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COUNTING HAMILTON CYCLES IN DIRAC HYPERGRAPHS

STEFAN GLOCK, STEPHEN GOULD, FELIX JOOS, DANIELA KUHN, AND DERYK OSTHUS

ABSTRACT. A tight Hamilton cycle in a k-uniform hypergraph (k-graph) G is a cyclic
ordering of the vertices of G such that every set of k consecutive vertices in the ordering
forms an edge. R6dl, Ruciriski, and Szemerédi proved that for k > 3, every k-graph on n
vertices with minimum codegree at least n/2+ o(n) contains a tight Hamilton cycle. We
show that the number of tight Hamilton cycles in such k-graphs is exp(nlnn—0(n)). As
a corollary, we obtain a similar estimate on the number of Hamilton ¢-cycles in such k-
graphs for all £ € {0, ..., k—1}, which makes progress on a question of Ferber, Krivelevich
and Sudakov.

1. INTRODUCTION

1.1. Counting Hamilton cycles in graphs. The problem of determining sufficient con-
ditions for the existence of Hamilton cycles in graphs is one of the central topics in graph
theory, and has given rise to extensive research. A classical result of Dirac [10] states
that graphs on n > 3 vertices with minimum degree at least n/2 (Dirac graphs) contain
a Hamilton cycle, and there are natural families of graphs which show that n/2 is best
possible.

Bollobas [3] and Bondy [4] asked for an asymptotic estimate for the number of dis-
tinct Hamilton cycles in Dirac graphs. In 2003, Sarkozy, Selkow, and Szemerédi [29]
made substantial progress on this question by showing that n-vertex Dirac graphs con-
tain exp(n Inn—0O(n)) Hamilton cycles. They also posed the question of whether this is the
right order of magnitude for graphs satisfying other conditions known to ensure Hamilton-
icity, like those of Ore, Pésa, and Chvatal (see [4]). Further, they conjectured that the min-
imum number of Hamilton cycles in n-vertex Dirac graphs is exp(nInn—n(1+1n2)—o(n)).

Cuckler and Kahn [8] analysed a self-avoiding random walk on the vertices of Dirac
graphs to verify this conjecture as a consequence of a more precise result. Moreover, in
a separate paper [7], they used entropy considerations to provide an upper bound for the
number of Hamilton cycles in Dirac graphs. More precisely, writing W(G) to denote the
number of distinct Hamilton cycles of a graph G, the main results of [7] and [8] together
state that for any n-vertex Dirac graph G, we have logy, ¥(G) = 2H(G) — nlogy e — o(n),
where H(G) is the entropy of G. Combined with the result [8, Theorem 1.3] that Dirac
graphs G on n vertices satisfy H(G) > §log, §(G), this confirms the conjecture of [29].
Moreover, the parameter H(G) is the maximum of a concave function subject to linear
constraints, and can thus be efficiently estimated. This yields an efficient algorithm for
estimating ¥ (G) for Dirac graphs G, to within subexponential factors.

1.2. Hamilton cycles in hypergraphs. The study of Hamilton cycles in hypergraphs
was initiated in a 1976 paper of Bermond, Germa, Heydemann, and Sotteau [2|. For k-
uniform hypergraphs (k-graphs), we may sensibly define a cycle in a number of ways (see
for example [21,24,30]). Let & > 2 be an integer and let £ € {0,...,k —1}. We say that a
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k-uniform hypergraph C' is an f¢-cycle if there exists a cyclic ordering of the vertices of C'
such that every edge of C' consists of k consecutive vertices and such that every pair of
consecutive edges (in the natural ordering of the edges) intersects in precisely ¢ vertices.
A Hamilton £-cycle of a k-graph G is a subgraph C C G, where C' is a k-uniform ¢-cycle
with V(C) = V(G). Thus, if G contains a Hamilton ¢-cycle, then k — ¢ divides |V (G)|.
Moreover, if £ = 0 then a Hamilton ¢-cycle is just a perfect matching of G. We usually call
a (k — 1)-cycle a tight cycle, and we say that a Hamilton (k — 1)-cycle of a k-graph G is a
tight Hamilton cycle of G.

We wish to generalise the study of Hamilton cycles in Dirac graphs to the setting of
hypergraphs, and so we now need a natural hypergraph generalisation of the notion of
degree. Given a k-graph G and a set S C V(G) of k — 1 vertices, we say that the codegree
of S'in G, denoted dg/(S) (or simply d(S) when G is clear from the context), is the number
of edges of G containing S. For a k-graph G, we write §(G) for the minimum codegree
over all (k — 1)-sets S C V(G), and refer to this quantity as the minimum codegree of G.

Katona and Kierstead [16] gave a sufficient condition on the minimum codegree for k-
graphs to have a tight Hamilton cycle. Further, they conjectured that for all integers k& > 2,
a minimum codegree of at least n/2 suffices for n-vertex k-graphs. Rodl, Rucinski, and
Szemerédi proved an asymptotic version [25] of the & = 3 case of this conjecture, and then
an exact version for large n [28]. The work of [25] was shortly afterwards generalised to
all integers k > 3 by the same authors [26]. Further results on tight Hamilton cycles can
be found e.g. in [1,23]. For (k — ¢) 1 k, Kithn, Mycroft, and Osthus [18] asymptotically
determined the threshold for the existence of a Hamilton ¢-cycle (this generalised previous
results in [13,17,19]). Subsequently several exact results were proved in [9,14]. It turns
out that the threshold is significantly below n/2 if (k —¢) { k. For all other cases it follows
from the result of [26] that the threshold is asymptotically n/2.

1.3. Our main result. Ferber, Krivelevich, and Sudakov [12] were the first to generalise
the study of counting Hamilton cycles to the hypergraph setting (and also considered
perfect matchings). They proved for 1 < ¢ < k/2 that if a k-graph G on n vertices with
(k — ¢) | n satisfies 6(G) > an for some o > 1/2; then G contains (1 — o(1))" - n! -

(W) "' Hamilton l-cycles. As a natural question, they asked whether this can be
generalized to all £.

We adapt some ideas from the random walk analysis of [8] to show that any large k-graph
whose minimum codegree is slightly above n/2 contains a large number of tight Hamilton

cycles.

Theorem 1.1. For a fized integer k > 2 and a fixed constant v > 0, the number of tight
Hamilton cycles of a k-graph G on n vertices with 6(G) > (1/24~)n is exp(nlnn—©0(n)).

Notice that we claim this number of tight Hamilton cycles holds with equality, up to
the exponential error bound exp(—©(n)). We discuss this error bound further in the
concluding remarks. It will suffice to show that the lower bound holds, since any k-graph
on n vertices trivially has at most (n — 1)!/2 distinct tight Hamilton cycles. Theorem 1.1
easily yields the following corollary about the number of Hamilton /-cycles in a k-graph
whose codegrees are slightly above n/2, for each ¢ € {0,...,k — 1}.

Corollary 1.2. For a fized integer k > 2 and a fixed constant v > 0, the number of
Hamilton £-cycles of a k-graph G on n vertices with (k —£) | n and 6(G) > (1/2 + v)n is
(i) exp ((1 = 3)nlnn —O(n)), if £ = 0;
(i) exp(nlnn —O(n)), if £ € [k —1].

This addresses the above mentioned question of Ferber, Krivelevich and Sudakov (though
our result is less precise than theirs for ¢ < k/2). We remark that the —%—term for the case
of perfect matchings is missing in [12, Theorem 1.1|, but follows from their proof. Finally,
recall that the minimum codegree threshold for the existence of Hamilton ¢-cycles can be



below n/2 when ¢ < k — 1. It would thus be a natural question to extend the counting
results to this larger range. For the rest of the paper, we focus on counting tight Hamilton
cycles.

2. SKETCH OF THE PROOF OF THEOREM 1.1
In this section we provide a rough sketch of the proof of our main result.

2.1. Basic notation. We first need to introduce some notation that we use throughout the
paper. For a set V and a natural number ¢, we write (‘g/) to denote the set of all unordered
(-subsets of distinct elements of V. We write (V) to denote the set of all ordered ¢-subsets

of distinct elements of V', so that |(V)s| = !| (‘2) |. We usually use boldface capital letters

to denote unordered subsets S € (‘g) of the fixed size £, and we exclusively use boldface

capital letters with arrows above to denote ordered subsets g € (V)g. When an ordered
tuple g € (V)g is first given, the arrow will exclusively point to the right. We may

subsequently drop the arrow to denote the unordered version of this ¢-set, so that if g is
the ordered sequence of ¢ distinct elements (z1,...,x¢), then S subsequently used without

the arrow denotes the unordered set {z1,...,2¢}. Moreover, we write S to denote the

ordered /-tuple obtained by reversing the ordering of g, so that <§ = (Tg, Tp—1y...,21).
Let G = (V,E) be a hypergraph and let U C V(G). Then the sub(hyper)graph of G
induced by U, denoted G[U], is the hypergraph H = (V(H), E(H)), where V(H) = U,
and E(H) is precisely the set of all edges of G containing only vertices in U. We write G—U
to denote the hypergraph G’ C G obtained from G by deleting the vertices in U and all
edges of G containing any vertex in U. We say that a k-graph P is a k-uniform tight
path (or simply tight path if k is clear from the context) if P admits an ordering of its
vertices V(P) = {v1,...,vn} such that E(P) = {{vi,...,vi4k-1}: 1 <i<m—(k—1)}.
The ends of P are the ordered (k — 1)-tuples (vi,...,v5—1) and (Um, ..., Vm—t2). We
also say that P connects the ends of P. We say that a tight path P with m edges (and
thus with m + (k — 1) vertices) is an m-path, and has length m. For a k-graph G and an
integer ¢ > k we say that a sequence (v1,vs,...,v;) of (not necessarily distinct) vertices is
a walk in G if every set of k consecutive vertices in the sequence forms an edge. Let v > 0
be a constant. A k-graph G on n vertices is called v-Dirac if §(G) > (1/2 4+ v)n. Finally,
given a hypergraph G, we say a weighting of the edges x: E(G) — R is a fractional
matching if we have ) o x(e) < 1 for every v € V(G), and we say that x is perfect if
Y o5y X () =1 for every v € V(G).

2.2. Outline of the argument. Let v > 0, and let G be an n-vertex k-graph satisfying
0(G) > (1/2 + ~)n, where k > 2 and n is sufficiently large. The main step of our proof is
to count tight paths of length n — o(n) in G. Using the framework of Rédl, Ruciniski, and
Szemerédi [26], which is based on the absorption technique, we can complete each such
long path into a tight Hamilton cycle of G. The key lemma (Lemma 5.1) in the proof of
Theorem 1.1 states that we can find many paths of length \/n in G, all starting at the same

ordered (k — 1)-tuple s € (V(G))k—-1, such that for each such path the remainder of G
still has minimum codegree at least (% + v - n_2/3) (n —+/n). The proof of this ‘iteration
lemma’ is the sole focus of Section 5, and involves the analysis of a self-avoiding random
walk X on the vertices of G. In order to prove the iteration lemma, we first need to show
that G admits a perfect fractional matching which is ‘normal’;, which means that each edge
of G has weight ©(n~¥*1). We construct such a normal perfect fractional matching x in
Section 4 via a probabilistic argument based on switchings (it is not clear how to generalise
the entropy-based approach of [8] to the hypergraph setting).

In Section 5, we use x to define the transition probabilities of the random walk X. We
construct X’ such that an outcome of X" corresponds to a tight path in G of length \/n which

starts at some given s € (V(@))k—1. We wish to count the number of outcomes of X which
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essentially leave the y-Dirac property of the remaining graph intact. Such outcomes of X
are called good walks. It will suffice to show that X" is good with probability at least 1/2.
To do this, we will show that it is likely that the vertices that X visits look roughly like
a uniformly random subset of the vertices of G, of appropriate size. We will show that
the behaviour of X over a small number of steps can be assumed to be very close to the
behaviour of a modified version of X', in which the walk is allowed to revisit vertices. We use
the normality property of x to show that the modified walk mixes rapidly, and we use the
fact that x is a perfect fractional matching to show that, under the stationary distribution,
each vertex is essentially visited with the same probability. Thus, roughly speaking, the
distribution of the vertices for X' to visit at any step is close to uniform on V(G). We give
a more thorough sketch of the proof of the iteration lemma in Section 5.2.

In Section 6, we focus on repeatedly applying the iteration lemma to obtain many long
paths in G. Let P be a y/n-path in G obtained from the first iteration of the iteration
lemma, let T be the unordered set consisting of the final k — 1 vertices of P, and let
Gp =G — (V(P)\ T). The idea is that, since the ~-Dirac property is essentially intact
in Gp, we may find a new normal perfect fractional matching xp: F(Gp) — R* and can
thus apply the iteration lemma to Gp. In this second iteration, we insist that all the
walks X’ start at the final ordered (k — 1)-tuple of P. Then we may attach any of the
paths P’ from the second iteration onto P to obtain a longer tight path in G which still
leaves the y-Dirac property of the remaining graph essentially intact. We show that we
may iterate this process until fewer than n”/® vertices of G remain, and we multiplicatively
use the count of paths given by the iteration lemma to deduce that the number of resulting
long paths of G is essentially the number given in the statement of Theorem 1.1. (Observe
that each combination of paths yields a different concatenated path). Finally then, we
complete the proof of Theorem 1.1 by absorbing the vertices left over by each such long
path into a tight Hamilton cycle of G.

3. PRELIMINARIES

In the following section, we collect further notation, as well as some results that we will
use throughout the paper.

3.1. Notation. Let v > 0 be a constant. We say that a k-graph G is an (n, k, y)-graph if G
has n vertices and G is y-Dirac. When G is clear from the context, we often write V instead
of V(G). For a k-graph G and S € (k‘:l)’ we write Ng(S) == {v € V: SU {v} € E(G)}.
We say that S is isolated if Ng(S) = (), and that S is non-isolated if S is not isolated.

For a positive integer ¢, we say that a walk (v1,...,vp4,—1) on the vertices of G is an
l-walk. Let §, ? € (V)k—1. We say an f-walk (v1,...,vp4%—1) in G is an L-walk from §
to Tif S = (v1,...,v5—1) and T = (Vgg1,...,V45-1). A matching M of a k-graph G

is a collection of vertex-disjoint edges of G, and we say that M is perfect if every vertex
v € V(G) is included in some edge of M. Let M be a matching in a k-graph G. Where
it has no effect on the argument, we sometimes abuse notation and identify M with the
subgraph M’ C G satisfying E(M') = M and V(M') = {J,cpse. For finite sets U C V
and a function f:V — R, we define f(U) =", .y f(u), and || f]|cc = max,ev f(v). We
write 17 : V' — {0, 1} to be the indicator function for U, defined by 1y (z) =1if x € U,
and 1y (z) = 0 otherwise. For an event £ in a probability space, we write £¢ to denote
the complement of £. We write logx to mean logy x, and we write Inz to mean log, x.
We also write a = (1 £ b)c to mean (1 —b)c < a < (1 + b)e. For a natural number n
we write [n] = {1,...,n}. We write z < y to mean that for any y € (0,1] there exists
an xo € (0,1) such that for all 0 < 2 < ¢ the subsequent statement holds. Hierarchies
with more constants are defined similarly and should be read from the right to the left.
Constants in hierarchies will always be real numbers in (0,1]. Moreover, if 1/z appears
in a hierarchy, this implicitly means that z is a natural number. More precisely, 1/z < y
means that for any y € (0, 1], there exists an zy € N such that for all z € N with > xg



the subsequent statement holds. We assume large numbers to be integers if this does not
affect the argument.

3.2. Probabilistic tools. In this subsection we collect some probabilistic definitions and
results that we will need throughout the paper.

The total variation distance between two probability measures p and v on a finite set S
is dry (p,v) = sup{|u(T) — v(T)|: T C S}. It is well-known that the total variation
distance satisfies

(3.1) drv(nv) = 3 3 (s) — v(s)| = inf{B[X # Y1},
sGS
where the infimum is taken over coupled random variables X and Y having laws p and v
respectively (see [11, p.119] for more details). We write dry (X,Y) for the total variation
distance between the laws of the random variables X and Y.
Next, we need an inequality of [8], which follows easily from Azuma’s inequality.

Lemma 3.1 (|8, Lemma 5.3|). Let Xo, X1, ... be random variables taking values in a set'V,
and let g: V — R. Then for anyt > 0 and any p,q € N, we have
p

Z (9 (Xk1q) — Efg (Xktq) [Xo, s X))
k=0

P

Y
> tHgHOm/pq] < 2qe /2,

We will need the following Chernoff-type bound (see [5] and [15] for example).

Lemma 3.2. Let X be a random variable with a binomial or hypergeometric distribution.
Suppose E[X] > 0 and let t > 0. Then P[X <E[X]— ] < e t"/(CEX])

We conclude this section with a result which shows that most small sets in an (n, k, y)-
graph inherit the Dirac condition. The proof is given in the appendix.

Proposition 3.3. Let 1/n < 1/m < ~v,1/k,1/t,1/¢, where ¢ | n, and let G be an (n,k,~)-
graph. Let P be a partition of V into £-sets and let Py C P be of size |Py| =t. Pick P’ C
P\ Py of size m uniformly at random. Then P [G[J(PoUP")] is v/2-Dirac] > 1 — e~ V™,
3.3. Tight Hamilton-connectedness. Let G be an (n, k,~)-graph and let P be a tight
path in G. We say that P is a tight Hamilton path of G if V(P) = V. We say that G
is tight Hamilton-connected if for any disjoint ? € (V)g_1, there is a tight Hamilton
path of G which connects § and ? We will deduce from the results in [26] that large
(n, k,~y)-graphs are tight Hamilton-connected for k£ > 3. This will be important in the

absorption step of our main argument, and also in the mixing part of our random walk
analysis. We begin by stating the main theorem of |26].

Theorem 3.4 (|26, Theorem 1.1]). Let 1/n < 7,1/k, where k > 3, and let G be an
(n,k,~)-graph. Then G contains a tight Hamilton cycle.

The next lemma ensures the existence of an ‘absorbing path’ A, which can absorb small
sets of vertices into its interior.

Lemma 3.5 (|26, Lemma 2.1|). Let 1/n < v,1/k, where k > 3, suppose that v < 1/(32k),
set 3= 28"442%%n_and let G be an (n,k,~)-graph. Then there exists a tight path A in G
with |V (A)| < 16kv*~In such that for every subset U C V' \ V(A) of size |U| < S, there is
a tight path Ay in G with V(Ay) = V(A)UU and such that Ay has the same ends as A.

The next lemma will enable us to find constant-length tight paths between any disjoint
pair of ordered (k — 1)-sets of vertices.
Lemma 3.6 (|26, Lemma 2.4|). Let 1/n < 7,1/k, where k > 3, and let G be an (n,k,~)-
graph. Then for every € (V)k—1 with SN'T = 0, there is an l-path P in G with
¢ < 2k/~y? that connects é and
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We are now ready to prove that large (n, k,~)-graphs are tight Hamilton-connected.

Lemma 3.7. Let 1/n < v,1/k, where k > 2, and let G be an (n,k,~y)-graph. Then G is
tight Hamilton-connected.

Proof. Firstly, note that this result follows easily from Dirac’s Theorem for the case
k = 2. Now, suppose k > 3 and suppose without loss of generality that v > 0 is sufficiently
small in comparison to k. Let S, T € (V)i_1 be disjoint, and write S = (s1,...,Sk_1).
Set ' := 3v/4, so that G’ .= G — (SUT) is 7/-Dirac, and set n’ .= n — 2(k —1). We
apply Lemma 3.5 to G’ to obtain a tight path A in G’ with [V(A)| < 16k(y')*~1n/, with
the properties as stated in Lemma 3.5. Choose a set W C V \ (SUT U V(A)) of size
(v')*n/ uniformly at random among all sets of that size. Then a simple application of
Lemma 3.2 shows that with high probability, for all M € (k‘jl) we have |[Ng(M)NW| >
(1/2++~/2)|W|, and thus in particular, G[W] is v/2-Dirac. We fix such a choice of W. Set
G" =G - (SUTUV(A)UW), and notice that G” is y/2-Dirac.

We apply Theorem 3.4 to G” to obtain a Hamilton cycle C of G”. Delete k—1 consecutive
edges of C' to obtain a Hamilton path P of G” with ends 2 and ? We use the property
that all (kK — 1)-tuples in G have high codegree in W to find, for each i € [k — 1] in
turn, a vertex v; € W\ {vy,...,v;—1} such that {s;,...,sg_1,v1,...,0;} is an edge Let
§/> (vk 1,---,01), so that we have found a (k — 1)-path Pg w1th ends S and S/ Let A1
and A2 be the ends of A. We similarly find mutually disjoint X’ Y’ 1? 1?2, T € (W)g_1
and (k—1)-paths Px, Py, Pa,, Pa,, Pr with the corresponding pairs of ends. Since G[W] is
7/2-Dirac, we can apply Lemma 3.6 to obtain a path Psy of length at most 8%k/+? in G[W]
which connects <S7 and }?’ Since Psx contains so few Vertlces we can repeat the process
to find disjoint paths Py 4, and Pa,7r in G[W] with ends Y’ and AY, and A} and T,
respectively. Let W’ := W \ (V(Psx) UV (Pya,) UV(Pa,r)). We apply the absorbmg
property of A to obtam a tight path Ay in G with V(Ay) = V(A)UW’, such that Ay
has ends A1 and A2

Then PsUPgx UPx UPUPy UPya, UPs, UAyUPy,UPa,7UPr is a tight Hamilton
path in G which connects § and ]

4. NORMAL PERFECT FRACTIONAL MATCHINGS

Let £ > 2 and let G be a k-graph on n vertices. We say that an edge weighting
x: E(G) —» R* is C-normal if
1 C
(4.1) pos <x(e) < pyg for each e € E(G).

In this section we adapt some ideas of [6] to show that an (n, k,v)-graph G admits a normal
perfect fractional matching (see Lemma 4.2). This will be an essential tool in our random
walk analysis for showing that the random walk is roughly equally likely to visit any vertex.
The idea is to construct a perfect fractional matching of G in which the weight of any edge e
is set to be the probability that e is included in a uniformly random perfect matching of G.
(A sufficiently large (n, k,~y)-graph with k | n has at least one perfect matching [20,27]). A
crucial feature of this approach is that any edge e is roughly equally likely to be included
in a uniformly random perfect matching of G. We show this using the so-called ‘switching
method’ in a similar way as in [6]. Let £ > 2, let G be a k-graph, let e € E(G), and
let My be a perfect matching of G containing precisely ¢ edges intersecting e. Supposing
0 <{¢<k-—1, we define an (e, My)-upswitching to be a matching ¥ of G satisfying

(i) e CV(Y);

(ii) Y contains precisely ¢ + 1 edges intersecting e;

(iii) for all ¢’ € My, we have either ¢ CV(Y) or & NV (Y) = 0.



Supposing instead that ¢ € [k], we define an (e, My)-downswitching to be a matching Y
of G satisfying

(i) e CV(Y);

(ii) Y contains precisely ¢ — 1 edges intersecting e;

(iii) for all ¢’ € My, we have either ¢/ CV(Y) or ¢ NV (Y) = 0.
Note that if Y is an (e, My)-upswitching, then we can obtain a new perfect matching M’
from My by replacing M,[V (Y')] with Y. Then M’ contains exactly /+1 edges intersecting e.
Similarly, if Y is an (e, My)-downswitching, then M’ has exactly £ — 1 edges intersecting e.

Lemma 4.1. Let 1/n < 1/C < v,1/k, where k > 2 and k | n. Let G be an (n, k,~y)-graph,
and let M be a uniformly random perfect matching of G. Then for each e € E(G), we have

1 C
W SP[BGM} S nk*l'

Proof. Choose new integers m and B satisfying 1/n < 1/C < 1/B < 1/m < v,1/k,
and fix e € E(G). For each integer ¢ € [k], let My be the set of perfect matchings of G
containing precisely £ edges intersecting e. Note that P [e € M| = |[My|/(|JM1|+---+|My]|)
and recall that there is at least one perfect matching of G since G is y-Dirac (so the
denominator here is nonzero). We first bound |My|/|My41| from above and below for
each ¢ € [k — 1], and (4.2) will follow quickly. Let £ € [k — 1]. We define an auxiliary
bipartite multigraph G;Z with vertex bipartition (Mg, Myy1). For each M, € M, and
each (e, My)-upswitching Y of size m (containing precisely m edges), we add an edge
in G;g from M, to the matching My, € My, obtained by replacing M,[V (Y)] with Y.

Write 5/6\’/2 to denote the minimum degree in G; , over all M, € My, and write Ai’}{ﬂ to

(4.2)

denote the maximum degree in ng over all My, € My41. By double-counting |E(GZ£)|,

we obtain |[My|/|Ms1] < Ai’;{ﬂ/éﬂl. To bound Ai’}gﬂ, we fix My, 1 € My, and bound
the number of pairs (My,Y'), where My € My and Y is an (e, My)-upswitching of size m
that produces My;1. Note that any such Y must contain all vertices in the £ + 1 edges
of My, intersecting e, and there are at most n™ ¢! choices for the other m — £ — 1 edges
of Myy1 whose vertices to include in V(Y'). Once V(Y) is fixed, there are at most (mk)!
choices for My[V (Y')] (and hence for My). Thus, we have Af\’LH < (mk)nm—t1,

To bound 55\’/1/, we fix My € M,y and bound the number of (e, My)-upswitchings of size m
from below. Let U(M;) == {¢’ € My: ene’ # 0}. Note that any (e, My)-upswitching Y

—¢

of size m must include all the vertices in U(M;), and there are ("r{b - ) choices for the

remaining m — £ edges of M, whose vertices to include in V(Y'). We appgly Proposition 3.3
(with P = My, Py = U(My), and with m — ¢, k, ¢ playing the roles of m, ¢, t, respectively)
to deduce that there are at least (1 — e=V™=) (nyék__f) > (mk)™™n™* choices of X C
My \ U(My) of size m — £ such that G[V (X UU(Mjy))] is 7v/2-Dirac. Note that for each
such X, we may first choose a matching U’ of size £ + 1 in G[V (X U U(M,))] such that
e C V(U') and e intersects every edge in U’, and then choose a perfect matching Y’
of GIV(X UU(My))\ V(U')]. Then Y =Y UU’ is an (e, My)-upswitching of size m,
unique to this choice of X. We deduce that 55\’;[ > (mk)™™n™= ¢ and conclude that
(Mol /[ M| < (mk)(mk)™/n < B/n.

We now bound the terms |My|/|Mpy41] from below analogously. Let ¢ € [k — 1]. We
define an auxiliary bipartite multigraph Gif 1 with vertex bipartition (Mg, My11). For

1
e l+1

from M1 to the matching M, € M, obtained by replacing My, 1[V (Y)] with Y. Let 55\’/t+1

denote the minimum degree in Gi o1 among all Myyy € Mpyq, and let Aj\’/t denote the

each My,1 € My and each (e, My q)-downswitching Y of size m, we add an edge in G

maximum degree in Gi 41 among all My € M,. It is easy to see that Af\’/t < (mk)nm=¢,
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Now fix My11 € Myyq and let U(Myyq) == {€’ € Myyq: ene’ # 0}. We apply Lemma 3.3
again (with P = Myyq, Py = U(Myy1), and with m — € — 1, k, £ + 1 playing the roles
of m, £, t, respectively) to deduce that 5?’/%“1 > (mk)™mn™~ 1 and thus |M,|/| M| >
1/((mk)!(mk)™n) > 1/(Bn).

Finally, note that

| M| My IMa| [(Ma|  [Myq| B! C
Plee M| = < = : < < ,
M = AT TG S Myl M M M) S R S e
and similarly P[e € M] > [My|/(k|Mg|) > 1/(kB*tn*=1) > 1/(CnF~1). 0

Finally, we use Lemma 4.1 to show that an (n,k,~)-graph admits a normal perfect
fractional matching.

Lemma 4.2. Let 1/n < 1/C < ~,1/k, where k > 2, and let G be an (n,k,~y)-graph.
Then there exists a C-normal perfect fractional matching of G.
Proof.  Let i be the unique integer in {0,1,...,k — 1} satisfying n = ¢ mod k. For
each S € (‘Z/), let Gs := G — S. We define an edge weighting xs: F(Gg) — RT by setting
xs(e) =P[e € Mg] for each e € E(Gs), where Mg is a uniformly random perfect matching
in Gg. We define an edge weighting x: F(G) — R™ by setting

0= (") T ws

se(Y)
for each e € E(G), where we set xg(e) to be 0 for each S such that e ¢ E(Gg). Then, by
Lemma 4.1, x is the desired C-normal perfect fractional matching of G. U

5. COUNTING SHORT PATHS

The aim of this section is to prove the following lemma, which guarantees many short
tight paths in a y-Dirac k-graph G, such that the y-Dirac property of the graph G’ obtained
from deleting any such path is still essentially intact.

Lemma 5.1 (Iteration Lemma). Let 1/n < ¢ < 7,1/k where k > 2, let G be an (n, k,~)-
graph, and let § € (V)k—1. There exists a set P of \/n-paths in G such that:
(i) [P > (en)V™;
(ii) S s an end of each P € P;
(iii) of P € P and T is the non-S end of P, then G' .= G — (V(P) \ T) satisfies
5(G) > (12 4+~ — n2/%)(n — /).

We now provide some important definitions and sketch the proof of Lemma 5.1. We
then collect together a number of technical lemmas, and finally use these results to prove
Lemma 5.1.

5.1. Random walk notation. We first define some random walks which will be of central
importance to the proof of Lemma 5.1. Let £k > 2 be an integer, let G be a k-graph,
and let x: E(G) — RT be a positive edge weighting function. Each of our random walks
Z = (Z_(k—2) Z—(k—3), - --) on V will begin with an ordered (k—1)-tuple (Z_(;_g), ..., Zo)
chosen according to some probability distribution p: (V)i — R*. We say that p is
the initial distribution of Z. Random vertices will then be added one-by-one to each Z
according to the transition probabilities of Z. Suppose we are given a random walk Z =
(Z_(k—2)s--->Zj—1) on V, up to time j — 1. Then we say that semiviable vertices for
step j are those vertices v € V satisfying {Z;__1),...,Zj—1} U {v} € E(G). We say
that viable vertices for step j are those vertices v € V which are semiviable and satisfy



v ¢ A{Z_(g-2),---,Zj-1}. Let Q; and R; denote the sets of semiviable and viable vertices
for step j, given the random walk up to time j — 1, respectively.

We say that a random walk X' = (X_(;_9), X_(4_3),...) on the vertices of G, with any
initial distribution u, is a self-avoiding x-walk to mean that the transition probabilities
of X for j > 1 are defined for all v € V' by

x ({X;—k—1) X 1}U{U})1R( )
szRjX({X] (k—1)> X1} U {w})
whenever R; is non-empty, otherwise we terminate the walk. Here, and throughout, we
define x (S) = 0 for any S ¢ FE(G). Note that X' = (X_(,_2), X_(4—3),...) is equivalent
to the random walk X1 = (io, 21, ...), where each 2 is the ordered (k — 1)-tuple
21- = (Xi—(k—2),---» Xi). We thus refer to both & and X1 a5 the self-avoiding x-walk
on G with initial distribution u, since they are reformulations of each other.

Suppose now that G has no isolated (k — 1)-tuples (this will always be true for us).
We say that a random walk ) = (Y_(;_2), Y_(4_3),...) on the vertices of G (or k=1 =

?0, ?1, ...)on (V)g_1, where ?Z = (Yi—(k—2),-- -, Ys)), with any initial distribution p,
is a simple x-walk to mean that the transition probabilities of ) for j > 1 are defined by

x({Yj—k-1y,-- -, Y; 1}U{U}) 1g,(v)
ZweQ X({Y —(k—1)> 1}U{w})

for all v € V. Note that Y*~1 is a Markov chain on (V)_; because the transition
probabilities at any time depend only on the current state. When the stationary distribu-
tion of Y*—1) exists and is unique, we denote it by 7, and we say that a simple x-walk

w1 = (Wo, Wl, ... ) on the ordered (k—1)-tuples of V is the stationary x-walk on G if
the initial distribution is 7. Again, we have that W*—1) = (Wo, Wl, ...) is equivalent to
the walk W = (W_(;_2), W_(_3),...) on the vertices of G, where each Wz is the ordered
(k — 1)-tuple W}Z = (Wi—k—2),---,Wi). We also call W the stationary x-walk, and use
the vertex (or tuple) version whenever it is more convenient. Finally, whenever the initial
distribution p of X' (or V) satisfies u(g) — 1 for some S € (V)k—1, we say that X (or ))

has starting tuple

P [XJ =V | X—(k—2)a- .. ,Xjfl] =

(5.1) PY;=v|Y_(4_9),...,Yj_1] =

5.2. Further notation and sketch of the proof of Lemma 5.1. We now describe our
approach to proving Lemma 5.1. Introduce a new constant C satisfying 1/n < ¢ < 1/C <«
v,1/k, and let G be an (n, k,v)-graph. By Lemma 4.2, there exists a C-normal perfect
fractional matching x of G. We fix such a C-normal x throughout this proof sketch. We
will analyse a self-avoiding x-walk X on G with starting tuple § € (V)g—1. We stop the
walk after time x = \/n, so that we may write X' = (X_¢,_9),...,Xx). Note that each

outcome of X will correspond to a tlght k-path in G, with § as one end.
We define V; := VA\{X_(_2), ..., Xj_x—1)} to be the set of all vertices of G’ except for all

vertices X*~1 has visited strictly before 2 We say that Vj is the residual vertex set of G
at time j. We also define Gj := G[V}] and say that G; is the residual graph at time j. We
also write X'(j) to denote the walk X’ up to time j, speciﬁcally X(j) = (X_(k—2)>- - Xj)-

We will show that it is likely that the ~-Dirac property of the residual graph G, is still
essentially intact, by showing that it is likely that the vertices that X visits look roughly
like a uniformly random subset of V' (see Lemma 5.7). For this, we will use the following
‘tracking functions’ to monitor the progress of X', with respect to how the codegree of each
(k — 1)-tuple in the residual graph deteriorates over time.

For each unordered (k—1)-tuple S € (k‘jl)’ we define a function gg: V' — R™T by setting
gs(v) = 1y, s)(v) for each v € V, so that, in particular, if S C V; then gs(V};) = dg, (S).
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We call the set F = {gs: S € (k‘:l)} the set of tracking functions of G. We say that
X = (X_(1-9), -, Xx) is good if

(5.2) g9s(X;) = ggs(V) +n3/1%  forall gg € F.
i=—(k—2)

Thus, to say that X is good is to say that the set of k + k — 1 vertices that X visits look
roughly like a uniformly random subset of V', with respect to the codegrees of all (k — 1)-
tuples. In particular, for all (k — 1)-tuples S € (k‘jl), the proportion of vertices of Ng(S)
visited by X is approximately x/n, and this is the property that will allow us to deduce
condition (iii) of Lemma 5.1.

Let (ia, e ib) be a suitable interval of X*~1 and let Y*+-1) = (?0 = ia, ?1, o)
be the simple x-walk on G, with starting tuple ia. To show that the walk X is likely to
be good, the following will be the main steps:

(i) Firstly we show that the behaviour of (ia, ...) follows closely that of Y*~1) by ex-
hibiting a coupling of the two walks such that the probability of X*~1) and Y k-1
being different is acceptably small, provided b — a is small.

(ii) Next we see that Y*~1 mizes (converges to its stationary distribution ) rapidly.
(iii) We also show that the stationary x-walk W = (W, W7, ...) satisfies P [W; = v] =
1/|V,] for each v € V.
Putting the above together, we see that even for small ¢, the distribution of each X, given
the walk to time 7 — g, is typically close to the uniform distribution on V;_,, and thus for
each tracking function g € F, we have E [¢(X;)] ~ mg(vi_q) ~ Lg(V). Lastly, then:

(iv) We show that the actual values of the quantities >, ., g(X;) are very likely to
be close to their expectations, by using Lemma 3.1.

This completes the sketch of the proof that X is likely to be good. It only remains to count

the number of good walks (outcomes of) X'. The count will be obtained by simply dividing

a lower bound for the probability that X is good, by an upper bound for the probability of

obtaining any specific outcome of X’. This completes the sketch of the proof of Lemma 5.1.

5.3. Random walk analysis. In this subsection we collect some of the tools that we
will use to prove Lemma 5.1. We firstly define some convenient terminology for edge
weightings. Let x: E(G) — R* be a positive edge weighting of a k-graph G. We say
that x is aj-lower-balanced if for all non-isolated S € (k‘jl) and all v € Ng(S) we have
that x (SU{v}) / (X ey x(SU{v'})) > a1. That is, all possible x-walk transition prob-
abilities are bounded below by a;. Similarly, we say that x is as-upper-balanced if for all
non-isolated S € (k‘jl) and all v € Ng(S) we have x (SU{v}) / (X, ey x(SU{V'})) < as.
We say that x is (a1, a2)-balanced if x is aj-lower-balanced and ag-upper-balanced. We
now give a simple result which shows that we may couple the self-avoiding x-walk and the
simple x-walk to behave very similarly over small distances.

Lemma 5.2. Let k > 2, let G be a k-graph, let M ¢ (V)k_1, and let x: E(G) — RT be
a positive r-upper-balanced edge weighting. Let X = (X_(_9y,...) and ¥ = (Y_(x_2),---)
be, respectively, the self-avoiding x-walk and the simple x-walk on G, each with starting
tuple M. Then for any positive integer ¢ < 6(G), we have

drv(Xq, Yy) < ¢°r.

Proof. If 1 <i<§(G), and X and Y agree up to time ¢ — 1, say X; =Y; =v; € V for
each j € {—k+2,...,i— 1}, then we couple at the next step so that X; coincides with Y;
whenever the choice of Y; is a viable choice for X;, which is to say that Y; is not a vertex
already seen. So with this coupling, for any positive integer i < §(G) we have

PIX;#Y| X;=Y) forall je{—k+2,...,i—1}]=P[Y; € {v_g2),...,vi_p}] <ir.
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Thus for any positive integer ¢ < §(G) we obtain

q
PIX,#Y) <) PXi #Yi | X;=Y; forall je{-k+2,...,i-1} <
i=1

The desired result now follows from (3.1). O

We now aim to show that Y*~1 mixes rapidly. The key part of the proof will be the
following argument that Y*=1) has many different choices for how to arrive at a specified

target ordered tuple T € (V)i_1 in a fixed number of steps.

Lemma 5.3. Let 1/n < ( < 1/ < v,1/k, where k > 2, and let G be an (n,k,~y)-graph.
For any S, T € (V)g_1, there are at least ¢nt=® =1 ¢-walks from S to T in G. Further,
if SN'T =0, then there are at least (n= %=1 (-paths in G which connect g and %

Proof. Let §, T ¢ (V)k—1,set a :=L—(k—1), let Q := (V\(iUT)), let Gg == G[SUQUT]
for each @ € Q, and define Q' := {Q € Q: G is (7/2)-Dirac}. We apply Proposition 3.3
(with P = {{v}: v € V}, Py = {{v}: v € SUT}, and with a, 1, |S U T| playing
the roles of m, ¢, t, respectively) to deduce that |Q'| > |Q|/2. Fix Q € Q' and write
T = (t1,...,tx—1). Since G[Q U T] is y/4-Dirac, for each i € [k — 1] in turn we may
find a vertex v; € Q \ {v1,...,v;—1} such that {vy,...,v;} U {t1,...,tx—;} is an edgg.
Write T” := (vg_1,...,v1). Thus, we obtain a (k — 1)-path Pé in G¢ which connects T’
and % Since G[S U Q)] is 7/4-Dirac, we may apply Lemma 3.7 (Wjih ~v/4 playing the
role of 7) to find an a-path Pcl2 in G[S U Q] which connects g and T’, and the obvious

concatenation of Pé and ng is an (-walk Wg from g to ? in Gg. It is clear that these
(-walks W are distinct for different choices of @ € Q'. It thus suffices to observe that
Q| > 11Q] > ¢(nf~ (k=D If SNT = 0, then the walks W, do not revisit vertices and thus

correspond to f-paths in G which connect § and % U

Lemma 5.3 shows that in an (n, k,~)-graph G, the Markov chain YE-D s irreducible,
and thus there is a unique stationary distribution = of Y*~1 . We will use this fact
without stating it from now on. We note that it also follows from Lemma 5.3 that Y*—1)
is aperiodic, which implies that the distribution of ?t converges to 7 as t — co. However,
we need something stronger, namely that this convergence occurs quickly. This is achieved
by the following lemma, which shows that Y*—1) mixes rapidly.

Lemma 5.4 (Mixing Lemma). Let 1/n < 1/ < ~,7,1/k, where k > 2, let G be an
(n, k,7)-graph, let p: (V)g—1 — R be a probability distribution, and let x: E(G) — R be
a positive (7/n)-lower-balanced edge weighting. Let Y = (Y_(,_q),...) be the simple x-walk
on G with initial distribution pi, and let W = (W_(;,_g),...) be the stationary x-walk on G.
For anyn >0, if ¢ > Xn(1/n), then dry (Yy, Wy) < n.

Proof. Choose new constants ¢ and ¢ satisfying 1/n < 1/\ < ( < 1/¢ < ~,7,1/k.
We proceed by using Lemma 5.3 to show that for two simple x-walks Z( =1 and z/(k=1)
on G given any initial distributions, we can find a coupling such that Z*—1 and 2/(:-1)
are relatively likely to meet after £ steps. Using this, we then exhibit a coupling of Y*~1)
and W= that will allow us to use (3.1) to upper bound drv (Yy, Wy).

Let Z:-1 be a simple x-walk on G with any initial distribution ¢, and fix any ? €
(V)k—1. By Lemma 5.3, G has at least ¢nt~=1) ¢ walks from § to ?, for each § €
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(V)k—1, and thus:
P[Z,=T| = Y oSIP[Z=T|Z=8]> Y o(S)n" ¢ Dr/n)
§G(V)kfl Se(V)i
= ¢rlymil

Thus we may construct a coupling of any pair of simple x-walks Z*~1 and 2/(*=1) such
that P [73 = 72 = ?] > ¢78/nk=1 for all T ¢ (V)k—1. Under this coupling, we have

59 p[Z=7) > vz e (E) e

nk—1 n

We now construct a coupling of Y*=1) and W*—1 as follows. We partition the time steps
into consecutive intervals of length ¢. In the first interval, we couple Y*#~1) and Wk—1 ag

n (5.3), so that P ?g = Wg] > (rt/2. If ?g = Wz, then we couple Y*=1 and Wk-1)
such that ?t = W, for all t > £. Otherwise we again couple Y*~1 and W*=1 in the
second time interval, as in (5.3), so that P [?23 = W% ] ?g # Wg] > ¢1%/2. One can

casily check that repeating this process yields a valid coupling of Y*~1) and W*—1  Note
that, with this coupling and for any ¢ which is sufficiently large compared to £, we have

a/t
P qu # Wq] < kl;[l]P’ ke # Wi N {?ﬂ # W]é} (1—¢rf/2)e/",

71<k—1

We use this coupling and apply (3.1) to obtain
dry (Yq, W) < P[Y, # W] <P[? #W } 1—CT€/2)q/£<exp( ¢rlq/20) <,
provided ¢ > AIn(1/7). O

It will be useful to have an explicit formula for the stationary distribution = of Y*—1),

and so we obtain this now. (Observe that the simple x-walk YE=D on (V)k—1 is in general
not a symmetric Markov chain.)

Proposition 5.5. Let 1/n < v < 1/k where k > 2, and let G be an (n,k,~)-graph. Let
x: E(G) — R" be a positive edge weighting of G, and for each 1\71 € (V)k—1, define

W ey X(MU{v})
(M) := S S xBUTT

(5.4)

Then 7 is the unique stationary distribution of the simple x-walk Y*=1 on (V),_;.

Proof. By standard results on the stationary distribution of a Markov chain (see [22,
Proposition 1.20] for example), it suffices to prove that 7: (V)1 — RT as defined in (5.4)
is a probability distribution on (V');_1, and that

(5.5) S x(S)P(S,T)=x(T) forall T € (V)1,
gG(V)kﬂ

where P(g, ?) denotes the (one-step) transition probability of Y*~1 from S to T. It
follows quickly from (5.4) that 7 is a probability distribution on (V)i_1, and (5.5) follows
from applying (5.1) and (5.4). O
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Next we show that, provided the edge weighting x: E(G) — R* is an ‘almost-perfect’
fractional matching, the stationary x-walk on G is such that each vertex of G is roughly
equally likely to be the current vertex at any time. Let ¢ € (0,1) and k& > 2. For
a k-graph G, we say that a fractional matching x: E(G) — RT is e-almost-perfect if
YespX(e)>1—cforallveV.

Lemma 5.6. Let 1/n < 7,1/k, where k > 2, and let G be an (n,k,~)-graph. Suppose
that x: E(G) — RY is an n=2/5_almost-perfect fractional matching of G and let W =
(W_r—2)s W_(k—3), - - - ) be the stationary x-walk on G. Then for each i € N and each

v €V we have
1
(5.6) PW; =v]=1+£n"13). =

n
Proof. We reformulate W as W = (WO,Wl, ... ), where Wz = (Wi—(k—2)>-- -, Wi). Let
v € V and i € N. By the law of total probability, (5.1), and Proposition 5.5, we obtain:

PWi=v] = 3. P[Wi,1:§]P[Wi:v|Wi,1:§]

Se(V)ia
3 2wev X(SU{v'}) _ x(Su{v})
e 2 Bewy, 2vev X (BU{V}) 3 ey x(SU{V])
Dse(,v,)x(SU{v}) Dse(,v,)x(SU{v})
Ype(Vy) Lvev XBUY) T Cey Ype( vy x (BU{)
_ > esvX(€)
Dvev Lesw X (€)
Applying 1 —n=2/> <" _ x(e) <1 for all v € V, we obtain (5.6). O

We now show the crucial fact that, for any large set U C V, the probability that the
self-avoiding x-walk X is in U after a small number of steps is roughly |U|/n. We will
apply this fact to neighbourhoods of (k— 1)-tuples in the proof that X is likely to be good.
This in turn will be used to show that X will, in expectation, behave roughly uniformly
with respect to the codegrees of all (k — 1)-tuples.

Lemma 5.7 (Uniformity Lemma). Let 1/n < 1/C < v,1/k, where k > 2, and let G
be an (n,k,~)-graph. Let x : E(G) — Rt be a C-normal, n=2/°-almost-perfect fractional

g € (V)k—1, and let X = (X_(4—2), X_(4—3),--- ) be the self-avoiding x-walk
on G with starting tuple § Then for any q € [(Inn)%,n'?] and any U C V of size
\U| > n3/4, we have

matching, let

(5.7) P[X,cU]=(1+ n3/10)%.

Proof. We first argue that x is (1/C?n,2C?/n)-balanced. Indeed, since x is C-normal
and G is y-Dirac, we have

maXee (e X (€) C Cnk-1 202

minSG(k‘fl) Y ey X(SU{v}) = nk=1 (1/2+~)n = n

The lower bound follows similarly. Now let U C V be of size |U| > n3/4, and fix
q € [(Inn)%,n'/?]. Let Y = (Y_(k—2) Y_(k—3), - - - ) be the simple x-walk on G with starting
tuple S and let W = (W_(r—9), W_(—3), ... ) be the stationary x-walk on G. We will
show that X is distributed similarly to ¥, since ¢ is not too large, and that Y, is distrib-

uted similarly to W, since ¢ is large enough, and finally we will use Lemma 5.6 to show
that P [W, € U] is roughly |U|/n.




14 STEFAN GLOCK, STEPHEN GOULD, FELIX JOOS, DANIELA KUHN, AND DERYK OSTHUS

Setting ¢; == |P[X, € U] — P[Y, € U]| and applying Lemma 5.2 (with 2C?/n playing
the role of r), we obtain

o = | PX =~ P =) < S PIX, = o] —PY = o | 2 2drv (X, V)

vel veV
1
< 4C?%¢* /n < §n713/10|U|.

Consider the term ¢y == [P[Y, € U] =P [W, € U]|. We apply Lemma 5.4 (with 1/C?, 1/n?
playing the roles of 7, n respectively, and using ¢ > (Inn)? = ((Inn)/2)-In(1/7)) to obtain

3.1 _ 1 _
2 < 3PV = o] = P[W, = o] | “2) 2dry (¥, Wy) < 2072 < 20 30U,

veV
We now apply Lemma 5.6 to the term ¢ := |P [W, € U] — |U|/n| to obtain

Z(P[Wq:v]—%> <>

vel velU

1
P[W, = v] — E‘ <n 43U

C3 =

Finally, by the triangle inequality we have |P[X, € U] —|U|/n| < ¢1 +ca+e3 < n~B3/10|U],
which is equivalent to (5.7). O

5.4. The walk is likely to be good. The aim of this section is to prove the following
lemma, which states that under our assumptions, a self-avoiding x-walk of length \/n is
good with high probability.

Lemma 5.8. Let 1/n < 1/C < v,1/k, where k > 2, and let G be an (n, k,7)-graph. Let
x: E(G) = R" be a C-normal perfect fractional matching, let S e (V)k—1, let k :== /n,

and let X = (X,(k,Q),...,XK) be a self-avoiding x-walk on G with starting tuple g
Then P [X is good] > 1 —1/n.

To prove Lemma 5.8, we will need some results on the behaviour of the residual graphs G;
as the walk & progresses, so that we can apply Lemma 5.7 to each Gj. We define x]Gj to
be the restriction of x to E(G), so that x|g,: E(G;) — RT is a (not necessarily perfect)
fractional matching of G;.

Proposition 5.9. Suppose the assumptions of Lemma 5.8 hold. Let F be the set of tracking
functions of G. Then for any g € F and any j € {0, ... Kk}, the following conditions hold
deterministically:
(1) g(Vj) = (L£n V) 22dg(V);
(i) Gy is v/2-Dirac;
(iii) x|g; is 2C-normal;

—2/5_almost-perfect.

(iv) x|g, isn
Proof. It suffices to prove that conditions (i)—(iv) hold for any j € {0,...,x} and any
outcome z(j) = (¥_(r_g),---,2;) of X'(j). Throughout the proof, we let j € {0,...,x} be
fixed, and we let x(j) be a fixed outcome of X(j), thus determining V; and Gj.

(i): Fix g € F. It is clear that g(V) — k < g(V;) < g(V). Relaxing the upper bound and
recalling that g(V) > n/2, we obtain g(V;) = (1+2x/n)g(V). Note that 2k/n = 2n~1/2 <
n~V4(1 - k/n) — k/n <n~ Y41 - j/n) — j/n, which implies (i).

(ii): Let M € (k‘ijl) By (i), we have

o) = gna(15) 2 (1-07) I v) 2 (1= ) (J44) 00 )

(5.8) <% + %) Vi,

Y
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Since (5.8) holds for all M € ( '), we conclude that Gj is v/2-Dirac.
The calculations for (iii) and (iv) are straightforward. O

For any j € {0,...,x} and any fixed outcome z(j) = (v_(x—2),...,7;) of X(j), we
write P, (;) for the probability measure in the conditional probability space where we have
fixed X(j) = z(j), so that P, [-] = P[- [ X(j) = 2(j)]. We are now ready to prove
Lemma 5.8.

Proof of Lemma 5.8. We need to prove that, with probability at least 1 — 1/n,

) k 3/10
(5.9) Errory(X) == doogx)) | - —g(V)| <n /
j=—(k=2)
holds simultaneously for every g € F. It will suffice to prove that (5.9) holds for any
fixed g € F with probability at least 1 — 1/n*, say, since |F| < n*~1. Fix g € F and set
q = (Inn)% By breaking up Errory(X) and repeatedly applying the triangle inequality,
we obtain:

0 g—1 K
Errorg(X) = | > g(X;)+ ) (g(Xj) — @) +) (9(Xj) - %{/))
j=—(k—2) Jj=1 Jj=q
< 29+ Hz_q (9(Xj+q) - @)
=0
< 2+ D (9(Xj4g) —E[9(Xj1q) | X(5)])
=0
+ Z Xjtq ) X)) — Z — V) ' :
= n j —in ]

We now prove an upper bound for each of the three sums in the final expression above. To
this end, fix j € {0,...,x — ¢}, fix an outcome z(j) = (v_(4_a),...,2;) of X(j), and let
Te (kY1) be such that g = gr. We apply Proposition 5.9 to deduce that G is v/2-Dirac,
and that x|g; is 2C-normal and n=2/°
to deduce that

El9(Xjtq) [ () = z(5)] -

-almost-perfect. We can now apply Lemma 5.7 to G

[Ne, (T)]

n—J

Py(j) [Xj+q € Ne, (T)] —

< (n—5) NG, (T) < n~¥tg(V).

We deduce that |E [g(Xj4q) | X(5)]—9(V})/(n—3)| < n=%/*g(V) for each j € {0,...,k—q}.
Next, we apply Proposition 5.9(i) to obtain that, for each j € {0,...,k — ¢}, we have
19(V;)/(n — §) — g(V)/n| < n=%4g(V). Finally, applying Lemma 3.1 with logn playing
the role of ¢, and using ||g||oc = 1 (there are no isolated (k — 1)-tuples), we see that with
probability at least 1 — 2q exp(—(logn)?/2), we have

K—q

D (9(Xj1q) —E[9(Xjpq) | X(5)])| < logn/q(k — q),

j=0
so that altogether, with probability at least 1 — 1/ n*, we have

Errory(X) < 2¢ + logny/q(k — q) + 2(k — ¢ + 1)n =/ g(V)) < n/19,
completing the proof of the lemma. ]
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We now have all the tools we need to prove Lemma 5.1.

Proof of Lemma 5.1. Choose a new constant C' satisfying 1/n < ¢ < 1/C < v, 1/k,
and let x: E(G) — RT be a C-normal perfect fractional matching (such an x exists by
Lemma 4.2). Write £ = \/n, and let X = (X_¢,_9),..., X,) be the self-avoiding x-walk

on GG with starting tuple § It is clear from the definition of a self-avoiding x-walk that
any outcome of X corresponds to a k-path in G with § as one end (note that the walk
does not stop before time &, since all codegrees are large enough). We argue now that good
outcomes of X" also satisfy condition (iii), where we say an outcome X = (X_(;_2),..., Xx)
of X is a good outcome if X satisfies (5.2). Let P be a tight path in G corresponding to a
good outcome X of X, let ? be the non—g end of P, and let GG, denote the residual graph
of G at time k of X. Thus G, =G — (V(P)\T) and |V;| =n—k. Let M € (kxfl) and let
gMm € F be the tracking function of G corresponding to M. Since X is good, we obtain:

dg,M) = gu(Ve)=gm(V)— > am(X)+ D gm(X))
j=—(k-2) j=r—(k—=2)

5.2) n_
(5.10) S

gM(V) _ ’I’L3/10 > <% +— ’I’L_2/3> |Vn|
Since (5.10) holds for all M € (k‘f‘l), we conclude that §(Gy) > (1/2 4+ v —n=2/3)|V|.
Lastly then, it suffices to count the number of good outcomes of X. We begin by finding
an upper bound for the probability that X yields any particular fixed tight path. For
any j € {0,...,x}, we have by Proposition 5.9(ii)~(iii) that G is v/2-Dirac and x|g,
is 2C-normal. It follows that x|g; is 8C?/(n — j)-upper-balanced. In particular, setting
p == 1602 /n, we have that all transition probabilities of X are bounded from above by p.
Let @ = (¢—(k—2),---,4x) be a fixed x-path in G with § = (¢—(k—-2),---»q0) as one end.
Then

K 7j—1

PX=Q=[[P|X;=q| [) {Xi=a}|<p"
j=1 i=—(k—2)

By Lemma 5.8, we have that P [X is good] > 1/2, so we conclude that the number of good

outcomes of X (and thus the number of tight x-paths in G satisfying (ii) and (iii)) is at

least (1/2)/p" > (cn)”, which completes the proof of the lemma. O

6. COUNTING AND ABSORBING LONG PATHS

In this section we show how to iterate Lemma 5.1 to construct tight paths in G which
use almost all of the vertices of G, and we count the number of choices that can be made in
this process to obtain a lower bound for the number of these long paths. Finally, we prove
Theorem 1.1 by showing how these paths can be completed into tight Hamilton cycles
of G.

Lemma 6.1. Let v > 0, let k > 2, and let G be an (n,k,~y)-graph. There are at least
exp(nlnn — ©(n)) tight paths in G of length at least n —n"/3.

Proof. We describe an algorithm on G. Let §0 € (V)g—1 be arbitrary, set Gy = G,
set ng = n, and set 79 = 7. For each ¢ > 0, set n;11 = n; — /n;, and set ;11 =
vi—(n;)~2/3. Set L to be the smallest index such that n;, < n”/3. Suppose we have already
performed i steps of the algorithm, and obtained a k-graph G; on n; vertices satisfying
0(G;) > (1/2 + v;)n;, and we have obtained gl € (V(Gi))k—1. If vy <v/2 or i = L, then
we terminate the algorithm. Otherwise, we apply Lemma 5.1 to G; to obtain a set P;11 of
\/ni-paths, each with chosen starting tuple S;. Choose P;;1 € Py arbitrarily, let ?Hl
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be the non—gi end of P;;1, and put §i+1 = $i+1' Set Gip1 = G; — (V(Pit1) \ Sit1)-
Observe that by Lemma 5.1(iii), we have 6(Gi1+1) > (1/2 4+ Yig1)nit1-

Let r; := zz;%)(nj)”/?’. Note that, provided ~;—1 > /2, we have v; = v —r;. We
claim that the algorithm does not terminate in the first L steps. To see this, note that it
suffices to show that 7, = o(1). Write s; :== /n; and observe that ny_; =n — Zf:_oz Kj <
n — (L — 1)kr—1. Re-arranging, we obtain that L < 2n/kp_1. Using np—1 > n'/®, we
obtain that )

n —1/48 _

(np—1)%3 = (np—1)7/6 = = o),

so the algorithm does not terminate in the first L steps, as claimed. When the algorithm
terminates, we have obtained tight paths P, ..., P;. By construction, we may concatenate
these paths, in order, to obtain a path @ := ;< P of length n —ng > n — n?/8. Let N
be the number of tight paths of length n — ny, in G. By Lemma 5.1(i), there is a positive
constant ¢ < 1 such that the number of choices for Py is at least (cn;)", for each
i €{0,...,L—1}. Thus, we obtain

rp <

L—1 L—1
n;! n! n!
N>||cn"'”>c"|| Yo > =exp(nlnn — O(n)).
- z‘zo( = i Mt npt = (n7/8)! ol )

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The upper bound holds trivially. To prove the lower bound, we
choose a set W C V of size n%/1 uniformly at random. A simple application of Lemma 3.2
shows that there is a choice of W such that |[N(S)NW| > (1/2+3v/4)|W| for all S € (k‘jl)
Fix such a choice of W, set G’ :== G—W, and put n’ := n—n?1%, Then G’ is v/2-Dirac, and
we apply Lemma 6.1 to G’ (with /2 playing the role of ) to find a set P of tight paths of
length at least n/ — (n/)"/® in G, such that |P| > exp(n’Inn’ —O(n')) = exp(nlnn—0O(n)).
Fix P € P, let gp and ?p be the ends of P, and let Up = V(G’) \ V(P), so that
\Up| < (n/)7/8 < n/3. Notice that G[WUUpUS pUT p]| is /2-Dirac. Thus, by Lemma 3.7,
there is a tight Hamilton path Qp of GIW UUp USp U Tp| with ends <§p and %p. Then
Cp = PUQ@Qp is a tight Hamilton cycle of G.

Define C := {Cp: P € P} and note that for each C' € C, the number of P € P with
C = Cp is at most n?, since P must be a subpath of C. We conclude that C is a set of at
least n=2exp(nlnn — O(n)) = exp(nlnn — O(n)) tight Hamilton cycles in G. O

Finally, we prove Corollary 1.2.

Proof of Corollary 1.2. Let v > 0 be fixed, let k > 2, £ € {0,...,k =1}, (k—¥¢) | n,
and let G be a k-graph on n vertices satisfying 6(G) > (1/2 4 ~)n. Firstly, suppose ¢ = 0,
and recall that the number of Hamilton O-cycles of G is precisely the number of perfect
matchings of G. By considering the number of perfect matchings in the complete k-graph
on n vertices, it is easy to see that the upper bound of (i) holds. We now use Theorem 1.1
to show that the lower bound holds. Let M be the set of perfect matchings of G, and
let C be the set of tight Hamilton cycles of G. Notice that, for any M € M, there are at
most (n/k)!(k!)"/* choices of C' € C such that M C E(C), because we may construct all
vertex orderings corresponding to possible such C' by reordering the edges of M and the
vertices within them. By applying Theorem 1.1, we conclude that

M| > W — oxp ((1 _ %) ninm — @(n)> .

For the case ¢ € [k— 1], firstly notice that 5% (n—1)! = exp(nlnn—©(n)) is a trivial upper
bound for the number of Hamilton ¢-cycles of GG. Finally, it suffices to apply Theorem 1.1
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to G and observe that every tight Hamilton cycle of G contains k — ¢ Hamilton ¢-cycles
(since (k—£) | n), and each Hamilton f-cycle of G is contained in at most (k!)™ (=9 tight
Hamilton cycles. O

7. CONCLUDING REMARKS

Though Theorem 1.1 holds in y-Dirac k-graphs with equality, we believe that the error
bound can be made more precise. More specifically, we believe the following hypergraph
version of [8, Theorem 1.1 holds, giving a more accurate lower bound for the number of
tight Hamilton cycles in such hypergraphs.

Conjecture 7.1. For a fized integer k > 2 and a fived constant v > 0, the number of
tight Hamilton cycles of a k-graph G on n wvertices with 6(G) > (1/2 + ~)n is at least
(1/2 —o(1))"nl.

It would of course be desirable to obtain a formula for the number of tight Hamilton
cycles in ~-Dirac k-graphs G which takes properties of G like the degrees and codegrees
into account. We recall that such a formula has already been obtained [8, Theorem 1.3,
Theorem 1.5] in terms of the ‘entropy of G’ in the k = 2 case, and it would be interesting
to see if this (or a similar) notion can be extended to k > 3.

Finally, we note that the results of [8] show that graphs with minimum degree precisely
at the threshold for Hamiltonicity in fact have many Hamilton cycles. The exact minimum
codegree threshold for existence of a tight Hamilton cycle in k-graphs on n vertices is not
yet known for k& > 4, but is known to be |n/2| in the case k = 3 [28, Theorem 1.2],
and it is of course a natural question to ask if the conclusions of Theorem 1.1 or indeed
Conjecture 7.1 hold in this exact setting.

REFERENCES

[1] E. Aigner-Horev and G. Levy, Tight Hamilton cycles in cherry-quasirandom 3-uniform hypergraphs,
Combin. Probab. Comput. (to appear) (2020).
[2] J.-C. Bermond, A. Germa, M.-C. Heydemann, and D. Sotteau, Hypergraphes Hamiltoniens, Prob.
Comb. Theorie Graph Orsay 260 (1976), 39-43.
[3] B. Bollobas, Extremal graph theory, Handbook of Combinatorics, Elsevier Science, 1995, pp. 1231-
1292.
[4] J. A. Bondy, Basic graph theory: Paths and circuits, Handbook of Combinatorics, Elsevier Science,
1995, pp. 3-110.
[5] F. Chung and L. Lu, Concentration inequalities and martingale inequalities: a survey, Internet Math-
ematics 3 (2006), 79-127.
[6] M. Coulson, P. Keevash, G. Perarnau, and L. Yepremyan, Rainbow factors in hypergraphs, J. Combin.
Theory Ser. A 172 (2020), 105184.
[7] B. Cuckler and J. Kahn, Entropy bounds for perfect matchings and Hamiltonian cycles, Combinator-
ica 29 (2009), 327-335.
8] , Hamiltonian cycles in Dirac graphs, Combinatorica 29 (2009), 299-326.
[9] A. Czygrinow and T. Molla, Tight codegree condition for the existence of loose Hamilton cycles in
3-graphs, SIAM J. Discrete Math. 28 (2014), 67-76.
[10] G. A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 3 (1952), 69-81.
[11] R. Durrett, Probability: theory and examples, Camb. Ser. Stat. Probab. Math. 49, Cambridge Univer-
sity Press, 2019.
[12] S. Ferber, M. Krivelevich, and B. Sudakov, Counting and packing Hamilton £-cycles in dense hyper-
graphs, Journal of Combinatorics 7 (2016), 135-157.
[13] H. Han and M. Schacht, Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Com-
bin. Theory Ser. B 100 (2010), 332-346.
[14] J. Han and Y. Zhao, Minimum codegree threshold for Hamilton £-cycles in k-uniform hypergraphs, J.
Combin. Theory Ser. A 132 (2015), 194-223.
[15] S. Janson, T. Luczak, and A. Rucinski, Random graphs, Wiley-Intersci. Ser. Discrete Math. Optim.,
Wiley-Interscience, 2000.
[16] G. Y. Katona and H. A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999),
205-212.




19

[17] P. Keevash, D. Kiihn, R. Mycroft, and D. Osthus, Loose Hamilton cycles in hypergraphs, Discrete
Math. 311 (2011), 544-559.

[18] D. Kiihn, R. Mycroft, and D. Osthus, Hamilton £-cycles in uniform hypergraphs, J. Combin. Theory
Ser. A 117 (2010), 910-927.

[19] D. Kiihn and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J.
Combin. Theory Ser. B 96 (2006), 767-821.

, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006), 269—280.

, Hamilton cycles in graphs and hypergraphs: an extremal perspective, Proceedings of the Inter-
national Congress of Mathematicians—Seoul 2014. Vol. IV, Kyung Moon Sa, Seoul, 2014, pp. 381-406.

[22] D. A. Levin and Y. Peres, Markov chains and mizing times, American Mathematical Soc., 2017.

[23] C. Reiher, V. R6dl, A. Rucinski, M. Schacht, and E. Szemerédi, Minimum vertex degree condition for
tight Hamiltonian cycles in 3-uniform hypergraphs, Proc. Lond. Math. Soc. 119 (2019), 409-439.

[24] V. Rédl and A. Rucinski, Dirac-type questions for hypergraphs: a survey (or more problems for Endre
to solve), An irregular mind, Springer, 2010, pp. 561-590.

[25] V. Rodl, A. Rucinski, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin.
Probab. Comput. 15 (2006), 229-251.

, An approzimate Dirac-type theorem for k-uniform hypergraphs, Combinatorica 28 (2008),

229-260.

, Perfect matchings in large uniform hypergraphs with large minimum collective degree, J.

Combin. Theory Ser. A 116 (2009), 613-636.

, Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hypergraphs, Adv.
Math. 227 (2011), 1225-1299.

[29] G. N. Sarkozy, S. M. Selkow, and E. Szemerédi, On the number of Hamiltonian cycles in Dirac graphs,
Discrete Math. 265 (2003), 237-250.

[30] Y. Zhao, Recent advances on Dirac-type problems for hypergraphs, Recent trends in Combinatorics,
Springer, 2016, pp. 145-165.

20]
21]

[26]

27]

28]

APPENDIX: PROOF OF PROPOSITION 3.3

We first need the following Chernoff-type bound (see [5] and [15] for example), and a
well-known result on the probability that a binomially distributed random variable assumes
its mean value.

Lemma A. Let X1,...,X, be independent Bernoulli random variables with P[X; = 1] =
pi for each i € [n]. Let ay,...,an, > 0 with Y"1 ;a; >0, set X = 1" | a; X;, and define
vi=3" ap;. ThenP[X <E[X]—t] <e /@),

Lemma B. Let 1/n < 1/m <1, with m,n € N, and let X be a binomial random variable
with parameters n and p == m/n. Then P[X =m] > 1/(4y/m).

We now prove Proposition 3.3.

Proof of Proposition 3.3. For any subset Q@ C P, let V' (Q) denote the set of all vertices
in any ¢-set A € Q. Define p .= m/|P \ Py|. We construct a random set X C P\ Py by
including each f-set A € P\ Py independently with probability p. Let Y := X U Py, and
define the events & = {|X| = m} and & = ﬂSe(Vk(ﬁ)){dG[V(Yﬂ(S) > (1/24~/2)0(m+1)}.
Let Py be the probability measure for the space corresponding to constructing X. Notice
then that P[-] = Py[-|&]. It remains to prove that Py [(&)°] & < e V™. Write
M = (‘]/ﬁ(_ci)), and for each S € M write dy (S) := |Ng(S) N V(Y)|, write P(S) := {4 €
P:SNA#0D}, write Ps := P\ (PoUP(S)), and write Jg := Ng(S) NV (Ps). Notice that
dy(S) > dy(S) = [Na(S)NV(Y)NV(Ps)|. Fix S € M. Notice that |Jg| > (1/2+3v/4)n,
since |V (Py UP(S))| < £(t+ k). Observe that

Ey [dy(S)] = Jslp > (1/2 +3v/4)np > (1/2 +29/3)t(m + 1)
For each f-set A € Pg, let Y4 be the indicator random variable for the event {A € X'}, and
let c4 == |AN Ng(S)|. Then we have dy(S) = 3_ scpg caYa, and by applying Lemma A

to di,(S), we obtain Py [d} (S) < (1/2 4 v/2)f(m +t)] < e=3V™. Note that for any S € M
and any v € Jg, the events {S C V(Y)} and {v € V(Y)} are independent by construction.
Let P(S) := P(S) \ Py, and for each 0 < j <k — 1, let M; :={S € M: |P(S)| = j}. Note
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that for each S € M;, we have P[S C V(Y)] = p/, and note further that |M;| < (¢t)*n/,
for each j. Then by a union bound over all S € M we obtain

k—1
P[(&)7] < DD Py [SCV(Y),dy(S) < (1/2+~/2)0(m +t)]
=0 SEM;
k—1 k—1
< e VMY () (np) < eV (en)F(Eme) < eV,
j=0 Jj=0
Finally, by Lemma B we have P, [£1] > 1/(4y/m), so we conclude that Py [(£2)¢ | &1] <
Py [(£2)°] /Py [€2] < V™ O
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