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Abstract

Voltage-gated ion channels in neuronal membranes 
uctuate randomly between di�erent conformational

states due to thermal agitation. Fluctuations between conducting and non-conducting states give rise

to noisy membrane currents and sub-threshold voltage 
uctuations and may contribute to variabil-

ity in spike timing. Here we study sub-threshold voltage 
uctuations due to active voltage-gated

Na+and K+channels as predicted by two commonly used kinetic schemes: the Mainen et al.(MJHS)

kinetic scheme, which has been used to model dendritic channels in cortical neurons, and the classical

Hodgkin-Huxley (HH) kinetic scheme for the squid giant axon. We compute the magnitudes, ampli-

tude distributions, and power spectral densities of the voltage noise in isopotential membrane patches

predicted by these kinetic schemes. For both schemes, noise magnitudes increase rapidly with depolar-

ization from rest. Noise is larger for smaller patch areas but is smaller for increased model temperatures.

We contrast the results from Monte-Carlo simulations of the stochastic non-linear kinetic schemes with

analytical, closed-form expressions derived using passive and quasi-active linear approximations to the

kinetic schemes. For all sub-threshold voltage ranges, the quasi-active linearized approximation is

accurate within 8% and may thus be used in large-scale simulations of realistic neuronal geometries.



1 Introduction

Within the nervous system, computation is performed using noisy and unreliable components, namely,

individual neurons and their synaptic connections. One major source of noise within neurons is voltage-

gated ion channels embedded in the neuronal membrane. These channels are macromolecules which are

subject to random changes of conformational state due to thermal agitation, and when these changes

occur between a conducting and non-conducting state, the channel acts as a microscopic source of noise

current which is injected into the cell (Hille, 1992; DeFelice, 1981).

This noise current can change the spiking behavior of neurons, a�ecting the distribution of response

latencies (Lecar and Nossal, 1971a; Lecar and Nossal, 1971b; Clay and DeFelice, 1983; Rubinstein,

1995), spike propagation in branched cable structures (Horikawa, 1991; Horikawa, 1993), the gener-

ation of spontaneous action potentials (Skaugen and Wall�, 1979; Skaugen, 1980b; Skaugen, 1980a;

Strassberg and DeFelice, 1993; Chow and White, 1996) and the reliability and precision of spike timing

(Schneidman et al., 1998). For active ion channels, such as Na+and K+channels, the rates of transition

between di�erent conductance states are voltage dependent which induces a coupling between otherwise

independent stochastic channels. It has recently been shown that this coupling can a�ect spontaneous

�ring and bursting behaviors of neurons (DeFelice and Isaac, 1992; White et al., 1995; Fox and Lu,

1994a; Fox, 1997; White et al., 1998).

In addition to e�ects on action potentials, channel noise also causes sub-threshold 
uctuations in mem-

brane voltage. These 
uctuations were studied extensively in the era prior to patch-clamp techniques

(in the squid axon, (Verveen and DeFelice, 1974; Wanke et al., 1974; Fishman, 1975; Fishman et al.,

1975); see (DeFelice, 1981) for a review of other systems; (Traynelis and Jaramillo, 1998) for more

recent applications). The objective of these measurements was to argue for the existence of single
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ion-channels and to determine their properties.

Our interest in sub-threshold voltage 
uctuations stems from their potential impact on neural informa-

tion processing. Although information is communicated in the neocortex and most of the peripheral

nervous system using action potentials, it is important to understand sub-threshold voltage 
uctu-

ations for several reasons: 1) these 
uctuations may determine the reliability and accuracy of spike

timing since voltage 
uctuations near threshold a�ect precisely when an action potential is initiated;

2) computations within the dendritic tree, such as coincidence detection or multiplication of inputs,

are performed in the sub-threshold regime; 3) interaction between dendro-dendritic synapses in the

olfactory bulb or the olivary nucleus and the operations of non-spiking neurons, such as in the retina

or in the visual system of invertebrates, are all performed in the sub-threshold regime.

At the biophysical level, the magnitude of sub-threshold voltage noise is determined by ion channel

kinetics. Using a �nite state Markov process model of ion channel kinetics, it is possible to compute the

magnitude and spectral properties of the current noise due to stochastic state transitions (Stevens, 1972;

DeFelice, 1981; Colquhoun and Hawkes, 1982). In this paper, we compare the sub-threshold voltage


uctuation behaviors predicted by two contrasting kinetic schemes for neural excitability. The �rst

kinetic scheme is the Hodgkin-Huxley (HH) model of kinetics in the squid giant axon; this canonical

model represents an excitable system which �res action potentials when depolarized by only a few

millivolts. The second kinetic scheme is that proposed by (Mainen et al., 1995) (MJHS) for the

dendrites of a cortical pyramidal cell; this model is less excitable and does not �re action potentials at

dendritic channel densities. These two kinetic schemes thus represent a sample of the possible range of

kinetic excitability.

One long term goal of our research is to evaluate the e�ects of noise on information processing in model
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neurons with realistic cellular geometries. Since this type of modeling can be computationally very

demanding, it is useful to evaluate the ability of simpler approximations of channel kinetic schemes to

reproduce noise properties. Several approximations have previously been used to study sub-threshold

voltage 
uctuations. Koch (Koch, 1984) divided linear approximations of kinetic schemes into two

categories: passive linear approximations, where active channel kinetics are replaced by a single con-

ductance, and quasi-active linear approximations, where active channel kinetics are replaced by a

phenomenological impedance, which may have positive or negative resistive and reactive components.

We follow this convention here.

Mauro et al.(1970) used a quasi-active linearized approximation to the HH kinetic scheme to study

sub-threshold voltage responses to a current stimulus. More recently, Manwani & Koch (Manwani and

Koch, 1999c; Manwani and Koch, 1999a) used a passive linear approximation to the MJHS kinetic

scheme to study the predicted voltage noise 
uctuations in both a patch of neuronal membrane and a

semi-in�nite cable model of a dendrite; this work also assessed the e�ect of the noise 
uctuations on

information transfer.

In this paper, we �rst evaluate the sub-threshold noise magnitudes predicted by the HH and MJHS

kinetic schemes as a function of holding voltage. In both schemes, there is an increase in noise with

depolarization from threshold which may a�ect the ability of the neuron to function as an integrator.

We also calculate the power spectral density and distributions of noise predicted by both kinetic

schemes and evaluate how well quasi-active and passive linear approximations reproduce their noise

characteristics. Finally, we study how noise magnitudes and the quality of the linear approximations

vary as a function of patch area and model temperature.
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2 Methods

In general, the conductance of a voltage-gated ion channel can be written as,

gi(Vm; t) = 
i m
M

h
H (1)

where 
i denotes the open conductance of the channel and m and h denote the activation and inactiva-

tion variables of the channel. M and H are the number of activation and inactivation gates (subunits)

respectively. In standard models of channel kinetics, derived from the classical Hodgkin-Huxley model

(Hodgkin and Huxley, 1952), m and h are assumed to be continuous deterministic variables which lie

between 0 and 1 and obey �rst order kinetics,

dm

d t
=

m1(Vm)�m

�m(Vm)
(2)

dh

d t
=

h1(Vm)� h

�h(Vm)
(3)

where m1 (h1) are the voltage-dependent steady-state values and �m (�h) are the time constants of

activation (inactivation). These are related to the voltage-dependent transition rates between open

and closed states of the subunits by

m1(Vm) =
�m

�m + �m
; �m(Vm) =

1

�m + �m

h1(Vm) =
�h

�h + �h
; �h(Vm) =

1

�h + �h

where �m and �m are the rates for the activation subunits and �h and �h are the rates for the

inactivation subunits. For instance, for the rapidly inactivating HH Na+channel, M = 3, H = 1. For

the non-inactivating K+channel, we will use the variable n to denote activation and N to indicate the

number of activation gates; for the HH K+channel, N = 4.

This classical treatment represents the average behavior of large numbers of channels as continuous

variables. Single ion channels are macromolecules, however, and switch randomly between discrete
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conformational states due to thermal agitation (Hille, 1992). In stochastic models, voltage-gated ion-

channels are modeled as discrete-state Markov chains with voltage-dependent transition rates between

the di�erent conformational states (ibid.). (Although some recent studies have argued that ion channels

have an in�nite continuum of states and should be more appropriately abstracted using fractal models

(Liebovitch and Toth, 1990; Liebovitch and Toth, 1991), we will use Markov models here given their

long history of application). In �nite-state Markov models, the state variables n, m and h denote the

probabilities that the activation and inactivation gates are open and �i and �i denote the conditional

transition probabilities between di�erent states. The Markov models corresponding to the two kinetic

schemes are shown in Fig. 1. Salient di�erences between the MJHS and HH schemes are summarized

in Table 1. In order to determine the magnitude and dynamics of membrane voltage 
uctuations due

to channel noise we shall consider three di�erent approaches.

The �rst approach is simply to model each channel using a Markov kinetic scheme and to generate

the transitions between conductance states in a Monte Carlo simulation. This approach accurately

captures the e�ect of kinetic non-linearities, but is computationally very demanding. The other two

approaches we consider are based on assuming that the magnitude of the voltage 
uctuations about

the steady-state value is small and that channel kinetics are approximately linear near this value;

these assumptions permit closed-form solution of expressions for the noise 
uctuations, thus reducing

computational demands.

2.1 Monte Carlo Simulations

Our Monte-Carlo simulations are similar to previous approaches (Skaugen and Wall�, 1979; Skaugen,

1980b; Skaugen, 1980a; Strassberg and DeFelice, 1993; Chow and White, 1996; Schneidman et al.,
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1998) used to study the e�ects of channel noise on neuron spiking behaviors. The number of channels

in each state of the kinetic model (cf. Fig. 1) was tracked during the course of the simulation, which was

performed iteratively using a �xed time step �t = 10 �sec. During each step, the number of subunits

making transitions between states i and j was determined by drawing a pseudo-random binomial

deviate (bnldev subroutine (Press et al., 1992) driven by the ran1 subroutine of the second edition)

with N equal to the number of subunits in state i and p given by the conditional probability of the

transition between i and j. The conditional probability p of making a transition was computed using

the corresponding rate function, �(v) or �(v), from the kinetic model under consideration, scaled from

the base temperature for the model and channel to a standard temperature of 27oC using a factor

Q
�T=10
10 , where �T = 27 � TB for the appropriate channel model. The current 
owing through the

conducting states of the channels was used to charge the membrane capacitance, as shown in Fig. 3.

The membrane voltage corresponding to eq. B1 (Appendix B) was integrated across the time step using

the backward Euler method of the Neuron simulation program (Hines and Carnevale, 1997). For each

set of parameters, 492 seconds of model time were simulated, divided into 60 blocks of 8.2 seconds each

when computing power spectral densities (PSDs). Action potentials, which occurred less than once

per second, were removed from the voltage traces prior to computing statistics or PSDs. The standard

deviation of voltage noise was computed for the samples at each time step of 492 seconds of simulated

time. A portion of one simulation is shown in Fig. 2.

Due to random channel transitions, the membrane voltage 
uctuates around the steady-state resting

membrane voltage Vrest. By injecting constant currents of di�erent magnitudes into the membrane

patch, the average voltage can be varied over a broad range. The range of possible average voltages

depends on the particular kinetic scheme and is bounded on the upper end by regions where action

potentials occur frequently (more than once per second in these simulations). It may also be bounded,
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on either upper or lower ends, by regions where no stable steady-state solution of the kinetic equations

is possible. We measured sub-threshold voltage noise only for stable holding voltages.

2.2 Linearized Approximations

Assuming that the magnitude of the voltage 
uctuations is small and that the membrane voltage


uctuates around its steady-state value, the kinetic equations can be linearized around their steady-

state values (see Appendix B for details). In the simplest form of linearization, one models the patch

as an RC circuit, as shown in Fig. 3A. The e�ect of the channel 
uctuations is modeled as current

noise In in parallel with the RC circuit. The power spectral density of In can be derived in terms of

the channel kinetics (Appendix A and (Stevens, 1972; DeFelice, 1981; Colquhoun and Hawkes, 1982)).

As per Koch (Koch, 1984), we refer to this model as the passive linearized model.

If we include the voltage-dependence of the ionic conductances to �rst order, we get the equivalent

circuit in Fig. 3B. ri and li are small-signal phenomenological impedances which arise due to the

dependence of the activation and inactivation probabilities on the membrane voltage and their �rst-

order kinetics. As before, In models the e�ect of the channel 
uctuations around the steady-state. The

details of the passive and the quasi-active linearization procedures are derived in Appendix B. Fig. 3B

shows the equivalent circuit of the patch given by the parallel combination of a capacitance C, a

(physical) conductance G = g
o
K+g

o
Na+gL, three (phenomenological) series RL branches corresponding

to K+activation, Na+activation and Na+inactivation. The current noise In is the same as before.

In order to verify the validity of these linearized approximations, we compare them to Monte-Carlo

simulations of �nite-state Markov kinetic schemes (Fig. 1) embedded in isopotential membrane patches.

These simulations represent fully the non-linearities present in the kinetic scheme and allow us to
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compare the range of validity of the linearized, perturbative approximations for the two kinetic schemes.

We believe that these approaches can be used generally to study kinetic schemes which can be described

in terms of �nite-state Markov models.

3 Results

Our goals in this research were to characterize and contrast the sub-threshold noise predicted by two

standard kinetic schemes for sodium and potassium ion channels and to then examine how accurately

linearized quasi-active approximations to these schemes account for the noise. In the following sections

we characterize the sub-threshold noise by computing the variance, power spectral densities (PSDs), and

distributions of voltage noise for the HH and MJHS kinetic schemes embedded in a 1000 �m
2 patch

of membrane. We also compute the change in noise magnitude predicted by these kinetic schemes

when the patch area and temperature are varied. For each of these characterizations, we determine

how well linearized approximations predict the noise characteristics. In the last section, to illustrate

the application of these approximations, we use the quasi-active linearized approximation of Na+and

K+channel kinetics in a basic cylindrical model of a weakly-active dendrite to compute the eÆcacy of

information transfer along the dendrite.

3.1 Noise Magnitude

Fig. 2 shows the transmembrane voltage and the number of open sodium channels during a stochastic

simulation of ion channels in a patch of membrane. At -70 mV, only 1-2 Na+channels are open at any

one time for the MJHS kinetic scheme. For the HH scheme at Vrest=-65 mV, 5 channels are open on

average. Fig. 4 shows the standard deviation of voltage noise predicted for the membrane patch using
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the HH and MJHS kinetic schemes. The HH scheme is strongly excitable and its threshold for �ring an

action potential is only 2.5 mV above the resting membrane potential (-65 mV); consequently, we only

examine the sub-threshold behavior below -62.5 mV. For both kinetic schemes, noise is nearly doubled

as the transmembrane voltage is depolarized from rest by 2.5 mV.

The underlying cause of this increase is the increasing probability that ion channels will spontaneously

open. In the quasi-active linear model, this is re
ected by a tuned LC circuit with a phenomenological

inductance which is an increasing function of membrane voltage. Fig. 4 shows individual ionic contribu-

tions to total voltage noise for the HH and MJHS kinetic schemes. These contributions were computed

using a deterministic noise-free model of the channel not under consideration. The variances due to

each channel add, so the standard deviation of the voltage noise with both noisy channels present is less

than the sum of the standard deviations with each noisy channel separately. For both kinetic schemes,

potassium channel noise is the dominant noise source.

For the MJHS kinetic scheme, noise continues to increase as the voltage is depolarized to -50 mV, for

the reason given above. Above -50 mV, there is a decrease in voltage noise with further depolarization.

This decrease is caused by the increasing membrane conductance, which re
ects the large percentage

of channels which are open in the steady-state. The in
ection in the contribution of potassium channel

noise between -40 and -30 mV is due to the rate of change of the sodium activation variable as a

function of voltage; this change causes the membrane to act as tuned bandpass �lter, which ampli�es

potassium channel noise.

For both kinetic schemes, comparison of the results from the Monte-Carlo simulations and quasi-

active linearized approximations shows excellent agreement | to within 0.1 mV over all voltage ranges

studied. In general, agreement with the quasi-active linear approximation will be good when noise
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uctuations are small enough so that the linearization of the kinetic functions remains accurate. For

example, for the K+channel, the linearization n1(V
o
m + ÆVm) � n1(V

o
m) + dn1=dVm ÆVm is valid so

long as jÆVmj < 2 mV. The results in section 3.4 will show cases where this approximation fails to be as

accurate. The passive linear approximation is much less accurate once the voltage 
uctuations become

larger than 0.5 mV.

3.2 Power Spectral Densities

Fig. 5 shows the power spectral densities of voltage noise for the HH and MJHS kinetic schemes. The

overall trends in the magnitude of the PSDs are re
ected in the noise variances and were discussed

above. The increasing value of the phenomenological inductance created by sodium channel activation

shows itself in the PSDs for both kinetic schemes. For the MJHS scheme, the corner of the PSD

for -40 mV is much sharper than the corners for -70 and -90 mV; this is caused by an LC circuit

of phenomenological reactances which has a resonant frequency near 80 Hz. This tuned circuit of

phenomenological reactances is even more evident in the PSD for the HH kinetic scheme. The PSD for

-62.5 mV has a pronounced peak at 90 Hz, as measured by Mauro et al. (1970).

3.3 Amplitude Distributions

Fig. 6 shows the distributions of voltage noise for the HH kinetic scheme at two resting membrane

potentials. At both voltages, the distribution of noise in a 1000 �m
2 patch is Gaussian when the

noise magnitude is 0.1 mV or larger. Similar results are obtained for the MJHS kinetic scheme. For

more hyperpolarized voltages the noise magnitude is less than 0.1 mV, the shape of the distribution is

less regular, and is diÆcult to interpret in light of the limited accuracy of numerical simulations; The
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magnitude is so small at this point however that the exact shape of the distribution will have little or

no e�ect on neural information processing.

3.4 Dependence on Patch Area

In this paper, we have focused on comparing noise in two standard kinetic schemes which have been used

in the literature. Each scheme is characterized by a number of kinetic parameters, such as voltages of

half-activation and the power of the activation and inactivation variables in the expressions for channel

current (eq. 1); variation of these parameters changes the kinetic scheme from the standard model.

Nonetheless, we wanted to determine how the results presented above vary with changes in several

fundamental properties of the membrane patch, such as patch area and temperature.

Fig. 7 shows the membrane voltage noise for the MJHS kinetic scheme varies as a function of patch

area. This �gure shows that membrane noise decreases with increasing patch area, because the total

membrane current represents the average behavior of a larger number of channels. In terms of linearized

membrane patch models, the variance of the channel current noise increases linearly with the number

of channels and the patch area, thus �2I / A. The impedance of the membrane patch, Z is inversely

proportional to area, Z / A
�1. Since V = Z I, �2V = jZj2 �2I / A

�1. Thus, as patch area decreases,

the variance of the voltage noise becomes larger.

The quasi-active linearized approximation is accurate within 8% down to a patch area of 100 �m
2,

where the deviation between simulation and theory becomes substantial. For the reasons discussed in

section 3.1, when noise 
uctuations become larger than 2 mV, the quasi-active linearized approximation

becomes less accurate.
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3.5 Dependence on Temperature

Fig. 8 shows the membrane voltage noise predicted by the MJHS and HH kinetic schemes as a function

of temperature. Because the kinetic rate functions are scaled by the factor Q
�T=10
10 , increasing the

temperature decreases the time constants for both ion channels and e�ectively speeds up ion channel

transitions. Consequently, the corner frequency of the current noise PSD increases to a higher frequency.

Since the membrane capacitance and leak resistance act as a low pass �lter, less noise power is passed

by this �lter, resulting in lower membrane voltage noise. Fig. 8 shows this decrease in noise magnitude

as a function of temperature for both kinetic schemes.

3.6 Application to Dendritic Cables

We found that the quasi-active approximation is valid for membrane geometries other a patch by

carrying out Monte-Carlo simulations for a �nite linear cable and comparing them to the corresponding

linearized approximations. The quasi-active approximation is valid over a larger steady-state voltage

range in comparison to the passive approximation (data not shown). Previous work in our laboratory

(Manwani and Koch, 1999a; Manwani and Koch, 1999b) used the passive linearized approximation to

compute how well the subthreshold electrotonic signal represented by the activation of a single synapse

could be detected at a distance along a dendrite containing noise sources, such as a low density of

K+and Na+channels as well as synapses activated by random background activity. We believe that

the use of the quasi-active approximation in the context of this formalism will lead to better estimates

of the eÆcacy of weakly-active dendritic structures at transmitting information. We are currently

applying the quasi-active approximation to estimate noise in realistic dendritic morphologies.
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4 Discussion

The long term goal of our research program is to understand how the nervous system processes in-

formation using very noisy and unreliable components, such as individual neurons. Our approach is

reductionist: we use a combination of methods from three disciplines |information/signal detection

theory, compartmental modeling, and membrane biophysics| to analyze the noise sources in compo-

nent parts of the neuron, such as the synapse, dendrite, and soma, and to determine their impact on

the ability of the neuron to transmit and process information (Manwani and Koch, 1998; Manwani and

Koch, 1999c; Manwani and Koch, 1999a; Manwani and Koch, 1999b).

In the neuronal dendrite, soma, and axon hillock, the stochastic operation of individual ion channels

represents a signi�cant cellular source of noise. For example, previous work has shown that stochastic


uctuations of ion channels in a small patch of membrane can a�ect the accuracy and reliability of spike

timing (Schneidman et al., 1998). This random jitter in spike timing, however, is a result of underlying


uctuations in both the number of open channels and the membrane voltage when the cell is depolarized

near threshold. The magnitude of these 
uctuations is determined by the number of ion channels, their

conductance states, and the rate of transitions between these states. These properties constitute a

kinetic model for the ion channels. In this paper, we studied how the underlying ion channel kinetic

model determines the sub-threshold voltage 
uctuations of an isopotential patch of membrane. As

an initial characterization, we compared two kinetic schemes in common use, the canonical Hodgkin-

Huxley (HH) scheme for the squid giant axon, and the Mainen et al.(MJHS) scheme for the dendrite

of a neocortical pyramidal cell.

This objective di�ers from that of Strassberg & Defelice (Strassberg and DeFelice, 1993), which was to

determine how rapidly stochastic 
uctuations in a Markon-chain model of the Hodgkin-Huxley kinetics
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approached the average value of the macroscopic current. The Markov chain model of the Hodgkin-

Huxley kinetic scheme (and similar kinetic schemes) can be represented by a master equation for a

stochastic automaton, as noted by Fox & Lu (Fox and Lu, 1994b; Fox, 1997). Under appropriate con-

ditions on the system size (which can be informally expressed as requiring large numbers of channels),

this representation contracts to a Fokker-Planck equation, which approximates the automaton as a

set of continuous partical di�erential equations over a �nite grid. The Fokker-Planck equation, under

similar conditions, can in turn be represented by a set of stochastic di�erential equations (Langevin

equations), where the stochastic 
uctuations are represented by additive Gaussian white-noise terms.

The linearized approximations examined in this paper can be viewed as speci�c terms in these more

general approximations. Our objective was to determine how well the linearized approximations predict

noise magnitudes for practical use with several kinetic schemes; this question can only be answered by

empirical study, such as those performed here (Fox and Lu, 1994b; Fox, 1997). An additional advantage

of the linearized approximations presented here is that the terms of the approximation have electrical

circuit analogs, which can help develop an intuitive understanding of how changing the kinetic scheme

changes noise.

For both the HH and MJHS kinetic schemes, sub-threshold voltage noise caused by ion channel 
uctu-

ations increases rapidly as the membrane potential is depolarized 2-10 mV from rest. This is signi�cant

since noise of this magnitude could a�ect spike generation in two ways: noise may trigger spikes spon-

taneously if the cell is otherwise near threshold, or sub-threshold noise may change the timing of spikes,

even if insuÆcient to cause spikes independently. Both of these e�ects might prevent the neuron from

accurately integrating its inputs; in this case, ion channel noise would interfere with the neuron acting

as an integrator of balanced excitation and inhibition, which has been posited as a method of mean

rate coding (Shadlen and Newsome, 1998). This case also implies that the spike output of the neuron
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more accurately represents volleys of simultaneous input which rapidly depolarize the cell to threshold.

A further examination of this issue requires the combination of the noise models described here with a

model spiking mechanism; an e�ort presently underway in our laboratory.

In addition to these e�ects on spike timing, the e�ects of noise sources on computation and information

processing inside individual neurons are of interest. Previous work in our laboratory has examined the

e�ect of ion channel and synaptic noise on the accuracy of signal detection and estimation in a patch

of membrane as well as in a simpli�ed model of the dendrite (Manwani and Koch, 1999c; Manwani

and Koch, 1999a). An important step will be to extend these analyses to neuron models with realistic

geometries and channel densities. The simulation of the complete Markov kinetic schemes used here

within each compartment of a large neuron model will be computationally intense (more than 36 hours

on a 450 MHz Pentium II processor) and thus an important question is whether an equivalent linearized

model of channel kinetics is accurate enough to predict the e�ects of these noise sources on information

transmission and processing.

The results presented here demonstrate that sub-threshold voltage 
uctuations caused by stochastic

sodium and potassium channels in the HH and MJHS kinetic schemes can be well approximated by their

quasi-active linear equivalent circuits. The standard deviation of the noise 
uctuations agrees within

8 percent in a voltage range starting from near the potassium reversal potential up to the threshold of

neuronal �ring in the HH scheme or to -20 mV in the MJHS scheme. Thus, over sub-threshold voltage

ranges, a quasi-active linearized approximation is quite accurate. The passive linearized approximation

�ts the data less well, particularly between -50 and -20 mV for the MJHS kinetics.

Why is the quasi-active linear approximation so accurate? As discussed in section 3.4, this accuracy

arises because the membrane potential 
uctuations due to stochastic ion channels are generally smaller
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than 2 mV. Over this small a voltage range, the curves representing channel activation and time

constants can be accurately represented by lines. When this condition no longer obtains, for example,

when the patch area is below 200 �m2, then the linear approximation becomes less accurate.

These approximations are accurate for computing sub-threshold voltage noise, which is of interest in a

variety of places within the nervous system, such as in non-spiking neurons in the retina or in neuronal

compartments which do not initiate spiking. A limitation on the applicability of these approximations

is the that they do not address spike timing and the initiation of action potentials. In order to study this

issue, the linearized approximations must be combined with more accurate models of spike generation

in other model compartments.

For the kinetic schemes examined here, the distribution of the voltage noise also simpli�es in a fash-

ion conducive to large scale modeling. As shown in section 3.3, the distribution of voltage noise is

nearly Gaussian, particularly when the noise variance is high. This distribution allows the eÆcient

computation of the e�ects of noise on information processing using closed form solutions for detection

thresholds and reconstruction error (Manwani and Koch, 1999a; Manwani and Koch, 1999b).

Overall, the quasi-active linear approximation to channel kinetics permits eÆcient evaluation of sub-

threshold voltage 
uctuations for both the more excitable HH kinetic scheme, which at 27 oC initiates

a spike only 2.5 mV above the resting potential, and the less excitable MJHS scheme, which does

not initiate spikes at dendritic channel densities. This suggests that the quasi-active linearized ap-

proximation may be used to examine sub-threshold noise in a variety of channel kinetic schemes and

for quantitatively assessing the e�ects of biophysical noise sources on information transfer in realistic

neuron models.

Given these results, the accuracy of linear approximations in representing sub-threshold voltage 
uc-
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tuations in real neurons will be determined by the accuracy of the underlying kinetics models in

representing channel kinetics. The Hodgkin-Huxley kinetic scheme successfully explains the generation

of the action potential, but fails to explain other aspects of neural excitability, such as spike frequency

adaptation, bursting and so on. Both the HH and MJHS kinetic schemes do not model mechanisms,

such as long term (> 1 sec) changes in probability of channel transitions (Toib et al., 1998; van den

Berg and Rijnsburger, 1980; van den Berg et al., 1975) and the interdependence of the activation and

inactivation gates of the sodium channel. These e�ects could be incorporated into kinetic models using

additional kinetic states; the e�ect on such modi�cations on channel noise can then be explored using

the techniques applied in these studies.

Experimental measurement of noise in cortical pyramidal cells of the in-vitro cortical slice preparation is

in rough agreement with the predictions of these models (Manwani et al., 1998). Dissection of the noise

contribution of di�erent ionic channel types, as well as more precise quantitative agreement between

theory and experiment, is an ongoing e�ort in our laboratories. The data from in-vivo recordings

of pyramidal cells in anesthetized cat suggest that synaptic noise may make a larger contribution to

voltage noise than previously determined using in-vitro preparations (Pare et al., 1997; Pare et al., 1998;

Destexhe and Pare, 1999). If synaptic noise is dominant, then further modeling will need to incorporate

both synaptic and ionic channel noise into realistic neuronal cellular geometries in order to develop

a quantitative understanding of the relative e�ects of these neuronal noise sources on information

processing in cortical pyramidal cells.

17



Acknowledgements

This work was funded by NSF, NIMH and the Sloan Center for Theoretical Neuroscience to C. K. and

by the Israeli Academy of Science and the ONR to I. S. We would like to thank our collaborators Elad

Schneidman and Yosef Yarom for their invaluable suggestions.

18



Figure Legends

Figure 1: Finite State Markov Models of Channel Kinetics. A: Kinetic scheme for the

Hodgkin-Huxley K+channel. n0 : : : n3 represent 4 closed states and n4 is the open state of the chan-

nel. The K+conductance gK is proportional to the number of open channels ([n4]). 
K is the single

K+channel conductance. B: Kinetic scheme for the Mainenet al.K+channel. n0 represents the closed

state and n1 the open state of the channel. C: Kinetic scheme for the HH and MJHS Na+channel.

m0h1 : : :m2h1 represent the 3 closed states, m0h0 : : :m3h0 the four inactivated states and m3h1 the

open state of the channel.

Figure 2: Results of a Monte-Carlo Simulation. Monte-Carlo simulation of a 1000 �m2 mem-

brane patch with stochastic Na+and deterministic K+channels with MJHS kinetics for illustration

purposes purposes only. Bottom record shows the number of open Na+channels as a function of time.

Top trace shows the corresponding 
uctuations of the membrane voltage. Holding current is injected

to produce an average voltage of -65 mV.

Figure 3: Membrane Patch Models. A: Passive linearized model of the membrane patch con-

taining stochastic voltage-gated ion channels (K+, Na+). C denotes the transverse membrane patch

capacitance. G is the sum of the steady-state conductances due to the active ion channels and the

passive leak. The stochastic nature of the conductance 
uctuations are modeled as a Gaussian current

noise source In in parallel with the membrane. The power spectrum of In is computed from the Markov

model of the channel kinetics. B: Quasi-active linearized model which includes the small-signal phe-

nomenological impedances due to voltage-dependence of the K+and Na+conductances. rn, rm and rh

denote the phenomenological resistances due to K+activation, Na+activation and inactivation respec-

tively; ln, lm and lh are the corresponding phenomenological inductances. In is a Gaussian current
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noise source as in A. C: Stochastic model of the patch used for Monte-Carlo simulations. gK and

gNa are stochastic ionic conductances with kinetics as in Fig. 1. EL, EK and ENa denote the reversal

potentials corresponding to the leak, K+and Na+conductances respectively.

Figure 4: Comparison of Sub-threshold Voltage Noise Magnitudes. A: Standard deviation,

�V , of voltage 
uctuations in a 1000 �m
2 patch with MJHS kinetics as function of the steady-state

voltage, V o
m (current clamp mode). Circles: results of the Markov simulations; broken line: prediction

of the passive linearized model; solid line: prediction of the quasi-active linearized model. B: �V of

voltage noise for the HH kinetic scheme; note di�erent voltage scale; symbols as in A. C: Individual

contribution to �V from the K+and Na+noise sources for the MJHS kinetic scheme. D: As in C for

the HH kinetic scheme.

Figure 5: Comparison of Voltage Power Spectral Densities. A:Voltage power spectral densities

for a 1000 �m2 patch with MJHS kinetics at di�erent steady-state voltages. Circles indicate power

spectral density estimates from simulations and the solid curves correspond to expressions for the

quasi-active linearized model. The power spectral density is estimated by averaging (n = 60) the

spectrograms (Hanning window, fc = 10 kHz) obtained from 8.2 second traces. B: Voltage PSDs for

the HH kinetic scheme; symbols as in part A.

Figure 6: Amplitude Distributions of Voltage Noise A: Histograms of sub-threshold voltage


uctuations due to channel noise in a 1000 �m2 membrane patch with MJHS kinetics for two di�erent

holding voltages (V o
m = -70 mV and V o

m = -40 mV). Bars indicate results from simulations (n = 49,1520),

solid curves show a normal distribution with the corresponding mean and and standard deviation. B:

Amplitude histograms for a 1000 �m2 patch with HH kinetics at V o
m = -65 mV and -61 mV.

Figure 7: Dependence on Area. �V as a function of the patch area A for MJHS (V o
m = -60 mV) and
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HH (V o
m = -65 mV) kinetics. Circles indicate the results from the Monte-Carlo simulations, whereas

the solid curve indicates the 1=
p
A behavior expected from the linearized, quasi-active model.

Figure 8: Dependence on Temperature. �V as a function of temperature for MJHS (V o
m = -

60 mV) and HH (V o
m = -65 mV) kinetics for a 1000 �m2 patch. Circles denote simulations and the

solid curves represent the results of the quasi-active linearized model. Simulations for Figs. 2- 7 were

carried out at T = 27o C.
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MJHS HH


K Potassium channel conductance 20 pS 20 pS


Na Sodium channel conductance 20 pS 20 pS

�K Potassium channel density 1.5 channels/�m2 18 channels/�m2

�Na Sodium channel density 2 channels/�m2 60 channels/�m2

Cm Speci�c membrane capacitance 0.75 �F/cm2 1 �F/cm2

EK Potassium reversal potential -90 mV -77 mV

ENa Sodium reversal potential 60 mV 55 mV

EL Leak reversal potential -70 mV -54 mV

gL Leak conductance 0.025 mS/cm2 0.3 mS/cm2

H Na+inactivation subunits 1 1

M Na+activation subunits 3 3

N K+activation subunits 1 4

Q10K K+temperature scale factor 2.3 3

Q10Na Na+temperature scale factor 3 3

TBK K+Base Temperature 16 oC 6.3 oC

TBNa Na+Base Temperature 27 oC 6.3 oC

Vrest Resting potential -70.7 mV -65 mV

Table 1: Comparison of parameters for the Mainen et al.(MJHS) and Hodgkin-Huxley (HH) kinetic

schemes.
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Appendix A

Derivation of current noise spectra

For ion channels modeled as �nite-state Markov chains (Fig. 1), it can be shown that under voltage-

clamp at V o
m, the autocovariance of the K

+current noise in an isopotential membrane patch of area A

can be derived as (DeFelice, 1981; Johnston and Wu, 1995),

CIK(t) = A �K

2
K(V

o
m �EK)

2

n
N
1

h
n
N
0j1(t)� n

N
1

i
; (A1)

where �K denotes the K+channel density in the patch and 
K denotes the open conductance of a

single K+channel. EK , N and n1 are de�ned in section 2. n0j1(t) is the conditional probability for a

potassium activation subunit to be in the open state at time t, given that it started in a closed state

at t = 0 and is given by (Johnston and Wu, 1995),

n0j1(t) = [n1 + (1� n1)e
�t=�n ] (A2)

On expanding eq. A1 we obtain,

CIK(t) = A �K

2
K(V

o
m �EK)

2
n
N
1�

NX
i=1

 
N

i

!
(1� n1)

i
n
N�i
1 e

�ij� j=�n (A3)

By the Wiener-Khinchine theorem (Papoulis, 1991), the power spectral density of the K+current noise,

SIK(f), is given by the Fourier transform of CIK(t),

SIK(f) = A �K

2
K(V

o
m �EK)

2
n
N
1�

NX
i=1

 
N

i

!
(1� n1)

i
n
N�i
1

2 �n=i

1 + (2�f�n=i)2
(A4)
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Thus, the K+current noise spectrum can be expressed as a sum of N Lorentzian functions with cut-o�

frequencies fi = i=(2��n), i = f1; : : : ; Ng. When n1 � 1, SIK(f) is well approximated by a single

Lorentzian with cut-o� frequency N=2��n.

Similarly, the auto-covariance of Na+current noise can be written as (DeFelice, 1981),

CINa(t) = A �Na

2
Na(V

o
m �ENa)

2�

m
M
1h

H
1

h
m
M
0j1(t)h

H
0j1(t)�m

M
1h

H
1

i
(A5)

where

m0j1(t) = m1 + (1�m1) e
�t=�m (A6)

h0j1(t) = h1 + (1� h1) e
�t=�h : (A7)

For the HH and MJHS kinetic schemes (M = 3; H = 1), SINa(f) can be expressed as a sum of seven

Lorentzians with cut-o� frequencies corresponding to the time constants �m, �h, 2 �m, 3 �m, �m + �h,

2 �m + �h and 3 �m + �h.

Appendix B

Linearization of Active Membranes

Consider an isopotential membrane patch of area A containing voltage-gated K+and Na+channels as

well as leak channels. The dynamics of the membrane potential are given by,

�C
dVm

d t
= IK + INa + IL + Iinj ; (B1)

where C is the capacitance of the patch and IK , INa and IL are transmembrane currents given by,

IK = gK (Vm �EK) ; (B2)
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INa = gNa (Vm �ENa) ; (B3)

IL = gL (Vm �EL) ; (B4)

where gi denotes the conductance and Ei denotes the reversal potential of the corresponding membrane

current Ii. Iinj denotes the current injected into the patch with the convention that inward current is

negative.

B.1 Quasi-active linearization

The current through a given membrane conductance can be written in general as,

Ii = gi (Vm �Ei) (B5)

To �rst order, a deterministic deviation in Ii (denoted by ÆIi) around the steady-state membrane

voltage V o
m can be expressed in terms of the corresponding deterministic deviations in Vm and gi as,

ÆIi = g
o
i ÆVm + Ægi (V

o
m �Ei) : (B6)

where goi denotes the steady-state conductance at V o
m, ÆIi = Ii(Vm) � I(V o

m), ÆVm = Vm � V
o
m, and

Ægi = gi(Vm)� g
o
i . V

o
m can be obtained by solving for dVm=d t = 0 (eqs. B1{B4 ),

V
o
m =

g
o
K EK + g

o
NaENa + gLEL � Iinj

goK + goNa + gL
(B7)

The conductance of the leak channels is constant, thus, ÆgL = 0. However, for the active K+and Na+ion

channels, ÆgK and ÆgNa are functions of ÆVm. It has been shown that to �rst order, the voltage and

time dependence of active ion channels can be modeled by \phenomenological" impedances (Mauro

et al., 1970; Koch, 1984). For the sake for completeness, we derive the phenomenological impedances

corresponding to the K+and Na+conductances here.
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Consider a �rst-order activation or inactivation variable (denoted generically by n)

dn

d t
=

n1 � n

�n
(B8)

Perturbing this equation to �rst-order yields,

d (Æn)

d t
= �

Æn

�n
+
Æn1

�n
�
(n1 � n)

�2n

Æ�n : (B9)

Since the deviations are assumed to take place around the steady state, the third term in the above

expression is zero. Thus,

d (Æn)

d t
+
Æn

�n
=

Æn1

�n
: (B10)

Since n1 is a function of Vm alone, Æn1 � dn1=dVm ÆVm, which gives,

d (Æn)

dt
+
Æn

�n
=

n
0

1

�n
ÆVm ; (B11)

where 0 denotes a derivative with respect to Vm evaluated at the steady-state voltage V o
m. The above

equation can be rewritten as,

ÆVm =
�n

n
0

1

d (Æn)

d t
+

Æn

n
0

1

: (B12)

Using Laplace transforms we can rewrite eq. B12 as,

ÆVm(s) = Æn(s)

�
�n

n
0

1

s+
1

n
0

1

�
; (B13)

where ÆVm(s) and Æn(s) denote the Laplace transforms of ÆVm and Æn respectively. Thus, if Æn is

considered analogous to a current, eq. B13 is identical to that of an electric circuit with a resistance

r of magnitude 1=n
0

1 in series with an inductance l = �n=n
0

1. The time constant of this series RL

circuit is equal to l=r = �n. Note that these quantities are evaluated at V o
m. Since these impedances

do not represent physically realistic components and are used, instead, to describe the voltage- and

time-dependence of active ionic conductances, they are called phenomenological impedances (Sabah

and Leibovic, 1969; Mauro et al., 1970; Koch, 1984; Koch, 1999).
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For the non-inactivating K+conductance

gK = A�K 
K n
N
; (B14)

ÆgK = N �K 
K n
N�1
1 Æn and substituting for Æn derived from eq. B13 in eq. B6 (after taking Laplace

transforms on both sides) we obtain,

ÆIK(s) =

�
g
o
K +

1

rn + s ln

�
ÆVm(s) : (B15)

where

g
o
K = A �K 
K n

N
1; (B16)

and the phenomenological impedances corresponding to K+activation (rn, ln) are given by,

rn =
1

N A�K n
N�1
1 
K (V o

m �EK)n
0

1

;

ln = �n rn: (B17)

Notice that as V o
m ! EK , rn !1 and ln !1. Thus at its reversal potential, K+channel behaves as

a pure conductance goK . Similarly, for the inactivating Na
+current,

gNa = A�Na 
Nam
M
h
H
; (B18)

ÆgNa can be written as,

ÆgNa = A�Na 
Nam
M�1

h
H�1 �

[H hÆm+MmÆh ] (B19)

Substituting for ÆgNa in eq. B6, it can be observed that the equivalent electrical circuit for an inacti-

vating conductance has two RL branches in parallel with a conductance goNa. The expressions for the

di�erent components are given by the following expressions,

g
o
Na = A�Na 
Nam

M
1 h

H
1 ;
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rm =
1

M A�Nam
M�1
1 hH1 
Na (V o

m �ENa)m
0

1

;

lm = �m rm ;

rh =
1

H A�Nam
M
1 h

H�1
1 
Na (V o

m �ENa)h
0

1

;

lh = �h rh : (B20)

Notice that for V o
m < ENa, rm < 0, lm < 0. Thus, for physiological values of the membrane voltage,

the activation component corresponds to a negative resistance and a negative inductance. This is to

be expected since the activation variable m is responsible for the positive-feedback characterizing the

fast rising phase of an action potential. Since h is an inactivation variable which decreases as the

membrane potential is increased, h
0

1 < 0 implying that for V o
m < ENa, rh > 0, lh > 0. The electric

circuit corresponding to this linearization is shown in Fig. 3B. The complex admittance of the circuit

is

Y (f) = G+ j2�fC +
1

rn + j2�fln
+

1

rm + j2�flm
+

1

rh + j2�flh
(B21)

where G = g
o
K + g

o
Na + gL denote the total steady-state patch conductance at the voltage V o

m.

So far we have considered the system to be deterministic; incorporating the voltage-dependence of the

ionic conductances we derived the linearized equivalent circuit for the membrane patch. The e�ect

of stochastic conductance 
uctuations of the active ion channels can be modeled by including a noise

current In

In = IK + INa

= ~gK(EK � V
o
m) + ~gNa(ENa � V

o
m) (B22)

in parallel with the admittance Y . ~gK and ~gNa denote the stochastic components of the conductance
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deviations around their respective steady-state values (The resulting voltage 
uctuations are denoted

by ~V ). It is straightforward to derive the power spectral density of ~V (denoted by SV (f)) for this linear

system as in (Papoulis, 1991),

SV (f) =
SIn(f)

jY (f)j2
: (B23)

where SIn(f) is the power spectrum of In. Since the noise sources are independent,

SIn(f) = SIK(f) + SINa(f) : (B24)

The variance of the voltage 
uctuations �2V can be written as,

�
2
V =

Z
1

�1

df
SIn(f)

jY (f)j2
: (B25)

Using the expressions for the power spectral densities of the current noise due to channel 
uctuations

under voltage-clamp (SIK and SINa), derived in Appendix A, the magnitude and spectral density of

the resulting sub-threshold voltage noise can be computed.

B.2 Passive linearization

For the passive linearized approximation (Koch, 1984), we neglect the voltage-dependent dynamics of

the ionic conductances. This is equivalent to ignoring the second term on the right side of eq. B6.

Thus, the ionic conductances and the membrane voltage are expressed as

gK = g
o
K + ~gK ;

gNa = g
o
Na + ~gNa;

Vm = V
o
m + ~V (B26)
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Let ~g = ~gK + ~gNa denote the sum of the conductance 
uctuations around steady-state. When ~g � G,

eq. B1 can be simpli�ed as,

�
d~V

dt
+ ~V =

In

G
: (B27)

where � = C=G is the passive membrane time constant. Refer to (Manwani and Koch, 1999a) for

further details. Thus, under passive linearization, the patch is modeled as an RC circuit given by

the parallel combination of the membrane capacitance C and a conductance G equal to the sum of

the steady-state values of the ionic and leak conductances. As before, the e�ect of noise due to ionic

channel conductance 
uctuations can be modeled as a current noise source In in parallel with this RC

circuit. The equivalent circuit corresponding to this approximation is shown in Fig. 3A. The complex

admittance of this circuit is

Y (f) = G+ j2�fC (B28)

For passive linearization, SV (f) (eq. B23) can be simpli�ed as,

SV (f) =
SIn(f)

G2 [ 1 + (2�f�)2 ]
: (B29)

The variance of the voltage 
uctuations �2V can be written as,

�
2
V =

1

G2

Z
1

�1

df
SIn(f)

1 + (2�f�)2
: (B30)
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