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Abstract

Answer set programming is a prominent declarative programming paradigm used in formulating combinato-

rial search problems and implementing different knowledge representation formalisms. Frequently, several

related and yet substantially different answer set programs exist for a given problem. Sometimes these en-

codings may display significantly different performance. Uncovering precise formal links between these

programs is often important and yet far from trivial. This paper presents formal results carefully relating a

number of interesting program rewritings. It also provides the proof of correctness of system PROJECTOR

concerned with automatic program rewritings for the sake of efficiency. Under consideration in Theory and

Practice of Logic Programming (TPLP)

1 Introduction

Answer set programming (ASP) is a prominent knowledge representation paradigm with roots

in logic programming (Brewka et al. 2011). It is frequently used for addressing combinato-

rial search problems. It has also been used to provide implementations and/or translational se-

mantics to other knowledge representation formalisms such as action languages including lan-

guages B (Gelfond and Lifschitz 1998, Section 5), C (Lifschitz and Turner 1999), BC (Lee

et al. 2013), C+ (Giunchiglia et al. 2004; Babb and Lee 2013), and A L (Gelfond and Kahl

2014, Section 8).

In answer set programming, a given computational problem is represented by a declarative

program, also called a problem encoding, that describes the properties of a solution to the prob-

lem. Then, an answer set solver is used to generate answer sets for the program. These answer

sets correspond to solutions to the original problem. As answer set programming evolves, new

language features come to life providing means to reformulations of original problem encod-

ings. Such new formulations often prove to be more intuitive and/or more concise and/or more

efficient. Similarly, when a software engineer tackles a problem domain by means of answer

set programming it is a common practice to first develop a/some solution to a problem and

then rewrite this solution iteratively using such techniques, for example, as projection to gain

a better performing encoding (Buddenhagen and Lierler 2015). These common processes bring

a scientific question to light: what are the formal means to argue the correctness of renewed

formulations of the original encodings to problems? In other words, under the assumption that

the original encoding to a problem is correct, how can we argue that a related and yet different

encoding is also correct? In addition, automated ASP program rewriting systems come to life.

http://arxiv.org/abs/1901.09127v3
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Systems LPOPT (Bichler et al. 2016) and PROJECTOR (Hippen and Lierler 2019) exemplify such

a trend. These tools rewrite an original program into a new one with the goal of improving an

ASP solver’s performance. Once again, formal means are necessary to claim the correctness of

such systems. We note that the last section of this work is devoted to the claim of correctness of

system PROJECTOR.

It has been long recognized that studying various notions of equivalence between programs un-

der the answer set semantics is of crucial importance. Researchers proposed and studied strong

equivalence (Lifschitz et al. 2001; Lifschitz et al. 2007), uniform equivalence (Eiter and Fink

2003), relativized strong and uniform equivalences (Woltran 2004). Another related approach

is the study of forgetting (Leite 2017). Also, equivalences relative to specified signatures were

considered (Erdoğan and Lifschitz 2004; Eiter et al. 2005; Woltran 2008; Harrison and Lierler

2016). In most of the cases the programs considered for studying the distinct forms of equiva-

lence are propositional. Works by Eiter et al. (2006), Eiter et al. (2006), Lifschitz et al. (2007),

Oetsch and Tompits (2008), Pearce and Valverde (2012), and Harrison and Lierler (2016) are

exceptions. These authors consider programs with variables (or, first-order programs). It is first-

order programs that ASP knowledge engineers develop. Thus, theories on equivalence between

programs with variables are especially important as they can lead to more direct arguments about

properties of programs used in practice.

In this paper we show how concepts of strong equivalence and so called conservative extension

are of use in illustrating that two programs over different signatures and with significantly dif-

ferent structure are “essentially the same” or “essentially equivalent” in a sense that they capture

solutions to the same problem. Let us make the concept of an essential equivalence between prob-

lem’s encodings precise. We use the same notion of the search problem as Brewka et al. (2011).

Quoting from their work, a search problem P consists of a set of instances with each instance I

assigned a finite set SP(I) of solutions. We say that logic program ΠP(·) is an encoding of P

when for any instance I of this problem, the solutions to I – the elements of set SP(I) – can be

reconstructed from the answer sets of program ΠP(I). We say that encodings ΠP(·) and Π′P(·)

are essentially equivalent, when given any instance I of problem P the answer sets of programs

ΠP(I) and Π′P(I) are in one-to-one correspondence. The paper has two parts. In the first part we

consider propositional programs. In the second part, we move to the programs with variables.

These parts can be studied separately. The first one is appropriate for researchers who are not

yet deeply familiar with answer set programming theory and are interested in learning formal de-

tails. The second part1 is geared towards answer set programming practitioners providing them

with theoretical grounds and tools to assist them in program analysis and formal claims about

the developed encodings and their relations. In both of these parts we utilize running examples

stemming from the literature. For instance, for the case of propositional programs we study two

distinct ASP formalizations of action language C . In the case of first-order programs, we study

two distinct formalizations of planning modules for action language A L given in (Gelfond and

Kahl 2014, Section 9). Namely,

1. a Plan-choice formalization that utilizes choice rules and aggregate expressions,

2. a Plan-disj formalization that utilizes disjunctive rules.

In both cases we identify interesting results.

1 This part of the paper is a substantially extended version of the paper presented at PADL 2019 (Lierler 2019).
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Paper Outline. The paper is structured as follows. Section 2.1 presents the concepts of (i) a

propositional logic program, (ii) strong equivalence between propositional logic programs, and

(iii) a propositional logic program being a conservative extension of another one. Section 2.2 in-

troduces a rewriting technique frequently used by ASP developers when a new auxiliary proposi-

tion is introduced in order to denote a conjunction of other propositions. Then these conjunctions

are safely renamed by the auxiliary atom. We refer to this process as explicit definition rewriting

and illustrate its correctness. We continue by reviewing action language C in Section 2.3, which

serves a role of a running example in the first part of the paper. In Section 2.4.1, we present

an original, or gold standard, translation of language C to a logic program. Section 2.4.2 states

a modern formalization stemming from the translation of a syntactically restricted fragment of

C+. At last, in Section 2.4.3 we showcase how we can argue on the correctness of a modern

formalization by stating the formal relation between the original and modern translations of lan-

guage C . An interested reader may proceed to the Appendix to find the details of the proof of the

claim. There, we utilize reasoning by ”weak” natural deduction and a formal result on explicit

definition rewriting. (A weak natural deduction system is reviewed in the Appendix.) We also

note that there is an interesting by product of our analysis: we establish that C+ can be viewed

as a true generalization of the language C to the case of multi-valued fluents.

We start the second part of the paper by presenting the Plan-choice and Plan-disj programs

at the onset of Section 3. We then introduce the logic program language called RASPL-1 in

Section 3.2. The semantics of this language is given in terms of the SM operator reviewed in

Section 3.2.2. In Section 3.2.3, we review the concept of strong equivalence for first order pro-

grams. Section 3.3 is devoted to a sequence of formal results on program rewritings. One of

the findings of this work is lifting the results by Ben-Eliyahu and Dechter (1994) to the first

order case. Earlier work claimed that propositional head-cycle-free disjunctive programs can be

rewritten to nondisjunctive programs by means of simple syntactic transformation. Here we not

only generalize this result to the case of first-order programs, but also illustrate that at times we

can remove disjunction from parts of a program even though the program is not head-cycle-free.

Another important contribution of the work is lifting the Completion Lemma and the Lemma

on Explicit Definitions stated in (Ferraris 2005; Ferraris and Lifschitz 2005) from the case of

propositional theories and propositional logic programs to first-order programs. In conclusion, in

Section 3.4 we review a frequently used rewriting technique called projection that often produces

better performing encodings. We illustrate the utility of the presented theoretical results as they

can be used to argue the correctness of distinct versions of projection that also include rules with

aggregates. In particular, the last formal result stated in the paper provides a proof of correctness

of system PROJECTOR. The Lemma on Explicit Definitions presented here is essential in this

argument.

The Appendix provides the proofs for the formal results presented in the paper.

2 Propositional Programs

2.1 Traditional Logic Programs and their Equivalences

A (traditional logic) program is a finite set of rules of the form

a0← a1, . . . ,al ,not al+1, . . . ,not am,not not am+1, . . . ,not not an, (1)
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(0 ≤ l ≤ m ≤ n), where each a0 is an atom or ⊥ and each ai (1 ≤ i ≤ n) is an atom, ⊤, or ⊥ .

The expression containing atoms a1 through an is called the body of the rule. Atom a0 is called

a head.

We define the answer sets of a traditional program Π following (Lifschitz et al. 1999). We say

that a program is basic, when it does not contain connective not. In other words a basic program

consists of rules

a0← a1, . . . ,al , (2)

where each a0 is an atom or ⊥ and each ai (1≤ i≤ l) is an atom,⊤, or ⊥. We say that a set X of

atoms satisfies rule (2) if it satisfies the implication

a1∧·· ·∧al → a0.

We say that a set X of atoms is an answer set of a basic program Π if X is a minimal set among

sets satisfying all rules of Π.

A reduct of a program Π with respect to a set X of atoms, denoted by ΠX , is constructed as

follows. For each rule (1) in Π

1. when not not ai (m+ 1≤ i≤ n) is such that ai ∈ X , replace this expression with ⊤, other-

wise replace it with ⊥,

2. when not ai (l + 1 ≤ i ≤ m) is such that ai ∈ X , replace this expression with ⊥, otherwise

replace it with ⊤.

It is easy to see that a reduct of a program forms a basic program. We say that a set X of atoms is

an answer set of a traditional program if it is an answer set for the reduct ΠX .

In the later part of the paper we present the definition of an answer set for programs with

variables by means of operator SM (Ferraris et al. 2011). Ferraris et al. (2011) show in which

sense SM operator captures the semantics of answer sets presented here.

According to (Ferraris and Lifschitz 2005) and (Ferraris 2005), rules of the form (1) are suffi-

cient to capture the meaning of the choice rule construct commonly used in answer set program-

ming. For instance, the choice rule {p}← q is understood as the rule

p← q, not not p.

We intuitively read this rule as given q atom p may be true. We use choice rule notation in the

sequel.

Strong Equivalence Traditional programs Π1 and Π2 are strongly equivalent (Lifschitz et al.

2001) when for every program Π, programs Π1 ∪Π and Π2∪Π have the same answer sets. In

addition to introducing strong equivalence, Lifschitz et al. (2001) also illustrated that traditional

programs can be associated with the propositional formulas and a question whether the programs

are strongly equivalent can be turned into a question whether the respective propositional formu-

las are equivalent in the logic of here-and-there (HT-logic) (Lukasiewicz 1941), an intermediate

logic between classical and intuitionistic logics.

We follow the steps of (Lifschitz et al. 2001) and identify a rule (1) with the propositional

formula

a1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an→ a0. (3)

Conservative Extensions Harrison and Lierler (2016) defined the notion of a conservative exten-

sion for the case of logic programs. Similarly to strong equivalence, it attempts to capture the
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conditions under which we can rewrite parts of the program and yet guarantee that the resulting

program is not different in an essential way from the original one. Conservative extensions allow

us to reason about rewritings even when the rules in question have different signatures.

For a program Π, by atoms(Π) we denote the set of atoms occurring in Π. Let Π and Π′ be

programs such that atoms(Π)⊆ atoms(Π′). We say that program Π′ is a conservative extension

of Π if X 7→ X ∩atoms(Π) is a 1-1 correspondence between the answer sets of Π′ and the answer

sets of Π. For instance, program

¬q→ p

¬p→ q
(4)

is a conservative extension of the program containing the single choice rule

{p}.

Furthermore, given program Π such that (i) it contains rule {p} and (ii) q 6∈ atoms(Π), a program

constructed from Π by replacing {p} with (4) is a conservative extension of Π.

2.2 On Explicit Definition Rewriting

We now turn our attention to a common rewriting technique based on explicit definitions and

illustrate its correctness. This technique introduces an auxiliary proposition in order to denote a

conjunction of other propositions. Then these conjunctions are safely renamed by the auxiliary

atom in the remainder of the program.

We call a formula basic conjunction when it is of the form

a1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an, (5)

where each ai (1≤ i≤ n) is an atom, ⊤, or ⊥. For example, the body of any rule in a traditional

program is a basic conjunction.

Let Π be a program, Q be a set of atoms that do not occur in Π. For an atom q ∈Q, let de f (q)

denote a basic conjunction (5), where ai (1 ≤ i ≤ n) in atoms(Π). We say that de f (q) is an

explicit definition of q in terms of Π. By de f (Q) we denote a set of formulas de f (q) for each

atom q∈Q. We assume that all these formulas are distinct. Program Π[Q,de f (Q)] is constructed

from Π as follows:

• all occurrences of all formulas de f (q) from de f (Q) in some body of Π are replaced by re-

spective q,

• for every atom q ∈ Q a rule of the form

de f (q)→ q

is added to the program.

For instance,let Π be a program

¬q→ p

and de f (r) be a formula ¬q, then Π[{r},{de f (r)}] follows

r→ p

¬q→ r

The proposition below supports the fact that the latter program is a conservative extension of

the former. It is an important claim as although this kind of rewriting is very frequently used in

practice to the best of our knowledge this is the first time it has been formally claimed.
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Proposition 1

Let Π be a program, Q be a set of atoms that do not occur in Π, and de f (Q) be a set composed of

explicit definitions for each element in Q in terms of Π. Program Π[Q,de f (Q)] is a conservative

extension of Π.

2.3 Review of Action Language C

This review of action language C follows (Lifschitz and Turner 1999).

We consider a set σ of propositional symbols partitioned into the fluent names σ f l and the

elementary action names σact . An action is an interpretation of σact . Here we only consider what

Lifschitz and Turner (1999) call definite action descriptions so that we only define this special

class of C action descriptions.

Syntactically, a C action description is a set of static and dynamic laws. Static laws are of the

form

caused l0 if l1∧·· ·∧ lm (6)

and dynamic laws are of the form

caused l0 if l1∧·· ·∧ lm after lm+1∧·· ·∧ ln (7)

where

• l0 is either a literal over σ f l or the symbol⊥,

• li (1≤ i≤ m) is a literal in σ f l ,

• li (m+ 1≤ i≤ n) is a literal in σ , and

• conjunctions l1 ∧ ·· · ∧ lm and lm+1 ∧ ·· · ∧ ln are possibly empty and understood as ⊤ in this

case.

In both laws, the literal l0 is called the head.

Semantically, an action description defines a graph or a transition system. We call nodes of this

graph states and directed edges transitions. We now define these concepts precisely. Consider an

action description D. A state is an interpretation of σ f l that satisfies implication

l1∧·· ·∧ lm→ l0

for every static law (6) in D. A transition is any triple 〈s,a,s′〉, where s, s′ are states and a is an

action; s is the initial state of the transition, and s′ is its resulting state. A literal l is caused in a

transition 〈s,a,s′〉 if it is

• the head of a static law (6) from D such that s′ satisfies l1∧·· ·∧ lm, or

• the head of a dynamic law (7) from D such that s′ satisfies

l1∧·· ·∧ lm

and s∪a satisfies

lm+1∧·· ·∧ ln.

A transition 〈s,a,s′〉 is causally explained by D if its resulting state s′ is the set of literals caused

in this transition.

The transition system described by an action description D is the directed graph, which has

the states of D as nodes, and which includes an edge from state s to state s′ labeled a for every

transition 〈s,a,s′〉 that is causally explained by D.

We now present an example by Lifschitz and Turner (1999) that formalizes the effects of
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putting an object in water. We use this domain as a running example. It uses the fluent names

inWater and wet and the elementary action name putInnWater. We follow the convention by Lif-

schitz and Turner (1999) and present states (interpretations) as lists of literals. In the notation

introduced by Gelfond and Lifschitz (1998, Section 6), the action description for water domain

follows2

caused wet if inWater

putInWater causes inWater

inertial inWater,¬inWater,wet,¬wet

Written in full this action description contains six laws:

caused wet if inWater

caused inWater if ⊤ after putInWater

caused inWater if inWater after inWater

caused ¬inWater if ¬inWater after ¬inWater

caused wet if wet after wet

caused ¬wet if ¬wet after ¬wet

The corresponding transition system has 3 states:

¬inWater ¬wet, ¬inWater wet, inWater wet

and 6 causally explained transitions

〈¬inWater ¬wet,¬putInWater,¬inWater ¬wet〉, 〈¬inWater ¬wet, putInWater, inWater wet〉,
〈¬inWater wet,¬putInWater,¬inWater wet〉, 〈¬inWater wet, putInWater, inWater wet〉,
〈inWater wet,¬putInWater, inWater wet〉, 〈inWater wet, putInWater, inWater wet〉.

(8)

We depict this transition system in Figure 1.

¬inWater

wet

¬inWater

¬wet

inWater

wet

¬putInWater

putInWater

¬putInWater

¬putInWater, putInWaterputInWater

Figure 1: Transition diagram for Water domain.

2 We remark on the keyword inertial. It intuitively suggests that a fluent declared to be inertial is such that its value can
be changed by actions only. If no actions, which directly or indirectly affect such a fluent, occur then the value of the
inertial fluent remains unchanged.
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2.4 On Relation between the Original and Modern Formalizations of C

We start this section by reviewing the original formalization of action language C in the language

of logic programs under answer set semantics (Lifschitz and Turner 1999). Specifically, Lifschitz

and Turner (1999) proposed a translation from an action description D in C to a logic program

l pT (D) so that the answer sets of this program capture all the ”histories” of length T in the

transition system specified by D.

Since that original work, languages of answer set programming have incorporated new features

such as, for instance, choice rules. At present, these are commonly used by the practitioners of

ASP. It is easy to imagine that in a modern formalization of action language C , given a system

description D a resulting program will be different from the original l pT (D). In fact, Babb and

Lee (2013) present a translation of an action language C+ (according to Giunchiglia et al. (2004,

Section 7.3) C is the immediate predecessor of C+) that utilizes modern language features such

as choice rules. In Section 2.4.2, we present this translation for the case of C . In particular, we

restrict the language of C+ to Boolean, or two-valued, fluents (in general, C+ permits multi-

valued fluents). We call this translation simpT (D). Although, l pT (D) and simpT (D) share a lot

in common they are substantially different. To begin with, the signatures of these programs are

not identical. Also, simpT (D) utilizes choice rules. The programs l pT (D) and simpT (D) are dif-

ferent enough that it is not immediately obvious that their answer sets capture the same entities.

There are two ways to argue that the program simpT (D) is “essentially the same” as program

l pT (D): to illustrate that the answer sets of simpT (D) capture all the ”histories” of length T in

the transition system specified by D by relying

1. on the definitions of action language C ;

2. on the properties of programs l pT (D) and simpT (D) that establish a one-to-one correspon-

dence between their answer sets.

Here we take the second way into consideration. We illustrate how the concepts of strong

equivalence and conservative extension together with formal results previously discovered about

these prove to be of essence in this argument. The details of this argument are given in the Ap-

pendix. Thus, we showcase a proof technique for arguing on the correctness of a logic program.

This proof technique assumes the existence of a ”gold standard” logic program formalizing a

problem at hand, in a sense that this gold standard is trusted to produce correct results. It is a

common practice in development of answer set programming solutions to obtain a final formal-

ization of a problem by first producing such a gold standard program and then applying a number

of rewriting procedures to that program to enhance its performance. The benefits of the proposed

method are twofold. First, this methodology can be used by software engineers during a formal

analysis of their solutions. Second, we trust that this methodology paves a way for a general

framework for arguing correctness of common program rewritings so that they can be automated

for the gain of performance. This is a question for investigation in the future.

2.4.1 Review of Basic Translation

Let D be an action description. Lifschitz and Turner (1999) defined a translation from action

description D to a logic program l pT (D) parametrized with a positive integer T that intuitively

represents a time horizon. The remarkable property of logic program l pT (D) that its answer sets

correspond to ”histories” – path/trajectories of length T in the transition system described by D.
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Recall that by σ f l we denote fluent names of D and by σact we denote elementary action

names of D. Let us construct ”complementary” vocabularies to σ f l and σact as follows

-σ f l = {-a | a ∈ σ f l}

and

-σact = {-a | a ∈ σact}.

For a literal l, we define

l̂ =

{
a if l is an atom a

-a if l is a literal of the form ¬a

and

l =

{
-a if l is an atom a

a if l is a literal of the form ¬a

The language of l pT (D) has atoms of four kinds:

1. fluent atoms–the fluent names of σ f l followed by (t) where t = 0, . . . ,T ,

2. action atoms–the action names of σact followed by (t) where t = 0, . . . ,T − 1,

3. complement fluent atoms–the elements of -σ f l followed by (t) where t = 0, . . . ,T ,

4. complement action atoms–the elements of -σact followed by (t) where t = 0, . . . ,T − 1.

Program l pT (D) consists of the following rules:

1. for every atom a that is a fluent or action atom of the language of l pT (D)

⊥← a, -a (9)

and

⊥← not a, not -a (10)

2. for every static law (6) in D, the rules

l̂0(t)← not l1(t), . . . , not lm(t) (11)

for all t = 0, . . . ,T (we understand l̂0(t) as ⊥ if l0 is ⊥),

3. for every dynamic law (7) in D, the rules

l̂0(t + 1)← not l1(t + 1), . . . , not lm(t + 1), l̂m+1(t), . . . , l̂n(t), (12)

for all t = 0, . . . ,T − 1,

4. the rules

-a(0)← not a(0)

a(0)← not -a(0),
(13)

for all fluent names a in σ f l and

5. for every atom a that is an action atom of the language of l pT (D) the rules

-a← not a

a← not -a.
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Proposition 2 (Proposition 1 in (Lifschitz and Turner 1999))

For a set X of atoms, X is an answer set for l pT (D) if and only if it has the form

[
T−1⋃

t=0

{l̂(t) | l ∈ st ∪at}

]
∪ {l̂(T ) | l ∈ sT }

for some path 〈s0,a0,s1, . . . ,sT−1,aT−1,sT 〉 in the transition system described by D.

We note that Lifschitz and Turner (1999) presented l pT translation and Proposition 1 using both

default negation not and classical negation ¬ in the program. Yet, classical negation can always

be eliminated from a program by means of auxiliary atoms and additional constraints as it is

done here. In particular, auxiliary atoms have the form -a(i) (where -a(i) intuitively stands for

literal ¬a(i)), while the additional constraints have the form (9).

To exemplify this translation, consider C action description (8). Its translation consists of all

rules of the form

1. ⊥← inWater(t), -inWater(t) 2. wet(t)← not -inWater(t)

⊥← not inWater(t), not -inWater(t)

⊥← wet(t), -wet(t)

⊥← not wet(t), not -wet(t)

⊥← putInWater(t), not -putInWater(t)

⊥← not putInWater(t), not -putInWater(t)

3. inWater(t+ 1)← putInWater(t) 4. -inWater(0)← not inWater(0)

inWater(t+ 1)← not -inWater(t + 1), inWater(t) inWater(0)← not -inWater(0)

-inWater(t + 1)← not inWater(t + 1), -inWater(t) -wet(0)← not wet(0)

wet(t + 1)← not -wet(t + 1), wet(t) wet(0)← not -wet(0)

-wet(t + 1)← not wet(t + 1), -wet(t)

5. -putInWater(t)← not putInWater(t)

putInWater(t)← not -putInWater(t)

2.4.2 Simplified Modern Translation

As in the previous section, let D be an action description and T a positive integer. In this sec-

tion we define a translation from action description D to a logic program simpT (D) inspired by

l pT (D) and the advances in answer set programming languages. The main property of logic pro-

gram simpT (D) is as in case of l pT (D) that its answer sets correspond to histories captured by

the transition system described by D. This translation is a special case of a translation by Babb

and Lee (2013) for an action language C+ that is limited to two-valued fluents.

The language of simpT (D) has atoms of three kinds that coincide with the three first groups (1-

3) of atoms identified in the language of l pT (D).

For a literal l, we define

l̃ =

{
not a if l is a literal of the form ¬a, where a ∈ σact

l̂ otherwise

Program simpT (D) consists of the following rules:
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1. for every fluent atom a the rules of the form (9) and (10),

2. for every static law (6) in D, simpT (D) contains the rules of the form

l̂0(t)← not not l̂1(t), . . . , not not l̂m(t) (14)

for all t = 0, . . . ,T 3,

3. for every dynamic law (7) in D, the rules

l̂0(t + 1)← not not l̂1(t + 1), . . . , not not l̂m(t + 1),

l̃m+1(t), . . . , l̃n(t),

for all t = 0, . . . ,T − 1,

4. the rules

{-a(0)}

{a(0)}
(15)

for all fluent names a in σ f l and

5. for every atom a that is an action atom of the language of l pT (D), the choice rules {a}.

Here we note that the language C assumes every action to be exogenous, whereas this is

not the case in C+, where it has to be explicitly stated whether an action has this property.

Thus, in (Babb and Lee 2013) rules of this group only appear for the case of actions that

have been stated exogenous.

The simpT translation of C action description (8) consists of all rules of the form

1. ⊥← inWater(t), -inWater(t) 2. wet(t)← not not inWater(t)

⊥← not inWater(t), not -inWater(t)

⊥← wet(t), -wet(t)

⊥← not wet(t), not -wet(t)

3. inWater(t + 1)← putInWater(t) 4. {-inWater(0)}

{inWater(t + 1)}← inWater(t) {inWater(0)}

{-inWater(t + 1)}← -inWater(t) {-wet(0)}

{wet(t + 1)}← wet(t) {wet(0)}

{-wet(t + 1)}← -wet(t)

5. {putInWater(t)}

2.4.3 On the Relation Between Programs lpT and simpT

Proposition 3 stated in this section is the key result of this part of the paper. Its proof outlines

the essential steps that we take in arguing that two logic programs l pT and simpT formalizing

the action language C are essentially the same. The key claim of the proof is that logic program

l pT (D) is a conservative extension of simpT (D). Here we only outline the proof whereas the

Appendix of the paper provides a complete proof.

3 Babb and Lee (2013) allow rules with arbitrary formulas in their bodies so that in place of (14) they consider rule

l̂0(t)← not not (l̂1(t)∧ ·· ·∧ l̂m(t)). Yet, it is well known that such a rule is strongly equivalent to (14). Furthermore,
more answer set solvers allow rules of the form (14) than more general rules considered in (Babb and Lee 2013).
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The argument of this claim requires some close attention to groups of rules in the l pT (D)

program. In particular, we establish by means of weak natural deduction that

• the rules in group 1 and 2 of l pT (D) are strongly equivalent to the rules in group 1 and 2 of

simpT (D) and

• the rules in group 1 and 4 of l pT (D) are strongly equivalent to the rules in group 1 and 4 of

simpT (D).

Similarly, we show that

• the rules in group 1 and 3 of l pT (D) are strongly equivalent to the rules in group 1 of simpT (D)

and the rules structurally similar to rules in group 3 of simpT (D) and yet not the same.

These arguments allow us to construct a program l p′T (D), whose answer sets are the same as

those of l pT (D). Program l p′T (D) is a conservative extension of simpT (D) due to explicit defini-

tion rewriting. Proposition 1 helps us to uncover this fact.

Recall that the language of simpT (D) includes the action atoms — the action names of σact

followed by (t) where t = 0, . . .T − 1. We denote the action atoms by σact
T .

Proposition 3

For a set X of atoms, X is an answer set for simpT (D) if and only if the set X ∪{-a | a∈ σact
T \X}

has the form [
T−1⋃

t=0

{l̂(t) | l ∈ st ∪at}

]
∪ {l̂(T ) | l ∈ sT }

for some path 〈s0,a0,s1, . . . ,sT−1,aT−1,sT 〉 in the transition system described by D.

2.4.4 Additional Concluding Remarks: An Interesting Byproduct

Our work, which illustrates that logic programs l pT (D) and simpT (D) are essentially the same,

also uncovers a precise formal link between the action description languages C and C+. The

authors of C+ claimed that C is an immediate predecessor of C+. Yet, to the best of our knowl-

edge the exact formal link between the two languages has not been stated. Thus, earlier one could

view C+ as a generalization of C only informally alluding to the fact that C+ allows the same

intuitive interpretation of syntactic expressions of C , while generalizing these to allow multival-

ued fluents in place of Boolean ones. These languages share the same syntactic constructs such

as, for example, a dynamic law of the form

caused f0 if f1∧·· ·∧ fm after a1∧·· ·∧an.

that we intuitively read as after the concurrent execution of actions a1 . . .an the fluent expres-

sion f0 holds in case if fluents expressions f1 . . . fm were the case at the time when aforemen-

tioned actions took place. Both languages provide interpretations for such expressions that meet

our intuitions of this informal reading. Yet, if one studies the semantics of these languages it is

not trivial to establish a specific formal link between them. For example, the semantics of C+

relies on the concepts of causal theories (Giunchiglia et al. 2004). The semantics of C makes

no reference to these theories. Here we recall the translations of C and C+ to logic programs,

whose answer sets correspond to their key semantic objects. We then state the precise relation

between the two by means of relating the relevant translations. In conclusion, C+ can be viewed

as a true generalization of the language C to the case of multi-valued fluents.
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3 Programs with Variables

We now proceed towards the second part of the paper devoted to programs with variables. We

start by presenting its detailed outline, a new running example and then stating the preliminaries.

We conclude with the formal statements on a number of rewriting techniques.

On the one hand, this part of the paper can be seen as a continuation of work by Eiter et al.

(2006), where we consider common program rewritings using a more complex dialect of logic

programs. On the other hand, this part of the paper grounds the concept of program synonymity

studied by Pearce and Valverde (2012) in a number of practical examples. Namely, we illustrate

how formal results on strong equivalence developed earlier and in this work help us to construct

precise claims about programs in practice.

In this part of the paper, we systematically study some common rewritings on first-order pro-

grams utilized by ASP practitioners. We use a running example to ground general theoretical

presentation of this work into specific context. In particular, we consider two formalizations of a

planning module given in (Gelfond and Kahl 2014, Section 9):

1. a Plan-choice formalization that utilizes choice rules and aggregate expressions,

2. a Plan-disj formalization that utilizes disjunctive rules.

Such a planning module is meant to be augmented with an ASP representation of a dynamic

system description expressed in action language A L
4. Gelfond and Kahl (2014) formally state

in Proposition 9.1.1 that the answer sets of program Plan-disj augmented with a given system

description encode all the “histories/plans” of a specified length in the transition system captured

by the system description. We note that no formal claim is provided for the Plan-choice program.

Although both Plan-choice and Plan-disj programs intuitively encode the same knowledge the

exact connection between them is not immediate. In fact, these programs

• do not share the same signature, and

• use distinct syntactic constructs such as choice, disjunction, aggregates in the specification of

a problem.

Here, we establish a one-to-one correspondence between the answer sets of these programs using

their properties. Thus, the aforementioned formal claim about Plan-disj translates into the same

claim for Plan-choice.

Here we use a dialect of the ASP language called RASPL-1 (Lee et al. 2008). Notably, this

language combines choice, aggregate, and disjunction constructs. Its semantics is given in terms

of the SM operator, which exemplifies the approach to the semantics of first-order programs that

bypasses grounding. Relying on SM-based semantics allows us to refer to earlier work that study

the formal properties of first-order programs (Ferraris et al. 2011; Ferraris et al. 2009) using this

operator. We state a sequence of formal results on programs rewritings and/or programs prop-

erties. Some of these results are geared by our running example and may not appear of great

general interest. Yet, we view the proofs of these results as an interesting contribution as they

showcase how arguments of correctness of rewritings can be constructed by the practitioners.

Also, some discussed rewritings are well known and frequently used in practice. Often, their cor-

rectness is an immediate consequence of well known properties about logic programs (e.g., re-

lation between intuitionistically provable first-order formulas and strongly equivalent programs

viewed as such formulas). Other discussed rewritings are far less straightforward and require

4 It is due to remark that although Gelfond and Kahl (2014) use the word “module” when encoding a planning domain,
they utilize this term only informally to refer to a collection of rules responsible for formalizing “planning”.



14 Yu. Lierler

elaborations on previous theoretical findings about the operator SM. It is well known that propo-

sitional head-cycle-free disjunctive programs (Ben-Eliyahu and Dechter 1994) can be rewritten

to nondisjunctive programs by means of a simple syntactic transformation. Here we not only

generalize this result to the case of first-order programs, but also illustrate that at times we can

remove disjunction from parts of a program even though the program is not head-cycle-free. This

result is relevant to local shifting and component-wise shifting discussed in (Eiter et al. 2006)

and (Janhunen et al. 2007), respectively. We also generalize so called Completion Lemma and

Lemma on Explicit Definitions stated in (Ferraris 2005; Ferraris and Lifschitz 2005) for the case

of propositional theories and propositional logic programs. These generalizations are applicable

to first-order programs. We conclude by applying the Lemma on Explicit Definitions proved here

to argue the correctness of program rewriting system PROJECTOR (Hippen and Lierler 2019).

3.1 Running Example and Claims

This section presents two ASP formalizations of a domain independent planning module given

in (Gelfond and Kahl 2014, Section 9). Such planning module is meant to be augmented with a

logic program encoding a system description expressed in action language A L that represents

a domain of interest (in Section 8 of their book (Gelfond and Kahl 2014), Gelfond and Kahl

present a sample Blocks World domain representation). Two formalizations of a planning module

are stated here almost verbatim. Predicate names o and sthHpd intuitively stand for occurs and

something happend, respectively. We eliminate classical negation symbol by

• utilizing auxiliary predicates non o in place of ¬o; and

• introducing rule← o(A, I),non o(A, I).

This is a standard practice and ASP systems perform the same rewriting when processing clas-

sical negation symbol ¬ occurring in programs (in other words, symbol ¬ is treated as syntactic

sugar).

Let

SG(I) abbreviate step(I), not goal(I), I 6= n,

where n is some integer specifying a limit on a length of an allowed plan. The first formalization

called Plan-choice follows:

success← goal(I), step(I).

← not success.

← o(A, I),non o(A, I) (16)

non o(A, I)← action(A), step(I), not o(A, I) (17)

{o(A, I)}← action(A), SG(I) (18)

← 2≤ #count{A : o(A, I)}, SG(I). (19)

← not 1≤ #count{A : o(A, I)}, SG(I) (20)

One more remark is in order. In (Gelfond and Kahl 2014), Gelfond and Kahl list only a single

rule

1{o(A, I) : action(A)}1← SG(I)

in place of rules (18-20). Note that this single rule is an abbreviation for rules (18-20) (Gebser

et al. 2015).

The second formalization that we call a Plan-disj encoding is obtained from Plan-choice by
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replacing rules (18-20) with the following:

o(A, I) | non o(A, I)← action(A), SG(I) (21)

← o(A, I), o(A′, I), action(A), action(A′), A 6= A′ (22)

sthHpd(I)← o(A, I) (23)

← not sthHpd(I), SG(I). (24)

It is important to note several facts about the considered planning module encodings. These

planning modules are meant to be used with logic programs that capture

(i) a domain of interest originally stated as a system description in the action language A L ;

(ii) a specification of an initial configuration;

(iii) a specification of a goal configuration.

The process of encoding (i-iii) as a logic program, which we call a Plan-instance encoding,

follows a strict procedure. As a consequence, some important properties hold about any Plan-

instance. To state these it is convenient to recall the notion of a simple rule and define a “terminal”

predicate.

A signature is a set of function and predicate symbols/constants. A function symbol of arity 0

is an object constant. A term is an object constant, an object variable, or an expression of the

form f (t1, . . . , tm), where f is a function symbol of arity m and each ti is a term. An atom is an

expression of the form p(t1, . . . , tn) or t1 = t2, where p is an n-ary predicate symbol and each ti is

a term. A simple body has the form

a1, . . . ,am, not am+1, . . . , not an,

where ai is an atom and n≥ 0. Expression a1, . . . ,am forms the positive part of a body. A simple

rule has the form

h1 | · · · | hk← Body

or

{h1}← Body

where hi is an atom and Body is a simple body. We now state a recursive definition of a terminal

predicate with respect to a program. Let i be a nonnegative integer. A predicate that occurs only

in rules whose body is empty is called 0-terminal. We call a predicate i+ 1-terminal when it

occurs only in the heads of simple rules (left hand side of an arrow), furthermore

• in these rules all predicates occurring in their positive parts of the bodies must be at most

i-terminal and

• at least one of these rules is such that some predicate occurring in its positive part of the body

is i-terminal .

We call any x-terminal predicate terminal. For example, in program

block(b0). block(b1).

loc(X)← block(X). loc(table).

block is a 0-terminal predicate, loc is a 1-terminal predicate; and both predicates are terminal.

We are now ready to state important Facts about any possible Plan-instance and, consequently,

about the considered planning modules

1. Predicate o never occurs in the heads of rules in Plan-instance.
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2. Predicates action and step are terminal in Plan-instance as well as in Plan-instance aug-

mented by either Plan-choice or Plan-disj.

3. By Facts 1 and 2, predicate o is terminal in Plan-instance augmented by either Plan-choice

or Plan-disj.

4. Predicate sthHpd never occurs in the heads of the rules in Plan-instance.

In the remainder of the paper we use considered theoretical results to illustrate the following

Claims:

1. In the presence of rule (17) it is safe to add a rule

non o(A, I)← not o(A, I), action(A), SG(I) (25)

into an arbitrary program. By “safe to add/replace” we understand that the resulting pro-

gram has the same answer sets as the original one.

2. It is safe to replace rule (19) with rule

← o(A, I), o(A′, I), SG(I), A 6= A′ (26)

within an arbitrary program.

3. In the presence of rules (16) and (17), it is safe to replace rule (18) with rule

o(A, I)← not non o(A, I), action(A), SG(I) (27)

within an arbitrary program.

4. Given the syntactic features of the Plan-choice encoding and any Plan-instance encoding,

it is safe to replace rule (18) with rule (21). The argument utilizes Claims 1 and 3. Fact 4

forms an essential syntactic feature.

5. Given the syntactic features of the Plan-choice encoding and any Plan-instance encoding,

it is safe to replace rule (19) with rule (22). The argument utilizes Claim 2, i.e., it is safe

to replace rule (19) with rule (26). An essential syntactic feature relies on Fact 1, and the

facts that (i) rule (18) is the only one in Plan-choice, where predicate o occurs in the head;

and (ii) rule (22) differs from (26) only in atoms that are part of the body of (18).

6. By Fact 4 and the fact that sthHpd does not occur in any other rule but (24) in Plan-disj,

the answer sets of the program obtained by replacing rule (20) with rules (23) and (24) are

in one-to-one correspondence with the answer sets of the program Plan-disj extended with

Plan-instance.

Essential Equivalence Between Two Planning Modules: These Claims are sufficient to state

that the answer sets of the Plan-choice and Plan-disj programs (extended with any Plan-instance)

are in one-to-one correspondence. We can capture the simple relation between the answer sets of

these programs by observing that dropping the atoms whose predicate symbol is sthHpd from an

answer set of the Plan-disj program results in an answer set of the Plan-choice program.

3.2 Preliminaries: RASPL-1 Logic Programs, Operator SM, Strong Equivalence

We now review a logic programming language RASPL-1 (Lee et al. 2008). This language is

sufficient to capture choice, aggregate, and disjunction constructs (as used in Plan-choice and

Plan-disj). There are distinct and not entirely compatible semantics for aggregate expressions in

the literature. We refer the interested reader to the discussion by Lee et al. (2008) on the roots of

semantics of aggregates considered in RASPL-1.
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An aggregate expression is an expression of the form

b≤ #count{~x : L1, . . . ,Lk} (28)

(k≥ 1), where b is a positive integer (bound),~x is a list of variables (possibly empty), and each Li

is an atom possibly preceded by not. We call variables in x aggregate variables. This expression

states that there are at least b values of~x such that conditions L1, . . . ,Lk hold.

A body is an expression of the form

e1, . . . ,em,not em+1, . . . ,not en (29)

(n≥m≥ 0) where each ei is an aggregate expression or an atom. A rule is an expression of either

of the forms

a1 | · · · | al ← Body (30)

{a1}← Body (31)

(l ≥ 0) where each ai is an atom, and Body is the body in the form (29). When l = 0, we identify

the head of (30) with symbol ⊥ and call such a rule a denial. When l = 1, we call rule (30) a

defining rule. We call rule (31) a choice rule. A (logic) program is a set of rules. An atom of the

form not t1 = t2 is abbreviated by t1 6= t2.

3.2.1 Operator SM

Typically, the semantics of logic programs with variables is given by stating that these rules are an

abbreviation for a possibly infinite set of propositional rules. Then the semantics of propositional

programs is considered. The SM operator introduced by Ferraris et al. (2011) gives a definition

for the semantics of first-order programs bypassing grounding. It is an operator that takes a first-

order sentence F and a tuple p of predicate symbols and produces the second order sentence that

we denote by SMp[F ].

We now review the operator SM. The symbols ⊥,∧,∨,→, ∀, and ∃ are viewed as primitives.

The formulas ¬F and ⊤ are abbreviations for F →⊥ and ⊥→⊥, respectively. If p and q are

predicate symbols of arity n then p ≤ q is an abbreviation for the formula ∀x(p(x)→ q(x)),

where x is a tuple of variables of length n. If p and q are tuples p1, . . . , pn and q1, . . . ,qn of

predicate symbols then p≤ q is an abbreviation for the conjunction (p1 ≤ q1)∧·· ·∧ (pn ≤ qn),

and p < q is an abbreviation for (p ≤ q)∧¬(q ≤ p). We apply the same notation to tuples of

predicate variables in second-order logic formulas. If p is a tuple of predicate symbols p1, . . . , pn

(not including equality), and F is a first-order sentence then SMp[F ] denotes the second-order

sentence

F ∧¬∃u(u < p)∧F∗(u),

where u is a tuple of distinct predicate variables u1, . . . ,un, and F∗(u) is defined recursively:

• pi(t)
∗ is ui(t) for any tuple t of terms;

• F∗ is F for any atomic formula F that does not contain members of p;5

• (F ∧G)∗ is F∗∧G∗;

• (F ∨G)∗ is F∗∨G∗;

• (F →G)∗ is (F∗→G∗)∧ (F →G);

• (∀xF)∗ is ∀xF∗;

5 This includes equality statements and the formula ⊥.
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• (∃xF)∗ is ∃xF∗.

Note that if p is the empty tuple then SMp[F ] is equivalent to F . For intuitions regarding the

definition of the SM operator we direct the reader to (Ferraris et al. 2011, Sections 2.3, 2.4).

By σ(F) we denote the set of all function and predicate constants occurring in first-order

formula F (not including equality). We will call this the signature of F . An interpretation I over

σ(F) is a p-stable model of F if it satisfies SMp[F ], where p is a tuple of predicates from σ(F).

We note that a p-stable model of F is also a model of F .

By π(F) we denote the set of all predicate constants (excluding equality) occurring in a for-

mula F . Let F be a first-order sentence that contains at least one object constant. We call an

Herbrand interpretation of σ(F) that is a π(F)-stable model of F an answer set.6 Theorem 1

from (Ferraris et al. 2011) illustrates in which sense this definition can be seen as a general-

ization of a classical definition of an answer set (via grounding and reduct) for typical logic

programs whose syntax is more restricted than syntax of programs considered here.

3.2.2 Semantics of Logic Programs

From this point on, we view logic program rules as alternative notation for particular types

of first-order sentences. We now define a procedure that turns every aggregate, every rule, and

every program into a formula of first-order logic, called its FOL representation. First, we identify

the logical connectives ∧, ∨, and ¬ with their counterparts used in logic programs, namely, the

comma, the disjunction symbol |, and connective not. This allows us to treat L1, . . . ,Lk in (28) as

a conjunction of literals.

For an aggregate expressions of the form

b≤ #count{~x : F(~x)},

its FOL representation follows

∃~x1 · · ·~xb[
∧

1≤i≤b

F(~xi)∧
∧

1≤i< j≤b

¬(xi = x j)] (32)

where ~x1 · · ·~xb are lists of new variables of the same length as~x.

The FOL representations of logic rules of the form (30) and (31) are formulas

∀̃(Body→ a1∨·· ·∨al) and ∀̃(¬¬a1∧Body→ a1),

where each aggregate expression in Body is replaced by its FOL representation. Symbol ∀̃ de-

notes universal closure.

For example, expression SG(I) stands for formula step(I)∧¬goal(I)∧¬I = n and rules (18)

and (20) in the Plan-choice encoding have the FOL representation:

∀̃
(
¬¬o(A, I)∧SG(I)∧action(A)→ o(A, I)

)
(33)

∀I
(
¬∃A[o(A, I)]∧SG(I)→⊥

)
(34)

The FOL representation of rule (19) is the universal closure of the following implication

(∃AA′
(
o(A, I)∧o(A′, I)∧¬A = A′

)
∧SG(I))→⊥.

6 An Herbrand interpretation of a signature σ (containing at least one object constant) is such that its universe is the set
of all ground terms of σ , and every ground term represents itself. An Herbrand interpretation can be identified with
the set of ground atoms (not containing equality) to which it assigns the value true.
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We define a concept of an answer set for logic programs that contain at least one object con-

stant. This is inessential restriction as typical logic programs without object constants are in a

sense trivial. In such programs, whose semantics is given via grounding, rules with variables are

eliminated during grounding. Let Π be a logic program with at least one object constant. (In the

sequel we often omit expression “with at least one object constant”.) By Π̂ we denote its FOL

representation. (Similarly, for a head H, a body Body, or a rule R, by Ĥ, B̂ody, or R̂ we denote

their FOL representations.) An answer set of Π is an answer set of its FOL representation Π̂. In

other words, an answer set of Π is an Herbrand interpretation of Π̂ that is a π(Π̂)-stable model

of Π̂, i.e., a model of

SM
π(Π̂)

[Π̂]. (35)

Sometimes, it is convenient to identify a logic program Π with its semantic counterpart (35) so

that formal results stated in terms of SM operator immediately translate into the results for logic

programs.

3.2.3 Review: Strong Equivalence

We restate the definition of strong equivalence for first-order formulas given in (Ferraris et al.

2011) and recall some of its properties. First-order formulas F and G are strongly equivalent if

for any formula H, any occurrence of F in H, and any tuple p of distinct predicate constants,

SMp[H] is equivalent to SMp[H
′], where H ′ is obtained from H by replacing F by G. Trivially,

any strongly equivalent formulas are such that their stable models coincide (relative to any tuple

of predicate constants). Lifschitz et al. (2007) show that first-order formulas F and G are strongly

equivalent if they are equivalent in SQHT= logic — an intermediate logic between classical and

intuitionistic logics. Every formula provable using natural deduction, where the axiom of the law

of the excluded middle (F∨¬F) is replaced by the weak law of the excluded middle (¬F∨¬¬F),

is a theorem of SQHT=.

The definition of strong equivalence between first-order formulas paves the way to a definition

of strong equivalence for logic programs. A logic program Π1 is strongly equivalent to logic

program Π2 when for any program Π,

SM
π(Π̂∪Π1)

[Π̂∪Π1] is equivalent to SM
π(Π̂∪Π2)

[Π̂∪Π2].

It immediately follows that logic programs Π1 and Π2 are strongly equivalent if first-order for-

mulas Π̂1 and Π̂2 are equivalent in logic of SQHT=.

We now review an important result about properties of denials.

Theorem 1 (Theorem 3 (Ferraris et al. 2011))

For any first-order formulas F and G and arbitrary tuple p of predicate constants, SMp[F ∧¬G]

is equivalent to SMp[F ]∧¬G.

As a consequence, p-stable models of F ∧¬G can be characterized as the p-stable models of F

that satisfy first-order logic formula¬G. Consider any denial←Body. Its FOL representation has

the form ∀̃(Body→⊥) that is intuitionistically equivalent to formula ¬∃̃Body. Thus, Theorem 1

tells us that given any denial of a program it is safe to compute answer sets of a program without

this denial and a posteriori verify that the FOL representation of a denial is satisfied.

Corollary 1

Two denials are strongly equivalent if their FOL representations are classically equivalent.
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This corollary is also an immediate consequence of the Replacement Theorem for intuitionistic

logic for first-order formulas (Mints 2000) stated below.

Proposition 4 (Replacement Theorem II (Mints 2000), Section 13.1)

If F is a first-order formula containing a subformula G and F ′ is the result of replacing that

subformula by G′ then ∀̃(G↔ G′) intuitionistically implies F ↔ F ′.

3.3 Rewritings

3.3.1 Rewritings via Pure Strong Equivalence

Strong equivalence can be used to argue the correctness of some program rewritings practiced

by ASP software engineers. Here we state several theorems about strong equivalence between

programs. Claims 1, 2, and 3 are consequences of these results.

We say that body Body subsumes body Body′ when Body′ has the form Body,Body′′ (note

that an order of expressions in a body is immaterial) . We say that a rule R subsumes rule R′

when heads of R and R′ coincide while body of R subsumes body of R′. For example, rule (17)

subsumes rule (25).

Subsumption Rewriting: Let R′ denote a set of rules subsumed by rule R. It is easy to see

that formulas R̂ and R̂∧ R̂′ are intuitionistically equivalent. Thus, program composed of rule R

and program {R}∪R′ are strongly equivalent. It immediately follows that Claim 1 holds. Indeed,

rule (17) is strongly equivalent to the set of rules composed of itself and (25). Indeed, rule (17)

subsumes rule (25).

Removing Aggregates: The following theorem is an immediate consequence of the Replace-

ment Theorem II.

Theorem 2

Program

H ← b≤ #count{~x : F(~x)}, G (36)

is strongly equivalent to program

H← ,
1≤i≤b

F(~xi) ,
1≤i< j≤b

xi 6= x j, G (37)

where G and H have no occurrences of variables in ~xi (1≤ i≤ b).

Theorem 2 shows us that Claim 2 is a special case of a more general fact. Indeed, take rules (19)

and (26) to be the instances of rules (36) and (37) respectively.

We note that the Replacement Theorem II also allows us to immediately conclude the follow-

ing.

Corollary 2

Program H←G is strongly equivalent to program H← G′ when ∀̃(Ĝ↔ Ĝ′).

Corollary 2 equips us with a general semantic condition that can be utilized in proving the syn-

tactic properties of programs in spirit of Theorem 2.

Replacing Choice Rule by Defining Rule: Theorem 3 shows us that Claim 3 is an instance

of a more general fact.
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Theorem 3

Program

← p(~x), q(~x) (38)

q(~x)← not p(~x),F1 (39)

{p(~x)} ← F1, F2 (40)

is strongly equivalent to program composed of rules (38), (39) and rule

p(~x)← not q(~x), F1, F2, (41)

where F1 and F2 are the expressions of the form (29).

To illustrate the correctness of Claim 3 by Theorem 3: (i) take rules (16), (17), (18) be the

instances of rules (38), (39), (40) respectively, and (ii) rule (27) be the instance of rule (41).

3.3.2 Useful Rewritings using Structure

In this subsection, we study rewritings on a program that rely on its structure. We review the

concept of a dependency graph used in posing structural conditions on rewritings.

Review: Predicate Dependency Graph We present the concept of the predicate dependency

graph of a formula following the lines of (Ferraris et al. 2009). An occurrence of a predicate

constant, or any other subexpression, in a formula is called positive if the number of implications

containing that occurrence in the antecedent is even, and strictly positive if that number is 0. We

say that an occurrence of a predicate constant is negated if it belongs to a subformula of the form

¬F (an abbreviation for F →⊥), and nonnegated otherwise.

For instance, in formula (33), predicate constant o has a strictly positive occurrence in the

consequence of the implication; whereas the same symbol o has a negated positive occurrence in

the antecedent

¬¬o(A, I)∧ step(I)∧¬goal(I)∧¬I = n∧action(A) (42)

of (33). Predicate symbol action has a strictly positive non-negated occurrence in (42). The oc-

currence of predicate symbol goal is negated and not positive in (42). The occurrence of predicate

symbol goal is negated and positive in (33).

An FOL rule of a first-order formula F is a strictly positive occurrence of an implication in F .

For instance, in a conjunction of two formulas (33) and (34) the FOL rules are as follows

¬¬o(A, I)∧SG(I)∧action(A)→ o(A, I) (43)

¬∃A[o(A, I)]∧SG(I)→⊥. (44)

For any first-order formula F , the (predicate) dependency graph of F relative to the tuple p

of predicate symbols (excluding =) is the directed graph that (i) has all predicates in p as its

vertices, and (ii) has an edge from p to q if for some FOL rule G→ H of F

• p has a strictly positive occurrence in H, and

• q has a positive nonnegated occurrence in G.

We denote such a graph by DGp[F ]. For instance, Figure 2 presents the dependence graph of

a conjunction of formulas (33) and (34) relative to all its predicate symbols. It contains four

vertices, namely, o, action, step, and goal, and two edges: one from vertex o to vertex action and

the other one from o to step. Indeed, consider the only two FOL rules (43) and (44) stemming
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actionostepgoal

Figure 2: The predicate dependency graph of a conjunction of formulas (33) and (34).

from this conjunction. Predicate constant o has a strictly positive occurrence in the consequent

o(A, I) of the implication (43), whereas action and step are the only predicate constants in the

antecedent ¬¬o(A, I)∧SG(I)∧action(A) of (43) that have positive and nonnegated occurrence

in this antecedent. It is easy to see that a FOL rule of the form G→⊥, e.g., FOL rule (44), does

not contribute edges to any dependency graph.

For any logic program Π, the dependency graph of Π, denoted DG[Π], is a directed graph

of Π̂ relative to the predicates occurring in Π. For example, let Π be composed of two rules (18)

and (20). The conjunction of formulas (33) and (34) forms its FOL representation. Thus, Figure 2

captures its dependency graph DG[Π].

Shifting We call a logic program disjunctive if all its rules have the form (30), where Body only

contains atoms possibly preceded by not. We say that a disjunctive program is normal when it

does not contain disjunction connective |. Gelfond et al. (1991) defined a mapping from a propo-

sitional disjunctive program Π to a propositional normal program by replacing each rule (30)

with l > 1 in Π by l new rules

ai← Body, not a1, . . .not ai−1,not ai+1, . . .not al.

They showed that every answer set of the constructed program is also an answer set of Π. Al-

though the converse does not hold in general, Ben-Eliyahu and Dechter (1994) showed that the

converse holds if Π is “head-cycle-free”. Linke et al. (2004) illustrated how this property holds

about programs with nested expressions that capture choice rules, for instance. Here we general-

ize these findings further. First, we show that shifting is applicable to first-order programs (which

also may contain choice rules and aggregates in addition to disjunction). Second, we illustrate

that under certain syntactic/structural conditions on a program we may apply shifting “locally”

to some rules with disjunction and not others.

For an atom a, by a0 we denote its predicate constant. For example o(A, I)0 = o. Let R be a

rule of the form (30) with l > 1. By shiftp(R) (where p is a tuple of distinct predicates) we denote

the rule

|
1≤ i≤ l, a0

i ∈ p

ai← Body, ,
1 ≤ j ≤ l, a0

j 6∈ p

not a j. (45)

Let PR be a partition of the set composed of the distinct predicate symbols occurring in the

head of rule R. By shiftPR(R) we denote the set of rules composed of rule shiftp(R) for every

member p of the partition PR (order of the elements in p is immaterial).

For instance, if R1 denotes a rule

a | b | c | d | e(1)← (46)

then P1
R1 = {{a,b},{c,d,e}} and P2

R1 = {{a,b},{c},{d,e}} form sample partitions of the
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described kind. Set shift
P

R1
1

(R1) consists of rules

a | b← not c, not d, not e(1)

c | d | e(1)← not a, not b,

whereas set shift
P

R1
2

(R1) consists of rules

a | b← not c, not d, not e(1)

c← not a, not b, not d, not e(1)

d | e(1)← not a, not b, not c.

Theorem 4

Let Π be a logic program, R be a set of rules in Π of the form (30) with l > 1, and C be the set of

strongly connected components in the dependency graph of Π. A program constructed from Π by

replacing each rule R ∈ R with shiftPR(R) has the same answer sets as Π if any partition P
R is

such that there are no two distinct members p1 and p2 in PR so that for some strongly connected

component c in C, c∩p1 6= /0 and c∩p2 6= /0.7

Consider a sample program Πsamp composed of rule (46), which we denote as R1, and rules

a← b

b← a.
(47)

The strongly connected components of program Πsamp are {{a,b},{c},{d},{e(1)}}. Theorem 4

tells us, for instance, that the answer sets of program Πsamp coincide with the answer sets of two

distinct programs:

1. a program composed of rules shift
P

R1
1

(R1) and rules (47);

2. a program composed of rules shift
P

R1
2

(R1) and rules (47).

We now use Theorem 4 to argue the correctness of Claim 4. Let Plan-choice′ denote a program

constructed from the Plan-choice encoding by replacing (18) with (21). Let Plan-choice′′ denote

a program constructed from the Plan-choice, by (i) replacing (18) with (27) and (ii) adding

rule (25). Theorem 4 tells us that programs Plan-choice′ and Plan-choice′′ have the same answer

sets. Indeed,

1. take R to consist of rule (21) and

2. recall Facts 1, 2, and 3. Given any Plan-instance intended to use with Plan-choice a pro-

gram obtained from the union of Plan-instance and Plan-choice′ is such that o is terminal.

It is easy to see that any terminal predicate in a program occurs only in the singleton

strongly connected components of a program dependency graph.

Due to Claims 1 and 3, the Plan-choice encoding has the same answer sets as Plan-choice′′

and consequently the same answer sets as Plan-choice′. This argument accounts for the proof of

Claim 4.

7 The statement of this theorem was suggested by Pedro Cabalar and Jorge Fandinno in personal communication on
January 17, 2019.
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Completion We now proceed at stating formal results about first-order formulas and their stable

models. The fact that we identify logic programs with their FOL representations translates these

results to the case of the RASPL-1 programs.

About a first-order formula F we say that it is in Clark normal form (Ferraris et al. 2011)

relative to the tuple/set p of predicate symbols if it is a conjunction of formulas of the form

∀~x(G→ p(~x)) (48)

one for each predicate p ∈ p, where~x is a tuple of distinct object variables. We refer the reader to

Section 6.1 in (Ferraris et al. 2011) for the description of the intuitionistically equivalent trans-

formations that can convert a first-order formula, which is a FOL representation for a RASPL-1

program (without disjunction and denials), into Clark normal form.

The completion of a formula F in Clark normal form relative to predicate symbols p, denoted

by Compp[F ], is obtained from F by replacing each conjunctive term of the form (48) with

∀~x(G↔ p(~x)).

We now review an important result about properties of completion.

Theorem 5 (Theorem 10 (Ferraris et al. 2011))

For any formula F in Clark normal form and arbitrary tuple p of predicate constants, formula

SMp[F ]→Compp[F ]

is logically valid.

The following Corollary is an immediate consequence of this theorem, Theorem 1, and the

fact that formula of the form ∀̃(Body→⊥) is intuitionistically equivalent to formula ¬∃̃Body.

Corollary 3

For any formula G∧H such that (i) formula G is in Clark normal form relative to p and H is a

conjunction of formulas of the form ∀̃(K→⊥), the implication

SMp[G∧H]→Compp[G]∧H

is logically valid.

To illustrate the utility of this result we now construct an argument for the correctness of

Claim 5. This argument finds one more formal result of use:

Theorem 6

For a program Π, a first-order formula F such that every answer set of Π satisfies F , and any two

denials R and R′ such that F → (R̂↔ R̂′), the answer sets of programs Π∪{R} and Π∪{R′}

coincide.

Theorem 1 provides grounds for a straightforward argument for this statement.

Consider the Plan-choice encoding without denial (19) extended with any Plan-instance. We

can partition it into two parts: one that contains the denials, denoted by ΠH , and the remainder,

denoted by ΠG. Recall Fact 1. Following the steps described by Ferraris et al. (2011, Section

6.1), formula Π̂G turned into Clark normal form relative to the predicate symbols occurring in

ΠH ∪ΠG contains implication (33). The completion of this formula contains equivalence

∀̃
(
¬¬o(A, I)∧SG(I)∧action(A)↔ o(A, I)

)
. (49)
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By Corollary 3 it follows that any answer set of ΠH ∪ΠG satisfies formula (49). It is easy to

see that an interpretation satisfies (49) and the FOL representation of (26) if and only if it sat-

isfies (49) and the FOL representation of denial (22). Thus, by Theorem 6 program ΠH ∪ΠG

extended with (26) and program ΠH ∪ΠG extended with (22) have the same answer sets. Recall

Claim 2 claiming that it is safe to replace denial (19) with denial (26) within an arbitrary pro-

gram. It follows that program ΠH ∪ΠG extended with (22) have the same answer sets ΠH ∪ΠG

extended with (19). This concludes the argument for the claim of Claim 5.

We now state the main formal results of the second part of the paper. The Completion Lemma

for first-order programs stated next is essential in proving the Lemma on Explicit Definitions for

first-order programs. Claim 6 follows immediately from the latter lemma.

Theorem 7 (Completion Lemma)

Let F be a first-order formula and q be a set of predicate constants that do not have positive,

nonnegated occurrences in any FOL rule of F . Let p be a set of predicates in F disjoint from q.

Let D be a formula in Clark normal form relative to q so that in every conjunctive term (48) of D

no occurrence of an element in q occurs in G as positive and nonnegated. Formula

SMpq[F ∧D] (50)

is equivalent to formulas

SMpq[F ∧D]∧Comp[D], (51)

SMp[F]∧Comp[D], and (52)

SMpq[F ∧
∧

q∈{q}

∀~x
(
¬¬q(~x)→ q(~x)

)
]∧Comp[D]. (53)

This result tells us that pq-stable models of F ∧D are such that they satisfy the classical first-

order formula Comp[D]. These models also can be characterized as (i) the p-stable models of F

that satisfy Comp[D], and (ii) the pq-stable models of F extended with the counterpart of choice

rules for member of q that satisfy Comp[D].

For an interpretation I over signature Σ, by I|σ we denote the interpretation over σ ⊆ Σ con-

structed from I so that every function or predicate symbol in σ is assigned the same value in

both I and I|σ . We call formula G in (48) a definition of p(~x).

Theorem 8 (Lemma on Explicit Definitions)

Let F be a first-order formula, q be a set of predicate constants that do not occur in F , and p be

an arbitrary set of predicate constants in F . Let D be a formula in Clark normal form relative to q

so that in every conjunctive term (48) of D there is no occurrence of an element in q in G. Then

i M 7→ M|σ(F) is a 1-1 correspondence between the models of SMpq[F ∧D] and the models

SMp[F ], and

ii SMpq[F∧D] and SMpq[F
q∧D] are equivalent, where we understand Fq as a formula obtained

from F by replacing occurrences of the definitions of q(~x) in D with q(~x).

iii SMpq[F ∧D] and SMpq[F
′q ∧D] are equivalent, where we understand F ′q as a formula ob-

tained from F by replacing occurrences of any subformula of the definitions of q(~x) in D

with q(~x).

It is easy to see that the program composed of the single rule

p(~y)← 1≤ #count{~x : F(~x,~y)}
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and the program p(~y)← F(~x,~y) are strongly equivalent. Thus, we can identify rule (23) in the

Plan-disj encoding with the rule

sthHpd(I)← 1≤ #count{A : o(A, I)}. (54)

Using this fact and Theorem 8 allows us to support Claim 6. Take F to be the FOL representa-

tion of Plan-choice encoding extended with any Plan-instance and D be the FOL representation

of (54), q be composed of a single predicate sthHpd and p be composed of all the predicates in

Plan-choice and Plan-instance.

3.4 Projection

Harrison and Lierler (2016) considered a rewriting technique called projection. We start by re-

viewing their results. We then illustrate how the theory developed here is applicable in their

settings. Furthermore, it allows us to generalize their results to more complex programs. In addi-

tion, our results give us a proof of correctness for system PROJECTOR (Hippen and Lierler 2019)

that implements so called α and β -projections.

Harrison and Lierler (2016) considered programs to be first-order sentence formed as a con-

junction of formulas of the form

∀̃(ak+1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an→ a1∨·· ·∨ak).

It is easy to see that the FOL-representation of RASPL-1 rule without aggregate expressions

comply with this form. We will now generalize the main result by Harrison and Lierler (2016) to

the case of RASPL-1 programs.

Recall how in Section 3.2.2 we identify the logical connective ¬ with its counterpart used in

logic programs, namely, not. This allows us to call an expression not a, where a is an atom, a

literal. To simplify the presentation of rewriting in this section we will treat L1, . . . ,Lk in (28) as

a set of literals. We will also identify body (29) with the set {e1, . . . ,em,not em+1,not en} of its

elements.

Let R be a RASPL-1 rule in a program Π, and let x be a non-empty tuple of variables occurring

only in body of R outside of any aggregate expression. By α(x,y) we denote a set of literals in

the body of R so that it includes all literals in the body of R that contain at least one variable

from x. Tuple y denotes all the variables occurring in the literals of α(x,y) different from x. By

α ′ we denote any subset of α(x,y) whose literals do not contain any variables occurring in x. By

Body and H we denote the body and the head of R respectively. Let u be a predicate symbol that

does not occur in Π. Then a result of projecting variables x out of R using predicate symbol u

consists of the following two rules

H← (Body\α(x,y))∪α ′∪{u(y)}

u(y)← α(x,y).

For example, one possible result of projecting Y out of

s(X ,Z)← p(Z),q(X ,Y ),r(X ,Y ), t(X) (55)

using predicate symbol u is

s(X ,Z)← u(X), p(Z), t(X) (56)

u(X)← q(X ,Y ),r(X ,Y ). (57)
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Another possible result of projecting Y out of rule (55) using predicate symbol u consists of

rule (56) and rule

u(X)← q(X ,Y ),r(X ,Y ), t(X). (58)

Yet, another possible result of projecting Y out of rule (55) using predicate symbol u consists of

rule

s(X ,Z)← u(X), p(Z) (59)

and rule (58).

We are now ready to state a formal result about projecting that is a generalization of Theorem 6

in (Harrison and Lierler 2016).

Theorem 9

Let R be a RASPL-1 rule in a program Π, and let x be a non-empty tuple of variables occurring

only in body of R outside of any aggregate expression and not in the head. If Π′ is constructed

from Π by replacing R in Π with a result of projecting variables x out of R using a predicate

symbol u that is not in the signature of Π, then M 7→ M
|σ(Π̂)

is a 1-1 correspondence between

the models of SMp,u[Π̂′] and the models of SMp[Π̂].

This result on correctness of projection is immediate consequences of Lemma on Explicit

Definitions presented here. We note that the proof of a more restricted statement by Harrison and

Lierler (2016) is rather complex relying directly on the definition of SM operator. This illustrates

the utility of presented theory, e.g., Lemma on Explicit Definitions, as it equips ASP practitioners

with a formal result that eases a construction of proofs of correctness of their rewritings.

Hippen and Lierler (2019) considered rewritings that they call α and β -projections. They also

implement these rewritings in system PROJECTOR. Both α and β -projections are instances of

the projection defined here. As a result, Theorem 9 provides a proof of correctness for the α and

β -projections.

Here we reproduce the definition of α-projection by Hippen and Lierler (2019, Section 2) for

the case of positive rules of the form

a0← a1, . . . ,am,

where a0 is an atom or⊥ and a1, . . . ,am are atoms (we use the notation of this paper to reproduce

the definition). Expression (55) exemplifies a positive rule. For a positive rule ρ and a set x of

variables, by alpha(ρ ,x) we denote the set of all atoms in the body of ρ such that they contain

some variable in x. For instance, let ρ1 be rule (55). Then,

alpha(ρ1,{Y}) = {q(X ,Y),r(X ,Y )}

alpha(ρ1,{X ,Y}) = {q(X ,Y ),r(X ,Y ), t(X)}

For a set x of variables and a positive rule ρ of the form H ← Body, where no variable in x

occurs in H, the process of α-projecting x out of this rule will result in replacing it by two rules:

1. a rule

u(y)← alpha(ρ ,x).

so that

• u is a fresh predicate symbol with respect to original program, and

• y is composed of the variables that occur in alpha(ρ ,x), but not in x;
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2. a rule

H← (Body\ alpha(ρ ,x))∪{u(y)}.

For instance, replacing rule (55) with rules (56) and (57) exemplifies α-projection of Y . It is easy

to see that α-projection on positive programs is an instance of projection rewriting studied here.

The definitions of α and β -projections for general programs require substantially more notation.

Thus, we refer an interested reader to the paper by Hippen and Lierler (2019, Section 2) for the

details. Yet, it is still easy to see that these rewritings are instances of projection as defined here.

For example, replacing rule (55) with rules (59) and (58) exemplifies β -projection.

4 Conclusions

We illustrated how the concepts of strong equivalence and conservative extensions can be used

jointly to argue the correctness of a newly designed program or correctness of program rewrit-

ings. This work outlines a methodology for such arguments. Also, this paper lifts several im-

portant theoretical results for propositional programs to the case of first-order logic programs.

These new formal findings allow us to argue a number of first-order program rewritings to be

safe. We illustrate the usefulness of these findings by utilizing them in constructing an argument

which shows that the sample programs Plan-choice and Plan-disj are essentially the same. We

believe that these results provide a strong building block for a portfolio of safe rewritings that can

be used in creating an automatic tool for carrying these rewritings during program performance

optimization phase. For example, system PROJECTOR discussed in the last section implements

projection rewritings for the sake of performance. In this work we utilized the presented formal

results to argue the correctness of this system.
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Appendix A ”Weak” Natural Deduction System

Recall that in addition to introducing the strong equivalence, Lifschitz et al. (2001) also illus-

trated that traditional programs can be associated with the propositional formulas and a question

whether the programs are strongly equivalent can be turned into a question whether the respec-

tive propositional formulas are equivalent in the HT logic. The authors also state that every

formula provable in the natural deduction system, where the axiom of the law of the excluded

middle (F ∨¬F) is replaced by the weak law of the excluded middle (¬F ∨¬¬F), is a theorem

of logic HT. We call this system weak natural deduction system. Since we use this observation

in providing formal arguments stated in Section 2, we review the weak natural deduction system

here. We denote this system by N. Its review follows the lines of (Lifschitz 2016) to a large ex-

tent. For another reference to natural deductions system we refer the reader to (Lifschitz et al.

2008). We note that Mints (2010) introduced an alternative sequent calculus for logic of HT that

was further generalized to first-order case.

A sequent is an expression of the form

G ⇒ F (A1)
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(“F under assumptions G ”), where F is a propositional formula that allows connectives

⊥,⊤,¬,∧,∨,→

and G is a finite set of formulas. If G is written as {G1, . . . ,Gn}, we drop the braces and write (A1)

as G1, . . . ,Gn⇒ F. Intuitively, this sequent is understood as the formula (G1∧·· · ∧Gn)→ F if

n > 0, and as F if n = 0.

The axioms of N are sequents of the forms

F ⇒ F, ⇒⊤, and ⇒¬F ∨¬¬F.

In the list of inference rules presented in Figure A 1, G , ∆, Σ are finite sets of formulas,

and F,G,H are formulas. The inference rules of N except for the two rules at the last row are clas-

sified into introduction rules (·I) and elimination rules (·E); the exceptions are the contradiction

rule (C) and the weakening rule (W ).

(∧I) G ⇒ F ∆⇒ G
G ,∆⇒ F ∧G

(∧E) G ⇒ F ∧G
G ⇒ F

G ⇒ F ∧G
G ⇒ G

(∨I) G ⇒ F
G ⇒ F ∨G

G ⇒ G
G ⇒ F ∨G

(∨E)
G ⇒ F ∨G ∆,F ⇒ H Σ,G⇒ H

G ,∆,Σ⇒ H

(→I)
G ,F⇒ G

G ⇒ F → G
(→E) G ⇒ F ∆⇒ F → G

G ,∆⇒ G

(¬I)
G ,F ⇒⊥
G ⇒¬F

(¬E) G ⇒ F ∆⇒¬F
G ,∆⇒⊥

(C) G ⇒⊥
G ⇒ F

(W ) G ⇒ H
G ,∆⇒ H

Figure A 1: Inference rules of system N.

A proof/derivation is a list of sequents S1, . . . ,Sn such that each Si is either an axiom or can

be derived from some of the sequents in S1, . . . ,Si−1 by one of the inference rules. To prove a

sequent S means to find a proof with the last sequent S. To prove a formula F means to prove the

sequent⇒ F .

The De Morgan’s law

¬(F ∨G)↔¬F ∧¬G

is provable intuitionistically (where we understand formula H↔H ′ as an abbreviation for (H→

H ′)∧ (H ′ → H)). Thus, formulas ¬(F ∨G) and ¬F ∧¬G are intuitionistically equivalent. The

other De Morgan’s law

¬(F ∧G)↔¬F ∨¬G

is such that its one half is provable intuitionistically, while the other one is provable in HT (thus,

formulas ¬(F ∧G) and ¬F ∨¬G are equivalent in HT-logic). We illustrate the latter fact in

Figure A 2 using system N. In other words, we prove sequent ⇒ ¬(F ∧G)→ ¬F ∨¬G in N.

It is convenient to introduce abbreviations for the assumptions used in the proofs so that A1

abbreviates assumption ¬(F ∧G) in Figure A 2.

It is easy to show that the propositional formulas F →⊥ and ¬F are equivalent using N, so
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1. ⇒¬F ∨¬¬F axiom 8. ¬¬F⇒¬¬F axiom

A1. ¬(F ∧G) 9. A1,G,¬¬F⇒⊥ (¬E) 7,8

2. A1⇒¬(F ∧G) axiom 10. A1,¬¬F⇒¬G (¬I) 9

3. G⇒ G axiom 11. A1,¬¬F⇒¬F ∨¬G (∨I) 10

4. F ⇒ F axiom 12. ¬F ⇒¬F axiom

5. F,G⇒ F ∧G (∧I) 3,4 13. ¬F ⇒¬F ∨¬G (∨I) 12

6. A1,F,G⇒⊥ (¬E) 2,5 14. A1⇒¬F ∨¬G (∨E) 1, 11, 13

7. A1,G⇒¬F (¬I) 6 15. ⇒¬(F ∧G)→ (¬F ∨¬G) (→ I) 14

Figure A 2: Proof of sequent⇒¬(F ∧G)→¬F ∨¬G in system N.

that in the sequel we often identify rules of the form

a1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an→⊥

with the propositional formula

¬(a1∧·· ·∧al ∧al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an).

Appendix B Proofs

B.1 Proofs for Section 2

To prove Proposition 1 several earlier results from the literature are of use.

Proposition 5 (Replacement Theorem I in (Mints 2000), Section 2.8)

If F is a formula containing a subformula G and F ′ is the result of replacing that subformula

by G′ then G↔ G′ intuitionistically implies F ↔ F ′.

To rely on formal results stated earlier in the literature, we now consider the case of programs

that are more general than traditional logic programs. We call such programs definitional. In

other words, traditional programs are their special case. A definitional program consists of rules

of the form (3) (recall that we identify rule (1) with the propositional formula (3)) and rules of

the form a→ F , where a is an atom and F is a basic conjunction. If a program contains two rules

F → a and a→ F we abbreviate that by a single expression F ↔ a. A definitional program is a

special case of propositional theories presented in (Ferraris 2005). We understand answer sets for

definitional programs as presented there. Ferraris (2005, Section 2) illustrates that in application

to any traditional program the definition from (Lifschitz et al. 1999), presented here, and their

definition are equivalent.

We now restate the results that immediately follow from Lemma on Explicit Definitions and

Completion Lemma presented in (Ferraris 2005) for the case of definitional programs.

Proposition 6 (Proposition 4 (Ferraris 2005))

Let Π be a definitional program and Q be a set of atoms that do not occur in Π. For each q ∈ Q,

let De f (q) be a basic conjunction that does not contain any atom in Q. Then, X 7→ X \Q is a 1-1

correspondence between the answer sets if Π∪{De f (q)→ q | q ∈ Q} and the answer sets of Π.

Proposition 7 (Proposition 5 (Ferraris 2005))

Let Π be a definitional program and Q be a set of atoms that do not occur in Π. For each q ∈ Q,

let De f (q) be a basic conjunction that does not contain any atom in Q. Then, Π∪{De f (q)→ q |

q ∈Q} and Π∪{De f (q)↔ q | q ∈ Q} have the same answer sets.
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Proof of Proposition 1

By Π′ we denote a program constructed from Π by adding a rule de f (q)→ q for every atom

q ∈Q. By Proposition 6, Π′ is a conservative extension of Π. By Proposition 7, traditional pro-

gram Π′ has the same answer sets as the definitional program Π′′ constructed from Π′ by replac-

ing a rule de f (q)→ q with a rule de f (q)↔ q . Similarly, traditional program Π[Q,de f (Q)] has

the same answer sets as the definitional program Π[Q,de f (Q)]′ constructed from it by replacing

a rule de f (q)→ q with a rule de f (q)↔ q. By Replacement Theorem I, Π′′ and Π[Q,de f (Q)]′

are strongly equivalent.

We now state auxiliary lemmas that are useful in the argument of Proposition 3. It is con-

structed by uncovering the formal link between logic programs simpT (D) and l pT (D), where

l pT (D) serves the role of a gold standard by the virtue of Proposition 2.

Lemma 1

If F is a formula containing a subformula G and F ′ is the result of replacing that subformula

by G′ then the sequent

Γ⇒ (G↔ G′)→ (F ↔ F ′)

is provable in N, where Γ is arbitrary set of assumptions.

Proof

Trivially follows from the Replacement Theorem I stated as Proposition 5 here.

Lemma 2

The sequent

¬(F ∧G),¬(¬F ∧¬G)⇒¬F ↔¬¬G∧¬G↔¬¬F

is provable in N.

Proof

We illustrate the proof in N for the sequent

¬(F ∧G)⇒¬¬F →¬G.

We allow ourselves a freedom to use De Morgan’s Laws as if they were given to us as additional

inference rules in N.

A1. ¬(F ∧G)

1. A1⇒¬(F ∧G) axiom

2. A1⇒¬F ∨¬G De Morgan’s Law 1

3. ¬F ⇒¬F axiom

4. ¬G⇒¬G axiom

5. ¬¬F ⇒¬¬F axiom

6. ¬¬F,¬F ⇒⊥ (¬ E) 3,5

7. ¬¬F,¬F ⇒¬G (C) 6

8. A1,¬¬F ⇒¬G (∨ E) 2,4,7

9. A1⇒¬¬F →¬G (→ I) 8
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Sequent 1 Γ⇒ (¬l1(t +1)∧·· · ∧¬lm(t +1)∧ ̂lm+1(t)∧·· ·∧ l̂n(t)→ l̂0(t +1))↔

(¬¬l̂1(t +1)∧·· · ∧¬¬l̂m(t +1)∧ ̂lm+1(t)∧·· · ∧ l̂n(t)→ l̂0(t +1))

Sequent 2 ⇒ Γ∧ (¬l1(t +1)∧·· · ∧¬lm(t +1)∧ ̂lm+1(t)∧·· · ∧ l̂n(t)→ l̂0(t +1))↔

Γ∧ (¬¬l̂1(t +1)∧·· · ∧¬¬l̂m(t +1)∧ l̂m+1(t)∧·· ·∧ l̂n(t)→ l̂0(t +1)).

Figure B 1: Sequents in the proof of Proposition 3

Similar proofs in structure are available for the sequents

¬(F ∧G)⇒¬¬G→¬F,

¬(¬F ∧¬G)⇒¬F →¬¬G, and

¬(¬F ∧¬G)⇒¬G→¬¬F.

Several applications of (∧I) will allow us to conclude the proof in N for the sequent in the

statement of this lemma.

Proof of Proposition 3

It is easy to see that the signatures of simpT (D) and l pT (D) differ by complement action atoms

present in l pT (D). What we show next is the fact that l pT (D) is a conservative extension of

simpT (D). Then the claim of this proposition follows from Proposition 2.

Claim 1: The set of rules from groups 1 and 3 of l pT (D) are strongly equivalent to the set of

rules from group 1 of l pT (D) and the rules

l̂0(t + 1)← not not l̂1(t + 1), . . . ,not not l̂m(t + 1),

l̂m+1(t), . . . , l̂n(t),
(B1)

for all t = 0, . . . ,T − 1, for every dynamic law (7) in D.

It is easy to see that these sets of rules only differ in structure of rules (12) and (B1) so that

the atoms of the form li(t + 1) (1 ≤ i ≤ m) in (12) are replaced by the expressions of the form

not l̂i(t + 1) in (B1).

Let Γ denote the set of rules from group 1 of l pT (D). Using Lemmas 1 and 2 it is easy to see

that the sequent 1 presented in Figure B 1 is provable in N. It is easy to construct a proof in N

from this sequent 1 to the sequent 2 in the same figure. This immediately concludes the proof of

Claim 1.

Claim 2: The set of rules from groups 1 and 2 of l pT (D) are strongly equivalent to the set of

rules from group 1 and 2 of simpT (D).

The proof for this claim follows the lines of a proof for Claim 1.

Claim 3: The set of rules from groups 1 and 4 of l pT (D) are strongly equivalent to the set of

rules from group 1 and 4 of simpT (D).

The proof for this claim is similar to that of a proof of Claim 1.

Due to Claims 1, 2, and 3, it follows that l pT (D) has the same answer sets as the program

l p′T (D) constructed from l pT (D) by replacing (i) the rules from group 3 with rules (B1) for all

t = 0, . . . ,T −1, for every dynamic law (7) in D, and (ii) the rules from groups 2 and 4 in l pT (D)

by the rules from groups 2 and 4 in simpT (D).
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Let de f (-a) denote formula ¬a for every elementary action a in σact
T . It is easy to see that

l p′T (D) coincides with the program

simpT (D)[ {-a | a ∈ σact
T }, {de f (-a) | a ∈ σact

T } ].

By Proposition 1, program l p′T (D) is a conservative extension of simpT (D). Consequently,

l pT (D) is a conservative extension of simpT (D).

B.2 Proofs for Section 3

Proof of Theorem 2

Consider the case when H is a disjunction of atoms then FOL representation of rule (36) is the

universal closure of formula
(
∃~x1 · · ·~xb

( ∧

1≤i≤b

F(~xi)∧
∧

1≤i< j≤b

¬(xi = x j)
)
∧G

)
→H. (B2)

The FOL representation of rule (37) is the universal closure of formula
( ∧

1≤i≤b

F(~xi)∧
∧

1≤i< j≤b

¬(xi = x j)∧G
)
→ H.

Given that formula ∀~z(H → H ′) where H ′ has no free occurrences of variables in~z is intuition-

istically equivalent to ∃~z(H)→ H ′, the FOL representation of rule (37) can be written as the

universal closure of formula
(
∃~x1 · · ·~xb

( ∧

1≤i≤b

F(~xi)∧
∧

1≤i< j≤b

¬(xi = x j)∧G
))
→H.

It is easy to see that the left hand sides of the implications in this formula and formula (B2) are

classically equivalent. And thus by Replacement Theorem II these formulas are intuitionistically

equivalent. Similarly we can argue for the case when H is of the form {a}.

Outline of the Proof of Theorem 3

We can derive the former program given in the theorem statement (its FOL representation) from

the latter intuitionistically; and we can derive the later from the former in logic SQHT=. For the

second direction, De Morgan’s law ¬(F ∧G)→ ¬F ∨¬G (provable in logic SQHT=, but not

valid intuitionistically) is essential.

To prove Theorem 4 we recall the Splitting Lemma from (Ferraris et al. 2009) (this Splitting

Lemma is the generalization of the Splitting Set Theorem (Lifschitz and Turner 1994)).

Splitting Lemma. Let F be a first-order sentence.

Version 1: Let p, q be disjoint tuples of distinct predicate constants. If each strongly con-

nected component of DGpq[F] is a subset of p or a subset of q, then SMpq[F ] is equivalent to

SMp[F]∧SMq[F].

Version 2: Let p be a tuple of distinct predicate constants. If c1, . . . ,cn are all the strongly

connected components of DGp[F ], then SMp[F] is equivalent to SMc1 [F ]∧·· ·∧SMcn [F ].

Proof of Theorem 4

We start by partitioning C into two sets Q and r so that

• any element in Q is such that at least one of its predicate symbols occurs in a head of some

rule in R,



34 Yu. Lierler

• any element in r is such that none of its predicate symbols occurs in a head of some rule in R.

We identify set r with a tuple (order is immaterial) composed of the predicate symbols occurring

in its elements. For set Q we identify every strongly connected component q ∈Q, with a tuple of

predicate symbols in this component.

By Πsh we denote a program constructed from Π by replacing each rule R∈R with shiftPR(R).

By definition, an answer set of Π is an Herbrand model of formula (35). Similarly, an answer

set of Πsh is an Herbrand model of

SM
π(Π̂sh)

[Π̂sh]. (B3)

We now show that formulas (35) and (B3) are equivalent.

By the Splitting Lemma, formula (35) is equivalent to

SMr[Π̂]∧
∧

q∈Q

SMq[Π̂] (B4)

Theorem 5 from (Ferraris et al. 2011) shows that given formulas SMp[F ] and SMp[G] so that

π(F) = π(G) if the equivalence between F and G can be derived intuitionistically from the law

of excluded middle formulas for all predicates in π(F)\p, then they have the same stable models.

Following claims are the consequences of that theorem

• SMr[Π̂] is equivalent to SMr[Π̂sh],

• for every q in Q, SMq[Π̂] is equivalent to SMq[Π̂sh].

Consequently, formula (B4) is equivalent to formula

SMr[Π̂sh]∧
∧

q∈Q

SMq[Π̂sh] (B5)

It is easy to see that π(Π̂) = π(Π̂sh). By the Splitting Lemma, formula (B5) is equivalent to (B3).

In order to state a proof for Completion Lemma, we recall several important theorems from (Fer-

raris et al. 2009; Ferraris et al. 2011).

Theorem 10 (Splitting Theorem (Ferraris et al. 2009))

Let F and D be first-order sentences, and let p,q be disjoint tuples of distinct predicate constants.

If

• each strongly connected component of DGp,q[F ∧D] is a subset of p or q,

• members of p have no strictly positive occurrences in D, and

• members of q have no strictly positive occurrences in F

then

SMpq[F ∧D] is equivalent to SMp[F]∧SMq[D].

Theorem 11 (Theorem 2 (Ferraris et al. 2011))

Let F be first-order sentences, and let p,q be disjoint tuples of distinct predicate constants. Then

SMpq[F ∧
∧

q∈{q}

∀~x
(
¬¬q(~x)→ q(~x)

)
] is equivalent to SMp[F ].

We say that formula SMp[F] is tight if the graph DGp[F ] is acyclic.
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Theorem 12 (Theorem 11 (Ferraris et al. 2009))

For any tight formula SMp[F] where F is in Clark normal form relative to p, SMp[F ] is equivalent

to the completion of F .

Proof of Theorem 7

Recall that D and Comp[D] denote

∧
q in q ∀x

(
G→ q(x̃)

)
and

∧
q in q ∀x

(
G↔ q(x̃)

)
,

respectively. From the conditions posed on the occurrence of elements in q in F and D it is easy

to see that every element in q forms a singleton strongly connected component in DGp,q[F ∧D]

and in DGq[D]. Consequently, each strongly connected component of DGp,q[F ∧D] is a subset

of p or q and D is tight. Furthermore, by the assumptions of the theorem, members of p have

no strictly positive occurrences in D, and members of q have no strictly positive occurrences

in F . By Theorem 10, formula (50) is equivalent to SMp[F]∧SMq[D]. By Theorem 12, SMq[D]

is equivalent to Comp[D]. Consequently, formula (50) is equivalent to (51) and (52). By Theo-

rem 11, formula (52) is equivalent to formula (53).

Proof of Theorem 8

By Theorem 8, SMpq[F∧D] is equivalent to SMp[F]∧Comp[D]. Formula Comp[D] corresponds

to so called explicit definitions of predicates in q. There is an obvious 1-1 correspondence be-

tween the models of SMp[F] and the models of the same formula extended with explicit defini-

tions (for predicates that do not occur in F). In particular, if M is a model of SMp[F]∧Comp[D]

then M|σ(F) is a model of SMp[F ]. This concludes the proof of statement (i). By the Replace-

ment Theorem for intuitionistic logic, we conclude that SMp[F] ∧Comp[D] is equivalent to

SMp[F
q]∧Comp[D] and hence to SMpq[F

q ∧D] by Theorem 8. This concludes the proof of

statement (ii). Statement (iii) is proved similarly.
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