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The support vector machine (SVM), as a novel type of learning machine, was used to develop a Quantitative
Structure-Property Relationship (QSPR) model of the O-H bond dissociation energy (BDE) of 78 substituted
phenols. The six descriptors calculated solely from the molecular structures of compounds selected by forward
stepwise regression were used as inputs for the SVM model. The root-mean-square (rms) errors in BDE
predictions for the training, test, and overall data sets were 3.808, 3.320, and 3.713 BDE units (kJ mol-1),
respectively. The results obtained by Gaussian-kernel SVM were much better than those obtained by multiple
linear regression, radial basis function neural networks, linear-kernel SVM, and other QSPR approaches.

1. INTRODUCTION

Phenolic compounds play a major role in the chemistry
of living organisms and life-supporting substances. Phenols
are widely used as synthetic organic materials and also as
antioxidants in living organisms.1 The enormous interest in
their antioxidant activity in vitro and in vivo has been
demonstrated by a wealth of research in recent years.2 The
properties of the O-H bond appear to be essential to under-
standing the chemical and biochemical behavior of phenolic
compounds, for this is the bond which must be broken to
generate the truly active species: the phenoxy radical.
Phenols are also of special interest in organic chemistry, since
their acid-base equilibria have often been used as reference
values in establishing linear free energy relationships.3

Consequently, much effort has been put into understanding
the factors governing the O-H bond dissociation energies,
O-H BDE, both in the solution and the gas phase.4-6 There
are many experimental studies for the determination of the
O-H BDE of substituted phenols.4-6 These studies were
generally carried out in solutions (such as water, DMSO,
etc.), and subsequently gas-phase O-H BDE values were
determined under some assumptions.5,6 Unfortunately, the
O-H BDE values obtained from different experimental
studies vary in a wide range. For example, different
experimental studies suggested the O-H BDE for phenol
was from 83.3 kcal/mol to 89.6 kcal/mol.4 This discrepancy
clearly shows that there remains a lot of uncertainties even
in the experimental determined O-H BDE values.

The computational approaches used to predict O-H BDE
can be classified into two categories. The rigorous approaches
involve quantum mechanical methods including density
functional methods,7 ab initio,8 and semiempirical methods.9

The accurate estimation of BDE from theoretical calculations
is a challenging task, since high levels of calculations are
necessary for taking into account the effect of both the
dynamical and the nondynamical part of electron correlation.
High level ab initio calculations are thus prohibitive for the
large size of the substituted phenol molecules. In most of
the cases the calculated BDE values differ widely from the
experimental value.7

The other methods are more empirically based quantitative
structure-activity relationship (QSAR) and quantitative
structure-property relationship (QSPR) approaches. In a re-
cent review,10 quantitative structure-activity relationships
have been established for both biological and nonbiological
activities and properties of substituted phenols with electronic
properties of the substituents. More recently, Bosque et al.
have applied the QSPR approach to predict the BDE of phen-
ols.11 Despite all efforts, the present knowledge on the cal-
culation of O-H BDE is still unsatisfactory. Even for the
simplest of those moleculessphenol itselfsthe published
values for the O-H BDE vary over a wide range (∼30 kJ
mol-1).

Of those previous studies that were aimed at predicting
the O-H BDE, the most promising method is to use QSPR,
which uses descriptors derived from the molecular structure
alone representing the character of the molecule. The
advantage of this approach over other methods lies in the
fact that the descriptors used can be calculated from structure
alone and are not dependent on any experimental properties.
Once the structure of a compound is known, any descriptor
can be calculated no matter whether they are synthesized of
not. So once a reliable model is established, we can use this
method to predict the property of compounds. This study
can also tell us which of the structural factors may play an
important role in the determination of a property. QSPR
methods have been successfully used to predict many
physicochemical properties. Nevertheless, to the best of our
knowledge there is only one calculation of bond energies
by the QSPR approach and the maximum absolute relative
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error is 5.24% which showed the obtained results were not
satisfactory.11

Machine learning techniques such as neural networks,
genetic algorithm, etc., have been applied to QSPR analysis
since the late 1980s, mainly in response to increased accuracy
demands. The most popular neural network model is the
back-propagation (BP) neural network due to its simple
architecture yet powerful problem-solving ability. However,
the BP neural network suffers from a number of weaknesses
which include the need for a large number of controlling
parameters, difficulty in obtaining a stable solution, and the
danger of over-fitting. The over-fitting problem is a critical
issue that usually leads to poor generalization because the
neural network has too large a capacity which causes it to
capture not only the useful information contained in the
training data but also unwanted noises. As a result, it will
end up only memorizing the training data and generalizing
poorly to the out-of-sample data.12 Genetic algorithms can
suffer in a similar manner. The stochastic nature of both
population initialization and the genetic operators used during
training can make results hard to reproduce.13 Owing to the
reasons outlined above, there is a continuing need for the
application of more accurate and informative techniques to
QSPR analysis.

The support vector machines (SVM) is a new algorithm
developed from the machine learning community. Due to
its remarkable generalization performance, the SVM has
attracted attention and gained extensive application, such as
pattern recognition problems,14 classification and diagnosis
of breast cancer,15 drug design,16 and other QSAR analysis.17

In the present investigation, for the first time, SVM was
used for the prediction of O-H BDE in phenols using
descriptors calculated by the software CODESSA.18 Multiple
linear regression (MLR) and radial basis function neural
networks (RBFNNs) methods were also utilized to establish
quantitative linear and nonlinear relationships to compare
the results with that obtained by SVM. The aim was to
establish an accurate quantitative structure-property rela-
tionship model, to confirm the possibility of predicting O-H
BDE of phenols, and, at the same time, to seek for the
important structural features related to the O-H BDE. The
prediction results were very satisfactory in both the training
set and the test set, which proved SVM was a useful tool in
the prediction of the O-H BDE.

2. EXPERIMENTAL SECTION

2.1. Data Preparation.The values of bond dissociation
energy of the substituted phenols studied were taken from
the review published by R. M. Borges dos Santos and J. A.
Martinho Simoes.4 Table 1 contains the BDE of the data
set, in kJ mol-1. The compounds contain 25 kinds of sub-
stituents with different electronic effects. Some of these
substituents are electron-donating such as Me,t-Bu, NH2,
NMe2, OMe, while others are electron-withdrawing, such
as F, Cl, Br, I, NO2, CF3, COR, SO2Me. These substituents
occupy theortho-, meta-, andpara-positions of the aromatic
ring; 40 of the phenols studied have at least one substituent
in the ortho-position. The bond dissociation energy in data
set fall in the range of 321.3 kJ mol-1 for phenol substituted
with p-NMe2 to 397.3 kJ mol-1 for o-(NO2)2, respectively,
with a mean value of 362.3 kJ mol-1. To compare the results

with the literature, the separation of the substituted phenols
in the training and test sets is identical with that in ref 11.
The training set of 62 compounds was used to adjust the
parameters of the model, and the test set of 16 compounds
was used to evaluate its prediction ability. Leave-one-out
cross-validation was performed to evaluate the modeling
ability of models.

2.2. Descriptor Calculation. All structures of the mol-
ecules were drawn with the HyperChem program and ex-
ported in a file format suitable for MOPAC.19 The final
geometries were obtained with the semiempirical AM1 meth-
od in the MOPAC 6.0 program.20 All the geometries have
been fully optimized without symmetry restrictions. In all
cases frequency calculations have been performed in order
to ensure that all the calculated geometries correspond to
true minima. The resulted geometry was transferred into
software CODESSA that can calculate constitutional, topo-
logical, geometrical, electrostatic, and quantum-chemical
descriptors.

3. METHODOLOGY

3.1. Feature Selection and Regression Analysis.Once
descriptors were generated, in this work, the correlation
analysis of descriptors was performed first. In the process
of correlation analysis, either parameter which the correlation
coefficient is more than 0.85 was discarded. After the cor-
relation analysis of the descriptors, descriptor-screening
methods were used to select the most relevant descriptor to
establish the models for prediction of the molecular property.
Here, the forward stepwise regression method was used to
choose the subset of the molecular descriptors. Forward
stepwise regression starts with no model terms, and at each
step it adds the most statistically significant term (the one
with the highestF-statistic or lowestP-value) until there are
none left.

After the descriptor was selected, multiple linear regression
was used to develop the linear model of the property of
interest, which takes the form below:

In this equation,Y is the property, that is, the dependent
variable,X1-Xn represents the specific descriptor, whileb1-
bn represents the coefficients of those descriptors, andb0 is
the intercept of this equation.

3.2. Theory of Radial Basis Function Neural Networks.
The theory of RBFNNs has been extensively described in
the paper of Yao et al.21 Here, only a brief description of
the RBFNNs principle was given. The RBFNNs consists of
three layers: the input layer, the hidden layer, and the output
layer. The input layer does not process the information; it
only distributes the input vectors to the hidden layer. Each
neuron on the hidden layer employs a radial basis function
(RBF) as a nonlinear transfer function to operate on the input
data. The most often used RBF is a Gaussian function that
is characterized by a center (cj) and width (rj). In this study,
the Gaussian was selected as a radial basis function. The
operation of the output layer is linear, which is given as
below

whereyk is thekth output unit for the input vectorx, wkj is

Y ) b0 + b1X1 + b2X2 + ‚ ‚ ‚ + bnXn

yk(x) ) ∑wkjhj(x) + bk
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Table 1. Experimental and Calculated BDE (kJ mol-1) for the Training and Test Sets

no. compda exptl ref 11b resc MLR RBFNNs L-K SVMd G-K SVMe resc

1 PhOH 371.3 372.4 0.30 367.4 367.4 367.6 369.4 -0.51
2 2-Me 362.3 358.5 -1.05 360.9 360.9 363.4 365.8 0.95
3 4-Me 363.3 365.1 0.50 361.4 361.0 362.2 362.0 -0.37
4 4-t-Bu 364.3 358.3 -1.65 363.3 363.9 362.9 361.6 -0.74
5 4-Ph 359.3 364.6 1.48 363.4 364.1 365.3 363.4 1.15
6 2-OH 341.3 347.7 1.88 343.9 343.0 349.7 346.0 1.38
7 3-OH 372.3 364.8 -2.01 359.4 361.1 358.4 370.3 -0.54
8 4-OMe 349.3 353.7 1.26 353.5 352.6 352.2 356.7 2.11
9 2-CH2OH 361.3 352.4 -2.46 355.9 365.2 354.0 360.1 -0.32
10 2-COMe 365.3 362.3 -0.82 368.6 368.6 369.2 368.5 0.87
11 4-COMe 380.3 377.8 -0.66 379.5 380.0 377.7 378.0 -0.59
12 3-COEt 380.3 375.3 -1.31 379.7 380.8 379.6 379.0 -0.34
13 4-COPh 382.3 387.4 1.33 386.4 386.2 388.0 387.3 1.30
14 4-OCOMe 360.3 366.9 1.83 369.4 364.1 370.2 369.6 2.59
15 3-COOEt 378.3 377.3 -0.26 378.9 380.0 377.6 376.6 -0.45
16 2-NH2 340.3 342.8 0.73 343.6 341.5 344.2 340.0 -0.08
17 4-NH2 331.3 337.8 1.96 333.2 325.5 332.2 331.6 0.09
18 3-NMe2 363.3 344.3 -5.23 351.7 354.6 351.0 361.1 -0.62
19 4-NMe2 321.3 335.6 4.45 342.4 341.9 342.6 322.8 0.46
20 2-CN 371.3 377.1 1.56 378.7 378.0 382.1 371.7 0.11
21 3-CN 384.3 382.7 -0.42 382.9 384.1 383.6 386.2 0.49
22 4-CN 389.3 381.7 -1.95 382.7 384.2 383.0 383.7 -1.43
23 2-NO2 366.3 372.8 1.77 383.3 384.5 382.0 371.3 1.36
24 3-NO2 390.3 385.0 -1.36 387.1 387.6 385.9 386.0 -1.09
25 4-NO2 396.3 390.3 -1.51 395.7 396.6 394.9 397.4 0.27
26 2-F 363.3 365.0 0.47 364.2 363.0 365.8 357.4 -1.61
27 3-F 377.3 376.5 -0.21 377.9 379.6 377.9 377.3 0.00
28 4-Cl 370.3 371.8 0.41 370.5 370.4 371.9 370.3 0.00
29 2-Br 364.3 372.4 2.22 368.9 368.8 374.3 372.1 2.15
30 4-Br 373.3 375.9 0.70 376.0 376.9 378.6 378.6 1.43
31 4-I 370.3 379.4 2.46 358.7 357.9 360.0 369.8 -0.13
32 4-CF3 388.3 386.6 -0.44 393.0 388.9 392.6 396.1 2.01
33 3-SO2Me 382.3 380.5 -0.47 379.9 380.0 381.0 383.8 0.40
34 4-SO2Me 393.3 396.0 0.69 388.3 388.4 388.6 390.4 -0.73
35 2,6-Me2 357.3 355.6 -0.48 357.9 358.4 356.5 355.4 -0.53
36 3,5-Me2 368.3 363.1 -1.41 357.7 356.6 358.8 361.9 -1.73
37 2,4-t-Bu2 349.3 346.5 -0.80 351.4 349.8 354.7 354.3 1.42
38 2,6-t-Bu2 345.3 347.7 0.70 351.9 350.3 349.7 347.2 0.56
39 3,5-t-Bu2 365.3 349.5 -4.33 359.9 358.9 360.9 362.0 -0.90
40 2,6-Ph2 360.3 359.8 -0.14 357.8 358.0 354.3 352.0 -2.30
41 2,6-(OMe)2 350.3 354.5 1.20 349.8 354.4 343.9 347.5 -0.79
42 3,5-(OMe)2 364.3 364.6 0.08 366.6 364.2 369.7 363.3 -0.29
43 2,6-(NO2)2 397.3 398.8 0.38 398.6 388.6 394.9 391.3 -1.52
44 3,5-Cl2 385.3 379.1 -1.61 382.5 385.0 384.8 388.0 0.71
45 2,4,6-Me3 348.3 346.3 -0.57 347.2 348.3 345.3 346.9 -0.41
46 2,6-t-Bu2-4-Me 339.3 339.2 -0.03 340.5 341.0 339.8 339.6 0.08
47 2,4,6-t-Bu3 334.3 329.4 -1.47 335.6 337.0 336.1 336.8 0.74
48 2,4,6-Ph3 348.3 352.6 1.23 343.0 347.2 341.3 350.6 0.67
49 2,6-t-Bu2-4-OtBu 322.3 312.8 -2.95 320.4 323.1 312.6 320.0 -0.72
50 2,6-t-Bu2-4-COMe 345.3 353.1 2.26 350.0 350.2 351.0 347.6 0.66
51 2,6-t-Bu2-4-OCOMe 345.3 342.9 -0.70 340.3 346.0 337.4 342.9 -0.70
52 2,6-t-Bu2-4-CH2NMe 333.3 333.9 0.18 329.9 330.8 337.9 329.6 -1.12
53 2,4,6-(OMe)3 336.3 342.0 1.69 348.5 338.4 347.5 339.3 0.90
54 2,6-Me2-4-NO2 371.3 375.2 1.05 362.7 374.0 359.3 369.9 -0.39
55 2,6-t-Bu2-4-NO2 352.3 361.1 2.50 358.8 350.1 361.3 349.2 -0.87
56 2,6-t-Bu2-4-CHNOH 328.3 339.6 3.44 331.7 328.9 341.7 329.4 0.32
57 3,4,5-Cl3 384.3 379.1 -1.35 372.9 375.2 373.3 383.9 -0.09
58 2,6-(NO2)2-4-Cl 396.3 394.2 -0.53 393.8 399.7 392.2 399.8 0.88
59 2,3,6-Me3-4-OMe 333.3 333.6 0.09 341.1 337.8 339.7 339.1 1.73
60 2,3,5,6-Me4-4-OMe 344.3 341.5 -0.81 333.4 333.2 329.7 338.2 -1.76
61 2,3,5,6-F4 385.3 375.7 -2.49 371.4 371.8 358.7 382.3 -0.79
62 2,3,4,5,6-F5 360.3 369.5 2.55 373.8 371.5 389.2 360.5 0.06
63f 2,4,6-Cl3 369.3 369.0 -0.08 366.8 374.0 373.4 375.6 1.70
64f 2,6-Cl2 370.3 372.7 0.65 369.0 368.1 378.0 375.6 1.43
65f 2,6-Me2-4-OMe 329.3 336.9 2.31 343.0 342.8 340.7 330.0 0.22
66f 2,6-t-Bu2-4-Et 328.3 335.9 2.31 334.3 335.9 333.9 334.8 1.98
67f 2-CHdCH2 361.3 360.1 -0.33 360.1 360.9 363.1 358.0 -0.91
68f 2-Cl 368.3 369.7 0.38 361.3 362.3 367.7 368.1 -0.04
69f 2-OMe 354.3 357.3 0.85 350.5 357.6 352.4 353.5 -0.23
70f 3-COMe 376.3 377.8 0.40 376.6 376.9 374.8 376.0 -0.08
71f 3-Cl 376.3 374.2 -0.56 374.0 374.3 374.8 374.5 -0.49
72f 3-Me 368.3 368.3 0 362.8 361.7 363.6 365.1 -0.88
73f 3-NH2 366.3 355.0 -3.08 359.5 361.3 360.8 365.5 -0.21
74f 3-OMe 371.3 362.1 -2.48 363.1 367.9 363.8 366.5 -1.29
75f 4-F 367.3 367.1 -0.05 374.6 375.6 373.4 371.4 1.12
76f 4-OH 344.3 348.4 1.19 347.5 343.4 351.1 343.9 -0.13
77f 2,6-t-Bu2-4-CHO 343.3 353.2 2.88 355.2 355.4 352.2 343.4 0.04
78f 3-CF3 384.3 382.5 -0.47 378.3 387.0 374.4 384.3 0

a Substituent on phenol.b Predicted BDE in ref 11.c Relative error: value of 100[(calc-exp)/exp].d Predected BDE by linear-kernel SVM.
e Predicted BDE by Gaussian-kernel SVM.f Test set.
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the weight connection between thekth output unit and the
jth hidden layer unit, andhj is the notation for the output of
the jth RBF unit.

The training procedure when using RBF involves selecting
centers, width and weights. In this paper, the forward subset
selection routine was used to select the centers from training
set samples.22,23 The adjustment of the connection weight
between the hidden layer and the output layer was performed
using a least-squares solution after the selection of centers
and width of radial basis functions.

3.3. Support Vector Machines. 3.3.1. Structural Risk
Minimization. 24,25Previous approaches to statistical learning
have tended to be based on finding functions to map vector-
encoded data to their respective classes. The conventional
minimization of the empirical risk over the training data does
not, however, imply a good generalization to the novel test
data. Indeed, there could be a number of different functions
which all give a good approximation to a training set. It is
nevertheless difficult to determine a function which best
captures the true underlying structure of the data distribution.
Structural risk minimization (SRM) aims to address this
problem and provides a well-defined quantitative measure
for the capacity of a learned function to generalize over
unknown test data. Due to its relative simplicity, the Vapnik-
Chervonenkis (VC) dimension (Vapnik, 1995) in particular
has been adopted as one of the more popular measures for
such a capacity. By choosing a function with a low VC
dimension and minimizing its empirical error to a training
data set, SRM can offer a guaranteed minimal bound on the
test error.

3.3.2. Theory of SVM for Regression.26 The SVM
method was proposed by Vapnik27 on the basis of the
Structural Risk Minimization Principle.25 It was initially
designed to solve pattern recognition problems,28 but it was
later applied to function estimation problems.29 The estimated
function is a linear expansion in terms of functions defined
on a certain subset of the data (support vectors), and the
final number of coefficients in such an expansion does not
depend on the dimensionality of the space of input variables.
These two properties make SVM an especially useful
technique for dealing with very large data sets in a high-
dimensional space.

Compared to other neural network regressors, there are
three distinct characteristics when SVM are used to estimate
the regression function. First of all, SVM estimate the
regression using a set of linear functions that are defined in
a high dimensional space. Second, SVM carry out the
regression estimation by risk minimization where the risk is
measured using Vapnik’sε-insensitive loss function. Third,
SVM use a risk function consisting of the empirical error
and a regularization term which is derived from the structural
risk minimization principle.

Figure 1 contains a graphical overview over the different
steps in the regression stage of SVM. Given a set of data
pointsG ) {(xi,di)}i

n (xi is the input vector,di is the desired
value, andn is the total number of data patterns), SVM
approximate the function using the following equation

whereΦ(x) is the high dimensional feature space which is

nonlinearly mapped from the input spacex. The coefficients
w andb are estimated by minimizing

In the regularized risk function given by eq 2, the first term
C(1/n) ∑i)1

n Lε(di,yi) is the empirical error (risk). They are
measured by theε-insensitive loss function given by eq 3.
This loss function provides the advantage of enabling one
to use sparse data points to represent the decision function
given by eq 1. The second term 1/2|w|2, on the other hand,
is the regularization term.C is referred to as the regularized
constant, and it determines the tradeoff between the empirical
risk and the regularization term. Increasing the value ofC
will result in the relative importance of the empirical risk
with respect to the regularization term to grow.ε is called
the tube size, and it is equivalent to the approximation
accuracy placed on the training data points. BothC and ε

are user-prescribed parameters.
To obtain the estimations ofw andb, eq 2 is transformed

to the primal function given by eq 4 by introducing the
positive slack variablesêi andêi

* as follows:

Finally, by introducing Lagrange multipliers and exploiting
the optimality constraints, the decision function given by eq
1 has the following explicit form

where the kernel functionK corresponds toK(x,xi) ) φ(x)Tφ-
(xi). One has several possibilities for the choice of this kernel
function, including linear, polynomial, splines, and radial
basis function (RBF). In the support vector regression, the
Gaussian Radial Basis Function kernelK(x,y) ) exp(-(x -
y)2/δ2) is commonly used.

y ) f(x) ) wΦ(x) + b (1)

Figure 1. Architecture of a regression machine constructed by the
SV algorithm.

RSVMs(C) ) C
1

n
∑
i)1

n

Lε(di,yi) +
1

2
|w|2 (2)

Lε(d,y) ) {|d - y| - ε|d - y| g ε

0 otherwise
(3)

minimizeRSVMs(w,ê(*)) )
1

2
|w|2 + C∑

i)1

n

(êi + êi
*)

subject to{di - wΦ(xi) - bi e ε + êi

wΦ(xi) + bi - di e ε + êi
*

êi,êi
* g 0

(4)

f(x,ai,ai
*) ) ∑(ai - ai

*)K(x,xi) + b (5)
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The overall performances of RBFNNs and SVM were
evaluated in terms of the rms error which was defined as
below

whereyk is the desired output andŷk is the actual output of
the model, andns is the number of compounds in the
analyzed set.

3.3.3. RBFNNs and SVM Implementation and Com-
putation Environment. All calculation programs imple-
menting RBFNNs were written in M-file based on a basis
MATLAB script for RBFNNs. All calculation programs
implementing SVM were written in R-file based on an R
script for SVM and compiled using a R1.7.1 compiler. The
scripts were run on a Pentium IV PC with 256M RAM.

4. RESULTS AND DISCUSSION

4.1. Results of MLR. About 600 descriptors were
calculated by the CODESSA program. After the correlation
analysis of the descriptors, the pool of descriptors was
reduced to 241. A stepwise regression routine was used to
develop the linear model for the prediction of the O-H BDE
of substituted phenols using calculated structural descriptors.
The best linear model contains 6 molecular descriptors. The
regression coefficients of the descriptors and their physical-
chemical meaning were listed in Table 2, and the correlation
matrix of these descriptors was shown in Table 3. The linear
correlation coefficient value of each of the two descriptors
is < 0.85, which means the descriptors were independent in
this MLR analysis. Of them, one is geometrical (YZS), two
are quantum-chemical (HOMO, RNCS), and three are
electrostatic (PP/SD, Qmin, and WNSA-3) descriptors. This
model gave an rms error of 6.786 BDE units for the training
set, 6.556 for the test set, and 6.739 for the whole set, and

the corresponding correlation coefficients (R) were 0.937,
0.930, and 0.934, respectively. Figure 2 showed these
predicted versus experimental O-H BDE.

By interpreting the descriptors in the regression model, it
is possible to gain some insight into factors that are likely
to relate to the O-H BDE of phenols. The geometrical
descriptors describe the size of the molecules and are derived
from the three-dimensional coordinates of the atomic nuclei
and the atomic masses and the atomic radii in the molecule.
The only descriptor contained in the model that belongs to
this group is the YZ shadow (YZS). It receives a negative
coefficient in the regression; this indicates that the O-H BDE
decreases with the increasing of the YZ shadow. The two
quantum-chemical descriptors areEHOMO and RNCS. The
HOMO energy (EHOMO) is the energy of the highest occupied
molecular orbital. RNCS is defined as a relative negative
charged surface area (RNCS). The electrostatic descriptors
reflect the characteristic of the charge distribution of the
molecule. The three electrostatic descriptors are as follows:
PP/SD, Qmin, and WNSA-3. The polarity parameter/square
distance (PP/SD) is defined as the polarity parameter
factorized by the division with the square of the distance
between the atoms bearing minimum and maximum partial
charges. Qmin is the minimum partial charge in the molecule.
WNSA-3 belongs to the charged partial surface area descrip-
tors (CPSA), in terms of the whole surface area of the
molecule or its fragments and the charge distribution in the
molecule. WNSA-3 is defined as surface weighted CPSA
(WNSA-3). The strength of the O-H bonds is predominantly
an electrostatic interaction, and we reasoned that the atomic

Table 2. Six-Parameter Correlation Equation for the Linear Modela

descriptor chemical meaning coefficient SE beta t-test sig

intercept intercept -124.548 55.361 -2.250 0.028
HOMO HOMO energy -26.375 2.301 -0.759 -11.465 0.000
YZS YZ shadow -1.020 0.117 -0.472 -8.728 0.000
PP/SD polarity parameter/square distance 55.465 9.375 0.329 5.916 0.000
Qmin min partial charge (Qmin) -1481.575 262.085 -0.446 -5.653 0.000
WNSA-3 WNSA-3 weighted PNSA (PNSA3*TMSA/1000) [Zefirov’s PC] -4.490 0.944 -0.400 -4.756 0.000
RNCS RNCS relative negative charged SA (SAMNEG*RNCG)

[quantum-chemical PC]
-1.360 0.415 -0.186 -3.278 0.002

a R ) 0.937;R2 ) 0.879; SE of the estimate) 7.205; rms) 6.786;n ) 62; F ) 66.354.

Table 3. Correlation Matrix of the 6 Descriptors Used in This
Worka

HOMO YZS PP/SD Qmin WNSA-3 RNCS

HOMO 1.000 0.190 -0.103 -0.587 0.594 -0.311
YZS 1.000 -0.024 -0.105 0.000 -0.405
PP/SD 1.000 0.154 0.171 0.246
Qmin 1.000 -0.736 0.092
WNSA-3 1.000 -0.128
RNCS 1.000

a The definitions of the descriptors were given in Table 2.

Figure 2. Plot of calculated vs experimental BDE (kJ mol-1)
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charge gap between oxygen and hydrogen of O-H bond
should be a valid measure of the strength of the O-H bond.
The larger the gap is, the higher the O-H BDE is. The gap
can be described by one quantum-chemical descriptor,
RNCS, and three electrostatic descriptors: PP/SD, Qmin,
WNSA-3. Of these four descriptors, RNCS, Qmin, and
WNSA-3 receive negative coefficients in the regression, and
this indicates that increasing the values of these three
descriptors of the molecule leads to a low O-H BDE. While
PP/SD receives a positive coefficient in the regression, this
indicates that increasing the PP/SD leads to a high BDE.
Moreover, the strength of the O-H bond also has a covalent
or charge-transfer component, which can be described by
EHOMO. It receives a negative coefficient in the regression,
which indicates that increasing the HOMO energy leads to
a low BDE.

According to the beta values (Table 2), the more relevant
descriptors are theEHOMO, YZS, and Qmin.

4.2. Result of RBFNNs.From Table 2, it can be seen
that the model of MLR was not sufficiently accurate (rms
) 6.786, SE) 7.205) and showed the factors influencing
O-H BDE were complex and not all of them were a linear
correlation with the BDE. So, we built the nonlinear
prediction models by RBFNNs and SVM to further discuss
the correlation between the molecular structure and the BDE
based on the same descriptor set.

After the establishment of a linear model, RBFNNs were
used to develop a nonlinear model based on the same subset
of descriptors. Each minimum error on the LOO cross-
validation was plotted versus the width (Figure 3), and the
minimum was chosen as the optimal conditions.

Through the above process, the optimum width and the
best number of hidden layer units were selected as 4.8 and
16, respectively. From the best network, the inputs in the
test set were presented with it, and the results with RBFNNs
were obtained. They were shown in Table 1 and Figure 4.
The network gave an rms error of 6.112 for the training set,
6.238 for the test set, and 6.138 BDE units for the whole
set.

4.3. Results of SVM. 4.3.1. SVM Parameters Optimiza-
tion. Similar to other multivariate statistical models, the
performances of SVM for regression depend on the combi-
nation of several parameters. They are capacity parameter
C, ε of ε-insensitive loss function, the kernel typeK, and its

corresponding parameters.C is a regularization parameter
that controls the tradeoff between maximizing the margin
and minimizing the training error. IfC is too small, then
insufficient stress will be placed on fitting the training data.
If C is too large, then the algorithm will overfit the training
data. To make the learning process stable, a large value
should be set up forC (e.g.,C ) 100).

The kernel type is another important parameter. For
regression tasks, the Gaussian kernel is commonly used. The
form of the Gaussian function is as follows

whereγ is a constant, the parameter of the kernel;u andV
are two independent variables; andγ controls the amplitude
of the Gaussian function and, therefore, controls the gener-
alization ability of SVM. Each rms error on the LOO cross-
validation was plotted versusγ (Figure 5), and the minimum
was chosen as the optimal conditions. In this case:γ )
0.016.

The optimal value forε depends on the type of noise
present in the data, which is usually unknown. Even if
enough knowledge of the noise is available to select an
optimal value forε, there is the practical consideration of
the number of resulting support vectors.ε-insensitivity

Figure 3. The width of RBFNNs vs rms error on LOO cross-
validation.

Figure 4. Plot of calculated vs experimental BDE (kJ mol-1)
(RBFNNs).

Figure 5. The gamma versus rms error on LOO cross-validation
(C ) 100, ε ) 0.1)

exp(-γ* |u - V|2)
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prevents the entire training set meeting boundary conditions
and so allows for the possibility of sparsity in the dual
formulation’s solution. So, choosing the appropriate value
of ε is critical from theory. To find an optimalε, the rms on
LOO cross-validation on differentε was calculated. The
curve of rms versus the epsilon was shown in Figure 6. The
optimal ε was found as 0.09.

The last important parameter is the regularization param-
eterC, of which the effect on the rms was shown in Figure
7. From Figure 7, the optimalC was found as 100.

To compare the results obtained by MLR, the linear kernel
function was also used to build another SVM model. In the
linear kernel function, there is one parameter to be adjusted,
i.e., C, of which the effect on the rms error was shown in
Figure 8. From Figure 8, the optimalC was found as 400.

4.3.2. The Predicted Results of SVM.From the above
discussion, in the Gaussian-kernel SVM, theγ, ε, andC were
fixed to 0.016, 0.09, and 100, respectively, when the support
vector number of the SVM model was 44, the predicted
results of the optimal SVM were shown in Table 1 and
Figure 9. As can be seen from Table 1 and Figure 9, the
proposed models were statistically stable and fitted the data
well. The experimental and predicting values of the test set
by the SVM model were also listed in Table 1. The model
gave an rms of 3.713 for the whole set, 3.808 for the training
set, and 3.320 for the prediction set, and the corresponding
correlation coefficients (R) were 0.980, 0.981, and 0.979. It

can be concluded that the predicted values obtained by the
Gaussian-kernel SVM are in very good agreement with the
experimental values.

When the linear kernel function was used to build another
SVM model,C was fixed to 400, the support vector number
of the model was 47, and the predicted results of the linear-
kernel SVM were shown in Table 1 and Figure 10.

4.4. Compare the Results Obtained by Gaussian-Kernel
SVM with Those by Other Methods.To test the suitability
of the QSPR approach that was proposed by us, we have
compared the obtained BDE with those calculated in ref 11.
The predicted BDE and the relative error obtained in this
reference were also listed in Table 1. From Table 1, it can
be seen that the overall data set in the above reference gave
the maximum absolute relative error of 5.24% and the
average absolute relative error of 1.32%, while our Gaussian-
kernel SVM model gave 2.59% and 0.82%, respectively. The
maximum absolute relative error and the average absolute
relative error of our work were much lower. Table 4 showed
the statistical parameters of the results obtained from the two
studies for the same set of compounds. The model proposed
in the reference contained seven descriptors which were

Figure 6. The epsilon vs rms error on LOO cross-validation (C )
100, γ ) 0.016).

Figure 7. The cost versus rms error on LOO cross-validation (γ
) 0.016,ε ) 0.09).

Figure 8. The cost vs rms error on LOO cross-validation (linear-
kernel SVM).

Figure 9. Plot of calculated vs experimental BDE (kJ mol-1)
(Gaussian-kernel SVM).
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selected by the heuristic multilinear regression procedure in
the CODESSA program, while our model contained six
descriptors which were selected by the stepwise regression
procedures in the SPSS program. Through a regression
analysis on the experimental BDE and the calculated BDE
obtained by the different methods for the whole data set,
the results of theF-test and thet-test were obtained and also
shown in Table 4. From Table 4, it can be seen that the
Gaussian-kernel SVM model gives the lowest rms error and
the highestF and t values, so this model gives the most
satisfactory results, compared with the results obtained from
ref 11, MLR, RBFNNs, and linear-kernel SVM methods.
Consequently, this SVM approach currently constitutes the
most accurate method to predict the BDE of phenols.

5. CONCLUSION

A new method for the prediction of the O-H bond
dissociation energy for a set of 78 substituted phenols based
on support vector machines using descriptors calculated from
the molecular structure alone were developed. Very satisfac-
tory results were obtained with the proposed method. The
models proposed could also provide some insight into what
structural features are related to the O-H BDE of substituted
phenols. Additionally, using Gaussian-kernel SVM produced
even better nonlinear models with good predictive ability
than another QSPR approach such as MLR, RBFNNs, linear-
kernel SVM, and the method proposed by Bosque et al. This
study of the QSPR model shows that the SVM proved to be
a very promising tool in the prediction of O-H BDE. The
training procedure is also simple when using SVM because
there are fewer parameters having to be optimized, and only

support vectors (only a fraction of all data) are used in the
generalization process. Besides, the SVM exhibits the better
whole performance due to embodying the Structural Risk
Minimization principle and some advantages over the other
techniques of converging to the global optimum and not to
a local optimum. Furthermore, the proposed approach can
also be extended in another QSPR or QSAR investigation.
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