
Natural Language Engineering 13 (3): 191–233. c© 2006 Cambridge University Press

doi:10.1017/S1351324906004268 First published online 19 June 2006 Printed in the United Kingdom
191

Source authoring for multilingual generation of

personalised object descriptions

I. A N D R O U T S O P O U L O S
Department of Informatics, Athens University of Economics and Business,

Patission 76, 104 34 Athens, Greece

J. O B E R L A N D E R
School of Informatics, University of Edinburgh, 2 Buccleuch Pl., Edinburgh EH8 9LW, U.K.

V. K A R K A L E T S I S
Institute of Informatics and Telecommunications, National Centre for Scientific Research “Demokritos”,

P.O. Box 60228, 153 10 Aghia Paraskevi, Greece

(Received 2 November 2004; revised 29 December 2005 )

Abstract

We present the source authoring facilities of a natural language generation system that

produces personalised descriptions of objects in multiple natural languages starting from

language-independent symbolic information in ontologies and databases as well as pieces of

canned text. The system has been tested in applications ranging from museum exhibitions

to presentations of computer equipment for sale. We discuss the architecture of the overall

system, the resources that the authors manipulate, the functionality of the authoring facilities,

the system’s personalisation mechanisms, and how they relate to source authoring. A usability

evaluation of the authoring facilities is also presented, followed by more recent work on

reusing information extracted from existing databases and documents, and supporting the

owl ontology specification language.

1 Introduction

The ability to produce texts in several languages from a single, language-neutral

symbolic source is one of the main advantages of natural language generation, as

it can reduce dramatically translation costs; see, for example, Hartley and Paris

(1997) for related discussion, and Reiter and Dale (2000) for an introduction to

the field. Even in the monolingual case, natural language generation can lead to

texts of higher quality, compared to simplistic methods that employ inventories

of predetermined texts with slots to be filled in, and it allows the resulting texts

to vary dynamically, depending on the reader’s profile and interaction history, as

demonstrated, for example, by Coch (1996) and O’Donnell et al. (2001).

This paper is based on experience gained from developing a natural language

generation system that produces descriptions of objects in multiple languages from



192 I. Androutsopoulos et al.

language-neutral symbolic information and pieces of canned text. The symbolic

information is drawn from an ontology and a database that provides information

on the ontology’s instances; the pieces of canned text are also stored in the database.

The system has been tested in Web-based and virtual reality applications, ranging

from descriptions of museum exhibits to presentations of computer equipment for

sale. The underlying technology was developed in the m-piro project (Isard et al.

2003; Calder et al. 2005), using the ilex system (O’Donnell et al. 2001) as a starting

point.1 We believe it is fair to say that prior to m-piro, ilex reflected the state

of the art in the sub-area of natural language generation that is concerned with

producing personalised descriptions of objects. Work on ilex, however, had focused

mostly on the generation of English descriptions of museum exhibits for Web-based

interaction.2 In contrast, m-piro targeted multilingual generation, which required

a careful separation of language-specific processes and resources from language-

independent ones, along with facilities to keep the generation capabilities across

the supported languages aligned; the system currently supports English, Italian, and

Greek. ilex’s personalisation mechanisms were also extended, as will be explained in

the following sections, and the new system is much easier to port to new application

domains where object descriptions are needed.

In this paper, we focus on the source authoring facilities that were developed in

m-piro, which allow people with no previous experience in natural language

generation, hereafter called authors, to configure the system for new application

domains. The configuration involves defining the domain’s ontology, populating the

database with information on the ontology’s instances, creating domain-dependent

linguistic resources, linking them to the ontology, and adjusting parameters related to

user modelling. We will concentrate on the case where the authors have a computer

science background. Usability evaluation results indicate that after receiving a

relatively short introductory course, third-year computer science undergraduates with

no previous experience in natural language generation can successfully configure the

system for new applications without major problems. We believe that the expertise of

our evaluation’s subjects is a good lower boundary of the expertise of the employees

that would be assigned the task of configuring m-piro for e-commerce applications

(e.g., generating descriptions of items for sale) in a corporate environment, and,

hence, the results are encouraging. Furthermore, feedback from the project’s partners

indicates that in a museum context m-piro’s authoring process would most likely be

assigned to curators with a cultural informatics background, or to computer scientists

who would interact with curators to obtain the information to be presented at each

1
m-piro (Multilingual Personalised Information Objects) was a project of the Information
Societies Programme of the European Union. The project ran from 2000 to 2003. Its
partners were: the University of Edinburgh, itc-irst, ncsr “Demokritos”, the National
and Kapodistrian University of Athens, the Foundation of the Hellenic World, and System
Simulation Ltd. This paper includes additional work on m-piro’s authoring facilities, carried
out at the Athens University of Economics and Business.

2 See also Dale et al. (1998) for information on a similar generation system for museums.



Source authoring for multilingual generation 193

exhibit. Hence, we believe that our usability evaluation will also be of interest to

readers involved in museum applications.

m-piro’s authoring facilities are not intended to be used by natural language

processing experts to create or modify large-scale domain-independent linguistic

resources, such as grammars, unlike, for example, the user interface of the kpml

generation engine (Bateman 1997). Thus, m-piro’s notion of authoring is closer to

that of drafter (Paris et al. 1995; Paris and Vander Linden 1996; Hartley and Paris

1997) and agile (Hartley et al. 2001), two generation systems that provide authoring

facilities to enter symbolic source knowledge, from which software manuals are

generated in multiple languages. Those systems, however, aim at the generation of

instructional texts, and, hence, their source knowledge representations and some of

the generation techniques they employ are significantly different from m-piro’s, and

this is reflected on the functionality of the respective authoring facilities. Similar

comments apply to the authoring mechanisms of the gist system (Power and

Cavallotto 1996), which aims at the multilingual generation of texts describing

administrative (e.g., form-filling) procedures, and the semantic editor of Biller et al.

(2005), which is used in a multilingual generator that produces cooking recipes. In

terms of genre of the generated texts, m-piro is closer to the system of Brun et al.

(2000), which generates drug descriptions in multiple languages.

The facilities of the systems mentioned above allow the authors to create instances

of pre-existing concepts, but not new concepts. That is, the authors can manipulate

the population of a pre-defined ontology, but not the ontology itself, and this

limits their ability to port the systems to new domains. Furthermore, the authors

have no means to edit the systems’ domain-dependent linguistic resources, such

as the domain-dependent parts of the lexicons. In contrast, m-piro’s authors have

full control over the domain’s ontology, they can edit all the domain-dependent

linguistic resources, and they can also tune user modelling parameters that affect

the content and form of the generated texts. In these respects, m-piro is closer

to isolde (Paris et al. 2002; Colineau et al. 2002), which allows the authors to

define new concepts, not just instances, to manipulate domain-dependent lexicon

entries, and to adjust some parameters that affect the style of the generated

texts. As with drafter and agile, however, isolde aims at the generation of

instructional texts for manuals, as opposed to m-piro whose target is descriptions of

objects.

m-piro’s authors manipulate mainly symbolic representations, but previews of the

resulting texts provide natural language feedback. As we explain in the following

sections, it is possible to envisage extensions where m-piro’s authors would interact

more directly with natural language renderings of the semantic representations they

manipulate, moving towards the wysiwym approach (Power and Scott 1998; Van

Deemter and Power 2003). Another approach is to require the authors to enter text

snippets in multiple versions for different reader types, annotated with information

such as rhetorical relations between the snippets, co-references, and criteria that

have to be satisfied for the snippets to be included in the generated texts. This type

of authoring is used in the healthdoc system (Hirst et al. 1997; DiMarco and



194 I. Androutsopoulos et al.

Foster 1997) and the macronodes approach (Not and Zancanaro 2000).3 It has the

disadvantage, however, that the snippets have to be entered and be annotated in

all of the supported languages and in multiple versions, which becomes impractical

when generating in several languages and for several types of readers.

m-piro’s technology will often have to be ported to application domains where

a large volume of information is already available in databases (e.g., museum

databases, databases containing information on products) or where established (e.g.,

medical) ontologies exist. m-piro allows data to be imported from existing databases,

with special support provided for relational databases. It is also possible to export

m-piro’s ontologies to owl, an ontology specification language designed for the

Semantic Web, and there is partial support to import existing owl ontologies.4

Furthermore, we have experimented with an approach where m-piro’s ontology is

populated with information extracted from existing documents (e.g., Web pages,

product catalogues), using information extraction techniques. In these respects,

m-piro follows the example of isolde, which has demonstrated in the context of

software manuals that it is possible to extract knowledge from, among other sources,

existing uml software models and documentation texts.

To summarise this section, m-piro improves upon ilex, which so far reflected the

state of the art in generating personalised object descriptions, by adding support for

multiple languages, extended personalisation mechanisms, and authoring facilities.

This paper focuses on the latter, but we also discuss issues where multilingualism and

personalisation interact with the authoring process. Previously presented authoring

facilities for other natural language generation systems differ from m-piro’s in that

they either target different text genres or provide less functionality.

The remainder of this paper is structured as follows. Section 2 describes the

system’s overall architecture and highlights the possible applications of m-piro’s

technology. Section 3 discusses the domain-dependent resources the authors ma-

nipulate and the functionality of the authoring facilities. It also presents m-piro’s

personalisation mechanisms and their relation to the authoring process. Section 4

reports on the usability evaluation of the authoring facilities. Section 5 moves on to

more recent work, discussing how existing databases and document collections can

be exploited, followed by Section 6, where we discuss issues related to supporting

owl. Section 7 concludes and proposes directions for future work.

2 System architecture and applications

Let us first get a better view of the possible applications of m-piro’s technology. We

will be using the term visitor to refer to the end-users the descriptions are generated

for. In the Web-based system of figure 1, one of m-piro’s demonstrators, a visitor can

request information on a particular museum exhibit by clicking on the exhibit’s icon

3
m-piro investigated to some extent ways to integrate macronodes with full natural language
generation, but we do not discuss this issue here; see Calder et al. (2005).

4 Consult http://www.w3.org/TR/owl-guide/ for information on owl.



Source authoring for multilingual generation 195

Fig. 1. A Web-based public access system for a museum that uses m-piro’s technology.

in one of the available electronic showcases; alternatively, it is possible to locate an

exhibit by typing its name in the search box, or follow one of the routes around the

exhibits that the museum suggests.5 Once an exhibit has been selected, the system

produces a Web page containing a picture and a dynamically generated description

of the exhibit, as shown in figure 1. As in ilex, each description ends with pointers

to other related exhibits, such as exhibits from the same historical period or works

of the same artist; we call these forward pointers. The entire object description of

figure 1, including the forward pointers, was generated dynamically, without using

any canned text.

m-piro extends ilex’s personalisation mechanisms in several ways. Most import-

antly, visitor stereotypes, i.e., settings that are sensitive to the visitor’s type, are

extended to allow the system to tailor the language expressions of the generated

descriptions, not just their semantic content, to visitor type; for instance, children

can be served with simpler sentence structures. Personal models, i.e., models of

individual visitors, are also augmented to record, apart from the semantic content

that has been conveyed to each visitor, information on the language expressions

that were used, allowing the system to reduce repetitions of the same expressions,

which remained an issue with ilex. The personal models are also made persistent

over multiple sessions via a personalisation server, which stores both the personal

models and the visitor stereotypes.6 In the demonstrator of figure 1, an initial log-in

5 The demonstrator of figure 1 was developed by System Simulation Ltd. and the Foundation
of the Hellenic World, using content from the Foundation’s electronic collections.

6 The personalisation server was developed by ncsr “Demokritos”, and has been used in
several different systems. It is implemented in Java as a Web server, that communicates



196 I. Androutsopoulos et al.

language
generator

(EXPRIMO) &
speech

synthesizers

object description
(text or speech)

linguistic
resources

ontology & 
database

pers. server 
(user models)

object
selection

visitor

authoring
tool

author

Fig. 2. Overview of m-piro’s architecture.

screen associates each visitor with a unique identifier, allowing the visitor’s personal

model to be retrieved from the personalisation server in subsequent visits. When

they log-in for the first time, visitors also select the language they prefer and their

type (e.g., child, adult, expert); these preferences are stored in their personal models,

and can be changed at any time.

In a second, virtual reality m-piro demonstrator, there is a similar log-in stage,

and visitors can examine three-dimensional reconstructions of ancient vessels. In this

case, m-piro’s technology produces a personalised description of the vessel being

examined, which is passed on to a speech synthesizer for the selected language.7 The

generated texts are actually marked up in apml (de Carolis et al. 2004), a form of

xml designed to couple speech synthesis and character animation.8 The additional

markup reflects information that affects prosody and is known to the generator,

such as syntactic structures that are needed to compute prosodic boundaries, and

new vs. given semantic information; consult Pan and McKeown (1997) and Theune

et al. (2001) for examples of related work. A similar form of m-piro’s technology

could also be used in virtual reality reconstructions of ancient cities, or applications

where information on the landmarks of a city is sent to the mobile phones or pdas

of tourists; see, for example, Staab et al. (2002).

Figure 2 provides an overview of m-piro’s architecture. When a visitor requests

a description of an object, the identifiers of the visitor and the object are passed

on to the natural language generator. m-piro’s language generator, called exprimo,

retrieves information from the ontology and database (e.g., facts about the exhibit)

and the personalisation server (e.g., preferences of the visitor, interaction history),

with its clients via an http-based protocol; see http://www.iit.demokritos.gr/
skel/en/Projects/PServer.htm. All the other components of m-piro’s system are also
implemented in Java.

7
m-piro’s virtual reality demonstrator was developed by the Foundation of the Hellenic
World. It uses Festival (Clark et al. 2004) for English and Italian speech synthesis, and
demosthenes (Xydas and Kouroupetroglou 2001) for Greek synthesis.

8 The apml language was mainly developed in the European ist MagiCster project; consult
http://www.ltg.ed.ac.uk/magicster/.



Source authoring for multilingual generation 197

visitor and object identifiers

content selection

facts to be conveyed

micro-planning

sentence specifications

surface realization

textual description

document planning

text plan

interest and preferred order
of facts

interest and assimilation rate of
facts, desired description length

domain-dependent resources:language generation stages:

stereotypes, ontology, database

clause plans, templates, 
concept-noun links,
appropriateness scores

domain-dependent lexicon

language-independent
language-specific

Fig. 3. Generation stages in exprimo and domain-dependent resources.

and produces a description in textual form using both language-independent and

language-specific linguistic resources. If spoken output is required, the description is

then passed on to a speech synthesizer.

Any information that pertains to particular visitors is kept separately from

exprimo in the personalisation server. It is, thus, possible to send to the same

exprimo instance a stream of requests to produce descriptions for different visitors,

a situation that arises in applications with concurrent visitors. In applications with

large numbers of concurrent visitors, it is also possible to use a farm of exprimo

servers, with each incoming request being directed to the first available server. In this

approach, which was used in the Web-based demonstrator of figure 1, all exprimo

servers are equipped with copies of the same application ontology, database, and

linguistic resources, and share a common personalisation server. The same farming

approach can be used with speech synthesizers.

m-piro’s authoring facilities, collectively known as the authoring tool, allow the

authors to configure the domain-dependent resources of the system, namely the

application ontology and database, the domain-dependent linguistic resources, and

the visitor stereotypes of the personalisation server. Figure 3 shows exprimo’s

main processing stages and the domain-dependent resources that are used at each

stage, i.e., the resources that the authors have to configure; for simplicity, domain-

independent resources are not shown. exprimo’s architecture is based on a typical

generation pipeline, but with four main stages, rather than three (Reiter 1994) or two

(Thompson 1977), much as in Reiter and Dale (2000). To support multilinguality

and domain portability, the processing stages and resources of the pipeline were

divided into domain-independent vs. domain-dependent, and language-independent

vs. language-specific ones. There is a tradeoff between what can be generated and

how easily a system can be ported to new languages and application domains. To be

able to generate perfect natural text in any language and application domain, one



198 I. Androutsopoulos et al.

may well have to treat all the generation stages and resources as language-specific

and domain-dependent, and also abandon the pipeline architecture in favour of a

more complex, fully connected one. However, this makes it more difficult to develop

practical systems, and port them across languages and domains. In the context

of generating object descriptions, the architecture of figure 3 produces texts of

reasonable quality, requiring an acceptable amount of effort from the authors and

the language engineers who may need to add support for additional languages.

The first processing stage, content selection, is concerned with the selection from

the ontology and database of facts to be conveyed to the visitor. The selected facts

must be both relevant to the selected object and appropriate for the particular visitor.

By relevant we mean that the facts must refer to the selected object either directly

(e.g., they may specify the creator of the object, or the historical period the object

was created in) or indirectly (e.g., specify the nationality of the object’s creator, or

provide background information about the historical period the object was created

in). By appropriate we mean that the selected facts must not repeat previously

conveyed information that we believe the visitor has assimilated (i.e., facts that

have become part of the visitor’s knowledge by having been conveyed one or more

times), and they must match the visitor’s presumed interests; for example, one should

avoid including references to scientific articles when describing museum exhibits to

children. Furthermore, the desired size of the description limits the number of facts

that can be selected. Hence, content selection depends on: the application’s ontology

and database; the visitor stereotypes, which specify among other things the desired

description length per visitor type, the interest of the various facts, and how difficult

it is to assimilate them (how many times they have to be conveyed before we can

assume they are part of the visitor’s knowledge); and the personal models of the

visitors, which show, among other things, their interaction history and which facts

the system believes they have assimilated.

While the content selection process is directly based on that in ilex (O’Donnell

et al. 2001), the second stage, document planning, is a significant simplification. It

outputs an overall document structure, which specifies the sequence of the facts in

the description to be generated. Unlike ilex, there is no attempt to deal with the

rhetorical relations between facts (Mann and Thompson 1988) – for example,

whether a fact contrasts with another. exprimo’s document planner is largely

domain-independent. It consults the personal models to obtain information on

whether the various facts can be treated as partly known or entirely new information,

and the relative interest of the facts, attempting to place the most interesting facts

at the start of the description. The preferred fact order can also be specified by the

author, as will be discussed later on.

For each fact in the document plan, micro-planning then specifies in abstract terms

how the fact can be expressed as a clause in the selected language; for example,

which verb to use, in what tense, and which argument of the fact to use as subject

or object. The authoring tool allows this information to be specified in the form of

micro-plans, of which there are two types, clause plans and templates, to be discussed

below. The visitor stereotypes associate each micro-plan with an appropriateness

score per visitor type; these scores may lead the system to prefer, for example,



Source authoring for multilingual generation 199

a clause with the verb ‘to show’, as in “It shows Perikles.”, when generating for

children, instead of ‘to depict’, which may be more appropriate for adults. Micro-

planning also includes the generation of referring expressions, and processing that

determines which clauses can be aggregated in single sentences (Melengoglou 2002).

Both rely on domain-independent algorithms. However, the algorithm for referring

expressions, which is the same as that of ilex, requires the authors to establish links

between the concepts in the application’s ontology and the nouns that can be used

to refer to them (e.g., a link showing that the Italian noun “statua” can be used with

statues); we discuss this issue further later on.

The last stage, surface realization, generates the final textual form of the de-

scriptions. It includes the generation of appropriate word forms (e.g., verb tenses)

based on the sentence specifications output by micro-planning, placing the various

constituents (e.g., subject, verb, object, adverbials) in the correct order, accounting

for number and gender agreement, etc. m-piro’s surface realization is based on

large-scale systemic grammars (Halliday 1994). The Greek (Dimitromanolaki et al.

2001) and Italian grammars parallel ilex’s English grammar, which was based on

wag (O’Donnell 1996). Following Bateman (1997), the three grammars share parts

for common linguistic mechanisms, which allows faster development and easier

maintenance.9 While the grammars are domain-independent, a part of the lexicon

they employ, the domain-dependent lexicon, has to be tuned by the authors when the

system is ported to a new domain.

Note that exprimo can generate a description for any entity in its database

(e.g., artists or historical periods), not just entities that correspond to exhibits. In

the demonstrator of figure 1, the hyperlinks correspond to entities. Clicking on

“the classical period” generates a description of that period, which appears in a

pop-up window. As with other descriptions, the period’s description is generated

dynamically, and it is tailored to the visitor’s type and interaction history.

3 Source authoring and user modelling

We now take a closer look at m-piro’s authoring tool and the domain-dependent

resources the authors manipulate. We examine at the same time m-piro’s personal-

isation mechanisms and how they relate to the authoring process. As already noted,

we assume that the authors have a computer science background, but no previous

experience in natural language generation. Nevertheless, we assume that the authors

will attend a short training course on the functionality of the tool before attempting

to use it. Usability evaluation results that will be presented in the following sections

indicate that the training course could fit in one working day.

3.1 Ontology and database

m-piro’s database contains information about entities, like statues and artists,

relationships between entities, such as the relationship that associates each statue

9 See Hartley et al. (2001) for a discussion of how the same approach was used to produce
grammars for Bulgarian, Czech, and Russian from a broad coverage English grammar.



200 I. Androutsopoulos et al.

Fig. 4. The author’s view of the ontology and database, and a clause plan.

with the artist that created it, and attributes of entities, for instance their names or

dimensions. These notions are common in natural language generation, and also in

the design of databases, where the entity-relationship model is often used.

Entities are not necessarily physical objects; they may be abstract concepts, like

historical periods or painting techniques. They are organized in a taxonomy of

entity types, as illustrated in the left panel of figure 4. In this example, ‘exhibit’ and

‘historical-period’ are basic entity types, i.e., they have no super-types. The ‘exhibit’

type is further subdivided into ‘coin’, ‘statue’, and ‘vessel’. The latter has the sub-

types ‘amphora’, ‘kylix’, and ‘lekythos’. Each entity belongs to a particular entity

type; for example, ‘exhibit22’ belongs to the ‘kylix’ type, and is, therefore, also a

‘vessel’ and an ‘exhibit’. To make the authoring tool easier to use, we have opted for

a single-inheritance taxonomy, although exprimo can handle multiple inheritance.

In other words, an entity type may not have more than one parent, and an entity

may not belong to more than one entity type. Right-clicking on entities or entity

types in the taxonomy allows the authors to rename them, delete them, insert new

entities or types, etc.

The authoring tool allows basic entity types to be subordinated to common entity

types of Penman’s Upper Model, a linguistically motivated domain-independent



Source authoring for multilingual generation 201

ontology that has been used in several natural language generators (Bateman

1990).10 This licenses the generator to treat the basic entity types as subtypes of the

corresponding Upper Model types. Previous work in natural language generation

has demonstrated that such a subordination has the advantage that some of the

algorithms of the generator can be designed for domain-independent concepts of

the Upper Model, and, hence, they can be decoupled from the domain-dependent

ontology. We return to some possible uses of this subordination in the following

sections.

Relationships are expressed in m-piro using fields. At any entity type, it is possible

to define new fields, which then become available at all the entities that belong to

that type and its subtypes, much as in frames and public fields of object-oriented

programming languages. In figure 4, the fields ‘painting-technique-used’, ‘painted-

by’, and ‘potter-is’ are defined at the type ‘vessel’. Consequently, all the entities of

type ‘vessel’ and its subtypes, i.e., ‘amphora’, ‘kylix’, and ‘lekythos’, carry these fields.

Furthermore, entities of type ‘vessel’ inherit the fields ‘creation-period’, ‘current-

location’, etc., up to ‘references’, which are defined at the ‘exhibit’ type. (The ‘images’

field is a special built-in field that allows authors to associate images with entities.

Inherited and special fields are shown in a different colour in the authoring tool.) The

fillers of each field, i.e., the possible values of the field, must be entities of a particular

type. In figure 4, the fillers of ‘potter-is’ are declared to be of type ‘potter’; hence, the

entities ‘sotades’ and ‘aristos’ are the only possible values of ‘potter-is’. To represent

the fact that a particular ‘vessel’ entity was created during the classical period by

‘aristos’, one would fill in that entity’s ‘creation-period’ field with ‘classical-period’,

and its ‘potter-is’ field with ‘aristos’. We use the term fact to refer to the information

that the field of an entity carries, for example the information that the potter of

‘exhibit22’ is ‘aristos’, or information about the type of an entity, for example that

‘exhibit22’ is a ‘kylix’.

The ‘Many’ column in figure 4 is used to mark fields whose values are sets of

fillers of the specified type. In the ‘made-of’ field, this allows the value to be a

set of materials (e.g., an exhibit may be made of both gold and silver). It is, thus,

possible to specify that a relationship is many-to-one (only one material per exhibit)

or many-to-many (many materials per exhibit), but not one-to-one (e.g., a unique

showcase per exhibit). One-to-one relationships have to be specified as many-to-one

or many-to-many, which does not guard sufficiently against errors (e.g., assigning

the same showcase to multiple exhibits, in applications where this is forbidden). This

limitation could be overcome by providing an option to signal that a relationship is

one-to-one and corresponding checks when updating m-piro’s database.

Fields are also used to represent attributes of entities, for instance their names

or dimensions. Several built-in data-types are available, like ‘string’, ‘number’, ‘date’,

and ‘dimension’, and they are used to specify the possible values of attribute-

denoting fields; the ‘Many’ column also applies to attributes. In figure 4, the values

of ‘exhibit-purpose’ and ‘references’ are declared to be strings. The two fields are

intended to hold canned sentences describing what a particular exhibit was used

10 See also http://www.fb10.uni-bremen.de/anglistik/langpro/webspace/jb/gum/.



202 I. Androutsopoulos et al.

for, and bibliographic references; for example, “This statue honours the memory of

Kroissos, a young man who died in battle.” and “Boardman, J., Athenian red figure

vases, Thames and Hudson, 1975”, respectively. Information is stored as canned text

in string-valued fields when it is too difficult to represent in symbolic form. One could

actually specify all the information about the entities using canned texts, but this

has the drawback that the canned texts have to be provided in all of the supported

languages, and they have to be updated manually whenever the information they

express changes, which is costly when supporting many languages. Notice, however,

that some of the benefits of natural language generation are still available with

canned texts stored in string-valued fields. For example, as will be explained below,

the authors can specify how interesting the information of a canned text is per

visitor type, allowing the generator to decide if it should be included in the object

descriptions; the document planner can also be instructed to place canned texts at

appropriate positions in the descriptions; and it is possible to enhance the canned

texts with dynamically generated referring expressions. Similar support for canned

texts is provided, for example, by drafter and isolde.

We use the term ontology to refer to the taxonomy of entity types and the fields

that are available at each type, and the term database to refer to the entities that

populate the entity types and the field values of the entities. Once the ontology

has been defined, it is possible to fill in the database, as illustrated in figure 5;

pull-down menus and forms guide the authors to select among the possible values

of the fields. Provided that appropriate lexicon entries and micro-plans have been

defined, as will be discussed below, previews of the resulting object descriptions can

also be generated. Figure 5 shows a description in Greek and the corresponding

description in English. Notice that exprimo has generated referring expressions

where appropriate, and it has aggregated several clauses.

The values of language-dependent fields (e.g., the values of the ‘exhibit-purpose’

field discussed above) are entered in separate tables, one per supported language.

The tables are displayed by clicking on the flags in the upper right part of figure 5.

Figure 6 shows the table with the English values of the language-dependent fields

of the entity ‘amasis’. The ‘name’ and ‘shortname’ fields specify the entity’s name

and a shorter form, if available (e.g., “Alexander the Great” and “Alexander”). The

‘notes’ field holds an optional string that will appear as a footnote. The three fields

are available at all entities, and the same applies to ‘gender’ and ‘number’. In this

particular example, the ‘person-information’ field is defined at the type ‘person’ as

string-valued. Its English value at the entity ‘amasis’ is “is thought to have been

both a maker and a painter of pots”. This value would not be used only in direct

descriptions of Amasis; exprimo could also use it when describing an exhibit painted

by Amasis, as in “This kylix was painted by Amasis. Amasis is thought. . . ”.

To capture default information about all the entities of a type, generic entities

can be introduced, much as in ilex. For example, to specify the purpose of all

entities of type ‘kylix’, one could introduce a generic entity of type ‘kylix’, shown

as ‘Generic-kylix’ in the taxonomy of figure 5, and fill in its ‘exhibit-purpose’ field

with “Kylikes were used as wine cups.” in English, and equivalent strings in the

other languages. This would licence exprimo to generate texts like “This exhibit is



Source authoring for multilingual generation 203

classical kylix – This exhibit is a kylix; it was created during the archaic period and was

painted with the red figure technique by Eucharides. It dates from between 500 and 480 b.c.

and currently it is in the University Museum of Pennsylvania. – No notes.

Fig. 5. Symbolic source information and the resulting text in Greek and English.

a kylix. Kylikes were used as wine cups. This kylix was created during the archaic

period”. In a similar manner, one could specify that kouroi, a kind of statue, were

made in the archaic period, by filling in the ‘creation-period’ of ‘Generic-kouros’

accordingly. This would save us from having to specify the creation period of each

individual kouros; the ‘creation-period’ fields of the individual kouroi would be left

empty. It is also possible to override default information. For example, to specify

that a particular kouros was created during the classical period, perhaps the art of

an eccentric classical sculptor, one would set the ‘creation-period’ of that kouros to

‘classical-period’, and this would licence texts like “Kouroi were created during the

archaic period. However, this kouros was created during the classical period”.11

11 This mechanism is currently not fully supported by exprimo, and the same applies to the
‘Many’ column that was mentioned earlier, but we hope that these problems will be solved
in the next exprimo version.



204 I. Androutsopoulos et al.

Fig. 6. Language-dependent fields.

3.2 Visitor stereotypes and personal models

The authors can define one or more types of visitors, as shown in figure 7, where

‘user types’ refers to visitor types. For each visitor type, m-piro’s personalisation

server maintains a stereotype, i.e., a fixed assignment of values to a set of user

modelling parameters. The right panel of figure 7 shows some of these parameters

and their values for the visitor type ‘expert’; all the parameters are explained

below.

Each fact that has been selected to be conveyed gives rise to a separate clause.

This would lead to texts like: “It was created during the archaic period. It was

painted with the red figure technique. It was painted by Eucharides.”. The maximum

facts per sentence parameter specifies the maximum number of clauses that can be

aggregated in a single sentence. A value of 3 or greater licences the aggregated

sentence “It was created during the archaic period and was painted with the red

figure technique by Eucharides.” in the English text of figure 5. Larger values lead to

longer and more complicated sentences. A value of 4 (as in figure 7) usually leads to

reasonable sentences for adults, but when generating for children shorter sentences

may be more appropriate.

The facts per page parameter in effect controls the length of the resulting

descriptions. It is often the case that the system knows a large number of facts

about the entity to be described. A long text that conveys them all may be too

boring for the visitor. When delivering the generated text on mobile devices or in

spoken form, there may also be limitations imposed by the size of the device’s

display or the speed of the speech synthesizer. m-piro’s content selection stage ranks

the relevant and appropriate facts and selects the most highly ranked ones, so that



Source authoring for multilingual generation 205

Fig. 7. Visitor types and some of the parameters of the visitor stereotypes.

their number does not exceed the value of ‘facts per page’. The remaining facts

can be conveyed if the visitor asks for more information, each time generating an

additional piece of text, or page in m-piro’s terminology. In the demonstrator of

figure 1, additional pages can be generated by clicking on the “Tell me more” link

or by revisiting an exhibit. There are options in the authoring tool to preview all

the pages of an entity.

The idea that the number of facts expressed per sentence or page should be open

to personalisation is inspired by work in the psychology of text comprehension,

especially by Kintsch and van Dijk (1973). The technical notion of a fact used here

corresponds reasonably closely to an ‘idea’ or simple proposition, while an entity

corresponds to an argument. It has been argued that texts with high densities of

arguments, or high quantities of ideas, are harder to process (Kintsch and Keenan

1973). Hence, less skilled readers should benefit from texts with fewer facts per

sentence, and fewer facts per page. The other two parameters of figure 7, links per

page and synthesizer voice, are more a matter of taste: they control the number

of forward pointers that are provided at the end of each page, and the preferred

synthesizer voice, respectively; both can be set to different values per visitor type.

The current system supports multidimensional user models, because it takes into

account abilities, interests, and level of knowledge (Zukerman and Litman 2001).

While figure 7 focuses on ability-related parameters at a general level, figure 8 shows

the manipulation of values for interest and knowledge, while authoring specific

content. Both figures are from a sample application that generates descriptions of

modems for sale. The ‘expert’ and ‘standard’ types correspond to visitors that are

familiar or not, respectively, with the functionality and features of typical modems. In

distinguishing users by their level of expertise, we follow in the tradition pioneered by

Paris and collaborators (Paris 1988; Bateman and Paris 1989). In museums, curators

can offer advice informed by experience, and possibly visitor surveys, concerning

what general assumptions can be made about different types of visitors, in terms

of abilities and interests; indeed this is how the stereotypes of m-piro’s museum

demonstrator were constructed. In the modem domain, however, we currently rely

on our own intuition only. Figure 8 shows an example description for a ‘standard’

visitor, along with the corresponding text for an ‘expert’ visitor.



206 I. Androutsopoulos et al.

Corresponding description for ‘expert’: tornado 56k – This object is a 56K modem; it is

manufactured by Tornado and it costs 28.40 euro. It supports the v.92 protocol and connects

to the usb port. It typically ships within 5 working days.

Fig. 8. A description for a ‘standard’ visitor (screenshot), and the corresponding text (below

the screenshot) for an ‘expert’ visitor. Also shown is a pop-up window that allows the author

to set the importance and repetitions scores of the field ‘supported-protocol’.

As the example illustrates, it is possible to convey different content to different

types of visitors. In the description for ‘standard’ visitors, the text does not mention

the protocol, information presumed to be too technical for non-experts, unlike the

text for ‘expert’ visitors. This is achieved by adjusting the importance scores of the

field ‘supported-protocol’, as shown in figure 8. Importance scores range from 0 to

3, and show how interesting the corresponding fact is for visitors of the various

types.12 During content selection, preference is given to unassimilated facts with high

importance scores. In figure 8, the importance of ‘supported-protocol’ for ‘standard’

visitors is zero, signalling that the corresponding fact should only be conveyed

when there is nothing more interesting to say. The ‘repetitions’ scores show how

many times the corresponding fact has to be mentioned, possibly in different pages,

before presuming that the visitor has assimilated it. It therefore marks the author’s

12
ilex and exprimo distinguish between ‘interest’ and ‘importance’. The former shows how
interesting a fact is presumed to be to visitors of each type, while the latter shows how
important the authors believe it is to convey it to the corresponding visitors. The usability
evaluation, which will be presented later on, found that this distinction confused the
authors. The authoring tool now hides the distinction, by showing only the importance
scores and assigning to interest the same value as importance. We, therefore, use the two
terms as synonyms.



Source authoring for multilingual generation 207

judgment concerning the relative difficulty of a domain concept, and this is taken

into account in both content selection and surface realization (Cawsey 1990). A

repetitions value of zero signals that the fact should never be mentioned.

Specifying the importance and repetitions scores of a field at each individual entity

is tedious. Instead, they can be specified at the entity type that defines the field.

In our example, ‘supported-protocol’ is defined at the entity type ‘modem’. Using

a similar pop-up window as that of figure 8, the author can specify at the type

‘modem’ that the importance and repetitions of ‘supported-protocol’ for ‘standard’

users are zero, and this will apply by default to all entities that belong to that type

and its subtypes. It is possible to override the default scores of a field by specifying

different scores at a particular entity. For example, we may wish to specify that the

material of statues should generally not be reported to average adult visitors, but

in the case of a particular statue that is made of gold, we may wish to override the

default and report the material.

Notice, also, that the text for the ‘standard’ visitors in figure 8 includes a general

sentence on 56k modems, which is absent from the corresponding text for ‘expert’

visitors. This is a canned sentence, stored as the value of the string-valued field

‘item-type-description’ at the ‘Generic-56k-modem’ entity; the field (not shown in

figure 8) is defined at the type ‘item-for-sale’, and its importance and repetitions are

set to zero for ‘expert’ visitors. Furthermore, generating a description of another 56k

modem for ‘standard’ visitors in the authoring tool, for example ‘56k3’, after having

generated the description of figure 8, produces the following text:

zoom 56k – This object is another 56k modem, made by Zoom. Its price is 75.20 euro. This

56k modem connects to the rs-232 port. It typically ships within 3 working days.

The new description does not repeat the general sentence on 56k modems, because

it is presumed that the visitor has assimilated it. As already mentioned, the

personalisation server maintains a personal user model for each visitor, which

records the facts that have been conveyed to the visitor and the degrees to which

the system believes they have been assimilated, allowing exprimo to avoid repeating

assimilated facts. The personal models also store information on the objects that have

been described and the micro-plans that have been used, and this allows exprimo to

generate comparisons and avoid repeating the same expressions; notice, for example,

the “another 56k modem” in the description of Zoom 56k above, and the fact that

the manufacturer and cost are expressed with different clauses, compared to the

texts of figure 8.13 It is in principle possible to employ decay mechanisms in the

personalisation server, that would decrease the assimilation scores over time and

would gradually delete old parts of the interaction history of each user, to model

the process of forgetting and to avoid comparing to objects examined too far in

the past, but we have not explored this issue further. Instead, we adopted the

simplistic approach of clearing personal models a few days after the last visit of the

corresponding visitors, causing the system to treat all previously conveyed facts as

unassimilated by the corresponding visitors and all objects as never examined.

13 Like ilex, m-piro generates comparisons to previously examined objects, but it does so
more frequently and informatively; see Calder et al. (2005).



208 I. Androutsopoulos et al.

The authors do not interact directly with personal models, but the authoring tool

silently maintains a sample personal model for each visitor type, which allows the

authors to see the effects of personal modelling on the generated texts. There is an

option to clear the sample personal models, which the authors can use to view the

texts that would be delivered to visitors with no previous interaction history.

3.3 Document planning settings

m-piro’s document planner is largely domain-independent. It is a simplified version

of ilex’s planner (O’Donnell et al. 2001), lacking the second stage where rhetorical

relations can re-order ilex’s selected content. There are only two ways in which

the authors can influence the simple planner’s behaviour. First, by setting the

importance of the various facts, since the planner, if not instructed otherwise,

attempts to place the most important facts (of those content selection has decided

to convey) towards the beginning of the text, subject to coherence constraints (e.g.,

facts about a statue being described cannot be interleaved randomly with other facts

about the sculptor of the statue, that content selection has also decided to convey).

In a second, more direct manner, the authors can specify explicitly the preferred

fact order by manipulating a list that contains all the available types of facts. In

the application of figure 8, the author has specified explicitly that the type of the

object should be mentioned first, followed by the facts that correspond to the fields

‘item-type-description’, ‘made-by’, ‘price’, ‘connection-port’, ‘supported-protocol’, and

‘days-to-ship’, in this order.14 In more complex domains, like the museum domain

of figures 4–6, the list the authors order includes fact types corresponding to fields

of several entity types (e.g., fields of exhibits, persons, locations). If an explicit order

has been specified, exprimo expresses the facts (that content selection has decided

to convey) in the specified order, again subject to coherence constraints.

Note that there is a single fact order for all visitor types. A possible extension

would be to allow different fact orders per visitor type, though we have not

encountered cases where this was necessary. In related work, Dimitromanolaki and

Androutsopoulos (2003) investigated a machine learning approach, where the order

of the facts of each description is decided by a chain of classifiers; the classifiers are

trained on example texts whose facts have been re-ordered by domain experts.

3.4 Micro-plans

For each field of the ontology and each language, the authors have to specify at

least one micro-plan, that specifies how the field can be expressed as a clause in that

language. Following ilex, m-piro supports two forms of micro-plans: clause plans

and templates. In clause plans, the author specifies the verb to be used, the voice

and tense of the resulting clause, the preposition, if any, to be included between

14 The list is currently specified in an exprimo startup file. We hope that future versions of
the authoring tool will allow the authors to specify the fact order by re-ordering the rows
of the tables that show the fields of each entity type.



Source authoring for multilingual generation 209

the verb and the object, any desired adverb, and strings to be concatenated as

adjuncts at the beginning or end of the clause. The verb has to be chosen from

those available in the domain-specific lexicon; if the desired verb is not in the

domain-specific lexicon, it has to be added first, as will be discussed in the following

section. The clause plan in figure 4 leads to clauses like “This vessel was painted

by Eucharides”. Appropriate referring expressions, for example “a painter called

Eucharides”, “Eucharides”, or “him”, are generated automatically. The algorithm

for constructing noun phrases is that used in ilex (O’Donnell et al. 1998); it takes

into account both what is known about an entity, and the context in which it is

mentioned. The ‘show advanced options’ tick-box of figure 4 allows the authors

to control parameters such as the mood of the clause, the case of the referring

expressions, and whether or not the clause can be aggregated; the default values of

these parameters are usually adequate.

Templates provide stricter control over the surface form of the resulting clauses

than do clause plans. A template is a sequence of slots, the values of which are simply

concatenated to produce a clause. Figure 9 shows a template for the ‘price’ field of

‘item-for-sale’ entities, that leads to clauses of the form “Its/This modem’s/Tornado

56k’s price is 28.40 euro”. Each slot can be filled by: an expression referring to the

entity that owns the field, i.e., the ‘item-for-sale’ entity in our example, as in slot

1 of figure 9; a canned string, as in slots 2 and 4; the value of the field, if the

values of the field are built-in data-types, such as strings or numbers, as in slot 3;

or an expression referring to the value of the field, if the values of the fields are

entities, as would be the case with the ‘made-by’ field in figure 9. With slots that

are filled by referring expressions, the author also specifies the case of the referring

expression. Setting the type of a referring expression to ‘auto’, as in slot 1, allows

exprimo to decide whether it will use a pronoun, a noun phrase like “the modem”,

or the entity’s name. It is also possible to specify that a particular type of referring

expression should be used; for example, that a pronoun should always be generated.

Templates carry less linguistic information than clause plans, which does not

allow exprimo to exploit its full potential. For example, exprimo’s aggregation rules

are designed to manipulate clause plans, and, hence, cannot be applied to clauses

generated by templates, like the last sentences of the texts in figure 8. However,

templates are the only option when facts need to be rendered in forms other than

those clause plans generate. With clause plans, for example, the subject of the

generated clause always refers directly to the owner of the field, as in “this modem”,

“it”, or “Tornado 56k”, which is why a clause plan cannot generate the same clauses

as the template of figure 9, where the subject has to refer to the price of the modem.

Templates can also be used to add dynamically generated referring expressions

to canned strings. In figure 6, for example, the value of ‘person-information’ is a

sentence without a subject. The resulting text “He is thought to. . . ” is produced

with a template, whose first slot asks for an ‘auto’ referring expression for the owner

of the field, and whose second slot is filled by the string value of the field.

Another use of templates is to produce telegraphic text, which may be preferable

when delivering text on devices with small screens, for example, on mobile phones

via sms. In figure 7, the ‘expert-telegraphic’ type is for expert visitors who prefer



210 I. Androutsopoulos et al.

Fig. 9. A template, and specifying the appropriateness of a micro-plan.

telegraphic text. They receive approximately the same content as ‘expert’ visitors,

but with more condensed language expressions, generated via templates. The

corresponding ‘expert-telegraphic’ description for the modem in figure 8 is:

tornado 56k – 28.40 euro. Supports the v.92 protocol. Connects to the usb port. 5 days to

ship.

exprimo uses similar built-in templates of the form field-name:value when no micro-

plan has been provided for a field. For example, if no micro-plan had been specified,

the text above would be:

tornado 56k – price: 28.40. supported-protocol: the v.92 protocol. connection-port: the

usb port. days-to-ship: 5.

This allows the authors to inspect the facts that exprimo selects to convey, and

possibly adjust the parameters of the visitor stereotypes, for example the importance

scores or the number of facts per page, before specifying micro-plans. It also acts

as a reminder that no micro-plan has been provided for a field.



Source authoring for multilingual generation 211

Unlike ilex, m-piro allows multiple micro-plans to be specified for the same field

and language. This can be used to avoid repeating the same expressions in texts for

the same visitor, and to tailor the expressions per visitor type; for related work on

micro-planning choices for low-skilled readers, see Williams and Reiter (2005). Here,

we have already noted the fact that the manufacturer and cost are expressed using

different clauses in figure 8 and the description of Zoom 56k that follows it; this is

the effect of having defined multiple micro-plans for the corresponding fields.

To keep the generation capabilities across the supported languages aligned, the

authoring tool encourages the authors to specify each micro-plan in all of the

languages, so that equivalent clauses can be produced. For example, in the second

micro-plan of the field ‘price’ in figure 9, the author can easily see and fill in the

corresponding micro-plans in the other two languages, by clicking on the flag. The

‘Micro-planning’ column shows how many micro-plans have been provided for each

field in the three languages; in the case of ‘painted-by’ in figure 4, there are three

Greek micro-plans, but only two English ones and one Italian, which indicates that

there are micro-plans for which their counterparts in the other languages have not

been entered. The lexicon entries are also kept aligned, as will be discussed in the

following section; for example, the ‘paint-verb’ in figure 4 is the identifier of a

trilingual verb entry in the lexicon, that contains the verbs “paint”, “dipingere”, and

“ζωγραφι′ζω” of the three languages. The ‘get values from’ buttons in figure 4 speed

up the authoring process by setting, where possible, the parameters of a clause plan

to the same values as those of its counterparts in the other languages; for example,

the same lexicon entry for the verb, the same tense, voice, etc.

For each micro-plan, appropriateness scores specify how appropriate it is to use the

micro-plan in descriptions delivered to each type of visitor. In the pop-up window

of figure 9, the author has specified the appropriateness scores of the English,

Italian, and Greek versions of the second micro-plan for the field ‘price’. Positive

scores indicate appropriate micro-plans. exprimo uses in turn all the micro-plans

of a field that have positive appropriateness, starting with the micro-plan with the

highest appropriateness. Negative appropriateness indicates micro-plans that should

be avoided. exprimo uses micro-plans with negative appropriateness only when

there is no other micro-plan with a positive score, and in that case, it always selects

the micro-plan whose appropriateness is the least negative. The appropriateness

scores in the pop-up window of figure 9 signal that the micro-plan should not

be used in descriptions for ‘expert-telegraphic’ visitors. There are more suitable,

telegraphic micro-plans for those visitors, and their appropriateness is positive for

‘expert-telegraphic’ visitors and negative for other types of visitors.

The number of micro-plans the authors have to specify can be reduced if the

authoring process starts with a basic ontology providing entity types that are

common in m-piro applications, their fields, and micro-plans to express them,

rather than starting from an empty ontology. For example, there could be a basic

ontology providing types such as ‘physical-object’ or ‘person’, with fields like ‘weight’

and ‘place-of-birth’, respectively, and appropriate micro-plans. Then, in a museum

application, the authors would simply define ‘exhibit’ and ‘artist’ as sub-types of

‘physical-object’ and ‘person’, respectively, which would cause the two new types



212 I. Androutsopoulos et al.

to inherit the fields ‘weight’ and ‘place-of-birth’, respectively, and their micro-plans.

We return to this issue when presenting the usability evaluation of the authoring

tool below. In a similar manner, common fields (e.g., ‘price’) and the corresponding

micro-plans could be inherited from high-level entity types of the Upper Model via

the entity type subordination mechanism of section 3.1, or by subordinating fields

(that represent relationships or attributes) to corresponding notions of the Upper

Model. The Upper Model has not been exploited in m-piro as systematically as in

other generation systems; see, for example, Bateman (1990) for related discussion.

While this increases the number of micro-plans the authors have to specify, it also

reduces the degree to which the authors are required to have mastered the (mostly

linguistically motivated) concepts of the Upper Model (e.g., non-directed-action,

addressee-oriented-verbal-process, stative-quality).

m-piro’s clause plans can produce a much smaller range of surface expressions,

compared to the expressions that can be generated when specifying sentence plans

in formalisms like the commonly used spl language (Kasper and Whitney 1989;

Bateman 1997). On the other hand, the simplicity of m-piro’s clause plans makes

them much easier to explain to authors, who we assume have no previous experience

in natural language generation, unlike the effort and background that is needed

to master spl and the linguistic concepts it employs. m-piro’s templates are also

simpler than those of some other systems. For example, unlike the templates of

Buseman et al. (1999) and McRoy et al. (2003), m-piro’s templates do not allow

default values, conditionals, or invoking recursively other templates; see also van

Deemter et al. (2005) for a discussion of how templates can be enriched with syntactic

and other information, blurring the distinction between templates and clause plans.

Again, however, the simplicity of m-piro’s templates makes them much easier to

explain to authors.

3.5 Domain-dependent lexicon

The domain-dependent lexicon contains entries for nouns and verbs, as shown in

the left part of figure 10. The entries for function words, such as articles and

prepositions, are domain-independent and are kept separately. As explained in the

previous section, verb entries are trilingual, and they are used when specifying clause

plans. Noun entries are also trilingual. The right panel of figure 10 shows the Greek

part of the noun entry ‘coin-noun’; the Greek noun is “νo′µισµα”.

exprimo’s algorithm for generating referring expressions requires the authors to

establish links between entity types and the noun entries that can be used to refer

to the entity types. In figure 4, the entity type ‘vessel’ is linked to the noun entry

‘vessel-noun’ (this can be seen in the area next to the ‘Edit nouns’ button), which

contains the nouns “vessel”, “vaso”, and “αγγει′o” of the three languages. This allows

exprimo to produce expressions like “this vessel” when referring to entities of type

‘vessel’ in English. As with verbs, if the appropriate noun entry is not present in the

domain-dependent lexicon, it has to be added first.

An entity type can be linked to multiple noun entries. As with micro-plans,

noun entries carry appropriateness scores, which may indicate that a noun-entry is



Source authoring for multilingual generation 213

Fig. 10. Editing the domain-dependent lexicon.

more appropriate than others when generating texts for particular types of visitors.

Furthermore, each entity type inherits the noun entries that have been linked to

its super-types. Hence, in figure 4, the entity type ‘vessel’ also inherits the lexicon

entry ‘exhibit-noun’, which has been linked to the ‘exhibit’ entity type; this licences

exprimo to refer to a ‘vessel’ entity as “this vessel” or “this exhibit”.15

Like most natural language generation systems, m-piro’s domain-dependent lex-

icon is typically rather small. For example, there are approximately 50 noun and

30 verb entries in the museum demonstrator of figure 1, many of which, like

‘kouros’ and ‘kylix’ are unlikely to be found in general purpose dictionaries. Hence,

instead of attempting to reuse existing large-scale electronic dictionaries, we have

opted for facilities that simplify entering new nouns and verbs in m-piro’s domain-

dependent dictionary. In the case of Greek nouns, for example, exprimo’s systemic

grammar requires several features pertaining to the inflectional pattern of the

noun, the position of the stress in the noun’s various forms, etc. The authoring

15
exprimo currently ignores the noun inheritance mechanism, and when an entity type is
linked to many noun entries, it always selects the first one. Supporting mechanisms are
already in place in the authoring tool and the personalisation server, and we hope that
appropriate support will also be added to the next exprimo version.



214 I. Androutsopoulos et al.

tool incorporates facilities that determine and add automatically these features by

examining the nominative singular and nominative plural forms of the noun that the

author enters in the top right part of figure 10. Morphology rules are also available,

which generate automatically the remaining inflectional forms of the nouns from

the two forms that the author enters; similar facilities are available for verbs. The

‘advanced spelling options’ button in figure 8 displays in the bottom right part of

the window all the inflectional forms of the noun (or verb), allowing the author to

inspect and correct the forms that have been generated automatically, when text

previews indicate that some of them have been generated wrongly. In most cases,

however, the generated forms are correct, and the author does not need to consider

other inflectional forms than those entered in the top right part of the window.

As with micro-plans, nouns carry appropriateness scores, which may indicate, for

example, that ‘vase’ is more appropriate than ‘vessel’ when generating for children.

One limitation of m-piro’s current linguistic coverage is that it does not support

directly noun modifiers, such as adjectives or prepositional phrases, as in “archae-

ological site” or “cable for serial connection”. To generate nouns with modifiers, and

to link them to entity types, one has to create pseudo-noun entries, that contain

both the noun and its modifiers, like the entry ‘archaeological-site-noun’ in the left

panel of figure 10. The main problem with this approach is that it confuses the

morphology rules for nouns, and, hence, the authors have to correct manually many

of the automatically generated forms of the pseudo-nouns; this is more tedious in

Greek and Italian, where nouns and adjectives have several inflectional forms.

3.6 Domain authoring vs. exhibit authoring

The authoring process can be divided in two separate stages, which we call

domain authoring and exhibit authoring. Domain authoring defines the application’s

ontology, the visitor stereotypes, and the domain-dependent linguistic resources.

To ensure that all the domain-dependent resources have been defined correctly,

domain authors will typically also create entries for a few entities of various types,

and preview their natural language descriptions. Thereafter, exhibit authoring is

concerned with populating the database with more entities. It is a data entry task

that can be assigned to people whose familiarity with the authoring tool is limited

to creating entities of the appropriate types, filling in their fields, and previewing

the resulting texts, unlike the domain authors who need to have mastered the full

functionality of the authoring tool. Both stages can be semi-automated, to exploit

existing ontologies and databases; we return to this point in the following sections.

4 Usability evaluation of the authoring tool

Throughout the development of the authoring tool, there was continuous feedback

on its usability from a curator of the Foundation of the Hellenic World (fhw) who

has a background in cultural informatics; the curator also entered approximately

half of the exhibits of m-piro’s museum domain. The tool was also subjected to

two formative usability evaluations, that helped shape its following versions. One



Source authoring for multilingual generation 215

of them involved a group of fhw curators, while the second one was conducted

with graduate informatics students at the University of Edinburgh. Here we focus

on a third, summative evaluation, that assessed the usability of the authoring tool,

as delivered at the end of the m-piro project, in the case where the authors have

a computer science background but no expertise in natural language generation.16

The main goal of this evaluation was to investigate the degree to which authors

with this background can use the tool to maintain existing m-piro applications

or create new ones, after receiving a short training course. A secondary goal was

to identify possible further improvements to the tool. Some of the improvements

that were proposed were subsequently implemented during additional follow-up

work at the Athens University of Economics and Business (aueb) (Nikolaou 2004;

Prospathopoulou 2004). All the screenshots of the tool in this paper are from the

improved version, with the exception of figure 12, which is from the version that

was used during the evaluation.

The summative evaluation involved a group of 10 third-year computer science

undergraduates from aueb, who had no prior experience in language generation.17

As already noted, we believe that the expertise of our subjects is a good lower

boundary of the expertise of the employees that would be assigned the task of

configuring m-piro for e-commerce applications (e.g., generating descriptions of

items for sale) in a corporate environment. A further advantage of the group of

students we used is that they were drawn from a Human-Computer Interaction (hci)

course, which allowed them to employ evaluation methods that require familiarity

with hci concepts. Although the feedback we had from the fhw curators during

the formative evaluations was quite positive, we chose not to experiment further

with museum curators, because their computing skills vary considerably, and, hence,

it is difficult to reach solid conclusions on how easily they can use the tool. Also,

feedback from our cultural informatics partners indicates that in a museum context

it is reasonable to assume that m-piro’s authoring process would be assigned to

a curator with a cultural informatics background, or to a computer scientist (e.g.,

from the museum’s information technology department) who would interact with

curators to obtain the information they wish to present at each exhibit. Hence, we

believe there is value in our summative evaluation for museum contexts too.

The students first attended a six-hour introductory course on the use of the

authoring tool. They were then given the course’s slides and 11 homework tasks

to perform with the tool. The tasks were designed to cover most of the tool’s

functionality, and they ranged in difficulty from correcting information about an

16 Karasimos and Isard (2004) have also carried out end-user evaluations to measure the
acceptability of the resulting texts, and factual recall from them. Results indicate that
aggregating clauses and including comparisons leads to higher factual recall and higher
acceptability of the generated texts.

17 All of the students had attended a single, one-semester Artificial Intelligence course, whose
content follows closely that of acm/ieee recommended curricula, i.e., it included elementary
knowledge representation (e.g., propositional logic, first-order predicate logic) and basic
natural language processing techniques, such as parsing with a dcg grammar. We believe
that such an ai course is typical of most computer science curricula, and, hence, other
authors with a computer science background would have attended at least one similar
course.



216 I. Androutsopoulos et al.

Task type Scores

i. Correcting database information for existing exhibits. 10 A

ii. Adding more exhibits of existing types. 4 A, 5 B, 1 C

iii. Adjusting user modelling parameters to affect the

semantic content and surface form per visitor type. 6 A, 3 B, 1 C

iv. Previewing texts in different languages. 6 A, 1 B, 1 C, 2 D

v. Correcting errors in the surface form, caused

by errors in the lexicon or micro-plans. 1 A, 4 B, 4 C, 1 D

vi. Adding new types of exhibits and corresponding

micro-plans and lexicon entries. 4 B, 6 C

vii. Creating a new m-piro application. 2 B, 6 C, 2 D

Fig. 11. Task types of the usability evaluation of the authoring tool and their scores.

existing exhibit to creating a new mini m-piro application. The modems application

of figure 8 is based on an application created by one of the students during the

evaluation. Other students came up with applications for cars, motorcycles, music

cds, pets, etc. Based on their experience from the 11 tasks, the students were then

required to fill in a questionnaire that asked their opinion on the degree to which

authors with the same background as theirs would be able to perform tasks of

various types, after attending the same introductory course. For each type of task,

there were six possible replies: A (they would succeed with no trouble at all), B

(success with only minor problems), C (they would have trouble, but they would

probably succeed), D (they would have trouble and success would be dubious), E

(unlikely to succeed), and F (no chance to succeed). The types of tasks are shown

in figure 11, along with the replies of the students.

Overall, the majority replied that the authors would succeed in all cases, albeit

in most cases after first encountering difficulties of various degrees. The rationale

behind the replies is more informative. The students were instructed to base their

replies on a type of cognitive walkthrough (Preece 1994) of the 11 tasks they had

to perform. In each task, they were asked to consider how easily an author would

figure out which sequence of actions offered by the tool had to be chosen, the

degree to which the actions offered by the tool matched the goals the author would

have in mind, the probability that the author would select actions leading to an

outcome other than the intended one, and how easily the author would realize the

latter mismatch and take appropriate action. The students had to summarize their

cognitive walkthrough analysis per task in a separate part of the questionnaire,

which reveals the rationale behind the scores of figure 11. They were also asked to

propose possible improvements, based on their cognitive walkthrough analysis and

a form of heuristic evaluation (Nielsen 1992), where they had to examine the degree

to which the tool complied with established usability guidelines explained during

the hci course. We discuss below the rationale behind the scores of figure 11, along

with some of the improvements that were proposed. A group discussion with the

10 students was also conducted after they had handed in the questionnaires, during

which some of the replies were clarified.



Source authoring for multilingual generation 217

No student reported serious problems in task types (i) and (ii), which is compatible

with our claim that exhibit authoring is simpler than domain authoring. In task

type (ii), the scores were slightly lower partly because of a bug in the graphical user

interface (gui) of the authoring tool, that caused newly entered strings to be lost

when the author moved to another field without pressing ‘enter’; this has now been

fixed. The students also reported that showing language-dependent fields in separate

screens per language (figure 6) causes problems when adding new exhibits, because

authors often forget to assign values to the language-dependent fields in some or

all of the languages. A possible solution is to show the language-dependent fields

in the same table as the language-independent ones (figure 5), and use the preview

panel to display the values of a language-dependent field across all languages when

the author clicks on that field. Facilities to create copies of existing entities were

also requested, as this helps entering similar entities, as well as mechanisms to move

entities to more general or specific entity types.

In task type (iii), a distinction between ‘interest’ (how likely it is that visitors of

each type will find a fact interesting) and ‘importance’ (how important the authors

believe it is to convey a fact to visitors of each type), which was inherited from ilex

and was still used at the time of the experiment, was found to be confusing. The

students found it difficult to distinguish between interest and importance in practice,

and they all specified the same values for both in all facts. The distinction has now

been abolished (see footnote in Section 3.2). Note that the students were not given

the option to specify the order of the facts explicitly (Section 3.3). Hence, adjusting

the importance scores was the only means to influence the order of the conveyed

facts; this does not appear to have caused any problems. There were also difficulties

caused by the fact that the authors were required to activate manually a facility to

export user modelling information to the personalisation server whenever necessary,

which they often forgot to do; this has now been automated.

The surprisingly low scores that some students assigned to task type (iv) were

due to technical problems and bad gui design. The tool required the authors

to remember to activate manually a facility that exported the domain-dependent

resources to exprimo’s xml format (discussed below) whenever they made changes to

them. They often forgot to do so, which caused the previews to be based on outdated

resources. This process has now been fully automated. There were also some bugs

in the communication between exprimo and the authoring tool, which sometimes

caused no preview to be generated; most of these bugs now also appear to have

been fixed. A third problem was that the gui made it difficult to figure out and

remember which actions had to be performed to generate a preview (see figure 12).

The previewing process involved selecting a language from the options menu, right-

clicking in the ontology on the entity to be described, and then selecting the preview

option and the visitor type from cascaded menus. Again, this process has now been

made much more intuitive, as can be seen in figure 5.

The scores of task types (v) and (vi) primarily reflect the problems that the students

encountered during the manipulation of domain-dependent linguistic resources,

especially micro-plans. The micro-plans and lexicon entries mention some grammar

concepts, such as verb aspects, and pronoun cases, that authors with a computer



218 I. Androutsopoulos et al.

science background are not always acquainted with; this issue had also been noted in

the Edinburgh formative evaluation, mentioned earlier in this section, that involved

informatics graduates. Apart from introducing uncertainty and, hence, discomfort,

these concepts also led some of the students to select default or random values of

the corresponding options, generate previews to check their effect, and then revisit

the micro-plans or lexicon entries to try other values. This could have actually been

a successful form of exploratory learning, where users learn the functionality of

the user interface by trying out the effects of the various options offered. However,

returning to the appropriate micro-plans and lexicon entries is often time consuming,

because there is no quick way to be taken automatically from a word or phrase

in a preview text to the domain-dependent language resources that were used to

generate it.

At the time of the evaluation, the problems of the previous paragraph were

amplified by the complicated series of actions that the authors had to perform in

the gui to reach particular micro-plans; this involved right-clicking on a field of an

entity type, and then navigating through cascaded menus to select the language and

micro-plan number. The actions have now been simplified and made more intuitive;

see figure 4. However, the editing of domain-dependent linguistic resources could be

simplified further by providing mechanisms to allow the author to click on a word or

phrase in a generated text and be taken to the corresponding lexicon entry or micro-

plan. drafter provided a similar mechanism that linked a generated text back to the

database entries that carried its semantic content (Hartley and Paris 1997), and this

functionality could also be added to m-piro’s authoring tool to help authors reach

database fields that need to be corrected. A similar approach could be used to locate

user modelling parameters that need to be modified. Although not implemented, this

kind of active previewing is feasible in m-piro, because exprimo can easily markup

each word or phrase in the output texts with the language resources, database

entries, and user modelling parameters that were used to generate them. Previewing

mechanisms of this kind would take m-piro closer to the wysiwym approach, where

authors interact with the system entirely via generated texts reflecting the current

content of the database and the options that are available to update it (Power

and Cavallotto 1996; Van Deemter and Power 2003), although to the best of our

knowledge wysiwym has so far been demonstrated only in cases where the authors

manipulate only the contents of the database, not the ontology, language-dependent

resources, and user modelling parameters.

To a large extent, the scores of task type (vii) were due to the cumulative effect of

problems encountered in the previous task types. However, the scores also reflect the

amount of work that has to be carried out to generate a new m-piro domain from

scratch. Modifying an existing or similar application is much easier than generating

an entirely new application, and many students felt that the authoring tool should

include a basic ontology with suitable linguistic resources; for example, common

entity types such as ‘exhibit’, ‘artist’, and ‘historical-period’ in the case of museum

applications, with associated fields, micro-plans, and lexicon entries. This proposal

had also surfaced in the fhw formative evaluation, and suggests that it would be

easier to market specialised versions of m-piro’s technology for particular families of



Source authoring for multilingual generation 219

applications, for example, museum applications, or e-commerce applications, with

basic ontologies and vocabularies built-in. Our more recent work on owl ontologies

(discussed below) can be seen as a step towards that direction.

As a measure of user satisfaction, the questionnaires also asked the students to

indicate if they would be willing to undertake the task of using the evaluation

version of the tool in a work environment to create a 50-exhibit domain, assuming

that other colleagues had received the same training and could undertake the task

instead. Among the 10 students, 2 would volunteer, 5 would accept, 3 would try to

avoid the task, and none would refuse to undertake it. In a similar question where

an employee would have to test a new improved version of the tool, 7 of the students

would volunteer, 3 would accept, and none would try to avoid or deny the task.

Overall, the results indicate that it is feasible for authors with a computer science

background but no expertise in natural language generation to configure m-piro’s

system for new applications, after attending an introductory course that could fit in

one working day. Many of the problems that were encountered during the summative

evaluation were due to problems in the design of the gui, and most of them have

now been solved; this also emphasises the importance of hci principles in the design

of such tools. The evaluation also revealed some deeper issues, namely: the difficulty

to distinguish between ‘interest’ and ‘importance’; the need for active previewing;

and the need for a basic built-in ontology, possibly in different versions for different

families of applications, with accompanying linguistic resources. We hope that future

work will also explore efficiency issues, for example how long it takes for authors to

perform various tasks.

5 Using information extraction and external databases

We have so far been concerned mostly with cases where m-piro’s ontology and

database are created from scratch by the authors. In practice, however, m-piro’s

system will often have to be ported to applications where a large volume of

information is already available in databases (e.g., museum databases, retailers’

databases) or collections of documents (e.g., Web pages, product catalogues).

The latter case, where information exists in textual form, calls for a synergy

between information extraction and natural language generation, to populate

m-piro’s database with symbolic information and snippets extracted from texts

by an information extraction system; this presupposes that m-piro’s ontology is

compatible with that employed by the information extraction system. This synergy

can lead to applications, where, for example, personalised real estate advertisements

or job offers are generated automatically in several languages from monolingual

newspaper entries.

In the remainder of this section we present work we have carried out to couple

m-piro to an information extraction system, and to allow the authoring tool to

import information from existing external databases. The facilities that we present

here and in the next section, where m-piro’s support of owl is discussed, are less

developed than those we described in the preceding sections, and they have not



220 I. Androutsopoulos et al.

Fig. 12. An m-piro application that uses information extracted from Web pages.

been subjected to formal usability evaluation. Nevertheless, we believe that they are

particularly interesting, as they illustrate future directions of research.

5.1 Coupling M-PIRO to an information extraction system

As a first proof of concept towards coupling m-piro to an information extraction

system, we used m-piro’s authoring tool to create an application for laptop advertise-

ments (figure 12), using information that was extracted from Web pages of electronic

retailers during the European ist crossmarc information extraction project (Hachey

et al. 2003; Karkaletsis et al. 2004).18
crossmarc targets multilingual information

extraction, and, hence, it is a particularly good match for m-piro. Its ontology and

templates, however, are fairly typical of information extraction systems, and, hence,

resources from other information extraction systems could have been used instead.

In each crossmarc application, information extraction specialists define in xml a

background taxonomy of entity types and entities, which shows, for example, that

a tft screen is a kind of screen, that ‘hp’ is a manufacturer, and that ‘mobile-

intel-pentium-iii’ is a processor. The specialists also define templates, that show for

each entity type the fields that have to be filled in with extracted information (e.g.,

manufacturer and processor of each laptop), and the admissible types of the fillers.

Figure 13 shows a crossmarc template for entities of type ‘laptop’. There is also

a multilingual lexicon, which lists the names of known entities in the supported

18 See also http://www.iit.demokritos.gr/skel/crossmarc/.



Source authoring for multilingual generation 221

<xsd:element name="laptop">

<xsd:complexType mixed="true">

<xsd:all>

<xsd:element name="manufactured-by" type="manufacturer" />

<xsd:element name="has-processor" type="processor" />

<xsd:element name="processor-speed" type="processor-speed-type" />

<xsd:element name="preinstalled-oper-system" type="op-system" />

...

</xsd:all>

<xsd:attribute name="language" type="document-language" />

</xsd:complexType>

</xsd:element>

Fig. 13. An information extraction template from crossmarc.

languages, and provides terms that can be used to refer to entity types, much

as m-piro’s linking between nouns and entity types. Information extracted from

documents is then stored in xml as filled-in templates.

Creating the corresponding m-piro application involved: reconstructing within the

authoring tool crossmarc’s laptop taxonomy; defining fields at the various entity

types to mirror crossmarc’s templates; adding entities in m-piro’s database for entit-

ies that are mentioned in crossmarc’s taxonomy (e.g., known manufacturers); filling

in their names using crossmarc’s lexicon; adding noun-entries (or pseudo-noun

entries) from crossmarc’s lexicon to m-piro’s domain-dependent lexicon; linking the

noun-entries to the corresponding entity types; adding an entity for each crossmarc

filled-in template; adding micro-plans and tuning user modelling parameters. All but

the last stage could in principle be automated: the authoring tool already exports all

the domain-dependent resources in xml files, which are used as inputs to exprimo,

and one could use tools such as xslt to convert crossmarc’s xml resources into

exprimo’s format. We are working on an enhanced version of the authoring tool,

which will be able to read crossmarc xml resources, leaving to the authors only

the tasks of filling in micro-plans, providing additional noun entries, and tuning

user modelling parameters. Our experience from the laptops domain and a second

crossmarc domain for job offers so far indicates that this process is feasible.

5.2 Importing information from external databases

A similar approach can be used to import information from existing external

databases. In this case, one can use the authoring tool for domain authoring, i.e., to

define m-piro’s ontology, the visitor stereotypes, and the domain-dependent linguistic

resources, and then replace exhibit authoring (the data entry stage) by a process that

will insert into exprimo’s corresponding xml files new xml entries with information

on individual entities (e.g., museum exhibits) obtained from an existing database via

xslt transformations.

For relational external databases, the authoring tool provides an easier to use

facility, which allows entities to be created automatically from information in the

external database (Kallonis 2005). The authors first right-click on an entity type in



222 I. Androutsopoulos et al.

Fig. 14. Importing entities from a relational database.

m-piro’s ontology, indicating they wish to create entities of that type. The window of

figure 14 then appears. In the example of figure 14, which is from an application on

cellular phones, the selected entity type was ‘cellular’, and each new entity represents

a cellular phone model. The author selects the database tables (in our example,

‘cellphone’ and ‘manufacturer’) that contain information on the entities to be

created, and from those tables the columns that correspond to fields of the entities

(e.g., ‘manufacturer.ma name’, ‘cellphone.cp price’).19 In the lowest part of the

window, the author specifies the mapping between the entity fields and the selected

columns. In our example, the field ‘price’ is mapped to the column ‘cp price’ of

the table ‘cellphone’, i.e., the new ‘cellular’ entities should get their ‘price’ fillers

from that column. The ‘made-by’ field is mapped to the column ‘ma name’ of the

table ‘manufacturer’, which provides strings that are used as identifiers of the

corresponding manufacturers in m-piro’s database (in this example, the entities for

the manufacturers had already been created using the same facility). In the case of

language-dependent fields, it is possible to specify a different database column per

language. In the middle of the window, the author specifies how the identifiers of

the new entities should be created; they can be obtained from a database column

(in our example, the column ‘cp name’ of the table ‘cellphone’), or they can be

generated automatically using a prefix and a counter (e.g., ‘entity0’, ‘entity1’, etc).

The facility of figure 14 obviously requires some familiarity with relational

database concepts, though no expertise in sql. Before it can be used, an odbc

connection to the database has to be established, but this will typically be performed

once per database by its administrator. Advanced authors who are familiar with sql

19 Joins between the selected tables are established automatically using foreign keys.



Source authoring for multilingual generation 223

can also issue arbitrary sql queries, via the ‘Advanced’ option, and use the results

of those queries instead of the database’s tables.

One difficulty is that databases, especially for museum exhibits, often contain

valuable information in long text fields. Information extraction techniques may

again be necessary to extract names, dates, etc. from those fields, before the required

information can be imported; see also Dale et al. (1998) for related discussion.

6 Supporting OWL

In recent years, considerable effort has been invested in the Semantic Web, which can

be seen as an attempt to develop mechanisms that will allow computer applications

to reason more easily about the semantics of the resources (documents, services,

etc.) of the Web. A major target is the development of standard representation

formalisms that will allow ontologies to be published on the Web and be shared by

different computer applications. The emerging standard for publishing ontologies is

owl, an ontology specification language based on xml and rdf. owl is increasingly

popular, and, as a result, publicly available owl ontologies for many domains are

beginning to appear. Tools that support the development of owl ontologies are also

becoming available, with protege being a prime example.20

protege is a general knowledge modelling and acquisition system, that provides

a gui for editing ontologies and allows the resulting ontologies to be exported in a

variety of formats, including owl. protege’s ontology editor is similar to the ‘data-

base’ tab of m-piro’s authoring tool (figure 4). It provides a similar representation

of the hierarchy of entity types, and allows its users to define fields (called slots)

of entity types, to enter information about particular entities, etc. Authors who are

already familiar with a tool like protege could use it to define the ontology of an

m-piro application, possibly starting from a similar existing owl ontology, and then

import the resulting owl ontology in m-piro’s authoring tool. There are, however,

some complications caused by incompatibilities between m-piro’s ontological model

and that of owl, that the authors would have to be aware of; we discuss them below.

Note that protege and similar ontology editors cannot replace m-piro’s authoring

tool, because they do not allow the authors to specify the necessary domain-

dependent linguistic resources (domain-dependent lexicon and micro-plans), tune

user modelling parameters, preview texts, and iteratively modify the ontology, lin-

guistic resources and user models until the resulting texts are acceptable. A possible

target for future work, however, would be to investigate how the additional function-

ality of m-piro’s authoring tool could be embedded in tools like protege, possibly as a

plug-in, along with appropriate mechanisms to invoke exprimo to obtain previews. Of

interest is also the kaon knowledge management system, that provides an ontology

editor similar to protege’s, and mechanisms to associate multilingual lexicon entries

with elements of the ontology.21 Furthermore, kaon provides mechanisms to extract

terms, ontology concepts, and instances from existing texts.

20 See http://protege.stanford.edu/.
21 Consult http://kaon.semanticweb.org/.



224 I. Androutsopoulos et al.

In the remainder of this section we report on work we have carried out to

explore how m-piro’s authoring tool can support owl.22 We first discuss how

m-piro’s ontologies can be exported to owl. This allows m-piro’s ontologies to

be imported in tools like protege and to be published on the Semantic Web. As

will be explained, it also opens up the possibility of generating texts that will be

accompanied by machine-readable owl entries specifying their semantics; thus, the

content of the generated texts becomes accessible to computer applications (e.g.,

Web agents), which is a main goal of the Semantic Web. We then explore the reverse

direction, how owl ontologies, which may have been developed using other tools,

can be imported in m-piro’s authoring tool.

6.1 Exporting M-PIRO ontologies to OWL

As with m-piro, owl assumes that there are entity types, called classes, and entities,

called individuals. m-piro’s fields correspond to owl’s properties. Relationships

between entities are expressed in owl by defining object properties, which map

entities to other entities, as in m-piro. Attributes of entities are expressed via

datatype properties, which map entities to literals of specific datatypes, again as in

m-piro. It is, thus, relatively straightforward to export an m-piro ontology to owl,

as sketched below. There are actually three versions of owl, called owl lite, owl

dl, and owl full, with increasing sophistication; owl lite can be roughly thought

of as a subset of owl dl, and owl dl as a subset of owl full. The mapping from

m-piro’s ontologies to owl produces ontologies in owl lite.

When exporting m-piro ontologies to owl, entity types map to class definitions.

For example, the ‘vessel’ entity type of figure 4, a subtype of ‘exhibit’, leads to the

following owl class:

<owl:Class rdf:ID="Vessel">

<rdfs:subClassOf>

<owl:Class rdf:about="#Exhibit" />

</rdfs:subClassOf>

</owl:Class>

Fields are exported as owl properties. The ‘painted-by’ field of figure 4 leads to the

following object property that associates vessels with painters,

<owl:ObjectProperty rdf:ID="painted-by">

<rdfs:domain rdf:resource="#Vessel" />

<rdfs:range rdf:resource="#Painter" />

</owl:ObjectProperty>

while the ‘exhibit-purpose’ field of figure 4 leads to the following datatype property,

which associates exhibits with strings:

<owl:DatatypeProperty rdf:ID="exhibit-purpose">

<rdfs:domain rdf:resource="#Exhibit" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

</owl:DatatypeProperty>

22 See Androutsopoulos et al. (2005) for more details on this work.



Source authoring for multilingual generation 225

Finally, entities become owl individuals, as in statue ‘exhibit42’ below. String-valued

fields, like ‘exhibit-purpose’, lead to properties with separate values per language (in

our case, English, Italian, and Greek).

<Statue rdf:ID="exhibit42">

<current-location rdf:resource="#acropolis-museum" />

<creation-period rdf:resource="#archaic-period" />

<exhibit-purpose xml:lang="EN">This statue honours the...</exhibit-purpose>

<exhibit-purpose xml:lang="IT">Questa statua...</exhibit-purpose>

<exhibit-purpose xml:lang="GR">...</exhibit-purpose>

...

</Statue>

Note that in the preceding sections we have been using the term ‘ontology’ in a

sense that does not include information on particular entities; but the term can also

be used in a broader sense that includes entity-specific information, the information

we have been treating as the contents of the database. owl adopts the latter sense,

which is why information about particular entities, like ‘exhibit42’ above, is included

in the exported owl ontology; this information is retrieved from m-piro’s database.

One problem we have encountered is that owl provides no mechanism to specify

default values of properties. In contrast, m-piro allows default values of fields to be

specified in generic entities. We export generic entities as ordinary owl individuals,

but use a special prefix in their identifiers, which allows the authoring tool to assign

them special status when reloading the owl ontology. Another system, however, that

would rely only on owl’s official semantics would have no way to realize that such

individuals carry default information. A second problem is that some of m-piro’s

datatypes (e.g., dates) do not correspond exactly to owl’s recommended datatypes.

We have defined new datatypes in owl, using xml schema, that correspond exactly

to m-piro’s datatypes, and we currently use those in the exported ontologies. We

hope to modify m-piro’s datatypes to correspond exactly to the recommended ones

in future work.

The mapping from m-piro’s ontologies (and databases) to owl that we sketched

above has been implemented as a facility of the authoring tool. Consequently,

m-piro’s ontologies can be published on the Semantic Web as owl ontologies, and

they can be used in other owl-compatible systems; for example, they can be loaded

in protege. More interestingly, the mapping opens up the possibility for m-piro to

generate object descriptions in both human-readable and machine-readable forms.

Every natural language description that m-piro produces could also be rendered

in a machine-readable form consisting of owl specifications of individuals, this

time using the mapping to translate into owl the parts of m-piro’s ontology and

database that exprimo’s content selection stage has decided to convey. For example,

the English description of figure 5 would be rendered in owl as:

<Kylix rdf:ID="exhibit22">

<creation-period rdf:resource="#archaic-period />

<painting-technique-used rdf:resource="#red-figure-technique />

<painted-by rdf:resource="#eucharides />

...

</Kylix>



226 I. Androutsopoulos et al.

exprimo might have also decided to include in the resulting text information deriving

from the fields of the exhibit’s painter (e.g., the city the painter was born in) or fields

of other entities to be mentioned in the text. The owl rendering of the description

would then include additional specifications of individuals, such as:

<Painter rdf:ID="eucharides">

<painter-city rdf:resource="#athens" />

...

</Painter>

In the machine-readable forms of the descriptions, the owl specifications of indi-

viduals would include only properties corresponding to fields exprimo has decided

to convey, unlike when exporting the full ontology. That is, the owl specifications

would not include properties corresponding to facts deemed uninteresting for the

particular visitor type, or facts that have been assimilated.

It is, thus, in principle possible to annotate the generated texts with owl

specifications of their semantics.23 This would allow computer applications (e.g.,

Web agents visiting the site of a retailer that generates product descriptions using

m-piro’s technology) to reason about the semantics of the texts (e.g, locate items of

interest). Alternatively, it is possible to define visitor types for both human visitors

(e.g., ‘expert’, ‘average-adult’) and artificial agents acting on behalf of humans

of different interests and expertise (e.g., ‘agent-expert’, ‘agent-average-adult’), and

produce human-readable or machine-readable descriptions depending on the visitor

type; as in the demonstrators of section 2, visitors would select their types during a

login stage. The owl ontology without its individuals (classes and properties only)

can also be published on the Web to help the agents’ developers figure out the

structure and semantics of the owl individuals the agents may encounter.

6.2 Importing existing OWL ontologies

When porting m-piro’s system to a new application, much of the authoring effort

is devoted to defining the ontology of the application’s domain. This is a time-

consuming process, partly because the ontology often has to be reshaped as more

experience about the domain is gained. If a well-thought owl ontology of the

domain already exists, as will increasingly be the case in the Semantic Web, the

authoring process can be accelerated by importing the existing ontology into

the authoring tool. Thereafter, the authors can focus on adding the necessary

domain-dependent linguistic resources (micro-plans and lexicon entries), tuning user

modelling parameters, and populating the ontology with entities that were not

already present in the imported owl ontology.

As already mentioned, there are three versions of owl (owl lite, owl dl, owl

full) with increasing sophistication. The mapping from m-piro’s ontologies to owl

23 The mechanism to generate owl renderings of the descriptions is currently not implemented
in exprimo, but it is straight-forward to do so, as it is a matter of applying the same mapping
as the one used in the authoring tool to export m-piro’s ontologies and databases, this time
to only a subset of the ontology and database.



Source authoring for multilingual generation 227

of the previous section produces ontologies in owl lite, but it does not exploit all

the available mechanisms of owl lite. Hence, importing an arbitrary owl ontology,

as opposed to an owl ontology exported by m-piro’s authoring tool, is not simply a

matter of following the inverse of the mapping of the previous section. We discuss

this issue in the remainder of this section. Even with owl lite, we have encountered

significant difficulties, which require modifications in m-piro’s ontological model and

currently force us to ignore some aspects of the imported ontologies. We hope that

by reporting on these difficulties we will give the reader a taste of the complexities

that future systems wishing to produce texts from owl input will have to address.24

In related work, Bontcheva and Wilks (Bontcheva and Wilks 2004; Bontcheva 2004)

discuss how patient reports can be generated from ontologies specified in daml + oil,

a predecessor of owl, and rdf instance descriptions, using facilities developed within

the gate platform; Wilcock (2003a; 2003b; 2003c) discusses how a pipeline of xslt

transformations can generate dialogue responses from information represented in

daml+oil and rdf; and Mellish and Sun (2005) investigate content selection when

generating natural language renderings of owl dl class specifications, rather than

descriptions of particular instances.

One problem we encountered is that owl (all versions) allows multiple inheritance,

while the authoring tool does not. Attempting to import an ontology with multiple

inheritance currently causes the import to fail. The need for multiple inheritance had

also been noted by fhw curators during the formative evaluations (Section 4), who

had encountered cases where, for example, a person had to be categorized as both

painter and potter. As noted earlier, exprimo already supports multiple inheritance;

the decision not to support it in the authoring tool was taken mainly to depict the

ontology in a simpler tree-like form. It appears that a better option would be to

support multiple-inheritance, but offer it as an option only to advanced authors and

authors wishing to import owl ontologies.

Another problem is that all versions of owl support property inheritance. For

instance, there may be a property ‘is-player-of’, used to represent the relationship

between soccer players and their teams, and a property ‘is-goalkeeper-of’, that

associates goalkeepers with their teams. The latter is a subproperty of the former, in

the sense that if X is the goalkeeper of Y , then X is also a player of Y . The import

process currently ignores subproperty inheritance, because there is no corresponding

notion in m-piro’s ontologies; i.e., the two properties would be treated as unrelated.

Subproperty inheritance, however, could help exprimo avoid expressing information

that follows from other information it has already conveyed; for example, if a user

has been told that X is the goalkeeper of Y , avoid saying that X is also a player of

Y . We hope to address subproperty inheritance in future work.

A further complication is that owl lite allows the range of possible values of a

property to be the intersection of several classes, while in m-piro the values of each

field must come from a single, named, entity type; consequently, properties of this

kind are currently not imported. A possible solution is to create automatically a new

entity type in m-piro’s ontology for each intersection in the owl ontology, but this

24 The discussion is based on experiments we conducted with more than a dozen of existing
owl ontologies; see http://protege.stanford.edu/plugins/owl/ontologies.html.



228 I. Androutsopoulos et al.

leads back to the single inheritance problem, because the intersection has to inherit

from all the intersected types. This problem is more acute in owl dl and owl full,

where several set operations (e.g., union, complement) between classes are allowed

when specifying the ranges of properties.

In owl (all versions) it is also possible to refine a property’s range. For example,

an ontology may specify that individuals of the class ‘product’ have a property

‘made-by’, which associates them with individuals of the class ‘manufacturer’; there

would be an rdfs:range in the definition of ‘product’ setting the range of ‘made-by’

to ‘manufacturer’. We may then wish to specify that individuals of ‘automobile’, a

subclass of ‘product’, accept as values of ‘made-by’ only individuals of ‘automobile-

manufacturer’, a subclass of ‘manufacturer’. There are mechanisms in all versions

of owl (allValuesFrom tag) to state this, but there is no such mechanism in

m-piro’s ontological model. We currently ignore range refinements when importing

owl ontologies, though this runs the risk that authors may violate refinements (e.g.,

when adding individuals), creating ontologies that are no longer compatible with

the imported ones. We also ignore the someValuesFrom tag, which is available in

all owl versions and allows stating that in set-valued properties (corresponding to

m-piro fields with ‘Many’ selected) at least one of the elements of each set-value

should belong to a particular class. Another mechanism in owl dl and owl full

(hasValue tag) specifies that all the individuals of a class have a particular value at

some of their properties (e.g., all wines of class ‘burgundy’ have ‘dry’ taste). This

information can be included in m-piro’s generic entities, but the correspondence is

inexact, since the default information of generic entities may be overridden.

Unlike m-piro, all versions of owl allow declarations of one-to-one relationships

and attributes. These are currently imported as many-to-many. As discussed earlier,

this problem can be solved easily by providing in m-piro support for one-to-one

declarations. More work is needed to support the facilities that all versions of

owl provide to declare that a relationship is transitive, symmetric, or the inverse of

another. All such declarations are currently ignored when importing owl ontologies.

Again, this runs the risk that the authors may modify the ontologies in ways that

are incompatible with the ignored declarations. It also does not allow exprimo to

infer new facts (e.g., in the case of transitive relationships) or to avoid conveying

equivalent facts (e.g., conveying both a relationship and its inverse).

A further problem in owl full is that classes (entity types) can also be used as

individuals (entities), allowing, for example, classes to participate in relationships.

This is not allowed in m-piro (nor owl lite and owl dl), and, hence, attempting

to import an owl full ontology that uses classes as individuals causes the import

to fail. Overall, owl full relaxes several constraints of owl dl; for instance, it also

allows the ontology to modify owl’s built-in vocabulary. However, this complicates

owl full’s syntax and semantics, and removes owl dl’s guarantee of decidability.

Consequently, it is considered highly unlikely that Semantic Web applications with

reasoning capabilities will ever support the entire functionality of owl full, and,

hence, pursuing full support for owl full in m-piro appears to be unnecessarily

over-ambitious. Targeting full support for owl lite and subsequently owl dl seems

to be more reasonable for future work.



Source authoring for multilingual generation 229

To summarise, owl’s semantic model is richer than m-piro’s, which currently forces

us to ignore some of the specifications of the imported owl ontologies, or, in the case

of multiple inheritance and classes used as entities, to abort the import. A reasonable

target for future work is to provide full support for owl lite and subsequently owl

dl, but both steps require modifications in m-piro’s ontological model. Note that

owl dl corresponds to description logics, and, hence, the required modifications

in effect amount to making m-piro’s ontological model (which has been influenced

by ilex and practical concerns, such as the desire to reuse components of ilex)

fully compatible with the more theoretically motivated ontological assumptions of

description logics. Consult, for example, Baader et al. (2002) for an introduction to

description logics and their applications in several areas, including natural language

generation.

7 Conclusions and future directions

We presented the source authoring facilities of m-piro’s natural language generation

system. The system produces descriptions of objects in several languages from

symbolic, language-neutral information retrieved from an ontology and a database,

and pieces of canned text. The system has been tested in a variety of application

domains, ranging from museum exhibitions to presentations of computer equipment

for sale. The authoring facilities are intended to allow people with no previous

experience in natural language generation to port the system to new applications, by

modifying not only the contents of the database, but also the ontology, the domain-

dependent linguistic resources of the system, and user modelling parameters that

affect both the semantic content and the surface form of the generated texts. Usability

evaluation results indicate that after receiving a relatively short introductory course,

authors with a computer science background can successfully port m-piro’s system

to new application domains. Aspects of the authoring process can be automated by

extracting information from existing external databases and document collections,

and by importing existing owl ontologies. Other owl-aware ontology editors can

also be used during the authoring process, though they cannot replace m-piro’s

authoring tool. It is also in principle possible to annotate the generated texts with

machine-readable owl entries that specify the semantics of the texts, producing

descriptions that are both accessible to humans and computer applications, which

is a major target of the Semantic Web.

We have pointed to several possible improvements of the system in previous

sections. Active previewing, the ability to select parts of generated texts and be

taken to the corresponding database entries, linguistic resources, or user modelling

parameters that were used to generate them, is among the most useful possible

additions, as it would speed up significantly the authoring process. The gain

in efficiency could be studied in a more detailed usability evaluation. Making

m-piro’s system fully compatible with owl lite and subsequently owl dl is also an

important future target, as it would allow the system to exploit more fully existing

ontologies of the Semantic Web. It would also be particularly interesting to explore

how the additional functionality of m-piro’s authoring facilities could be embedded



230 I. Androutsopoulos et al.

in popular ontology editors, along with facilities to invoke m-piro’s generator to

produce text previews; this would bring natural language generation closer to the

knowledge-bases community and the Semantic Web. Finally, exploring further the

synergy between information extraction and natural language generation may give

rise to appealing applications that will transform monolingual Web pages describing

products and other objects into multilingual, personalised, and thus more accessible

and appealing descriptions.

Acknowledgments

We are indebted to Kostas Stamatakis, Dimitris Spiliotopoulos, Theofilos Nikolaou,

Maria Prospathopoulou, and Spyros Kallonis, who implemented successive versions

of the authoring tool, and Yannis Stavrakas, who developed the personalisation

server and its interface to the authoring tool. Special thanks are due to Aggeliki

Dimitromanolaki, who produced the Greek linguistic resources, helped test and

debug the authoring tool, and played a central role in the development of the

museum prototypes. We also wish to thank Jo Calder and Amy Isard, who were the

main developers of exprimo and helped integrate it with the authoring tool, as well

as Mick O’Donnel, who created m-piro’s initial ilex-based generation engine and

much of the Italian linguistic resources. We are grateful to all of our collaborators

from m-piro’s consortium, especially Charles Callaway, George Giannoulis, Vaki

Kokkinaki, George Kouroupetroglou, George Mallen, Colin Matheson, Alexander

Melengoglou, Marc Moens, Elena Not, George Paliouras, Fabio Pianesi, Maria

Roussou, Michael Selway, Constantine Spyropoulos, and Gerasimos Xydas.

References

Androutsopoulos, I., Kallonis, S. and Karkaletsis, V. (2005) Exploiting OWL ontologies in the

multilingual generation of object descriptions. Proceedings of the 10th European Workshop

on Natural Language Generation , pp. 150–155, Aberdeen, UK.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. and Patel-Schneider, P. F. (eds.) (2002)

The Description Logic Handbook: Theory, Implementation and Application. Cambridge

University Press.

Bateman, J. A. (1990) Upper modeling: organizing knowledge for natural language processing.

In Proceedings of the 5th International Workshop on Natural Language Generation , pp. 54–

61, Pittsburgh, PA.

Bateman, J. A. (1997) Enabling technology for multilingual natural language generation: the

KPML development environment. Natural Language Engineering 3(1): 15–56.

Bateman, J. A. and Paris, C. L. (1989) Phrasing a text in terms the user can understand.

Proceedings of the 11th International Joint Conference on Artificial Intelligence, pp. 1511–

1517, Detroit, MI.

Bontcheva, K. and Wilks, Y. (2004) Automatic report generation from ontologies: the

MIAKT approach. Proceedings of the 9th International Conference on Applications of

Natural Language to Information Systems , pp. 324–335, Manchester, UK.

Bontcheva, B. (2004) Open-source tools for creation, maintenance, and storage of lexical

resources for language generation from ontologies. Proceedings of the 4th International

Conference on Language Resources and Evaluation , Lisbon, Portugal.



Source authoring for multilingual generation 231

Biller, O., Elhadad, M. and Netzer, Y. (2005) Interactive authoring of logical forms for

multilingual generation. Proceedings of the 10th European Workshop on Natural Language

Generation , pp. 24–31, Aberdeen, UK.

Brun, C., Dyteman, M. and Lux, V. (2000) Document structure and multilingual authoring.

Proceedings of the 1st International Natural Language Generation Conference, pp. 24–31,

Mitzpe Ramon, Israel.

Busemann, S. and Horacek, H. (1999) A flexible shallow approach to text generation.

Proceedings of the 9th International Workshop on Natural Language Generation , pp. 238–

247, New Brunswick, NJ.

Cawsey, A. (1990) Generating explanatory discourse. In: Dale, R., Mellish, C. and Zock, M.

(eds.), Current Research in Natural Language Generation , pp. 75–102, Academic Press.

Calder, J., Melengoglou, A. C., Callaway, C., Not, E., Pianesi, F., Androutsopoulos, I.,

Spyropoulos, C. D., Xydas, G., Kouroupetroglou, G. and Roussou, M. (2005) Multilingual

personalized information objects. In: Stock, O. and Zancanaro, M. (eds.), Multimodal

Intelligent Information Presentation , pp. 177–201, Springer.

Colineau, N., Paris, C. and Vander Linden, K. (2002) An evaluation of procedural instructional

text. Proceedings of the International Natural Language Generation Conference, pp. 128–135,

New York, NY.

Clark, R. A. J., Richmond, K. and King, S. (2004) Festival 2 – Build your own general

purpose unit selection speech synthesiser. Proceedings of the 5th ISCA workshop on speech

synthesis, pp. 173–178, Pittsburgh, PA.

Coch, J. (1996) Evaluating and comparing three text-production techniques. Proceedings of

the 16th International Conference on Computational Linguistics, Copenhagen, Denmark.

Dale R., Green, S. J., Milosavljevic, M., Paris, C., Verspoor, C. and Williams, S. (1998) Dynamic

document delivery: generating natural language texts on demand. Proceedings of the

9th International Conference and Workshop on Database and Expert Systems Applications,

pp. 131–136, Vienna, Austria.

de Carolis, B., Pelachaud, C., Poggi, I. and Steedman, M. (2004) APML, a mark-up language

for believable behavior generation. In: H. Prendinger (ed.), Life-like Characters. Tools,

Affective Functions and Applications, pp. 65–85. Berlin: Springer.

DiMarco, C. and Foster, M. E. (1997) The automated generation of Web documents that are

tailored to the individual reader. Proceedings of the AAAI Spring Symposium on Natural

Language Processing on the World Wide Web, pp. 44–53, Stanford, CA.

Dimitromanolaki, A., Androutsopoulos, I. and Karkaletsis, V. (2001) A large-scale systemic

functional grammar of Greek. Proceedings of the 5th International Conference on Greek

Linguistics . Paris: L’Harmattan.

Dimitromanolaki, A. and Androutsopoulos, I. (2003) Learning to order facts for discourse

planning in natural language generation. Proceedings of the 9th European Workshop on

Natural Language Generation, 10th Conference of the European Chapter of ACL, pp. 23–30,

Budapest, Hungary.

Hachey, B., Grover, C., Karkaletsis, V., Valarakos, A., Pazienza, M. T., Vindigni, M., Cartier,

E. and Coch, J. (2003) Use of ontologies for cross-lingual information management in

the Web. Proceedings of the Ontologies and Information Extraction International Workshop,

EUROLAN 2003, Bucharest, Romania, 2003.

Halliday, M. (1994) Introduction to Functional Grammar , 2nd edition. London: Edward

Arnold.

Hartley, A. and Paris, C. (1997) Multilingual document production – from support for

translating to support for authoring. Machine Translation 12(1–2): 109–129.

Hartley, A., Scott, D., Bateman, J. and Dochev, D. (2001) AGILE – A system for multilingual

generation of technical instructions. Proceedings of the 8th Machine Translation Summit,

pp. 145–150, Santiago de Compostella, Spain.

Hirst, G., DiMarco, C., Hovy, E. H. and Parsons, K. (1997) Authoring and generating health-

education documents that are tailored to the needs of the individual patient. Proceedings



232 I. Androutsopoulos et al.

of the 6th International Conference on User Modeling , pp. 107–118, Chia Laguna, Sardinia,

Italy.

Isard, A., Oberlander, J., Androutsopoulos, I. and Matheson, C. (2003) Speaking the users’

languages. IEEE Intelligent Systems 18(1): 40–45.

Kallonis, S. (2005) Using Existing Ontologies and Databases in the Natural Language

Generation System of the M-PIRO project (in Greek). MSc thesis, Department of

Informatics, Athens University of Economics and Business.

Karasimos, A. and Isard, A. (2004) Multilingual evaluation of a natural language

generation system. Proceedings of the 4th International Conference of Language Resources

and Evaluation, Lisbon, Portugal.

Karkaletsis, V., Spyropoulos, C. D., Grover, C., Pazienza, M. T., Coch, J. and Souflis, D. (2004)

A platform for cross-lingual, domain and user adaptive web information extraction. Pro-

ceedings of the European Conference in Artificial Intelligence, pp. 725–729, Valencia, Spain.

Kasper, R. and Whitney, R. (1989) SPL: a sentence plan language for text generation.

Technical report, Information Sciences Institute, University of Southern California.

Kintsch, W. and Keenan, J. (1973) Reading rate and retention as a function of the number

of propositions in the text base of sentences. Cognitive Psychology 5: 257–274.

Kintsch, W. and van Dijk, T. A. (1978) Towards a model of text comprehension and

production. Psychological Review 85: 363–394.

Nielsen, J. (1992) Finding usability problems through heuristic evaluation. Proceedings of

Human Factors in Computing Systems , pp. 373–380, Monterey, California.

Mann, W. and Thompson, S. (1988) Rhetorical structure theory: towards a functional theory

of text organization. Text 3: 243–281.

McRoy, S. W., Channarukul, S. and Ali, S. S. (2003) An augmented template-based approach

to text realization. Natural Language Engineering 9(4): 381–420.

Melengoglou, A. (2002) Multilingual aggregation in the M-PIRO system . MSc thesis, School

of Informatics, University of Edinburgh.

Mellish, C. and Sun, X. (2005) Natural language directed inference in the presentation of

ontologies. Proceedings of the 10th European Workshop on Natural Language Generation ,

pp. 118–124, Aberdeen, UK.

Not, E. and Zancanaro, M. (2000) The MacroNode approach: mediating between adaptive

and dynamic hypermedia. Proceedings of the International Conference on Adaptive

Hypermedia and Adaptive Web-based Systems , pp. 166–178, Trento, Italy, 2000.

Nikolaou, T. (2004) Improvements in the User Interface and Other Functions of the M-PIRO

Authoring Tool (in Greek). Final-year project report, Department of Informatics, Athens

University of Economics and Business, Greece.

O’Donnell, M. (1996) Input specification in the WAG sentence generation system.

Proceedings of the 8th International Workshop on Natural Language Generation, pp. 41–50,

Herstmonceux Castle, UK.

O’Donnell, M., Cheng, H. and Hitzeman, J. (1998) Integrating referring and informing in NP

planning. Proceedings of the COLING-ACL ’98 Workshop on the Computational Treatment

of Nominals, pp. 46–55, Montreal, Canada.

O’Donnell, M., Mellish, C., Oberlander, J. and Knott, A. (2001) ILEX: an architecture for

a dynamic hypertext generation system. Natural Language Engineering 7(3): 225–250.

Pan, S. and McKeown, K. R. (1997) Integrating language generation with speech synthesis in

a concept to speech system. Proceedings of the Workshop on Concept-to-Speech Generation

Systems, 35th Annual Meeting of ACL and 8th Conference of the European Chapter of

ACL, pp. 23–28, Madrid, Spain.

Paris, C. (1988) Tailoring object descriptions to a user’s level of expertise. Computational

Linguistics 14: 64–78.

Paris, C., Vander Linden, K., Fischer, M., Hartley, A., Pemberton, L., Power, R. and Scott,

D. (1995) A support tool for writing multilingual instructions. Proceedings of the 14th

International Joint Conference on Artificial Intelligence, pp. 1398–1404, Montreal, Canada.



Source authoring for multilingual generation 233

Paris, C. and Vander Linden, K. (1996) DRAFTER: an interactive support tool for writing

multilingual instructions. IEEE Computer 29(7): 49–56.

Paris, C., Vander Linden, K. and Lu, S. (2002) Automated knowledge acquisition for

instructional text generation. Proceedings of the 20th Annual International Conference

on Computer Documentation of the ACM Special Interest Group for Design of

Communication, pp. 142–151, Toronto, Canada.

Power, R. and Cavallotto, N. (1996) Multilingual generation of administrative forms.

Proceedings of the 8th International Workshop on Natural Language Generation , pp. 17–19,

Herstmonceux Castle, UK.

Power, R. and Scott, D. (1998) Multilingual authoring using feedback texts. Proceedings

of the 17th International Conference on Computational Linguistics and the 36th Annual

Meeting of ACL, pp. 1053–1059, Montreal, Canada.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and Carey, T. (1994) Human-Computer

Interaction . Addison-Wesley.

Prospathopoulou, M. (2004) Improvements in the Exporting, the Microplans, and Other

Functions of the M-PIRO Authoring Tool (in Greek). Final-year project report,

Department of Informatics, Athens University of Economics and Business, Greece.

Reiter, E. (1994) Has a consensus NL generation architecture appeared, and is it

psycholinguistically plausible? In Proceedings of the 7th International Workshop on Natural

Language Generation, pp. 163–170, Kennebunkport, Maine, USA.

Reiter, E. and Dale, R. (2000) Building Natural Language Generation Systems. Cambridge

University Press.

Staab, S., Werthner, H., Ricci, F., Zipf, A., Gretzel, U., Fesenmaier, D. R., Paris, C. and

Knoblock, C. (2002) Intelligent systems for tourism. IEEE Intelligent Systems 17(6): 53–64.

Theune, M., Klabbers, E., De Pijper, J. R., Krahmer, E. and Odijk, J. (2001) From data to

speech: a general approach. Natural Language Engineering 7(1): 47–86.

Thompson, H. (1977) Strategy and tactics: A model for language production. Papers from

the 13th Regional Meeting of the Chicago Linguistics Society, pp. 651–668, Illinois.

Van Deemter, K. and Power, R. (2003) High-level authoring of illustrated documents. Natural

Language Engineering 9(2): 101–126.

K. van Deemter, E. Krahmer and Theune, M. (2005) Real versus template-based Natural

Language Generation: a false opposition? Computational Linguistics 31(1): 15–24.

Wilcock, G. (2003) Integrating natural language generation with XML Web Technology.

Proceedings of the 10th Conference of the European Chapter of ACL, pp. 247–250, 2003,

Budapest, Hungary.

Wilcock, G. (2003) Generating responses and explanations from RDF/XML and

DAML+OIL. Proceedings of the Workshop on Knowledge and Reasoning in Practical

Dialogue Systems , of the 18th Joint Conference on Artificial Intelligence, pp. 58–63,

Acapulco, Mexico.

Wilcock, G. (2003) Talking OWLs: towards an ontology verbalizer. Proceedings of the

Workshop on Human Language Technology for the Semantic Web, of the 2nd International

Semantic Web Conference, pp. 109–112, Sanibel Island, FL.

Williams, S. and Reiter, E. (2005) Generating readable texts for readers with low basic skills.

Proceedings of the 10th European Workshop on Natural Language Generation, pp. 140–147,

Aberdeen, UK.

Xydas, G. and Kouroupetroglou, G. (2001) The DEMOSTHeNES speech composer.

Proceedings of the 4th ISCA Tutorial and Workshop on Speech Synthesis, pp. 167–172,

Perthshire, UK.

Zukerman, I. and Litman, D. (2001) Natural language processing and user modeling:

synergies and limitations. User Modeling and User-Adapted Interaction 11: 129–158.


