Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T20:46:32.024Z Has data issue: false hasContentIssue false

Some Ramsey Schur Numbers

Published online by Cambridge University Press:  15 February 2005

JENS-P. BODE
Affiliation:
Diskrete Mathematik, Technische Universität Braunschweig, 38023 Braunschweig, Germany (e-mail: jp.bode@tu-bs.de, h.harborth@tu-bs.de)
HANS-DIETRICH O. F. GRONAU
Affiliation:
Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany (e-mail: gronau@mathematik.uni-rostock.de)
HEIKO HARBORTH
Affiliation:
Diskrete Mathematik, Technische Universität Braunschweig, 38023 Braunschweig, Germany (e-mail: jp.bode@tu-bs.de, h.harborth@tu-bs.de)

Abstract

The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$.

Type
Paper
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)