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Inflammatory bowel diseases (IBDs) are a group of chronic, debilitating 
disorders of the gastrointestinal tract with peak onset in adolescence 
and early adulthood. More than 1.4 million people are affected in the 
USA alone1, with an estimated direct healthcare cost of US$6.3 billion 
per year. IBD affects millions worldwide, and is rising in prevalence, 
particularly in paediatric and non-European ancestry populations2. 
IBD has two subtypes, ulcerative colitis and Crohn’s disease, which have  
distinct presentations and treatment courses. So far, 200 genomic loci have 
been associated with IBD3,4, but only a handful have been conclusively  
ascribed to a specific causal variant with direct insight into the underlying  
disease biology. This scenario is common to all genetically complex 

diseases, where the pace of identifying associated loci outstrips that 
of defining specific molecular mechanisms and extracting biological 
insight from each association.

The widespread correlation structure of the human genome (known 
as linkage disequilibrium) often results in similar evidence for asso-
ciation among many neighbouring variants. However, unless linkage 
disequilibrium is perfect (r2 =​ 1), it is possible, with a sufficiently large 
sample size, to statistically resolve causal variants from neighbours 
even at high levels of correlation (Extended Data Fig. 1 and ref. 5). 
Novel statistical approaches applied to very large datasets that address 
this problem6 require that the highly correlated variants are directly 
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genotyped or imputed with certainty. Truly high-resolution mapping 
data, when combined with increasingly sophisticated and comprehen-
sive public databases annotating the putative regulatory function of 
DNA variants, are likely to reveal novel insights into disease pathogen-
esis7–9 and the mechanisms of disease-associated variants.

Genetic architecture of associated loci
We genotyped 67,852 individuals of European ancestry, including 
33,595 with IBD (18,967 Crohn’s disease and 14,628 ulcerative colitis) 
and 34,257 healthy controls using the Illumina ImmunoChip (Extended 
Data Table 1). This genotyping array was designed to include all known 
variants from European individuals in the February 2010 release of 
the 1000 Genomes Project10,11 in 187 high-density regions known to  
be associated with one or more immune-mediated diseases12. 
Because fine-mapping uses subtle differences in strength of associa-
tion between tightly correlated variants to infer which is most likely 
to be causal, it is particularly sensitive to data quality. We therefore 
performed stringent quality control to remove genotyping errors and 
batch effects (Methods). We imputed into this dataset from the 1000 
Genomes Project reference panel13,14 to fill in variants missing from 
the ImmunoChip, or filtered out by our quality control (Extended Data 
Fig. 2). We then evaluated the 97 high-density regions that had previous 
IBD associations3 and contained at least one variant showing significant 
association (Methods) in this dataset. The major histocompatibility 
complex was excluded from these analyses as fine-mapping has been 
reported elsewhere15.

We applied three complementary Bayesian fine-mapping methods 
that used different priors and model selection strategies to identify 
independent association signals within a region, and to assign a poste-
rior probability of causality to each variant (Supplementary Methods 
and Extended Data Fig. 2). For each independent signal detected by 
each method, we sorted all variants by the posterior probability of asso-
ciation, and added variants to the ‘credible set’ of associated variants 
until the sum of their posterior probability exceeded 95%: that is, the 
credible set contained the minimum list of DNA variants that were  
>​95% likely to contain the causal variant (Fig. 1). These sets ranged in 
size from 1 to >​400 variants. We merged these results and subsequently 
focused only on signals where an overlapping credible set of variants 
was identified by at least two of the three methods and all variants were 
either directly genotyped or imputed with INFO score >​0.4 (Methods 
and Fig. 1).

In 3 out of 97 regions, a consistent credible set could not be identi-
fied; when multiple independent effects exist in a region of very high 
linkage disequilibrium, multiple distinct fine-mapping solutions may 
not be distinguishable (Supplementary Note). Sixty-eight of the remain-
ing 94 regions contained a single association, while 26 harboured 2 or 
more independent signals, for a total of 139 independent associations 
defined across the 94 regions (Fig. 2a). Only IL23R and NOD2 (both 

previously established to contain multiple associated protein-coding 
variants16) contained more than three independent signals. Consistent 
with previous reports3, the vast majority of signals were associated with 
both Crohn’s disease and ulcerative colitis, although many of these had 
a significantly stronger association with one subtype. For the enrich-
ment analyses below, we compared 79 signals that were more strongly 
associated with Crohn’s disease with 23 signals that were more strongly 
associated with ulcerative colitis (the remaining 37 were equally asso-
ciated with both subtypes, Supplementary Table 1).

Using a restricted maximum likelihood mixed-model approach17, 
we evaluated the proportion of total variance in disease risk attributed 
to these 94 regions and how much of that was explained by the 139 
specific associations. We estimated that 25% of Crohn’s disease risk 
was explained by the specific associations described here, out of a total 
of 28% explained by these loci (correspondingly for ulcerative colitis: 
17% out of 22%). The single strongest signals in each region contrib-
uted 76% of this variance explained and the remaining associations 
contributed 24% (Extended Data Fig. 3), highlighting the importance 
of secondary and tertiary associations in results from genome-wide 
association studies (GWAS)15,18.

Associations mapped to a single variant
For 18 signals, the 95% credible set consisted of a single variant (‘single 
variant credible sets’), and for 24 others the credible set consisted of  
2–5 variants (Fig. 2b). The single-variant credible sets included five 
previously reported coding variants: three in NOD2 (fs1007insC, 
R702W, G908R), a rare protective allele in IL23R (V362I), and a splice 
variant in CARD9 (c.IVS11+​1G>​C)16,19. The remaining single-variant  
credible sets comprised three missense variants (I170V in SMAD3, 
I923V in IFIH1, and N289S in NOD2), four intronic variants (in IL2RA, 

Variant Position AF Probability*

rs17293632 67442596 0.245 0.400
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Figure 1 | Fine-mapping procedure and output using the SMAD3 region 
as an example. a, (1) We merge overlapping signals across methods; 
(2) we select a lead variant (black triangle) and phenotype (colour); 
and (3) we choose the best model. Details for each step are available in 

Methods. b, Example fine-mapping output. This region has been mapped 
to two independent signals. For each signal, we report the phenotype it 
is associated with (coloured), the variants in the credible set, and their 
posterior probabilities. AF, allele frequency.
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Figure 2 | Summary of fine-mapped associations. a, Independent 
signals. Sixty-eight loci containing one association and 26 loci containing 
multiple associations. b, Number of variants in credible sets. Eighteen 
associations were fine-mapped to a single variant, and 116 to ≤​50 variants. 
c, Distribution of the posterior probability of the variants in credible sets 
having ≤​50 variants.
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LRRK2, NOD2, and RTEL1/TNFRSF6B), and six intergenic variants 
(located 3.7 kilobases (kb) downstream of GPR35; 3.9 kb upstream 
of PRDM1; within a EP300 binding site 39.9 kb upstream of IKZF1; 
500 base pairs (bp) before the transcription start site of JAK2; 9.4 kb 
upstream of NKX2-3; and 3.5 kb downstream from HNF4A) (Table 1). 
Of note, while physical proximity did not guarantee functional rele-
vance, the credible set of variants for 30 associated loci now implicated 
a specific gene either because it resided within 50 kb of only that gene 
or had a coding variant with >​50% probability—improved from only 
3 so refined using an earlier HapMap-based definition. Using the same 
definitions, the total number of potential candidate genes was reduced 
from 669 to 233. Examples of IBD candidate genes clearly prioritized in 
our data are described in the Supplementary Box, and a customizable 
browser (http://finemapping.broadinstitute.org/) is available to review 
the detailed fine-mapping results.

Associated protein-coding variants
We first annotated the possible functional consequences of the IBD 
variants by their effect on the amino-acid sequences of proteins. 
Thirteen out of 45 variants (Fig. 2c) that had >​50% posterior 

probability were non-synonymous (Table 1), an 18-fold enrichment 
(enrichment P =​ 2 ×​ 10−13, Fisher’s exact test) relative to randomly 
drawn variants in our regions (Fig. 3a). By contrast, only one variant 
with >​50% probability was synonymous (enrichment P =​ 0.42). All 
common coding variants previously reported to affect IBD risk were 
included in a 95% credible set, including IL23R (R381Q, V362I, and 
G149R); CARD9 (c.IVS11+​1G>​C and S12N); NOD2 (S431L, R702W, 
V793M, N852S, and G908R, fs1007insC); ATG16L1 (T300A); PTPN22 
(R620W); and FUT2 (W154X). While this enrichment of coding varia-
tion (Fig. 3a) provided assurance about the accuracy of our approach, 
it did not suggest that 30% of all associations were caused by coding 
variants; rather, it was almost certainly the case that associated coding 
variants had stronger effect sizes, making them easier to fine-map.

Associated non-coding variants
We next examined conserved nucleotides in high-confidence binding- 
site motifs of 84 transcription factor families20 (Methods). There was 
a significant positive correlation between transcription-factor motif 
disruption and IBD association posterior probability (P =​ 0.006, logistic 
regression) (Fig. 3a), including three variants with >​50% probability 

Table 1 | Variants having posterior probability >50%

Variant Chr Position Ns Phe AF Prob INFO Func Annotation

Signals mapped to a single variant
  rs7307562 12 40724960 2 CD 0.398 0.999 1 LRRK2 (intronic)
  rs2066844 16 50745926 10 CD 0.063 0.999 0.8 C NOD2 (R702W)
  rs2066845 16 50756540 10 CD 0.022 0.999 1 C NOD2 (G908R)
  rs6017342 20 43065028 2 UC 0.544 0.999 1 E HNF4A (downstream), Gut_H3K27ac
  rs61839660 10 6094697 2 CD 0.094 0.999 1 E IL2RA (intronic), Immune_H3K4me1
  rs5743293 16 50763781 10 CD 0.964 0.999 1 C NOD2 (fs1007insC)
  rs6062496 20 62329099 1 IBD 0.587 0.996 1 T RTEL1-TNFRSF6B (ncRNA_intronic), EBF1 TFBS
  rs141992399 9 139259592 3 IBD 0.005 0.995 1 C CARD9 (1434+​1G>​C)
  rs35667974 2 163124637 1 UC 0.021 0.994 1 C IFIH1 (I923V)
  rs74465132 7 50304782 3 IBD 0.034 0.994 1 T, E IKZF1 (upstream), EP300 TFBS, Immune_H3K4me1
  rs4676408 2 241574401 1 UC 0.508 0.994 0.99 GPR35 (downstream)
  rs5743271 16 50744688 10 CD 0.007 0.993 1 C NOD2 (N289S)
  rs10748781 10 101283330 2 IBD 0.55 0.990 1 E NKX2-3 (upstream), Gut_H3K27ac
  rs35874463 15 67457698 2 IBD 0.054 0.989 1 C, E SMAD3 (I170V), Gut_H3K27ac
  rs72796367 16 50762771 10 CD 0.023 0.983 1 NOD2 (intronic)
  rs1887428 9 4984530 1 IBD 0.603 0.974 0.97 JAK2 (upstream)
  rs41313262 1 67705900 5 CD 0.014 0.973 1 C IL23R (V362I)
  rs28701841 6 106530330 2 CD 0.116 0.971 1 PRDM1 (upstream)

Signals mapped to 2–50 variants and the lead variant has posterior probability >50%
  rs76418789 1 67648596 5 CD 0.006 0.937 0.59 C IL23R (G149R)
  rs7711427 5 40414886 3 CD 0.633 0.919 1
  rs1736137 21 16806695 2 CD 0.407 0.879 1
  rs104895444 16 50746199 10 CD 0.003 0.865 1 C NOD2 (V793M)
  rs56167332 5 158827769 2 IBD 0.353 0.845 1 IL12B
  rs104895467 16 50750810 10 CD 0.002 0.833 1 C NOD2 (N852S)
  rs630923 11 118754353 2 CD 0.153 0.820 0.98
  rs3812565 9 139272502 3 IBD 0.402 0.815 1 Q eQTL of INPP5E in CD4 and CD8; CARD9 in CD14
  rs4655215 1 20137714 3 UC 0.763 0.784 1 E Gut_H3K27ac
  rs145530718 19 10568883 3 CD 0.023 0.762 0.97
  rs6426833 1 20171860 3 UC 0.555 0.752 1
  chr20:43258079 20 43258079 2 CD 0.041 0.736 0.88
  rs17229679 2 199560757 2 UC 0.028 0.716 1
  rs4728142 7 128573967 1 UC 0.448 0.664 1 E Immune_H3K4me1
  rs2143178 22 39660829 2 IBD 0.157 0.662 1 T, E NF-kB TFBS, Gut_H3K27ac
  rs34536443 19 10463118 3 CD 0.038 0.649 1 C TYK2 (P1104A)
  rs138425259 16 50663477 10 UC 0.009 0.648 0.92
  rs146029108 9 139329966 3 CD 0.036 0.643 0.92
  rs12722504 10 6089777 2 CD 0.26 0.615 1
  rs60542850 19 10488360 3 IBD 0.17 0.591 0.89
  rs2188962 5 131770805 1 CD 0.44 0.590 1 E, Q Gut_H3K27ac, eQTL of SLC22A5 in CD14, CD15 and IL
  rs2019262 1 67679990 5 IBD 0.4 0.586 1
  rs3024493 1 206943968 2 IBD 0.171 0.537 1 E Immune_H3K4me1
  rs7915475 10 64381668 3 CD 0.304 0.528 1
  rs77981966 2 43777964 1 CD 0.077 0.521 1
  rs9889296 17 32570547 1 CD 0.264 0.512 1
  rs2476601 1 114377568 1 CD 0.908 0.508 1 C PTPN22 (W620R)
Chr, chromosome; Ns, number of independent signals in the locus; Phe, phenotype; AF, allele frequency; Prob, posterior probability for being a causal variant, INFO, imputation; Func, functional  
annotations: coding (C), disrupting transcription-factor binding sites (T), overlapping epigenetic peaks (E), and co-localization with eQTL (Q); CD, Crohn’s disease; IBD, inflammatory bowel disease;  
UC, ulcerative colitis.
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(two >​95%). In the RTEL1/TNFRSF6B region, rs6062496 is predicted 
to disrupt a transcription-factor binding motif site (TFBS) for EBF1, a 
transcription factor involved in the maintenance of B-cell identity and 
prevention of alternative fates in committed cells21. A low-frequency 
(3.6%) protective allele at rs74465132 creates a binding site for EP300 
less than 40 kilobase pairs (kbp) upstream of IKZF1. The third notable 
example of TFBS disruption, although not in a single variant credible 
set, is detailed in the Supplementary Box for the association at SMAD3.

Recent studies have shown that trait-associated variants are 
enriched for epigenetic marks highlighting cell-type-specific reg-
ulatory regions9,22,23. We compared our credible sets with ChIP-seq 
peaks (chromatin immunoprecipitation followed by sequencing) cor-
responding to ChIP with H3K4me1, H3K4me3, and H3K27ac (shown 
previously22,23 to highlight enhancers, promoters, and active regula-
tory elements, respectively) in 120 adult and fetal tissues, assayed by 
the Roadmap Epigenomics Mapping Consortium24 (Fig. 3b). Using a 
threshold of P =​ 1.3 ×​ 10−4 (0.05 corrected for 360 tests), we observed 
significant enrichment of H3K4me1 in 6 immune cell types and for 
H3K27ac in 2 gastrointestinal (gut) samples (sigmoid colon and rectal 
mucosa) (Fig. 3b and Supplementary Table 2). The subset of signals that 
were more strongly associated with Crohn’s disease overlapped more 
with immune-cell chromatin peaks, whereas ulcerative colitis signals 
overlapped more with gut chromatin peaks (Supplementary Table 2).

These three chromatin marks were correlated both within tissues 
(we observed additional signal in other marks in the tissues described 
above) and across related tissues. We therefore defined a set of ‘core 
immune peaks’ for H3K4me1 and ‘core gut peaks’ for H3K27ac as the 
set of overlapping peaks in all enriched immune cell and gut tissue 
types, respectively. These two sets of peaks were independently signif-
icant and captured the observed enrichment compared with ‘control 
peaks’ made up of the same number of ChIP-seq peaks across our 94 
regions in non-immune and non-gut tissues (Fig. 3c, d). These two 
tracks summarized our epigenetic-GWAS overlap signal, and the com-
bined excess over the baseline suggested that a substantial number of 
regions, particularly those not mapped to coding variants, may ulti-
mately be explained by functional variation in recognizable enhancer/
promoter elements.

Overlap with expression quantitative trait loci
Variants that change enhancer or promoter activity might change gene 
expression, and baseline expression of many genes has been found to 
be regulated by genetic variation25–27. Indeed, it has been suggested 
that these so-called expression quantitative trait loci (eQTLs) underlie 
a large proportion of GWAS associations25,28. We therefore searched 
for variants that were both in an IBD-associated credible set with 50 or 
fewer variants, and the most significantly associated eQTL variant for a 
gene in a study29 of peripheral blood mononuclear cells (PBMCs) from 
2,752 twins. Sixty-eight of the 76 regions with signals fine-mapped to 
≤​50 variants harboured at least one significant eQTL (affecting a gene 
within 1 megabase with P <​ 10−5). Despite this abundance of eQTLs 
in fine-mapped regions, only 3 credible sets included the most signifi-

cantly associated eQTL variants, compared with 3.7 expected by chance 
(Methods). Data from a more recent study30 using PBMCs from 8,086 
individuals did not yield a substantively different outcome, demon-
strating a modest but non-significant enrichment (8 observed overlaps, 
4.2 expected by chance, P =​ 0.06). Using a more lenient definition of 
overlap, requiring the lead eQTL variant to be in linkage disequilib-
rium (R2 >​ 0.4) with an IBD credible set variant, increased the number 
of potential overlaps but again these numbers were not greater than 
chance expectation.

As PBMCs are a heterogeneous collection of immune cell popu-
lations, cell-type-specific signals or signals corresponding to genes 
expressed most prominently in non-immune tissues may be missed. 
We therefore tested the enrichment of eQTLs that overlapped credible 
sets in five primary immune cell populations (CD4+, CD8+, CD19+, 
CD14+, and CD15+), platelets, and three distinct intestinal locations 
(rectum, colon, and ileum) isolated from 350 healthy individuals 
(Methods). We observed a significant enrichment of credible single 
nucleotide polymorphism (SNP)/eQTL overlaps in CD4+ cells and 
ileum (Extended Data Table 2): 3 and 2 credible sets overlapped eQTLs, 
respectively, compared with 0.4 and 0.3 expected by chance (P =​ 0.005 
and 0.020). An enrichment was also observed for the naive CD14+ cells 
from another study31: 8 overlaps observed compared with 2.7 expected 
by chance (P =​ 0.001). We did not observe enrichment of overlaps in 
stimulated (with interferon or lipopolysaccharide) CD14+ cells from 
the same source (Extended Data Table 2).

We investigated eQTL overlaps more deeply by applying two co- 
localization approaches (one frequentist, one Bayesian, Methods) to 
our cell-separated dataset where primary genotype and expression 
data were available. We confirmed greater than expected overlap with 
eQTLs in CD4+ and ileum described above (Fig. 4 and Extended 
Data Table 2). These CD4+ co-localized eQTLs also had stronger 
overlap with CD4+ ChIP-seq peaks than our other credible sets,  
further supporting a regulatory causal mechanism. The number of co- 
localizations in other purified cell types and tissues was largely indis-
tinguishable from what we expected under the null using either 
method, except for moderate enrichment in rectum (4 observed and  
1.4 expected, P =​ 0.039, Frequentist approach) and colon (3 observed and  
0.8 expected, P =​ 0.04, Bayesian approach). Only two of these co- 
localizations corresponded to an IBD variant with causal probability  
>​50% (Table 1 and Extended Data Fig. 4a).

Discussion
We have performed fine-mapping of 94 previously reported genetic 
risk loci for IBD. Rigorous quality control followed by an integration 
of three novel fine-mapping methods generated lists of genetic variants 
accounting for 139 independent associations across these loci. Our 
methods are concordant with an existing fine-mapping method6 (67 
of 68 credible sets in single-signal regions overlap, including exact 
matches for all single variant credible sets), and provide extensions to 
support the phenotype assignment (Crohn’s disease, ulcerative colitis, 
or IBD) and the conditional estimation of multiple credible sets in 
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Figure 3 | Functional annotation of causal 
variants. a, Proportion of credible variants that 
are protein-coding, disrupt/create TFBS or are 
synonymous, sorted by posterior probability.  
b, Epigenetic peaks overlapping credible variants 
in cell and tissue types from the Roadmap 
Epigenomics Consortium39. Significant enrichment 
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loci with multiple independent signals. The use of multiple methods 
allowed us to focus our downstream analyses on loci where the choice  
of fine-mapping method did not substantially alter conclusions about 
the biology of IBD. Our results improve on previous fine-mapping 
efforts using a preset linkage disequilibrium threshold32 (for example, 
r2 >​ 0.6) (Extended Data Fig. 5) by formally modelling the posterior 
probability of association of every variant. Much of this resolution 
derives from the very large sample size we used, because the number 
of variants in a credible set decreases with increasing significance 
(P =​ 0.0069).

The high-density of genotyping also aids in improved resolution. For 
instance, the primary association at IL2RA has now been mapped to a 
single variant associated with Crohn’s disease, rs61839660. This variant 
was not present in the HapMap 3 reference panel and was therefore 
not reported in earlier studies3,33 (nearby tagging variants, rs12722489 
and rs12722515, were reported instead). Imputation using the 1000 
Genomes Project reference panel and the largest assembled GWAS  
dataset3 did not separate rs61839660 from its neighbours (H.H., unpub-
lished observations), owing to the loss of information in imputation 
using the limited reference. Only direct genotyping, available in the 
ImmunoChip high-density regions, allowed the conclusive identifica-
tion of the causal variant.

Accurate fine-mapping should, in many instances, ultimately 
point to the same variant across diseases in shared loci. Among our 
single-variant credible sets, we fine-mapped an ulcerative colitis 
association to a rare missense variant (I923V) in IFIH1, which is also 
associated with type 1 diabetes34 with an opposite direction of effect 
(Supplementary Box). The intronic variant noted above (rs61839660, 
allele frequency =​ 9%) in IL2RA was also similarly associated with type 1  
diabetes, again with a discordant directional effect35 (Supplementary 
Box). Simultaneous high-resolution fine-mapping in multiple diseases 
should therefore better clarify both shared and distinct biology.

Resolution of fine-mapping can be further improved by leveraging 
linkage disequilibrium from other ethnicities36. However, the sample 
size from other ethnicities we have collected is small compared with 
European samples (9,846 across East Asian, South Asian, and Middle 
Eastern). Limited access to matched imputation reference panels from 
all cohorts and the fact that the smaller non-European sets are not 
from populations (for example, African-derived) with narrower linkage 
disequilibrium also suggest that gains in fine-mapping accuracy would 
be limited at this time. Ultimately this effort will be aided by more sub-
stantial investment in genotyping non-European population samples 
and by developing and applying more robust trans-ethnic fine-mapping 
algorithms.

A new release of the 1000 Genomes (phase 3)37 and the UK10K38 
project have introduced new variants that were not present in the  
reference panel in our study. Our major findings remain the same using 
this new reference panel: the 18 single-variant credible sets are not in 

high linkage disequilibrium (r2 >​ 0.95) with any new variants in either 
new dataset, and the 1,426 variants in IBD associations mapped to  
≤​50 variants are in high linkage disequilibrium with only 47 new  
variants (3.3% of the total size of these credible sets, Supplementary 
Table 1). Given that this release represents a near-complete catalogue 
of variants with minor allele frequency (MAF) >​ 1% in European  
populations, we believe our current fine-mapping results are likely to 
be robust, especially for common variant associations. High-resolution 
fine-mapping demonstrates that causal variants are significantly 
enriched for variants that alter protein-coding variants or disrupt 
transcription-factor binding motifs. Enrichment was also observed 
in H3K4me1 marks in immune-related cell types and H3K27ac 
marks in sigmoid colon and rectal mucosal tissues, with Crohn’s dis-
ease loci demonstrating a stronger immune signature and ulcerative 
colitis loci more enriched for gut tissues (P values 0.014, 0.0005, and 
0.0013 respectively for H3K4me1, H3K27ac, and H3K4me3; χ2 test). 
By contrast, overall enrichment of eQTLs is quite modest compared 
with previous reports and not seen strongly in excess of chance in our 
well-refined credible sets (≤​50 variants). This result emphasizes the 
importance of high-resolution mapping and the careful incorporation 
of the high background rate of eQTLs. It is worth noting that evaluat-
ing the overlap between two distinct mapping results is fundamentally 
different from comparing genetic mapping results to fixed genomic 
features, and depends on both mappings being well resolved. Although 
these data challenge the hypothesis that easily surveyed baseline eQTLs 
explain a large proportion of non-coding GWAS signals, the modest 
excesses observed in smaller but cell-specific datasets suggest that much 
larger tissue- or cell-specific studies (and under the correct stimuli or 
developmental time points) will resolve the contribution of eQTLs to 
GWAS hits.

Resolving multiple independent associations may often help target 
the causal gene more precisely. For example, the SMAD3 locus hosts a 
non-synonymous variant and a variant disrupting the conserved tran-
scription-factor binding site (also overlapping the H3K27ac marker in 
gut tissues), unambiguously articulating a role in disease and providing 
an allelic series for further experimental inquiry. Similarly, the TYK2 
locus has been mapped to a non-synonymous variant and a variant  
disrupting a conserved transcription-factor binding site (http:// 
finemapping.broadinstitute.org/).

One-hundred and sixteen associations have been fine-mapped to  
≤​50 variants. Among them, 27 associations contain coding variants, 
20 contain variants disrupting transcription-factor binding motifs, and 
45 are within histone H3K4me1- or H3K27ac-marked DNA regions. 
The best-resolved associations—45 variants having >​50% posterior 
probabilities for being causal (Table 1)—are similarly significantly 
enriched for variants with known or presumed function from genome 
annotation. Of these, 13 variants cause non-synonymous change in 
amino acids, 3 disrupt a conserved transcription-factor binding motif, 
10 are within histone H3K4me1- or H3K27ac-marked DNA regions in 
disease-relevant tissues, and 2 co-localize with a significant cis-eQTL 
(Extended Data Fig. 4a). Risk alleles of these variants can be found 
throughout the allele frequency spectrum, with protein-coding variants 
having somewhat larger effects and more extreme risk allele frequencies 
(Extended Data Fig. 6a–c).

This analysis, however, leaves 21 non-coding variants (Extended 
Data Fig. 4b), all of which have >​50% probabilities of being causal 
(five have >​95%), that are not located within known motifs, anno-
tated elements, or in any experimentally determined ChIP-seq peaks 
or eQTL credible sets yet discovered. While we have identified a statis-
tically compelling set of genuine associations (often intronic or within 
10 kb of strong candidate genes), we can make little inference about 
function. For example, the intronic single-variant credible set of LRRK2 
has no annotation, eQTL, or ChIP-seq peak of note. This emphasizes 
the incompleteness of our knowledge about the function of non-coding  
DNA and its role in disease, and calls for comprehensive studies 
on transcriptomes and epigenomes in a wide range of cell lines and  
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stimulation conditions. That most of the best-refined non-coding asso-
ciations have no available annotation is perhaps sobering with respect 
to how well we may currently be able to interpret non-coding variation 
in medical sequencing efforts. It does suggest, however, that detailed 
fine-mapping of GWAS signals down to single variants, combined 
with emerging high-throughput genome-editing methodology, may be 
among the most effective ways of advancing to a greater understanding 
of the biology of the non-coding genome.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
The study protocols were approved by the institutional review board at each centre 
involved with recruitment. Informed consent and permission to share the data 
were obtained from all subjects, in compliance with the guidelines specified by 
the recruiting centre’s institutional review board.

No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Genotyping and quality control. We genotyped 35,197 unaffected and 35,346 
affected individuals (20,155 Crohn’s disease and 15,191 ulcerative colitis) using 
the ImmunoChip array. Genotypes were called using optiCall40 for 192,402 auto-
somal variants before quality control. We removed variants with missing data 
rate >​2% across the whole dataset, or >​10% in any one batch, and variants that 
failed (false discovery rate (FDR) <​ 10−5 in either the whole dataset or at least 
two batches) tests for the following: (1) Hardy–Weinberg equilibrium in controls;  
(2) differential missingness between cases and controls; (3) different allele 
frequency across different batches in controls, Crohn’s disease, or ulcerative colitis. 
We also removed non-coding variants that were present in the 1000 Genomes pilot 
stage but were not in the subsequent phase I integrated variant set (March 2012 
release) and had not been in releases 2 or 3 of HapMap, as these mostly represented 
false positives from the 1000 Genomes pilot, which often genotype poorly. Where 
a variant failed in exactly one batch, we set all genotypes to missing for that batch 
(to be reimputed later) and included the site if it passed in the remainder of the 
batches. We removed individuals that had >​2% missing data, had significantly 
higher or lower (defined as FDR <​ 0.01) inbreeding coefficient (F), or were dupli-
cated or related (PI_HAT ≥​ 0.4, calculated from the linkage disequilibrium pruned 
dataset described below), by sequentially removing the individual with the largest 
number of related samples until no related samples remained. We projected all 
remaining samples onto principal component axes generated from HapMap 3, and 
classified their ancestry using a Gaussian mixture model fitted to the European 
(CEU +​ TSI), African (YRI +​ LWK +​ ASW +​ MKK), East Asian (CHB +​ JPT), 
and South Asian (GIH) HapMap samples (CEU, Utah residents with Northern 
and Western European ancestry from the CEPH collection; TSI, Toscani in Italia; 
YRI, Yoruba in Ibadan, Nigeria; LWK, Luhya in Webuye, Kenya; ASW, African 
ancestry in southwest USA; MKK, Maasai in Kinyawa, Kenya; CHB, Han Chinese 
in Beijing, China; JPT, Japanese in Tokyo, Japan; GIH, Gujarati Indians in Houston, 
Texas). We removed all samples that were classified as non-European, or that lay 
more than 8 standard deviations from the European cluster. After quality control, 
there were 67,852 European-derived samples with valid diagnoses (healthy control, 
Crohn’s disease, or ulcerative colitis), and 161,681 genotyped variants available for 
downstream analyses.
Linkage disequilibrium pruning and principal component analysis. From the 
clean dataset we removed variants in long-range linkage disequilibrium41 or with 
MAF <​0.05, and then pruned three times using the ‘–indep’ option in PLINK (with 
window size of 50, step size of 5 and VIF threshold of 1.25). Principal component 
axes were generated within controls using this linkage disequilibrium pruned dataset 
(18,123 variants). The axes were then projected to cases to generate the principal  
components for all samples. The analysis was performed using our in-house  
C code (https://github.com/hailianghuang/efficientPCA) and LAPACK package42 
for efficiency.
Controlling for population structure, batch effects, and other confounders. 
We used 2,853 ‘background SNPs’ present on the ImmunoChip but not known 
to be associated with immune disorders to calculate the genomic inflation factor  
λGC. After including the first five principal components calculated above as covar-
iates, λGC =​ 1.29, 1.25, and 1.31 for Crohn’s disease, ulcerative colitis, and IBD 
(adding additional principal components did not further reduce λGC, Extended 
Data Table 3a). Because our genotype data were processed in 15 batches with 
variable ratios of cases to controls, we conducted two analyses to ensure pos-
sible batch effects were adequately controlled. First, we split the samples into a  
‘balanced’ cohort with studies having both cases and controls, and an ‘imbal-
anced’ cohort with studies having exclusively cases or controls (Extended Data 
Table 1). As λGC under polygenic inheritance scales with the sample size43, we 
randomly down-sampled the full dataset to match the sample size of the bal-
anced and the imbalanced cohorts, respectively. We tested for association in these 
subsets of our data (and included batch identifier as a covariate in the balanced 
cohort), and found the λGC from the balanced and imbalanced cohorts to be 
within the 95% confidence interval of size-matched values from our full data, 
suggesting that batch effects were not systematically inflating our association 
statistics (Extended Data Table 3b). We also performed a heterogeneity test for the 
odds ratio of lead variants in each credible set using the balanced and imbalanced 
cohorts, and observed no significant heterogeneity after Bonferroni correction 
(Supplementary Table 3).

We next sought to disentangle the contributions of polygenic inheritance and 
uncorrected population structure in our observed λGC. Linkage disequilibrium 
score regression44 is able to differentiate these two effects, but requires genome-
wide data, so was not possible in our ImmunoChip dataset. Instead, we compared 
λGC and λ1000 values calculated using the same set of background SNPs from the 
largest IBD meta-analysis with genome-wide data45. For both Crohn’s disease and 
ulcerative colitis, the λ1000 values in our ImmunoChip study (1.012 and 1.012) 
were equal to or less than those in the genome-wide study (1.016 and 1.012). 
Furthermore, linkage disequilibrium score regression on the genome-wide data 
showed that most inflation was caused by polygenic risk (linkage disequilibrium 
score intercept =​ 1.09 for both Crohn’s disease and ulcerative colitis, compared 
with λGC =​ 1.23 and 1.29). Together, these results show that our residual inflation 
is consistent with polygenic signal and modest residual confounding. We tested 
what effect correcting for the linkage disequilibrium score intercept of 1.09 would 
have on posterior probabilities and credible sets, and found no major differences 
compared with uncorrected values. The full comparison of λ values is shown in 
Extended Data Table 3c.
Imputation. Imputation was performed separately in each ImmunoChip auto-
somal high-density region (185 total) from the 1000 Genomes phase I integrated 
haplotype reference panel. To prevent the edge effect, we extended each side of 
the high-density regions by 50  kbp. Two imputations were performed sequen-
tially (Extended Data Fig. 2) using software and parameters as described below. 
The first imputation was performed immediately after the quality control, from 
which the major results were manually inspected (‘Manual cluster plot inspec-
tion’ section in Methods). The second imputation was performed after removing 
variants that failed the manual cluster plot inspection. We used SHAPEIT46,47 
(versions: first imputation, v2.r644; second imputation, v2.r769) to pre-phase the 
genotypes, followed by IMPUTE213,14 (versions: first, 2.2.2; second, 2.3.0) to per-
form the imputation. The reference panels were downloaded from the IMPUTE2 
website (first, March 2012 release; second, December 2013 release). After the 
second imputation, there were 388,432 variants with good imputation quality 
(INFO >​ 0.4). These include 99.9% of variants with MAF ≥​ 0.05, 99.3% of variants 
with 0.05 >​ MAF ≥​ 0.01, and 63.0% of variants with MAF <​ 0.01 (Extended Data 
Fig. 6d–f), with similar success rates both for coding and for non-coding variants, 
making it unlikely that missing variants substantially affected our fine-mapping 
conclusions.
Manual cluster plot inspection. Variants that had posterior probability greater 
than 50% or in credible sets mapped to ≤​10 variants were manually inspected 
using Evoker version 2.2 (ref. 48). Each variant was inspected by three independent 
reviewers (ten reviewers participated) and scored as pass, fail, or maybe. Reviewers 
were blinded to the posterior probability of these variants. We removed variants 
that received one or more fails, or received fewer than two passes. Two hundred 
and twenty out of 276 inspected variants passed this inspection, and 53 out of 
56 failed variants were restored by imputation. There was no difference in MAF 
between the failed and the passed variants (P =​ 0.66). A further cluster plot inspec-
tion flagged two additional failed variants after removing the failed variants from 
the first inspection and re-doing the imputation and analysis. Dramatic clustering 
errors accounted for 27 out of 58 flagged variants, which were eliminated from final 
credible sets. The remaining 31 had only minor issues, and the imputed data for 
these remained in our final credible sets, with marginally smaller posteriors (mean 
of the difference 9.8%, P =​ 0.06, paired t-test).
Establishing a P value threshold. We used a multiple-testing-corrected P value 
threshold for associations of 1.35 ×​ 10−6, which was established by permutation. 
We generated 200 permuted datasets by randomly shuffling phenotypes across 
samples and performed association analyses for each permutation across all  
variants in high-density regions that overlapped IBD-associated loci3. We stored 
(1) all the point-wise P values (αS), as well as (2) the ‘best’ P values (αB) of each 
of the 200 permuted datasets. We then computed the empirical, experiment-wide 
P value (αM) (corrected for multiple testing) for each of the tests as its rank/200 
with respect to the 200 αB. We then estimated the number of independent tests 
performed in the studied regions, n, as the slope of the regression of log(1 −​ αM) 
on log(1 −​ αS), knowing that αM =​ 1 −​ | (1 −​ αS)n, yielding a value of 37,056. The 
P value threshold was determined as 0.05/n ≈​ 1.35 ×​ 10−6.
Detecting and fine-mapping association signals. We used three fine-mapping 
methods (Supplementary Methods) to detect independent signals and create credible  
sets across 97 ImmunoChip autosomal high-density regions that contained at least 
one variant with P <​ 1.35 ×​ 10−6. Our process for merging the results of the three 
methods is described below and illustrated in Fig. 1a.

1. We merged signals from different methods if their credible sets overlapped. To 
ensure a conservative credible set, this new merged credible set included all variants 
from all merged signals (the union of constituent credible sets). We assigned each 
variant in the merged credible sets a posterior probability equal to the average of 
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the probabilities from the methods that reported this signal. To filter out technical 
artefacts, we required genotyped variants in small credible sets to pass manual 
cluster plot inspection (see above) and all imputed variants to have INFO >​ 0.4. 
For signals reported by only one or two methods that contained only imputed 
variants (that is, no directly genotyped variants), we additionally required at least 
one variant with INFO >​ 0.8 and MAF >​ 0.01.

2. We next assigned each signal to a provisional combination of lead variant and 
phenotype (Crohn’s disease, ulcerative colitis, or IBD) that maximized the marginal 
likelihood of equation (8) in Supplementary Methods.

3. At loci with more than one signal, we built a multivariate model with all signals  
reported by all three methods, and tested all possible combinations of adding  
signals reported by one or two methods, as long as they still had P <​ 1.35 ×​ 10−6 
when jointly fitted in the multi-signal model. We selected the combination with 
the highest joint marginal likelihood (equation (8) in Supplementary Methods).
Phenotype assignment of signals. The provisional phenotype assignment, per-
formed during the signal merging described above, was merely a point estimate 
and did not capture the uncertainty associated with the phenotypic assignment. 
We therefore recomputed the assignment of each signal as Crohn’s-disease-
specific, ulcerative-colitis-specific, or shared using the Bayesian multinomial 
model from fine-mapping method 2, empirical covariance prior with Laplace 
approximation49, as it was designed to assess evidence of sharing in the presence 
of potentially correlated effect sizes. For the lead variant for each credible set, 
we calculated the marginal likelihoods as in equation (13) from Supplementary 
Methods, restricting either βUC =​ 0 (for the Crohn’s-disease-only model) or βCD =​ 0 
(for the ulcerative-colitis-only model), as well as using the unconstrained prior 
(for the associated-to-both model). We then calculated the log(Bayes factor) in 
favour of sharing; that is, the log of the ratio of marginal likelihoods between the 
associated-to-both model and the best of the single-phenotype associated models.  
These sharing log(Bayes factors) are given in Supplementary Table 1 (column  
‘sharingBF’), and are a probabilistic assessment of phenotype assignment: for 
instance, the log(Bayes factor) of 97.4 for the primary signal at IL23R suggests a 
very high certainty that this signal is shared across both Crohn’s disease and ulcer-
ative colitis, whereas the log(Bayes factor) of 0.4 for the primary signal at FUT2 
is more ambiguous. In addition to providing the log(Bayes factor) itself, we also 
applied a log(Bayes factor) cut-off of 10 to select variants with strong evidence of 
being shared across phenotypes.
Final filters. These procedures generated some signals where all three meth-
ods largely agreed, and some where they differed. While the signals where the 
methods disagree are of interest for methods development, here we chose to 
focus on the most concordant signals, as they are most straightforward to inter-
pret biologically. We therefore discarded all signals found by only one method 
(which completely removed one locus), and two loci where the ratio of marginal 
likelihoods (equation (8) in Supplementary Methods) for the best model and the 
second-best model was <​10 (Supplementary Notes). After these filters (Extended 
Data Fig. 7), we considered 139 signals from 94 regions (containing a total of 
181,232 variants) to be confidently fine-mapped, and took them forward for 
subsequent analysis.
Estimating the variance explained by the fine-mapping. We used a mixed-model 
framework to estimate the total risk variance attributable to the IBD risk loci, 
and to the signals identified in the fine-mapping. We used the GCTA software 
package50 to compute a gametic relationship matrix (G-matrix) using genotype 
dosage information for the genotyped variants in the high-density regions (which 
we will call GHD). We then fitted a variety of variance component models by 
restricted maximum likelihood analysis using an underlying liability threshold 
model implemented with the DMU package51. The first model was a standard  
heritability mixed-model that included fixed effects for five principal components 
(to correct for stratification) and a random effect summarizing the contribution 
of all variants in the fine-mapping regions, such that the liabilities across all indi-
viduals were distributed according to

β β λ λ≈ +…+ + −L N PC PC IG( , (1 ) ),1 1 5 5 1 HD 1

where λ1 is thus the variance explained by all variants in fine-mapping regions, 
which we estimated. We then fitted a model that included an additional random 
effect for the contribution of the lead variants that had been specifically identified 
(with G-matrix GSignals), such that the liability was distributed as

′ ′β β λ λ λ λ≈ +…+ + + − .L N PC PC IG G( , (1 – ) )1 1 5 5 1 HD 2 Signals 1 2

The variance explained by the signals under consideration was then given by 
the reduction in the variance explained by all variants in the fine-mapping regions 
between the two models (λ1 −​  ′λ1). We used this approach to estimate what fraction 
of this variance was accounted for by (1) the single strongest signals in each region 

(as would be typically done before fine-mapping), or (2) all signals identified  
in fine-mapping. We used Cox and Snell’s method52 to estimate the variance 
explained across individual signals (Extended Data Fig. 3b) for computational 
efficiency.
Overlap between transcription-factor binding motifs and causal variants. For 
each motif in the ENCODE transcription factor ChIP-seq data (http://compbio.
mit.edu/encode-motifs/, accessed November 2014)20, we calculated the overall 
information content as the sum of information content for each position53, and 
only considered motifs with overall information content ≥​ 14 bits (equivalent to 
seven perfectly conserved positions). For every variant in a high-density region, 
we determined whether it created or disrupted a motif at a high-information site 
(information content ≥​ 1.8).
Overlap between epigenetic signatures and causal variants. For each combi-
nation of 120 tissues and 3 histone marks (H3K4me1, H3K4me3, and H3K27ac) 
from the Roadmap Epigenome Project, we calculated an overlap score, equal to the 
sum of fine-mapping posterior probabilities for all variants in peaks of that histone 
mark in that tissue. We generated a null distribution of this score for each tissue/
mark by shifting chromatin marks randomly (between 0 bp and 44.53 megabase 
pairs, the length of all high-density regions) and circularly (peaks at the end of 
the region shifted to the beginning of the region) over the high-density regions 
while keeping the same inter-peak distances. To summarize these correlated results 
across many cell and tissue types, we defined a set of ‘core’ H3K4me1 immune 
and H3K27ac gut peaks as sets of overlapping peaks in cells that showed the 
strongest enrichment. Intersects were made using bedtools version 2.24.0 default  
settings54. We selected six immune cell types for H3K4me1 and three gut cell types 
for H3K27ac (Supplementary Table 2). We also chose controls (Supplementary 
Table 2) from non-immune and non-gut cell types with similar density of peaks 
in the fine-mapped regions compared with immune/gut cell types to confirm the 
tissue-specificity of the overlap. We used the phenotype assignments (described 
above) in dissecting the enrichment for the Crohn’s disease and ulcerative colitis 
signals. Sixty-five Crohn’s disease and 21 ulcerative colitis signals that were mapped 
to ≤​50 variants were used in this analysis.
Published eQTL summary statistics. We used eQTL summary statistics from 
three published studies. (1) Peripheral blood eQTLs from ref. 29 of 2,752 twins, 
reporting loci with MAF >​ 0.5%. Imputation was performed using the 1000 
Genomes reference panel11. (2) Peripheral blood eQTLs from ref. 30 of 8,086  
individuals, including variants with MAF >​ 5%. Imputation was performed using 
the HapMap 2 CEU population reference panel55. (3) CD14+ monocyte eQTLs 
from Supplementary Table 2 in ref. 31, comprising 432 European individuals, 
measured in a naive state and after stimulation with interferon-γ​ or lipopolysac-
charide (for 2 or 24 h), reporting loci with MAF >​ 4% and FDR <​ 0.05. Imputation 
was performed using the 1000 Genomes reference panel10.
Processing and quality control of new eQTL ULg dataset. A detailed descrip-
tion of the ULg dataset is in preparation (Y.M. et al., in preparation). Briefly, we 
collected venous blood and intestinal biopsies at three locations (ileum, transverse 
colon, and rectum) from 350 healthy individuals of European descent, average 
age 54 (range 17–87), 56% female. SNPs were genotyped on Illumina Human 
OmniExpress version 1.0 arrays interrogating 730,525 variants, and SNPs and 
individuals were subjected to standard quality control procedures using call rate, 
Hardy–Weinberg equilibrium, MAF ≥​ 0.05, and consistency between declared 
and genotype-based sex as criteria. We further imputed genotypes at ∼​7 million 
variants on the entire cohort using the Impute2 software package13 and the 1,000 
Genomes Project as reference population (phase 3 integrated variant set, released 
12 October 2014)11,14. From the blood, we purified CD4+, CD8+, CD19+, CD14+, 
and CD15+ cells by positive selection, and platelets (CD45−) by negative selection. 
RNA from all leucocyte samples and intestinal biopsies was hybridized on Illumina 
Human HT-12 arrays version 4. After standard quality control, raw fluorescent 
intensities were variance stabilized56 and quantile normalized57 using the lumi 
R package58, and were corrected for sex, age, smoking status, number of probes 
with expression level significantly above background as fixed effects and array 
number (sentrix id) as the random effect. For each probe with measurable expres-
sion (detection P value <​ 0.05 in >​25% of samples), we tested for cis-eQTLs at all 
variants within a 500 kbp window. The nominal P value of the best SNP within a 
cis-window was Sidak-corrected for the window-specific number of independent 
tests. The number of independent tests in each window was estimated exactly 
in the same manner as for the number of independent tests for fine-mapping 
methods (‘Establishing a P value threshold’ section in Methods). We estimated 
false discovery rates (q values) from the resulting P values across all probes using 
the qvalue R package59. Four hundred and eighty cis-eQTL with FDR ≤​ 0.10 for 
which the lead SNPs (that is, the SNP yielding the best P value for the cis-eQTL) 
mapped within the 97 high-density regions (94 fine-mapped plus 3 unresolved) 
were retained for further analyses.
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Naive co-localization using lead SNPs. We calculated the number of IBD credible 
sets containing a lead eQTL variant in a particular tissue (‘observed’). This number 
was then compared with the background number of overlaps (‘expected’):

∑ − −
∈

−N(1 (1 ) )
i S

i
C1 i

where Ni is the total number of variants in region i in 1,000 genomes with an allele 
frequency greater than a certain threshold (equal to the threshold used for the 
original eQTL study), Ci is the number of these variants that lie in IBD credible 
sets, and S is a set of regions that have at least one significant eQTL. We simulated 
1,000 trials per region with binomial probability equal to the regional background 
overlap rate: − − −N1 (1 )i

C1 i. Empirical P values were estimated by comparing the 
observed number of overlaps with the simulated number of the overlaps. More 
specifically, the P value was defined as the proportion of trails having equal or more 
overlaps in the simulations than the observed.
Frequentist co-localization using conditional P values. We next used conditional 
association to test for evidence of co-localization, as described in ref. 25. This 
method compares the P value of association for the lead SNP of an eQTL before 
and after conditioning on the SNP with the highest posterior in the credible set, and 
measures the drop in −log(P). An empirical P value for this drop is then calculated 
by comparing it to the drop for all variants in the high-density region. Because 
this method requires full genotypes, we could only apply it to the ULg dataset 
(MAF >​ 5%). An empirical P value ≤​ 0.05 was considered as evidence that the 
corresponding credible set was co-localized with the corresponding cis-eQTL. To 
evaluate whether our fine-mapping associations co-localized with cis-eQTL more 
often than expected by chance, we counted the number of credible sets affecting 
at least one cis-eQTL with P ≤​ 0.05, and compared how often this number was 
matched or exceeded by 1,000 sets of variants that were randomly selected yet 
distributed among the loci in accordance with the real credible sets. The number 
of variants per set was same as the number of credible sets in this eQTL analysis 
(MAF matched, size ≤​ 50), shown in Extended Data Table 2.
Bayesian co-localization using Bayes factors. Finally, we used the Bayesian co- 
localization methodology described in ref. 60, modified to use the credible sets 
and posteriors generated by our fine-mapping methods (similarly only applicable 
to the ULg full genotype data). The method takes as input a pair of IBD and eQTL 
signals, with corresponding credible sets SIBD and SeQTL, and posteriors for each 
variant pi

IBD and pi
eQTL (with = ∀ ∉p i S0i

X X). Credible sets and posteriors were 
generated for eQTL signals using the Bayesian quantitative association mode in 
SNPTest (with default parameters), with credible sets in regions with multiple 
independent signals generated conditional on all other signals. Our method  
calculated a Bayes factor (BF) summarizing the evidence in favour of a co-localized 
model (that is, a single underlying causal variant between the IBD and eQTL  
signals) compared with a non-co-localized model (where different causal variants 
were driving the two signals), given by the ratio of marginal likelihoods

=
L

L
BF

(colocalized)
(not colocalized)

The marginal likelihood for the co-localized model (that is, hypothesis H4 in  
ref. 60) is given by

∑
∪

∝
∈

L
N
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i i
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and the marginal likelihood for the model where the signals are not co-localized 
(that is, hypothesis H3) is given by:

∑
∩
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IBD eQTL

IBD eQTL

In both cases, N is the total number of variants in the region. We only counted 
towards N variants having r2 >​ 0.2 with either the lead eQTL variant or the lead 
IBD variant.

To measure enrichment in co-localization BFs compared with the null, we 
performed a permutation analysis. In this analysis, we randomly reassigned eQTL 
signals to new fine-mapping regions to generate a set of simulated null datasets. 
This was done using the following scheme on variants and credible sets with the 

same MAF cut-off as the eQTL dataset (ULg, MAF >​ 5%). (1) Estimate the stand-
ardized effect size βg for each eQTL signal g, equal to standard deviation increase in 
gene expression for each dose of the minor allele. (2) Randomly reassign each eQTL 
signal to a new fine-mapping region, and then select a new causal variant with a 
MAF within 1% of the lead variant from the real signal. If multiple such variants 
exist, select one at random. If no such variants exist, pick the variant with the closest 
MAF. (3) Generate new simulated gene expression signals for each individual from 
Normal(βgxj, 1 −​ βg

22f(1 −​ f)), where xj is the individual’s minor allele dosage at 
the new causal variant and f is the MAF. (4) Carry out fine-mapping and calculate 
co-localization Bayes factors for each pair of (real) IBD signals and (simulated) 
eQTL signals. (5) Repeat stages (2)–(4) 1,000 times for each tissue type. We can use 
these permuted Bayes factors to calculate P values for each IBD credible set, given 
by the proportion of time the permuted Bayes factors were as large or greater than 
the one observed in the real dataset. To generate a high-quality set of co-localized 
eQTL and IBD signals, we take all IBD signals that have the co-localization BF >​ 2, 
P <​ 0.01, and r2 (with the eQTL variant) >​ 0.8.
Code availability. Computer code used in this study is provided in the ‘Software 
availability’ sections in the Supplementary Methods.
Data availability. The data that support the findings of this study are available 
from the International Inflammatory Bowel Disease Genetics Consortium but 
restrictions apply to the availability of these data, which were used under licence 
for the current study, and so are not publicly available. Data are, however, available 
from the corresponding authors upon reasonable request and with the permission 
of the International Inflammatory Bowel Disease Genetics Consortium.
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Extended Data Figure 1 | Power of the fine-mapping analysis. Power  
(y axis) to identify the causal variant in a correlated pair (strength of  
correlation shown by colour) increases with the significance of the  
association (x axis), and therefore with sample size and effect size. The 
vertical dashed line shows the genome-wide significance level. To estimate 
the relationship between the strength of association and our ability to 
fine-map it, we assume that the association has only two causal variant 
candidates, and we define the signal as successfully fine-mapped if the 
ratio of Bayes factors between the true causal variant and the non-causal 
variant was greater than 10 (a 91% posterior, assuming equal priors for 
the two candidate variants). Using equation (8) in Supplementary Methods, 
we have  

θ
θ

=
|
|

≈
|
|

∗

∗
Y
Y

Y
Y

logBF log
Pr( SNP1)
Pr( SNP2)

log
Pr( SNP1, )
Pr( SNP2, )

1

2

in which θ*​ is the maximum likelihood estimate of the parameter values. 
The log-likelihood ratio follows a χ2 distribution:

χ χ λ≈− − =− − rlogBF 1
2
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2

(1 )SNP1
2

SNP2
2 2

in which λ is the χ2 statistic of the lead variant and r is the correlation 
coefficient between the two variants. Because of the additive property of 
the χ2 distribution, logBF follows a non-central χ2 distribution with  
1 degree of freedom and non-centrality parameter λ(1 −​ r2)/2. Therefore, 
the power can calculated as the probability that logBF >​ log(10), given by 
the cumulative distribution function of the non-central χ2 distribution.
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Extended Data Figure 2 | Procedures in the fine-mapping analysis. Details for each stage are described in Methods. The dashed line means the 
imputation was performed only once after the manual inspection (not iteratively).
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Extended Data Figure 3 | Variance explained. Variance explained by 
secondary, tertiary, … variants as a fraction of the primary signal at each 
locus.
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Extended Data Figure 4 | Functional annotations. a, Functional 
annotation for 45 variants having posterior probability >​ 50%.  
b, Functional annotation for 116 association signals fine-mapped to ≤​50 
variants. Annotations are defined in Methods. We additionally grouped 

eQTLs into ‘Immune/Blood’ (CD4+, CD8+, CD19+, CD14+ CD15+, 
platelets) and ‘Gut’ (ileum, transverse colon, and rectum). The eQTLs 
were generated from the ULg dataset using the ‘Frequentist co-localization 
using conditional P values’ approach (Methods).
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Extended Data Figure 5 | Size of credible sets. Comparison of credible 
set sizes for primary signals using each of our fine-mapping methods 
(methods 1, 2, and 3), the combined approach (as adopted in final results) 
and the approach described in ref. 6 (y axis) and the r2 >​ 0.6 cut-off  

(x axis). Fine-mapping maps most signals to smaller numbers of variants. 
The trend line (blue) and the confidence interval (grey) were calculated 
using the geom_smooth function in the R ggplot2 package using the linear 
model.
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Extended Data Figure 6 | Distributions of the allele frequency and the 
imputation quality. a–c, Distribution of the risk allele frequency for 45 
variants having >​50% posterior probability plotted against (a) posterior 
probability, (b) significance of the association as –log10(P), and (c) odds 
ratio of the association. Variants are colour coded according to their 

functions. Odds ratio for IBD associations was the larger of odds ratios 
for Crohn’s disease and ulcerative colitis. d–f, Distribution of imputation 
quality (INFO measure from the IMPUTE2 program) for variants having 
MAF ≥​ 5% (d), between 5% and 1% (e), and <​ 1% (f).
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Extended Data Figure 7 | Merging and adjudicating signals across 
methods. The number of signals for each method is shown in the brackets, 
and for each method a black bar indicates a signal with P <​ 1.35 ×​ 10−6, 
and a grey bar a signal that does not reach that threshold. The coloured 
bar shows the final status of each signal after merging and model selection 

(Methods). Label ‘low INFO’ corresponds to INFO <​ 0.8 (the threshold 
used for signals reported by one or two methods), and ‘rare and imputed’ 
to MAF <​ 0.01 and no genotyped variants in the credible set, regardless of 
INFO (Methods).
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Extended Data Table 1 | Study samples

Genotyped samples in each batch for healthy controls (Control), Crohn’s disease (CD),  
and ulcerative colitis (UC). Batches were grouped into cohorts for further analysis  
(‘Controlling for population structure, batch effects, and other confounders’  
section in Methods).
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Extended Data Table 2 | Co-localization with eQTL

The number of IBD credible sets that co-localize with eQTLs using the naive, frequentist, and Bayesian approaches. Significant observations are set in bold type. ‘Number of credible sets’ reports the 
number of credible sets that have MAF above the cut-off. IFN, interferon-γ; LPS, lipopolysaccharide.
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Extended Data Table 3 | Genomic inflation

Genomic inflation factors and linkage disequilibrium score regression intercept for Crohn’s disease (CD), ulcerative colitis 
(UC) and both (IBD). a, Genomic inflation factors using the first four, five, and six principal components. The factors were 
calculated using 2,853 background variants from the ImmunoChip. b, Genomic inflation factors for subsets of the data 
(using five principal components for the same 2,853 background variants). Balanced, imbalanced, and down-sampled 
cohorts are defined in Methods. Numbers in brackets indicate the 95% confidence interval for the inflation factors  
(only estimated for the down-sampled cohorts). c, Linkage disequilibrium score regression intercept and genomic  
inflation factors (λGC and λ1000) from the largest IBD meta-analyses with genome-wide data (CD: GWAS and UC: GWAS).
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