FOR FAST CONFLICT

DETECTION

In this section we introduce our ideas for a fast con-

flict detection scheme. Given that the BV scheme is a fast

and practical scheme for packet classification, we start by

adapting it for conflict detection. The resulting simplistic

scheme has a number of inefficiencies that will motivate

our final scheme.

A. Simplistic Conflict Detection Using the Original Bit

Vector Scheme

The BV scheme is a form of divide-and-conquer which

divides the packet classification problem into k subprob-

lems, and then combines the results. It builds k 1-

dimensional tries associated with each field in the origi-

nal filter database. We assume that ranges are converted to

prefixes using techniques shown in [1], [2].

For each trie T
l

; l = 1; : : : ; k a N�bit vector is asso-

ciated with each node M
l

in the trie which corresponds to

a valid prefix node. A bit i is set in the bit vector at node

M if and only if there is a rule R
i

in the database with a

field Rl

i

which is a prefix (or equal) with the path from root

to M in the trie. The result of applying BV for the filter

database in Figure 2 is shown in Figure 3. We consider for

now only the boxed bit vectors in the figure. For example,

the bit vector associated with the rightmost leaf node in

the second trie is 00100011011 (the left most bit is asso-

ciated with R
0

) because the prefix 1111* associated with

this node is matched by both �, 111� and 1111� which

corresponds to the values in rules 2, 6, 7, 9 and 10.

Let’s assume we want to check if a rule with the tu-

ple (1�; 1�) conflicts with any of the rules in the original

database. We traverse the tries until we reach the nodes

which are the best match for the prefixes in the rule. In

this example, we do not have an exact match on either of

the fields. The longest matching prefix is � for both tries.

However, the bit vectors that label these nodes specify the

rules which have fields that are either an exact match(only

if it was an exact match) or prefixes of the one we are

looking for. This is insufficient because we also want to

consider fields that are suffixes of the ones we are looking

for. Thus to identify all possible conflicts, we also need

to check the descendants of the nodes where we found our

best match.

Rule F ield

1

Field

2

R

0

000000� 111001�

R

1

1001� 0000101�

R

2

10110� 111�

R

3

1111� 0000100�

R

4

00000100� 100010�

R

5

10111� 000000�

R

6

10� 1111�

R

7

0001010� �

R

8

000111� 100011�

R

9

000000� 111�

R

10

� �

Fig. 2. A simple example of a two dimensional database with 11 rules.

4

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

0

0
0

0

0

0

1

1

1

0

1

0

1

0

0

1
1

1

1

0

1

1

1

0

0

0

0

0

0

1

0

10

1

1

1

10

1

0

0

0

0

1

0

Field 1

1

0

1

Field 2

0000 0000 001

0001 0000 001

0000 0110 001

0010 0010 001

0100 0010 001

0
0000 0010 001

0000 0000 101

0000 0001 001

0000 1000 001

1000 0000 011

0000 0001 001

0010 0001 011

0010 0011 011

1010 0001 0110000 0001 1010000 1001 001
0100 0001 001

0000 0101 001

0001 0001 001

001

101

011

111

111

011

001

011

101

011

011

111 111
011 011 111

111

111

011

Fig. 3. Two tries associated with each of the fields in the database

of Figure 2, together with both the bit vectors (boxed) and the ag-

gregate vectors (bolded) associated with nodes that correspond to

valid prefixes. The bits are set according with the semantics in the

original bit vector scheme. The aggregate bit vector has 3 bits us-

ing an aggregation size of 4. Bits are numbered from left to right.

We mark the nodes that need to be checked for possible conflicts

when a rule with the fields (1�; 1�) is inserted.

More precisely, the basic algorithm for conflict detec-

tion using BV for a k�dimensional filter database is as

follows. Trie T

i

is associated with field i from the rule

database. The trie is built on all possible prefixes that are

found in the field i in any rule in the database. A node in

trie T
i

is associated with a valid prefix P if there is at least

one rule in the database which has a value equal to P in

field i. Each such node is appended with a bit vector with

a size equal to the size of the database. A bit is set in posi-

tion l in the bit vector if the l� th rule in the database has

in field i a value which is either a prefix or an exact match

of P .

When a new rule R(H
1

; : : : ;H

k

) needs to be checked

for conflicts, a longest matching prefix node is identified in

each of the tries for each field i in the rule. If such a node

N

i

exist in dimension i, its bit vector identifies the rules

in the database which for the dimension i contain prefixes

of H
i

. We need to identify for each dimension i all rules

which contain prefixes that are suffixes of H
i

. To do so,

we compute the union of the already obtained bit vectors

together with the bit vectors of all nodes contained in the

subtrie rooted at N
i

. The set of rules that are possible

conflicts are then identified by the intersection of all the

bit vectors previously built for each trie T
i

; i = 1 : : : k.
The pseudocode for this implementation is:

1 DetectConflictBV (R(H

1

; : : : ; H

k

); T (T

1

; : : : ; T

k

))

2 for i 1 to k do

3 N

i

 longestPrefixMat
hNode(T [i℄; H

i

);

4 temp[i℄ N

i

:bitV e
t;

5 for each valid prefix node M in the subtrie with

the root in the node identified by the prefix H
i

6 temp[i℄ temp[i℄

S

M:bitV e
t;

7 return
T

k

i=1

temp[i℄:bitV e
t;

Unfortunately, this simplistic algorithm may involve a

large number of nodes from the subtries in each dimen-

sion. A first optimization is to consider only leaf nodes in

the subtrie because for BV the union of all the bit vectors

from a subtrie is equal to the union of the bit vectors in

the leaves. Thus line 5 in the pseudocode can be changed

using this observation above. But we can do better. We

address the limitations of this scheme by focusing on two

separate areas:

� how to decrease the complexity of operations on large

bit vectors;

� how to reduce the number of bit vectors to be examined

by reducing the number of nodes in the trie which need to

be checked.

B. Conflict detection using aggregated bit vector scheme

If the bit vectors are sparse (i.e., very few set bits), the

BV algorithm has to read all bits, which is a waste. Ag-

gregated bit vector scheme(ABV) [12] addresses this lim-

itation by allocating two bit vectors to each valid prefix

node. The first bit vector has N bits for the BV bit vector.

The second bit vector is computed from the first one by

using aggregation. Using an aggregate size of A, a bit k

in this vector is set if and only if there is at least one rule

R

n

, A� k � n � A� k + 1� 1 for which P is a prefix

of Ri

n

. The aggregate bit vector has dN
A

e bits. Figure 3

shows the application of the aggregation for the example

database in Figure 2 using an aggregate size A = 4. The

main idea is that the aggregate bit vector provides a com-

pact signature to eliminate redundant reads to words that

have no bits set.

With minor modifications, the aggregation scheme can

be directly used in the conflict detection algorithm. The

union and interse
tion operations can be made to avoid

redundant reads by considering only words corresponding

to bits which are set in the aggregate. Even with aggre-

gation, the algorithm is rather slow because of the need to

compute the union of all the leaves in each subtrie defined

by the header fields. This sets the stage for our main new

idea.

IV. A FAST CONFLICT DETECTION BIT VECTOR

ALGORITHM

In this section we describe our new algorithm for fast

conflict detection. We start by showing a new semantic for

computing bit vectors through which we avoid excessive

subtrie traversals to detect conflicts.

5

A. A new semantic for the bit vectors

Consider again the general k-dimensional problem in

which k tries are computed. Each valid prefix node in the

trie has an associated bit vector. For simplicity we start by

not considering aggregation. We later discuss an extension

using aggregation.

In each of the tries T
i

; i = 1 : : : k, each node associated

with a valid prefix contains two bit vectors. A first bit vec-

tor (bitVect1) has a bit l set if and only if there is a rule R
l

whose field i provides an exact match with the node prefix.

The second bit vector (bitVect2) modifies the semantics of

the bit vector in the original bit vector scheme [6] to satisfy

the following invariant: for all tries T
i

; i = 1 : : : k, in each

valid prefix node N associated with a prefix P, the bit vec-

tor N:bitV e
t2 = (

S

C:bitV e
t2)

S

N:bitV e
t1, where

nodes C are all the immediate descendants of N that are

also valid prefix nodes. In other words, we only need to

explore the subtrie rooted at N till we reach a valid prefix

node on each path.

Intuitively, the original BV scheme computes a bit map

at node N corresponding to all valid prefix nodes in the

path from the root to node N . Our first bit vector, by con-

trast, computes a bit vector that only corresponds to ex-

act (and not prefix) matches. Our second bit vector turns

the BV bit vector semantics upside down and computes

the bitmap at node N corresponding to the union of the

bitvectors associated with all valid prefix nodes in the sub-

trie rooted at node N . The reader may object at this point

“That’s just a different form of precomputation”. How-

ever, we need to show (as we do below) that this new bit

semantic can be updated efficiently (fast updates) and can

be used to do packet classification (as in the BV scheme).

We consider the filter database in Figure 2 to exem-

plify our new semantic. The appended bit vectors with

the new semantics are displayed in Figure 5 while the bit

vectors corresponding to rules with prefixes which are an

exact match are shown in Figure 4. Assume a rule (1�; 1�)

which needs to be checked for conflicts with the other rules

in the database. For each of the tries in the Figure 4 we

compute the union of all the bit vectors from valid pre-

fix nodes which are prefix or exact match for 1� in the

first trie and 1� in the second trie(step 1). The result is:

00000000001 and 00000001001. Intersection of these bit

vectors gives the set of rules which have fields that are ei-

ther prefixes of the fields in the rule we check or are an

exact match. In this example the result is 00000000001,

showing that there is one rule R
10

in the database match-

ing this criteria.

In Figure 5, for each trie we compute the union of the

bitmaps associated with nodes which are valid prefixes and

immediate children of the nodes associated with the prefix

1�(step 2). These nodes are: 10�, 1111� in the first trie and

100010�, 100011� and 111� in the second trie. Please no-

tice that the nodes 1000�, 10110�, 10111� in the first trie

and 111001� and 1111� in the second trie are not consid-

ered. The results of the union operation are 01110110000

and 10101010010 respectively. The values obtained in

the previous two steps are combined once again (union)

in each dimension(trie) (step 3). The intermediate val-

ues are: 01110110001 and 10101011011 respectively. In

the end the values are intersected(step 4) and the final re-

sult is 00100010001. The result shows that there are three

rules(R
2

; R

6

; R

10

) which may generate a conflict.

If we intersected only the results from step 2, we would

have obtained the set of rules which in all fields have val-

ues which have 1� as prefix. However, this misses rule R
10

which may also generate a conflict. Therefore, the set of

all the rules which may generate conflicts is given by first

doing the union of the bit vectors in the Figure 4 as in the

first case above followed by an union with the bit vectors in

the Figure 5. The k bit vectors are then intersected; a value

of 1 in the result identifies rules with a possible conflict.

0

0
0

0

0

0

1

1

1

0

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

0

10

1

1

1

10

1

0

0

0

0

1

0

Field 1

Field 2

1

1

0000 0000 001
1

0001 0000 000

0000 0100 000
0010 0000 000

0100 0000 000 0

0

0
0000 0010 000

0000 0000 100

0000 0001 000

0000 1000 000

1000 0000 010

0000 0001 001

0010 0000 010

0000 0010 000

1000 0000 0000000 0000 1000000 1000 000
0100 0000 0000001 0000 000

0000 0100 000

001

100

010

100

100

010

001

010

010

101

010

011

101

010

100001010
100100

Fig. 4. Two tries associated with each of the fields in the database

of Figure 2, together with both the bit vectors (boxed) and the ag-

gregate vectors (bolded) associated with nodes that correspond to

valid prefixes.The bits in a node are set only if there is an exact

match between the filter prefix and the node . The aggregate bit

vector has 3 bits using an aggregation size of 4. Bits are numbered

from left to right.

B. An improved conflict filter detection algorithm

Given a rule R(H

1

; : : : ;H

k

) we want to identify all

the possible conflicts it might have with other rules in the

database. A trie T

i

is built for each dimension i. Each

valid prefix node in the trie is appended with two bit vec-

tors. A bit l is set in the first bit vector if and only if the

l � th rule in the database has its field i value be an ex-

act match with the node prefix (bitV e
t1). The second bit

6

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

0

0
0

0

0

0

1

1

1

0

1

0

1

0

0

1

1

1

0

1

1

1

0

0

0

0

0

0

1

0

10

1

1

1

10

1

0

0

0

0

1

0

Field 1

Field 2

1

0

0001 0000 000

0000 0100 000
0010 0000 000

0100 0000 000

0
0110 0110 000

0000 0000 100

0000 0001 000

0000 1000 000

1000 0000 010

1

1111 1111 111

0000 0010 000

1000 0000 0000000 0000 1000000 1000 000

1010 0010 010

0100 0000 0000001 0000 000

0000 0100 000

1111 1111 111

111

100

010
100

100

110

001

010

010

010

100 100

010 001 100

010

111

111

101

Fig. 5. Two tries associated with each of the fields in the database

of Figure 2, together with both the bit vectors (boxed) and the ag-

gregate vectors (bolded) associated with nodes that correspond to

valid prefixes.The bits are set according to the new semantic we

introduce . The aggregate bit vector has 3 bits using an aggrega-

tion size of 4. Bits are numbered from left to right.We mark the

nodes that need to be checked for possible conflicts when a rule

with the fields (1�; 1�) is inserted.

vector (bitV e
t2) has the bits set according with the se-

mantic described in the previous section.

For example, consider the two-dimensional database in

the Figure 2. We want to check for conflicts a rule R with

the fields(1�; 1�). In Figure 3 we see that using the scheme

in which the bit vectors are computed as in the BV scheme

there are a total of 10 bit vectors which need to be read

from memory, or in an optimized version in which only

the leaf nodes are read, a total of 8 bit vectors. If the bit

vectors are computed using the new semantic, then 2 +

5 = 7 bit vectors need to be read from memory. The first

value is given by the number of bitVect1 to be read (lines

4; 5 in the pseudocode), while the second value is given

by the number of bitVect2 to be read (lines 7 � 9 in the

pseudocode).

The pseudocode for the algorithm is:

1 NewDetectConflict (R(H

1

; : : : ; H

k

); T (T

1

; : : : ; T

k

))

2 for i 1 to k do

3 temp[i℄ 00 : : : 0;

4 for each valid prefix node M from root until

an exact match of H
i

5 temp[i℄ M:bitV e
t1

S

temp[i℄;

6 if H

i

matches a valid prefix node M then

7 temp[i℄ temp[i℄

S

M:bitV e
t2;

8 continue 1

9 temp[i℄

S

L:bitV e
t2,

where L designates all the first level children of the node

matching H
i

that represent valid prefixes

10 return
T

k

i=1

temp[i℄;

1It continues execution with the next iteration for i (line 2)

As in the previous algorithm there are a number of bit

vector operations which can be more efficiently executed

using aggregation. If the algorithm above uses aggregation

the pseudocode remains unmodified. However the seman-

tics of both the union and intersection operation must be

modified appropriately. Also, both bitVect1 and bitVect2

now represent a new data structure containing both the

original N�bit bit vector and the aggregated one. We call

IBV the improved version of the original BV algorithm

using the new semantic and we call AIBV the modified

version of the IBV using aggregation.

C. A fast conflict detection algorithm

000

00 0

0000 1

1000

Field 1

Field 2

1

01 11

11

10011010

valid prefix node

split node

1

111

node checked when (1*, 1*) rule is inserted

0001 0000 000

0 10100 0000 000
0010 0100 000

0110 0110 000

0111 0110 000

0000 0001 000

0000 0000 100

0000 0001 100

1000 1001 110

0000 1000 000
010 111000

1000 0000 010

1000 1000 010

0010 0000 000 0000 0100 000

0000 0010 000

1000 0000 000

1010 0010 010

1010 1010 110

0001

0000 0000 1000000 1000 000

0000 1000 100

0001 0000 000

0100 0000 000

0101 0000 000

0000 0100 000

0101 0100 000

110

100110

110

010

100

010

011

010

001

111

011

001

100

110

100

010

100

100 010 001 100

010

111

111

011

Fig. 6. Two compressed tries associated with each of the fields in

the database of Figure 2, together with both the bit vectors (boxed)

and the aggregate vectors (bolded) associated with the nodes. The

aggregate bit vector has 3 bits using an aggregation size of 4. Bits

are numbered from left to right.

The algorithm described so far has the potential to re-

duce the number of bit vectors to be read compared to a

naive use of the BV algorithm. However, it has a lim-

itation. Let’s consider again the problem to be solved.

Given a k�dimensional database of rules and a rule

R(H

1

: : : H

k

) we need to identify possible conflicts be-

tween R and the other rules in the database. In each of the

dimensions i, i = 1 : : : k if the prefix H

i

does not match

a valid prefix node in the trie than the step 9 in the algo-

rithm must be executed. In this way all the valid prefix

nodes which are first level children of the node matching

H

i

must be traversed and the bit vectors bitVect2 must be

read.

Thus in the worst case scenario all these children may

be leaves in the trie which makes the algorithm to have

performance similar to the BV algorithm. However, we

are willing to trade some memory space in order to reduce

7

the search time for possible conflicts. We would like to

find a way in which for each rule R, in each trie there is at

most one node with enough information regarding possible

conflicts.

Consider the same filter database example in the Fig-

ure 2. Two tries are computed for each of the dimensions.

However, all the one-way branches are compressed this

time. The resulting compressed tries are displayed in Fig-

ure 6. The valid prefix nodes in the compressed tries carry

the same bit vectors(bitVect1, bitVect2) as in the algorithm

before. However, the main difference is that we also insert

the bit vector bitVect2 in all nodes, even if a node does

not correspond to a valid prefix. It is easy to see that by

doing so we can at most double the amount of memory be-

cause every node other than a leaf has two children in a

compressed trie.

However, now the step 9 in the previous algorithm is

replaced by reading bitV e
t2 from either a node with a

prefix that matches the prefix of the rule to be checked, or

from the first node down the path if there is no node with

a valid match. All the other steps in the algorithm remain

unchanged. By doing so in each search for a conflict of

the rule R in each dimension i the algorithm needs to read

bitVect1 from all the valid prefix nodes that are traversed

until the longest prefix match plus the bitVect2 from the

node that has H
i

as a prefix and has the smallest height.

For example, suppose that we want to check a rule

(1�; 1�) for possible conflicts with the other rules in our

example in Figure 2. In this case the total number of bit

vectors which are read is: 2 + 2 = 4 (Figure 6). The

first value is given by the number of bitVect1 values to be

read (line 4; 5 in the pseudocode), while the second value

is given by the number of bitVect2 values to be read (line

7 in the pseudocode). Thus we observe that the number of

bitVect2 values read is k, where k is the number of dimen-

sions. The pseudocode for the algorithm is given below.

The tries T
i

; i = 1 : : : k are all assumed to be compressed.

1 FastDetectConflict (R(H

1

; : : : ; H

k

); T (T

1

; : : : ; T

k

))

2 for i 1 to k do

3 temp[i℄ 00 : : : 0;

4 for each valid prefix node M from root until

an exact match of H
i

5 temp[i℄ M:bitV e
t1

S

temp[i℄;

6 L the smallest height node having H
i

as prefix

7 temp[i℄ temp[i℄

S

L:bitV e
t2;

8 return
T

k

i=1

temp[i℄;

As in the previous algorithms there are a number of bit

vector operations which can be made more efficient using

aggregation. If the algorithm above uses aggregation, the

pseudocode remains unmodified but the semantics of both

the union and intersection operation as well as the data

structure used for representing bitVect1 and bitVect2 need

to be changed. We call SBV our algorithm for fast conflict

detection and ASBV the modified version of the algorithm

using aggregation.

V. EVALUATION

In this section we evaluate our conflict detection al-

gorithm versus the naive algorithm and simplistic exten-

sions of previous bit vector schemes on both real and

synthetically created databases. The synthetically created

databases are necessary to show the scalability of our al-

gorithm; the real databases we were able to obtain are rel-

atively small.

A. Theoretical Evaluation of SBV

The metric used to evaluate our algorithm is the num-

ber of memory words which are read to determine whether

a new rule has a conflict with the existing rules. Conflict

detection using algorithms based on the original bit vec-

tor semantics have their worst case when a rule containing

wildcards in all the fields is checked for conflict. All the

valid prefix nodes in all tries (all the leaves in the opti-

mized version) are involved in the computation. All the

bit vectors from these nodes need to be read in order to

establish the final answer.

By contrast, we have the following theorems for the

worst case behavior of our new SBV algorithm.

Lemma V.1: Given any database of rules D, and any

rule R, a check for conflicts between R and the rules in

D using the SBV algorithm requires the read of at most

one bitVect2 vector for each dimension of the database.

Proof: Follows immediately from algorithm descrip-

tion above.

For a given database, let V denote the maximum number

of valid prefix nodes found on a path from root to leaf on

the tries built on any of the k dimensions. Then we have:

Lemma V.2: Given any database of rules D, and any

rule R, a check for conflicts between R and the rules in

D using the SBV algorithm requires at most V bitVect1

vectors to be read for each dimension of the database.

Proof: Consider again a rule R(H
i

; : : : ;H

k

) which

needs to be checked against possible conflicts with the N

rules in the database D. Then, for each dimension i; i =

1 : : : k a trie traversal is done based on the prefixH
i

and we

call X the node in the trie which is the longest matching

prefix ofH
i

. The number of bitVect1 vectors which need to

be read is equal to the number of valid prefix nodes which

are on the path from root to X .

Studies of both prefix databases and firewall databases [12]

show that V � 4 in practice. If we call such databases

common, we have:

8

Corollary V.3: Given any common database of rules D,

and any rule R, a check for conflicts between R and the

rules in D using SBV algorithm requires at most 5�k� N

W

memory words from bit vectors to be read, where k is the

number of dimensions of the database, N is the number of

rules in the database and W is the size of a word, which

in a hardware implementation may have values as large as

500 : : : 1000.

A second corollary is that the conflict detection scheme

using the SBV algorithm is at most 5 times slower than

the lookup scheme using the original bit vector scheme for

common databases.

Even this extra factor of 5 is a considerable overesti-

mate of the slowdown required for fast insertion for the

following reason. The effect of aggregation on the com-

plexity of bit vector operation was investigated in [12].

Since 4 of the 5 bit vectors read in every dimension are

the sparse bitVect1 values (which are set only for an exact

match), these vectors will benefit much more from aggre-

gation than the less sparse bitVect2 values. Thus we should

achieve great gains from aggregation, and we provide ex-

perimental evidence in the next section.

B. Experimental Evaluation Method

We measure speed in terms of memory accesses, the

amount of memory used, and the effects of aggregation.

We use two different types of databases. First, we use 4

firewall databases from existing commercial organizations.

They are five dimensional databases in which each tuple

contains (IP source prefix, IP destination prefix, source

port range, destination port range, protocol). We convert

the destination and source port ranges to a prefix format

using technique shown in [1], [2]. The salient features of

these databases are that most prefixes have lengths 0 or 32,

no prefix contains more than 4 matching subprefixes, the

destination and source prefix fields in around half the rules

were wildcarded, and roughly half the rules had � 1024 in

the port number fields.

The second type of databases we used were randomly

generated 5 field (i.e., five dimensional) databases that are

generated as follows.

B.1 Synthetic Database Generation Characteristics

In the absence of large public classifiers we used the

methodology of [12] to generate random databases that

take into account characteristics of the small industrial

databases we had, as well as other factors that help stress

our algorithm.

The easiest mechanism for generating a synthetic

database is to randomly pick IP source and destination pre-

fixes from the core routing tables. The port range fields

can also be randomly generated using random numbers be-

tween 0 and 65535. The protocol field can be generated

either by randomly generating a number between 0 and

255 or by considering only the protocol value numbers for

UDP, TCP, ICMP together with a general value OTHER.

However, such a mechanism generates an unrealistic

rule database. For example, considering a routing table

with 80; 000 entries from which we generate IP prefixes,

we may not be able to insert even a single prefix of length

zero (wildcard) because core routing tables have no de-

fault routes. But we have already seen that our commer-

cial databases have a very high percentage of wildcards.

Therefore, in addition to randomly inserting prefixes from

routing tables our mechanism also randomly inserts zero

length prefixes in these fields based on a specified tuning

parameter.

A second technique we use is to insert (based on a spec-

ified tuning parameter) a set of IP prefixes which share

a common subprefix (eg., the sequence �; 1�; 11�; 110�).

These elements are very rare in a real filter database, how-

ever they are crucial for increasing what we call false

matches [12] and thus increasing the stress on algorithms

using aggregation.

C. Performance Evaluation on Commercial Firewall

Databases

We experimentally evaluate our new algorithm SBV

with and without aggregation on the four commercial fire-

wall databases described in the beginning of this section.

Our algorithm trades memory size for speed by associat-

ing two different bit vectors with every single prefix node

in the tries. Therefore one would think it should use about

three times more the memory space used by the original

bit vector scheme. However, this is not true when one in-

cludes aggregation, as we see below.

We start by experimentally investigating the impact of

the data structures we use on the total memory required.

The rules in the databases are converted into a prefix for-

mat using techniques described in [1], [2]. The memory

space occupied by the nodes in the tries is identical for

both IBV and BV with or without aggregation. However,

our final algorithm SBV uses path compression, and there-

fore the number of nodes in the trie is reduced.

On the other hand, the memory space occupied by a

node in a compressed trie is higher than in a regular trie.

We consider a node in the BV algorithm with a regular

trie to use 3 memory words (pointers to two children, plus

pointer to a bit vector) while a node in the SBV algorithm,

using a compressed trie to use 6 memory words.

The results in Figure 7 confirm one expected observa-

tion: the memory size occupied by the bit vectors in the

9

BV scheme is half the size occupied by those in IBV and

about a third the size occupied by those in SBV (recall

that SBV also stores bit vectors in nodes which are not as-

sociated with valid prefixes). However, the results show

several other interesting features:

� 1: Aggregation considerably reduces the size of the

memory occupied by the bit vectors(column 4 vs. 5, col-

umn 6 vs. 7 and column 8 vs. 9). There is no reason

to store a word which has no bit set in the aggregate vec-

tor. The aggregate contains enough information to identify

the words containing bits which are set and the position of

these words.

� 2: Aggregation has a larger impact on the memory

size occupied by the bit vectors in either the IBV or SBV.

This is because a large number of bit vectors are of type

bitVect1 which corresponds to exact matches, with a very

large number of 0s which can be substantially compressed

using aggregation.

� 3: IBV with aggregation uses a smaller amount

of memory than the original bit vector scheme(BV) with

aggregation while SBV with aggregation uses a slightly

larger amount of memory because of additional bit vectors

that are inserted.

The performance results of SBV, IBV and BV together

with the naive O(N

2

) implementation of conflict search

are shown in Figure 8. The number represents the total

number of memory accesses to check the entire database

for conflicts. For naive search, we assume the cost of the

entire search for the database is the pairwise cost of exam-

ining the memory words in every pair of rules which is:
N�(N�1)

2

� S where S is the size of a rule in words. In

our case, 5 is a reasonable number for S for IP 5-tuples,

though compression of wildcarded prefixes could reduce

this by a factor of around two.

We consider a buildup with rules from the four commer-

cial firewall databases. We add each of the rules in these

databases in the order they were in the original database. A

conflict check is executed before each rule is inserted. The

results in Figure 8 which shows the total number of mem-

ory words which are accessed during the entire operation.

Several conclusions can be drawn:

� 1: Despite having similar worst case scenario as the

original bit vector scheme based algorithm, on average

IBV runs faster than BV.

� 2: Aggregation applied to BV contributes to a reduction

in the average conflict search time by a factor of 1:87 �

2:14.

� 3: Our SBV conflict search runs on average about

16 � 28 times faster than the naive O(N2

) algorithm that

is the previous best in the literature. An additional 1:5� 3

times improvement can be obtained by using SBV with

aggregation.

� 4: SBV conflict search runs on average about 6:5� 9:4

times faster than BV . Thus the new bit semantic is clearly

very helpful, but the use of aggregation appears also to be

essential, buying an extra factor beyond just the use of the

new semantic.

D. Performance Evaluation on 5�dimensional Synthetic

Databases

We expect that the gain of our algorithm should increase

with the database size, at least when compared to the naive

algorithm. To go beyond the small size of the commercial

databases we have access to, we now describe tests with

larger synthetic databases.

Unfortunately, database size is not the only parameter

since we also have other tuning parameters such as the

percentage of zero length prefixes, and the number of sub-

prefixes. We note that these parameters stress our algo-

rithm: for example, if no two prefixes are subprefixes of

each other, our algorithm will perform extremely well.

As we described earlier in the paper we create our syn-

thetic 5-dimensional databases generating the IP prefixes

by randomly selecting prefixes existent in routing tables

available for public at [15]. The port numbers and protocol

numbers are generated through a random selection of these

fields from the commercial databases we have. In this pa-

per we display results only for the synthetic databases gen-

erated using a view of the MAE-EAST routing table from

September 12, 2000. The results for databases with IP pre-

fixes generated for the other four routing tables in [15] are

similar and are not reproduced here.

Each database that is created is characterized by the

number of rules as well as the percentage of wildcards or

special subprefixes that are injected. Next we generate a

number of rules proportional to the number of rules in the

filter database. These rules have the same characteristics as

the database which is examined. For each rule we compute

the number of memory accesses it takes to identify possi-

ble conflicts with the rules already existing in the database.

In the Figures 11, 12 we report the average of these values.

SBV outperforms BV because it reduces the number of bit

vectors which need to be investigated during a conflict de-

tection. We show how this number changes from BV to

SBV in the same Figures 11 and 12.

The following observation limits the maximum perfor-

mance that may be achieved by a conflict detection algo-

rithm in our definition.

Observation 1: Given a K dimensional filter database,

there is no conflict detection algorithm that can run faster

than the fastest packet classification algorithm. (If this

10

Filter Nodes Nodes-Compressed BV ABV IBV AIBV SBV ASBV

DB

1

2970 2004 9880 4327 19760 3028 27248 4884

DB

2

3732 2190 6030 2502 12060 1987 16980 3543

DB

3

2493 1320 2108 1337 4216 1141 5848 1887

DB

4

2030 1530 2030 1304 4060 1029 5600 1708

Fig. 7. SBVvs. IBV vs. BV, with and without aggregation : the total number of memory location that are occupied by the algorithm’s data

structures. The first two columns represents the total number of memory locations occupied by the nodes in the trie with and without trie

compression, while the next six columns represent the total number of memory locations occupied by the bit vectors(and aggregates) for all

three algorithms.

Filter No. of rules Naive BV ABV IBV AIBV SBV ASBV

DB

1

1645 6; 760; 950 4; 063; 619 2; 709; 481 1; 442; 665 365; 190 480; 912 158; 753

DB

2

949 2; 249; 130 1; 376; 874 1; 028; 128 937; 612 271; 414 211; 074 101; 024

DB

3

523 682; 515 576; 930 482; 700 429; 906 130; 227 77; 419 44; 367

DB

3

418 435; 765 490; 645 431; 084 304; 722 84; 436 52; 666 32; 866

Fig. 8. SBVvs. IBV vs. BV, with and without aggregation : the number of memory accesses for conflict check and update on a firewall database

with rules from four commercial firewall databases. The number of rules are displayed in the second column while the other columns show

the total number of memory accesses for the naive O(N

2

) algorithm, the BV, IBV, and SBV algorithms with and without aggregation. A

prefix of A denotes aggregation

were not so, one could use the conflict detection algorithm

for lookup.)

As a result, in our measurements, instead of comparing

our algorithm with the naive implementation, we compare

the performance of SBV with both the original BV-based

conflict detection as well as the complexity of packet clas-

sification using BV. Note that we are comparing our al-

gorithm for the harder problem of conflict detection with

one of the best algorithms (BV) for the easier problem of

packet classification.

Effect of zero-length prefixes: We first consider the ef-

fect of zero-length prefixes (wildcards) on both schemes

with and without aggregation. We investigate both the

memory size occupied by the bit vectors as well as the

average time it takes for a conflict search. In the SBV

scheme with aggregation the overall memory size gets re-

duced by the insertion of wildcards. This is because when

more rules with zero-length prefixes are inserted they only

modify the bit vectors associated with the root of the tries.

The bit vectors associated with other trie nodes remain

very sparse allowing a large compression coefficient to be

achieved by using aggregation. The results are displayed

in Figure 9.

This behavior sharply contrasts with the behavior of the

original BV scheme in which a value of 10% or higher of

wildcards injected results in all the bits of all of the aggre-

gates being set. This is why the memory size by using BV

with aggregation reaches a ceiling equal to (1 +

1

A

) � L,

whereA is the size of the aggregate andL is the total mem-

ory size occupied by the bit vectors in the BV.

We next investigate the effect of zero-length prefixes on

the average conflict search time. We show the results in

Figure 11. For example, checking conflicts using SBV in

a database with about 20000 rules with 20% wildcards in-

jected 2 is about 217 times faster than the original BV algo-

rithm. It is also about 430 times faster if it is used together

with aggregation. This is because there are only, in aver-

age, 6 bit vectors which need to be investigated in SBV

while in BV this number is 432. Much more, despite in-

creasing the number of rules in the database, the average

number of bit vectors which need to be checked has not

been greater than 7.

Effect of injecting subprefixes: A second feature which

may directly affect the overall performance of our algo-

rithm is the presence of entries having prefixes which share

common subprefixes. These entries form groups of nodes

associated with valid prefixes which share a common sub-

prefix. These groups effectively create subtries. The root

of each subtrie is the longest common subprefix of the

group. We randomly generate elements from 50 differ-

ent groups. (This methodology is justified more carefully

in [12].) The IP prefixes in the synthetic database are

created either by randomly picking elements from these

groups or from the public routing tables from [15]. The

port number ranges and protocol numbers are also gen-

erated by randomly picking values from the commercial

firewall databases.

2We’ve noticed that it is very common for a filter database to contain

about 20% wildcards

11

No. of rules % of wildcards BV SBV

Regular Aggregate Nodes Regular Aggregate Nodes

250 0 1456 708 6093 4224 1772 2076

250 1 1624 894 7035 4680 1933 2292

250 5 1208 603 5385 3472 1510 1698

250 10 1360 814 5592 3888 1630 1896

250 20 1192 683 5103 3408 1428 1662

250 50 1192 998 4983 3368 1367 1632

1000 0 17760 4043 17781 52512 9094 6516

1000 1 17760 4731 18162 52384 9004 6492

1000 5 16896 4781 16866 49792 8648 6168

1000 10 16672 5980 16473 48864 8491 6036

1000 20 16320 7312 16056 47808 8220 5904

1000 50 14304 9144 14289 41984 7402 5190

2500 0 110837 15607 39942 329035 29882 16572

2500 1 105070 17629 37965 311734 28760 15696

2500 5 111074 19296 39432 329588 29973 16596

2500 10 92193 18773 34695 273814 25541 13794

2500 20 96301 32471 34734 285348 26311 14358

2500 50 75524 38242 28359 223175 21228 11214

10000 0 1472978 102681 106338 4381061 218262 55746

10000 1 1594109 143796 111624 4730369 233541 60120

10000 5 1448877 175971 103701 4301559 214260 54684

10000 10 1433540 263743 103083 4256800 212476 54120

10000 20 1323051 340302 96519 3930028 195974 49974

10000 50 971552 428862 75201 2886173 148135 36702

20000 0 5894416 303294 177528 17456636 735008 110820

20000 1 5655910 359773 172731 16771792 706347 106542

20000 5 5422412 551138 166866 16047510 676647 101838

20000 10 5332268 902307 165516 15799614 664737 100326

20000 20 4838980 1190362 154194 14327888 606927 90948

20000 50 3891842 1664650 128907 11527790 493130 73188

Fig. 9. The effect of aggregation on the total size of the memory occupied by the appended bit vectors in both the original bit vector scheme

and our scheme (SBV). The filter databases are synthetically generated using injection of zero length prefixes (wildcards) with different rates

(0 : : : 50). The other entries in the database are generated using random selection of prefixes from the MAE-EAST routing table and port

domains and protocol numbers extracted from our commercial firewall databases. A word is made up of 32 bits. The results in the table show

both the memory space occupied by the bit vectors with or without aggregation as well as the memory space occupied by the nodes.

These elements may contribute to an increase in the

number of memory accesses required by algorithms using

aggregation through what we call false matchings as well

as, in the case of SBV, through an increase in the number

of bit vectors that may need to be examined.

Figure 12 show that these prefixes do not have a large

impact in the overall performance of the algorithms. Also

the memory size used by SBV does not increase signifi-

cantly when the injection rate increases up to 20% (Fig-

ure 10). This is also true when aggregation is used.

VI. FAST RULE INSERTION AND DELETION

ABV and BV appear to have reasonably fast updates on

the average; however it is possible to insert a rule R that

has wildcards in all fields which causes a bit to be set in

every bit vector because R matches all rules. This will re-

quire touching most of the memory required by the algo-

rithm. For certain applications, such as stateful filters and

dynamic insertion of QoS filters, better worst-case update

times may be necessary. We add the following ideas to

ABV to allow fast insert/delete operations. We used these

12

No. of rules % of prefixes BV SBV

Regular Aggregate Nodes Regular Aggregate Nodes

250 1 1800 878 7473 5216 2134 2562

250 5 1432 742 6015 4128 1693 2022

250 10 1328 736 5616 3840 1626 1884

250 20 752 461 3105 2120 1007 1026

250 50 1272 573 5013 3608 1544 1752

1000 1 20704 4992 19974 61248 10239 7602

1000 5 21472 4722 20706 63328 10612 7848

1000 10 19296 4127 18654 56448 9718 6966

1000 20 20224 4759 18129 58464 10011 7170

1000 50 18048 4587 13962 49152 9041 5832

2500 1 100646 15385 36849 298067 27318 14994

2500 5 116999 14415 40713 346257 31503 17412

2500 10 98829 13868 35376 290562 27015 14562

2500 20 117315 17865 37527 336303 31317 16632

2500 50 97091 15658 27105 260937 27943 12444

10000 1 1507095 101785 107967 4471831 222140 56832

10000 5 1487063 103514 103893 4371045 218306 55284

10000 10 1546220 106599 103551 4493428 225782 56496

10000 20 1387216 102554 92181 3964145 205862 49398

10000 50 1077033 98494 69414 2981012 177339 36498

20000 1 5894416 303294 177528 16512002 696396 104760

20000 5 5590806 292961 166503 16333592 693170 102966

20000 10 5091884 277033 153528 14769844 634375 92760

20000 20 5319748 292784 155679 15302570 669256 95682

20000 50 3714684 251874 115128 10549352 515096 65508

Fig. 10. The effect of aggregation on the total size of the memory occupied by the appended bit vectors in both the original bit vector scheme and

our scheme (SBV). The filter databases are synthetically generated using injection of prefixes which are sharing a common subprefix with

different rates (0 : : : 50). The other entries in the database are generated using random selection of prefixes from the MAE-EAST routing

table and port domains and protocol numbers extracted from our commercial firewall databases. A word is made up of 32 bits. The results

in the table show both the memory space occupied by the bit vectors with or without aggregation as well as the memory space occupied by

the nodes.

rules implicitly in all the experiments above but summa-

rize our new ideas here:

� Reduced Precomputation: In the current algorithm, a

bit j is set for a prefix P in a Field k trie if the value of

Field k of Rule R
j

matches (i.e., is a prefix of) P . In the

new algorithm, a bit j is set for a prefix P in a Field k trie if

the value of Field k of Rule R
j

is exactly equal to P . For

example, if P = 101� and the Field k value of Rule R
j

is

�, then the original algorithm would have the bit set while

the new one will not. Intuitively, this simple modification

avoids large worst-case computation caused by examples

such as the insertion of a filter of all wildcards. We did

exactly this when we defined bitV e
t1 above.

� Increased Search Time: Despite the reduced precom-

putation above, we still need to collect all rules that match

Field k of a packet header for algorithm correctness. To

do so, when traversing the trie for field k for a value P , we

must take the OR of all bit maps associated with P and all

valid prefixes of P in the trie. However, each of the pre-

fix nodes also have associated aggregate bit maps; thus we

can ignore an aggregate at a prefix node if the summary bit

is a 0.

� Avoiding excessive reordering: If we delete rule 5,

and we have to push up the order number of all rules with

number greater than 5, then every bit map will have to

change. Similarly, if we insert a new rule 5 and wish all

rules no less than 5 downwards, we have a similar prob-

lem. Our solution is to simply leave a hole (that can be

filled later) for a delete, and to insert in arbitrary order (ei-

ther to fill the first hole left by a delete, at the end, or to

13

No. of rules % of wildcards BV Lookup BV SBV

Regular Aggregate Nodes Regular Aggregate Nodes

250 0 40 358 347 11 170 158 4

250 1 40 360 349 10 189 172 6

250 5 40 828 761 19 153 138 4

250 10 40 1093 1011 27 169 156 4

250 20 40 1557 1423 34 150 135 4

250 50 40 2209 2154 47 129 121 4

1000 0 160 784 708 14 292 225 4

1000 1 160 1150 955 19 323 246 5

1000 5 160 1935 1406 31 315 233 5

1000 10 160 4007 2768 63 323 246 5

1000 20 160 6432 4650 99 328 231 6

1000 50 160 8634 7034 129 296 228 6

2500 0 395 2352 2100 23 520 378 4

2500 1 395 4866 2886 46 592 369 5

2500 5 395 9432 4414 88 569 369 5

2500 10 395 15439 6722 141 547 342 5

2500 20 395 25319 12606 233 631 390 7

2500 50 395 37141 22750 335 575 373 6

10000 0 1580 10145 8901 30 1604 1036 4

10000 1 1580 26604 10972 79 2236 1048 6

10000 5 1580 87451 20610 260 2186 1007 6

10000 10 1580 162234 41055 482 2104 1065 6

10000 20 1580 258724 79826 768 2077 1118 6

10000 50 1580 354706 179365 1048 1876 1096 6

20000 0 3160 19713 17695 30 3058 1891 4

20000 1 3160 86767 22398 134 3657 1860 5

20000 5 3160 292513 48059 452 4213 1900 6

20000 10 3160 519727 106478 804 4152 1969 6

20000 20 3160 872227 235500 1348 4014 2060 6

20000 50 3160 1384532 661270 2137 3706 2099 6

Fig. 11. The complexity of an update with conflict checking using the original bit vector semantic(BV) and our new semantic (SBV), with

and without aggregation, and varying percentages of zero length prefix injection. The first two columns in the table represents the number

of rules using port number ranges, while the second column represents the number of wildcards injected. The third column represents the

number of memory words required by a lookup in the filter database using the original BV algorithm to read the one bit vector in each of

the five dimensions. The last two groups of columns are associated with the two algorithms BV and SBV respectively. The columns in the

group are associated with the number of memory words required by an update with conflict checking with and without using aggregation as

well as the total number of bit vectors which are investigated during the operation. A word is made up of 32 bits. The aggregate size is also

equal to 32. The IP prefixes in the filter database are synthetically generated either using injection of zero length prefixes (wildcards) with

different injection percentages (0 : : : 50) or by random selection of prefixes from the MAE-EAST routing table. Port ranges and protocol

numbers are extracted from our commercial firewall databases.

help incremental sorting). Notice that this is possible be-

cause we can find all matches and map back to the old

order number using the techniques in [12].

Thus in summary the main idea is to reduce precompu-

tation associated by recording all matches associated with

prefixes and replacing it with more work to collect these

prefix matches during search. If the number of prefixes in

a path is no more than 4, then this slows down search by at

most a factor of 4, while allowing an order of magnitude

speedup in worst-case insertion time. This may be worth-

while for some applications or a portion of the database

that needs to be dynamic. The bit vector introduced above

is identical with the one we introduced in the previous sec-

tions for fast conflict detection. Therefore, the scheme de-

14

No. of rules % of prefixes BV Lookup BV SBV

Regular Aggregate Nodes Regular Aggregate Nodes

250 1 40 329 322 11 176 169 4

250 5 40 332 324 11 176 167 4

250 10 40 332 327 11 156 157 4

250 20 40 295 283 10 145 135 4

250 50 40 319 303 10 166 157 4

1000 1 160 1004 923 19 295 244 4

1000 5 160 905 838 16 305 258 4

1000 10 160 790 710 14 302 247 4

1000 20 160 998 925 19 318 256 4

1000 50 160 921 811 16 343 257 5

2500 1 395 2397 2151 24 527 380 4

2500 5 395 2162 1904 21 524 380 4

2500 10 395 2288 1995 23 496 359 4

2500 20 395 2834 2556 29 565 388 5

2500 50 395 2256 1971 22 684 410 6

10000 1 1580 9940 8712 29 1526 999 4

10000 5 1580 10092 8943 30 1658 1014 5

10000 10 1580 10016 8877 30 1782 1030 5

10000 20 1580 10239 8949 30 1919 1014 5

10000 50 1580 10322 8924 31 2706 1054 5

20000 1 3160 19713 17695 30 3053 1809 5

20000 5 3160 19791 17529 30 3199 1812 5

20000 10 3160 20089 17657 31 3404 1796 5

20000 20 3160 20596 18062 31 4008 1858 7

20000 50 3160 20562 17776 31 5299 1941 8

Fig. 12. The complexity of an update with conflict checking using the original bit vector semantic(BV) and our new semantic (SBV), with

and without aggregation, and with varying percentages of prefixes which share a common subprefix. The first two columns in the table

represents the number of rules using port number ranges, while the second column represents the number of prefixes sharing a common

subprefix injected. The third column represents the number of memory words required by a lookup in the filter database using the original

BV algorithm to read the one bit vector in each of the five dimensions. The last two groups of columns are associated with the two algorithms

BV and SBV respectively. The columns in the group are associated with the number of memory words required by an update with conflict

checking with and without using aggregation as well as the total number of bit vectors which are investigated during the operation. A word

is made up of 32 bits. The aggregate size is also equal to 32. The IP prefixes in the filter database are synthetically generated using either

injection of elements sharing a common subprefix with different rates (0 : : : 50) or using random selection of prefixes from the MAE-EAST

routing table. Port ranges and protocol numbers are randomly extracted from our commercial firewall databases.

scribed above has two features: it allows fast updates and

it also allows fast conflict detection.

Figure 4 illustrates the modified trie construction for the

simple two dimensional example database in Figure 2. For

example, in Figure 4, the bit vector associated with the

rightmost node corresponding to prefix 1111� in the sec-

ond field is now 00000010000 instead of 00100011011

in Figure 3. On the other hand, a search for prefix

1111� would yield three valid prefixes � (with bitmap

00000001001, the prefix 111� (with bitmap 00100000010)

and the prefix 1111� (with bitmap 00000010000) and the

OR of these bitmaps would yield the same answer found

in Figure 3 which is 00100011011.

Since the new algorithm reflects a tradeoff between in-

sert/delete times and search time (the new algorithm also

adds memory for more bitmaps but this can at most dou-

ble the number of bitmaps), we evaluated this tradeoff in

Table 13. The table shows the worst case update time

(measured in memory accesses) and the worst case lookup

time for 3 algorithms: the original BV algorithm, the orig-

inal aggregated bit vector (ABV), and the modified ABV

with fast insertion times (ABVI) for the four commercial

databases we used.

15

Notice that the worst-case insert-delete costs are cut by

nearly three orders of magnitude while the search time is

now increased by up to a factor of two when compared to

the BV scheme. This may be an acceptable tradeoff. How-

ever, for larger databases, ABVI lookups are faster than the

BV scheme though slower than ABV. In the case of a syn-

thetic database with 20K entries having injected 10% el-

ements having a common subprefix the worst case lookup

time does not exceed 720 memory accesses in the case of

our scheme with aggregation comparing with 1250 mem-

ory accesses in the case of BV. Also, our implementation

for ABVI does not do any sorting (see [12] for an expla-

nation of sorting), thus insertion and deletion increase the

number of false matches. We believe that implementing

incremental sorting (such sorting can be done proportional

to the number of distinct prefix lengths [16]) will make

ABVI more competitive with ABV in search times.

Filter Modified Mem. Loc. Lookup Time

BV ABV ABVI BV ABV ABVI

DB

1

9776 384 10 260 120 260

DB

2

5970 396 10 150 110 336

DB

3

2159 254 10 85 60 154

DB

4

2002 286 10 75 55 192

Fig. 13. ABVI vs ABV vs BV: the total number of memory locations

that are modified by an update operation in the worst case, and the

worst case lookup time.

VII. CONCLUSIONS

The bit vector scheme introduced by Lakshman and

Stiliadis from Lucent is a seminal scheme with an effi-

cient hardware or software implementation. However, this

scheme only scales to medium size databases, does not al-

low fast updates, and the naive extension to handle conflict

detection requires subtrie traversal and is thus very slow.

The scheme described in [12] scales to large databases but

has the second and third problems.

Our paper addresses all three of the above problems in

the original bit vector scheme (BV) [6]. Recognizing that

subtrie traversal is a bottleneck, we introduce two new

bit vector semantics: one based on subtrie matches, and

one based on exact matches. To handle fast insertion, we

added three other ideas: making search compute the union

of all valid bitmaps on the path (this slowdown is miti-

gated greatly by aggregates), leaving holes after deletes

that can be filled by later inserts, and (for search) comput-

ing all matches and mapping back to the original manager-

specified order.

By putting together this package of ideas, we provide

a scheme which has all three features:(1)packet classifica-

tion that is only a small constant slower than the fastest

packet classification algorithms (2) fast updates, and (3)

conflict detection that is an order of magnitude faster than

the best general purpose algorithms described in the liter-

ature.

We evaluated our implementation on both industrial

firewall databases and synthetically generated databases.

We studied the effect of wildcard injections on both

schemes BV and SBV. The average conflict detection time

for a database with about 20000 rules increases by a factor

of 44 in BV (or 13 times with aggregation) when the ratio

of wildcards inserted in the database increases from 0 to

20%. On the other hand, in the case of our SBV algorithm

this increase is insignificant for the same databases. This

is because SBV limits the number of bit vectors which are

read. Overall, for a database with 20000 rules and 20%

wildcard injection, our scheme with aggregation runs on

average 50 times faster than the best scheme in the exist-

ing literature, and 420 times faster than simplistic exten-

sions of the bit vector schemes that we use as a point of

departure.

The additional bit vector we introduced for conflict de-

tection also proved useful for allowing fast update oper-

ations. In our scheme an update operation modifies this

bit vector in only one node per trie in all the cases while

in BV with or without aggregation a worst case scenario

for update may modify all the valid prefix nodes in the

tries. However, our scheme has lower performance results

for Search than BV scheme with or without aggregation

for a small number of rules but it can perform better when

the number of rules increases. For example, in the case

of a synthetic database with 20K entries having injected

10% elements having a common subprefix the worst case

lookup time does not exceed 720 memory accesses in the

case of our scheme with aggregation comparing with 1250

memory accesses in the case of the BV scheme.

Finally, we note that the algorithms in this paper could

be used solely for conflict detection, in which case its one

disadvantage, a very small slowdown in search, is not even

a factor. We believe that conflict detection, though largely

ignored commercially today, will become an important

problem in the future as router classifiers grow in size and

use dynamic rule insertion to provide better QoS and se-

curity guarantees. We believe the algorithm described in

this paper can provide a fast solution for this important

problem. Our algorithm code and encrypted versions of

our firewall databases will be made publically available so

others can build on our code base.

16

REFERENCES

[1] V.Srinivasan G.Varghese S.Suri and M.Waldvogel, “Fast scal-

able level four switching,” in Proceedings of ACM Sigcomm’98,

september 1998.

[2] V.Srinivasan S.Suri G.Varghese, “Packet classification using tuple

space search,” in Proceedings of ACM Sigcomm’99, september

1999.

[3] A. Hari, S. Suri, and G. Parulkar, “Detecting and resolving packet

filter conflicts,” in Proceedings of Infocom, march 2000.

[4] P. Gupta and N. McKeown, “Packet classification on multiple

fields,” in Proceedings of ACM Sigcomm’99, september 1999.

[5] P. Gupta and N. McKeown, “Packet classification using hierar-

chical intelligent cuttings,” in Proceedings of Hot Interconnects

VII, Stanford, august 1999.

[6] T. V. Lakshman and D. Stidialis, “High speed policy-based packet

forwarding using efficient multi-dimensional range matching,” in

Proceedings of ACM Sigcomm ’98, september 1998.

[7] M. M. Buddhikot, S. Suri, and M. Waldvogel, “Space decomposi-

tion techniques for fast layer-4 switching,” in Proceedings of the

Conference on Protocols for High Speed Networks, august 1999.

[8] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementation

for software and hardware based routers,” in Proceedings of the

9th International Conference on Network Protocols ICNP 2001,

november 2001.

[9] V. Sahasranaman and M. M. Buddhikot, “Comparative evaluation

of software implementation of layer-4 packet class schemes,” in

Proceedings of the 9th International Conference on Network Pro-

tocols ICNP 2001, november 2001.

[10] A. Feldman and S. Muthukrishnan, “Tradeoffs for packet clas-

sification,” in Proceedings of Infocom vol. 1, march 2000, pp.

397–413.

[11] Memory-memory, ,” in http://www.memorymemory.com, 2000.

[12] F. Baboescu G.Varghese, “Scalable packet classification,” in Pro-

ceedings of ACM Sigcomm’01, august 2001.

[13] V. Srinivasan, “A packet classification and filter management sys-

tem,” in Proceedings of Infocom, march 2001.

[14] D. Eppstein and S. Muthukrishnan, “Internet packet filter man-

agement and rectangle geometry,” in Proceedings of the 12th

ACM-SIAM Symposium Discrete Algorithms, 2001, pp. 827–835.

[15] Merit Inc., “Ipma statistics,” in http://nic.merit.edu/ipma, 2000.

[16] D. Shah and P. Gupta, “Fast updates on ternary-cams for packet

lookups and classification,” in Proceedings of Hot Interconnects

VIII, Stanford, august 2000.

