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Emergence of Urban Growth Patterns from Human Move-

ments

Fengli Xua, Yong Lia∗, Depeng Jina, Jianhua Lua, & Chaoming Songb∗

a) Beijing National Research Center for Information Science and Technology (BNRist), Depart-

ment of Electronic Engineering, Tsinghua University, Beijing, China

b) Department of Physics, University of Miami, Coral Gables, FL, USA

Cities grow in a bottom-up manner, leading to fractal-like urban morphology characterized

by scaling laws. Correlated percolation has succeeded in modeling urban geometries by im-

posing strong spatial correlations. However, the origin of such correlations remains largely

unknown. Very recently, our understanding of human movements has been revolutionized

thanks to the increasing availability of large-scale human mobility data. This paper designs a

novel computational urban growth model that offers a micro-foundation in human mobility

behavior. We compare the proposed model with three empirical datasets, which evidences

that strong social couplings and long-memory effect are two fundamental principles respon-

sible for the mystical spatial correlations. The model not only accounts for the empirically

observed scaling laws, but also allows us to understand the city evolution dynamically.

Over a century ago, urban scientists envisioned the future cities being perfectly symmetric

as a result of well designed top-down city planning strategies 1. However, the increasingly avail-

able urban data suggests that cities grow in a bottom-up manner, calling for understandings of its
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micro foundation 2–4. Later, three fundamental empirical laws have been discovered 2, 5, 6: First, the

distribution of city size follows a scaling law with the exponent around -2, implying large cities

are much rarer than small towns 5. Second, the urban population grows super-linearly with its

area due to the intense competition for spaces 7, 8. Finally, the density of occupied urban areas

decreases exponentially with the radial distance to city centers 9–11. Computational physics model,

i.e., diffusion-limited aggregation (DLA), has been applied to model urban growth as an aggrega-

tion of physical particles 7, 12. Further works showed that correlated percolation (CP) is a better

alternative to explain the emergence of the aforementioned laws 5. A key observation of the CP

model is the requirement of strong geographical correlation to reproduce the correct scaling rela-

tions 13. While the CP model successfully explains the urban morphology, it has little connections

with human activities at the micro-level. The micro-foundation of such geographical correlation

remains a mystery. Here, we develop a novel computational urban growth model based on human

movements, suggesting that strong social coupling and long-memory effect are two fundamental

principles governing urban growth.

Thanks to the availability of large-scale movement datasets, our understanding of human

movements has been revolutionized over the past decade 14, 15. Existing human movement models

mainly fall into three classes, as depicted in Fig. 1: Class A models treat human movements as

randomly moving particles without interactions. Brownian movement is one of such prototype

models where an individual’s displacements are normal-distributed 16. Unlike physical particles,

empirical data suggests human movements are characterized by a fat-tailed jump-size distribution,
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satisfying a power law,

P (~r|~r′) ∼
1

|~r − ~r′|(d+α)
, (1)

where P (~r|~r′) is the transition probability from location ~r′ to ~r, with d = 2 for two-dimensional

space 14, 17. The exponent α is observed around 0.55 ± 0.05 18. The fact that the transition prob-

ability decreases with distance characterizes the cost of travel distance of human movements, i.e.,

most of the time people travel only over short distances, whereas occasionally people take longer

trips. Neglecting social interactions and memory effects, Eq. (1) suggests human movements fol-

low a Lévy-flight, where the evolution of population density ρ(~r, t) follows the fractional diffusion

equation,

∂ρ(~r, t)

∂t
= −D(−∆)α/2ρ(~r, t), (2)

where D is the diffusion constant (see Methods section for details). Nevertheless, both Brownian

motion and Lévy flight predict a uniform population distribution when time t approaches infinity,

in contrast to empirical observations 9.

Class B models such as Gravity model 8 and Radiation model 19, originate from the study

of migrations, where the traffic flow between two locations depends on their populations. For

instance, the Gravity model suggests the transition probability,

P (~r|~r′) ∼
ρ(~r) + ρ0

|~r − ~r′|(d+α)
, (3)

where ρ0 is the (inverse) coupling constant. In addition to the fat-tailed jump size distribution (1),

the gravity model (2) also requires the transition probability increases linearly with the population

at the destination ~r 20. This mechanism accounts for a mean-field background attractiveness rooted
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in social interaction, e.g., highly populated locations often offer more social opportunities 8. One

would hope that this social attractiveness being responsible for the mystical geographical corre-

lation in the CP model. Unfortunately, we find that the diffusion process of the gravity model

follows the same fractional diffusion Eq. (2) for Lévy flights (see Methods section for details), i.e.,

it predicts a uniformly distributed urban patterns at a large t. More recently, researches explored

the correlation between human mobility and social network, finding that human movements are

largely determined by the underlying social ties 21–23. However, these models often require in-

puts of social network data measured from experiments, leaving the origin of these correlations

unexplained.

Class C models have been developed during the recent study of human mobility. Unlike

Class A where individuals move freely, empirical data found notable recurrent-visitation patterns

in human movements. Consequently, individuals show an ultra-slow diffusion, in contrast to a reg-

ular scaling-law diffusion in the Brownian motion and Lévy flight. To explain these new findings,

Individual mobility model(IMM) retreats human movements as a two-stage return-exploration pro-

cess to account for long-memory effect. In particular, a preferential return mechanism is imposed,

i.e., the probability returning to a previous location ~ri,

P (ri) ∝ f(ri), (4)

proportional to its historic visitation frequency f(ri). Such long-memory return process slows the

human diffusion drastically. In particular, IMM predicts that the typical traveling distance l, i.e.,

4



the root mean square displacement, follows a logarithmic growth as

l ∼ logA, (5)

where A is the total visitation area 18, 24. The logarithmic growth is one of the key ingredients

for human movements, characterizing the anomalous ultra-slow diffusion and home range effect

25. More recently, d-EPR model generalizes IMM by introducing a background field where an

individual explores a new location with a probability proportional to its population density 26, 27.

While IMM and d-EPR successfully captures individual movements on a daily basis, individuals

move independently and do not interact with each other. Moreover, the background field in d-

EPR is static and does not evolve with time. Therefore, these models do not capture dynamic

interactions among individuals, and therefore are not capable of reproducing urban growth patterns

(see SI Section S2 for more details).

Neither social interactions (class B) nor memory effects (Class C) alone reproduces the ge-

ographical correlation proposed in the CP model. It is rather curious to ask if Class D mobility

models that integrate social interaction and memory effects (Fig. 1) are able to predict urban

growth patterns. While Class D models are largely unexplored, there are few exceptions. A re-

cently developed GeoSim model integrates the memory-aware IMM with a social network where

each individual is more likely to explore a new location visited by his/her friends 28. However, the

social network is predetermined from the inputs of empirical data, and does not evolve with the

time. Therefore, the GeoSim model does not track urban growth on a large time scale. To integrate

memory effects with dynamic interactions, we propose Collective Mobility Model (CMM) that of-

fers a minimal agent-based model connecting human movements to urban growth. We consider N
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Figure 1: The paradigm of human movement models. Existing human movement models clas-

sified based on whether account for the memory of historic movements or the social interactions,

are summarized as the paradigm with four classes: (A) Brownian motion and Lévy-flight belong

to this class where movements are independent and memoryless; (B) Gravity model and Radia-

tion model are the typical models where movements are socially correlated and memoryless; (C)

Individual Mobility Model (IMM) and d-EPR model belong to this class where movements are

independent and memory-aware. (D) This class is both memory-aware and socially interactive,

including the GeoSim model and the proposed Collective Mobility Model (CMM). The GeoSim

model uses a static social network measured from the experiment whereas CMM generates the

social interaction dynamically from individual’s locations without external inputs.
6



individuals moving in a L×L square lattice, where each follows a return-exploration process. Like

IMM, an individuals return probability is proportional to his/her visitation frequency (4), whereas

the exploration probability depends on the number of visited sites. During the exploration, the

probability of choosing a new location, in contrast, relies on the populations, satisfying the gravity

law (3). The population density ρ(~r, t) in Eq. (3) is calculated instantaneously based on individu-

als’ locations at time t. The coupling constant, ρ−1
0 , controls the strength of population attraction,

i.e., increasing ρ0 reduces the impact of population density, and consequently, the strength of so-

cial interactions. For ρ−1
0 → 0, CMM is effectively equivalent to IMM. Inspired by the strong

geometrical correlation in CP models 5, we’re interested in the strong coupling limit ρ−1
0 → ∞,

where CMM describes a strongly correlated many-body system. Therefore, the proposed CMM

does not rely on external data and can self-organize to arbitrary time scale, which is optimized for

urban growth simulation. More importantly, we find that CMM can simulate urban system in a

self-organized manner (see Methods Section for details).

Results

We collect three public available urban development datasets, including the population and urban

area of cities in i) United States of America (U.S.A.) at 2000, ii) Great Britain (G.B.) at 1991, and

iii) the distribution of urban area in Berlin region at 1910, 1920 and 1945. For comparison, we

simulate the human migrations by four typical movement models for Classes A–D respectively,

namely the Lévy flight, Gravity model, IMM, and the proposed CMM (see SI Section S2 for the

details of model parameter settings. A simple simulation of large urban systems is impractical due
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to the high time complexity, which is O(MA) for each step with M and A denoting the number

of citizens and the size of the urban area, respectively. We address this problem by designing

improved sampling techniques to effectively reduce the complexity to O(M) (see SI Section S3

for details).

To compare the morphology of the simulated urban systems to the empirical observations, we

plot population distributions in Fig. 2A–D for all models, together with the empirical distribution of

London city in where Fig. 2E. While the real-world geometry is affected by geographical features,

e.g., lakes and rivers, London city still exhibits prominent features of the compact city center and

fractal perimeters. These observations echo previous studies on the fractal geometry of urban

area 29–31.

The urban population distribution for Lévy flight and Gravity model follows the fractional dif-

fusion process (2), implying that individuals will gradually diffuse away from their initial position

over time. The simulation verifies this prediction with the urban population distributed uniformly

in urban space when the systems converge(see Fig. 2A–B). It indicates these two models fail to

reproduce compact and stable city centers. On the other hand, IMM predicts urban systems grow

homogeneously in the perimeter. The simulation result shows the perimeter of the urban area is a

standard circle, and the urban areas that have a similar radial distance to the city center have similar

population density (see Fig. 2C), which is in consistence with the theoretical prediction. Therefore,

the simulation suggests IMM cannot reproduce the fractal morphology of the urban area. On the

contrary, CMM successfully reproduces the compact city center in the urban system, where the
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Figure 2: The morphology of urban area generated by four different human movement mod-

els: (A) Lévy flight, (B) Gravity model, (C) Individual mobility model (IMM), (D) Collective

mobility model (CMM), and (E) the empirical data from London city. The population distri-

bution of each urban system is visualized as a heatmap in log scale, where blue color represents

underpopulated regions and red colors corresponding to regions of high population. The urban

systems are simulated with 30,000 individuals initially situated in urban centers and then move ac-

cording to mobility models until reaching a stable state. The Lévy flight and Gravity model fail to

reproduce a compact urban center, while IMM predicts the urban system grows in a homogeneous

manner, where fractal perimeter and sub-clusters are absent. CMM accurately reproduces the com-

pact urban center, fractal perimeter of urban area, and sub-clusters. The morphology predicted by

CMM is consistent with the empirical observation of London city.
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population density is significantly higher than the peripheral urban area (see Fig. 2D). Besides, the

perimeter of the city center demonstrates prominent fractal geometry, and numerous sub-clusters

are formed around it (see SI Section S4 for details). These observations are in agreement with the

empirical observation on London city, which indicates CMM can reproduce the morphology of the

urban area.

To examine the model’s capacity in reproducing urban growth patterns, we will focus on

three fundamental empirical laws, each of which has been validated on multiple cities around the

globe 2, 5, 6.

(A) City size distribution: The number of cities N(A) decreases with their areas A, following

a scaling law,

N(A) ∼ A−τ , (6)

where the exponent τ has been reported around 2.0 5. Percolation theory is the prevalent narrative

for this observation, with each site occupied as an urban area with a certain probability 13. It

predicts the scaling law (6) with the exponent ranging between 2 and 2.5, where τ = 2 corresponds

to a strong correlation between different sites and τ = 2.5 corresponds to a mean-field theory 13.

The empirical data shows that city size distributions are well approximated by Eq. (6) (see Fig. 3A),

with the exponent τ = 1.94± 0.11, 2.01± 0.08 and 1.91± 0.16 for the U.S.A. and the G.B., and

the Berlin, respectively. These findings echo the theoretical predictions of site percolation theory

and empirical observations in the previous research 5, 13.
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Figure 3: The comparison of reproducing empirical urban growth patterns with urban sys-

tems driven by different human movement models. (A) City size distributions for U.S.A., G.B.

and Berlin. Dots and straight lines represent the empirical measurements and Eq. (6) with exponent

of τ = 1.94±0.11, τ = 2.01±0.08 and τ = 1.91±0.16, respectively. The range denotes the 95%

confidence interval of estimated exponents. (B) Empirical urban population density increases log-

arithmically with city sizes. (C) Populated area density decreases exponentially with the distance

to city center with exponents of -0.3, -0.3 and -0.4 for U.S.A., G.B. and Berlin region, respec-

tively. (D) City size distributions for Lévy flight, Gravity model and IMM models with exponents

τ = 2.55± 0.15, τ = 2.58± 0.17 and τ = 2.98± 0.51, and for CMM with τ = 2.02± 0.13. The

range denotes the 95% confidence interval of estimated exponents. (E) Lévy flight, Gravity model

and IMM predict urban population density to be invariant with city size, while CMM reproduces

the logarithmic correlations. (F) Lévy flight and Gravity model predict the populated area density

is invariant with distance to urban center, while IMM predicts populated area density decreases

slower than exponential function. CMM reproduce exponential distribution.
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Lévy flight characterizes the movement as an individual diffusion process. The urban pop-

ulation distributes uniformly in urban space as the urban system reaches to a stationary state.

Similarly, while the Gravity model introduces the social interactions among individuals, the popu-

lation density satisfies fractional diffusion (2). When time t → ∞, the population will distribute

uniformly in urban space ρ(r) = c, which is independent of the coupling constant ρ−1
0 . Therefore,

the Lévy flight and Gravity model are expected to generate urban patterns as the one observed in

an uncorrelated percolation. To test this hypothesis, we identify the isolated connecting compo-

nents in the simulation as satellite cities and measure the area of each city 5. Figure 3D shows that

both Lévy flight and Gravity model reproduce a power-law city size distribution with exponents

τ = 2.55 ± 0.15 and τ = 2.58 ± 0.17. This finding is consistent with the theoretical predic-

tion of an uncorrelated percolation. The simulation also shows IMM satisfies the scaling law with

an exponent τ = 2.98±0.51. This large exponent implies the fact that individuals are localized

within their own home-range since the IMM is equivalent to the non-interactive limit of CMM with

ρ−1
0 → 0. In contrast, when the coupling constant ρ−1

0 → ∞, the CMM model becomes strongly-

correlated. As a result, it reproduces the scaling law with τ = 2.02±0.13, which agrees with the

theoretical predictions and empirical patterns observed in real-world data. All reported exponents

are ranged within a 95% confidence interval based on the Theil-Sen estimator 32 (see SI Section S7

for details). We find, however, the proposed CMM is the only model that falls within the empirical

observed universal exponent −2. These results suggest both the principals of social interaction

and memory are essential components of reproducing the empirical city size distribution, while

CMM successfully integrates them into a unified movement model.
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(B) Super-linear relation between population and city size: The positive allometric popula-

tion growth with the urban area is widely observed in cities around the globe 33, 34. Larger cities

tend to have a higher urban population density, ρA ≡ N(A)/A, because they are developing into

the third dimension 29, 35, 36. Recent researches suggested the balance between the cost and gain of

concentrating population in urban areas, would explain the observed super-linear growth 6. This

social-economic hypothesis consists of two assumptions: i) the average gain from the intense social

interaction is proportional to the population density ρA; ii) the average living cost is proportional

to the typical travel distance l to explore the city. Their balance leads to ρA ∼ l. Substituting Eq.

(5), we find

ρA ∼ logA. (7)

The assumption i) agrees with the social interaction in Eq. (3), whereas the assumption ii) is rooted

in the memory effect in Eq. (4).

Fig. 3B plots the population density ρA with city area A across different cities for both U.S

and G.B, finding that the empirical observation agrees precisely with the predicted logarithmic law

(7). It is worth noting that previous studies reported a scaling-law fitting, i.e., ρA ∼ Aδ with a tiny

exponent δ ≈ 0.1 6. However, Within the range of magnitude of the empirical data the logarithmic

function is indistinguishable with a small-exponent scaling-law. Fig. 3E compares the simulation

results for the four prototype models, finding that the proposed CMM reproduces the logarithmic

law, whereas there is no area-dependence of the population density ρA for the other three models.

This result demonstrates that both social interaction and memory are necessary for the observed

scaling law (7).
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Figure 4: The time evolution of urban occupations. The urban occupation profile φ(r) as a

function of radial distance r, for (A) the Berlin over three different periods, and for (B) CMM over

four different periods. Straight lines represent exponential fittings for the corresponding empirical

data and the simulation results, respectively.
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(C) Exponential occupation profile: The urban occupation profile φ(r) is defined as the prob-

ability of finding an inhabited area at the distance r from the city center. Empirical studies sug-

gested an exponential profile 37,

φ(r) ∼ e−λr. (8)

Figure 3C demonstrates the exponential occupation profile observed for all three empirical datasets,

indicating that the city center attracts most of the population, whereas the occupation probability

decreases rapidly with the radial distance. However, such a rapid decline somehow contradicts

with the fat-tailed nature of the human movement (1) that suggests the human travels being able to

reach areas far away from the initial location 17, 29.

This paradox can be also resolved by introducing jointly the social interaction and memory

in human movement. Indeed, simulation results in Fig 3F shows the urban occupation profile in

CMM agrees very well with the exponential law (8). In contrast, φ(r) is independent with r for

Lévy flight and Gravity model, whereas IMM shows an non-exponential decrease. Moreover, it has

been suggested that the declining rate λ shall decrease as the city evolves, due to the constantly

pushing forwarded frontiers of cities 5, in line with the observations in the Berlin dataset where

φ(r) at three different time has been measure. Fig. 4A shows λ decreases gradually from 0.050 to

0.031. The simulation results of CMM precisely reproduce the evolution of the occupation profile

during urban development (see Fig. 4B). We measure the occupation profile at different times for

the Lévy flight, Gravity model and IMM, finding that they do not capture the time evolution of

phi(r) (see SI Section S8 for details). Indeed, the dynamic interactions in CMM are critical for the

urban dynamics as we find that the more sophisticated d-EPR model with a static social interaction
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26, 27 also fails to reproduce the occupation profile evolution (see SI Section S2 for details).

Discussion

The rapid urbanization process urges the demand for a more comprehensive understanding of the

patterns of urban growth 38. Correlated percolation model (CP) has reproduced successfully urban

morphology by introducing a strong geographical correlation to percolation theory, leaving the

origin of such correlations a mystery 5. While the connection between human mobility pattern and

urban morphology has been observed 39, a self-contained framework remains unknown. In this

paper, we propose a novel agent-based model that connects human movements to urban growth,

providing a solid micro-foundation for the mystical geographical correlation in the CP model. It

offers a bottom-up approach towards understanding the observed urban morphology and scaling

laws. Two principles, namely, the strongly dynamic social interaction and memory of historical

movements, are shown to be the key ingredients governing human migration, and consequently the

urban development. Unlike existing human movement models where individual movements are

either uncorrelated or memoryless and fail to capture the urban growth, the proposed Collective

mobility model (CMM) demonstrates both principals play essential roles. Theoretical analysis and

simulation results show the memory principal is essential to reproduce compact and stable city

centers in urban systems. In particular, CMM reproduces three major empirical laws: city size

distribution, super-linear population-area relation, and the exponential occupation profile, consis-

tent with the established CP model and social-economic model at the macroscopic level. Unlike

statically correlated models such as CP, d-EPR and GeoSim models which have to take empirical
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data as an input, the proposed CMM predicts the urban occupation profile (see Fig. 3F) and its

evolution (see Fig. 4B) in a self-organized manner, without imposing additional assumptions and

parameters (see SI Section S2 and S8 for more details).

Compared to existing agent-based models that often consists of a large number of micro-

scopic details of decision making process such as the context of current locations and urban en-

vironments 40–42, the goal of this paper is to seek a minimum set of common principles shared by

agent-based models that governs the empirically observed universal laws of urban growth (see SI

Section S6 for more details). Our simulation results show that individual-based physical determin-

ism models such as IMM and Lévy flight fail to capture the urban growth, which suggests human

decision-making process is equally important. On the other hand, the proposed CMM is not solely

physical deterministic, yet a highly-simplified agent-based model where individuals make deci-

sions about their explorations based on the social attractiveness of the location. Together with the

memory effect for individual return processes, CMM is an agent-based model with a minimal set of

decision making processes that allows theoretical analysis and numeric simulations. The proposed

CMM can be further generalized to include more detailed decision making process. However, we

feel that the simplicity of the proposed model makes it a general framework that is sufficient to cap-

ture urban growth patterns, and more fine-grained decision making behavior will be investigated

in future research.

It is worthy pointing out that while most human mobility models are developed for active

mobility such as the daily movements, the urban growth is more closely related to residential
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mobility, i.e., the relocation of residence. Nevertheless, residential and active mobility are human

movements on different time scales and they share common features. For instance, the gravity

model is often used in both cases 43. Moreover, while the memory effect in IMM was initially

discovered for active mobility, it is also equally important for relocation due to numerous social-

economic factors such as the effect of civic memory and change of workplaces 44, 45. Therefore, the

CMM model provides a framework for both active and residential mobility, each corresponding to

different parameter setups, e.g., the relocation has much smaller transition rate whereas the daily

movements have smaller exploration probability. Nevertheless, we find that the universal laws

observed in the proposed CMM are largely independent of choosing different modeling parameters.

In all, the proposed CMM provides a minimal model that bridges the missing link between

urban growth and human mobility. Our study may have direct implications on a wide range of

applications 46, 47 including city planning, resource allocation, disease controlling, etc. Existing

top-down city planning strategies have been shown ineffective in governing urban growth by the

previous research 2. The bottom-up approaches as the one proposed in this paper reveals general

mechanisms governing urban growth patterns, potentially leading to new city planning policies

that would leverage the influence of the human movements 48.

Methods

Collective Mobility Model We start with N individuals initially placed at the center of a L × L

square lattice. At each time t, individual decides to either explore a new place with probability

18



Pexp = δS−γ or return to a previous visited location with probability Pret = 1 − δS−γ , where S

is the number of distinct locations visited previously. For the exploration process, the individual

choose a new location ~r′ with a probability P (~r′) ∼ ρ(~r′,t)+ρ0

|~r′−~r|(d+α) (Eq. 3), where ~r is his/her present

location and ρ(~r′, t) is the population density at location ~r′ and time t. For the return process,

the individual moves to one of previously visited locations ~ri based on the preferential return

mechanism, with a probability P (~ri) =
f(~ri)∑
i f(~ri)

(Eq. 4).

Numeric simulation is performed in a 300 × 300 lattice for N = 30, 000 individuals over

T = 20, 000 total time steps. The simulation size is typical for a strongly interactive agent-based

model 49, where the computational complexity is considerably high. We develop two sampling

methods, alias sampling and sorted array sampling, to improve the efficiency of the simulation

(see SI Section S3 for more details). These optimizations reduce computational time of each run

from 690 hours to 12 hours on a workstation with 40 cores of 3.6GHz Intel i7 processor. We also

perform statistical analysis to test the robustness of simulated patterns (see SI Section S7 for more

details) and sensitivity of model parameters (see SI Section S5 for more details).

Diffusion Equation of Gravity Model We prove the fractional diffusion equation (2) for evolu-

tion of the density ρ(~r, t) in the Gravity model. We start with a master equation in a lattice, and

then derive the continuous equation by taking the proper limit when the lattice spacing l approaches

zero. The transition rate matrix Wij defines the probability rate of individuals departing from site

i and arriving in site j. Equation. (3) indicates

Wij = λg(l)
ρi(t) + ρ0
|~ri − ~rj|d+α

, (9)
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where λg(l) is a normalization factor that shall scale appropriately with the lattice spacing l, and

α ∈ (0, 2]. The corresponding master equation reads,

dρi(t)

dt
=

∑


[Wijρj(t)−Wjiρi(t)]

= λgρ0
∑
j

ρj(t)− ρi(t)

|~ri − ~rj|d+α
.

(10)

Assuming a small lattice spacing l, we approximate the summation by a continuous integration,

∑
j

ρj(t)− ρi(t)

|~ri − ~rj|d+α
≈ lα

∫
ρ(~y, t)− ρ(~x, t)

|~x− ~y|d+α
dy

= −cd,αl
α(−∆)α/2ρ(~x, t),

(11)

where (−∆)α/2 is the fractional Laplacian satisfying ̂(−∆)α/2f(~k) = |~k|αf̂(~k), and cd,α = πd/2|Γ(−α/2)|
2αΓ((d+α)/2)

.

Taking the continuous limit l → 0 requires the existence of liml→0 λg(l)l
α, i.e., g(l) ∼ l−α for small

l. Substituting Eq. (13) to Eq. (12) leads to Eq. (2),

∂ρ(~x, t)

∂t
= −D(−∆)α/2ρ(~x, t), (12)

where the diffusion constant D ≡ cd,αρ0 liml→0 λg(l)l
α. For α = 2 we recover the standard

diffusion equation.

Data Availability The empirical urban data sets that support the findings of this study are available

in GitHub, https://github.com/xfl15/Collective-Mobility-Model. The data sets for USA and GB

were originally released by previous research 50 (see SI Section S1 for details).

Code Availability The source code for numeric simulation is available online: https://github.com/xfl15/Collective-

Mobility-Model.
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8. Barthélemy, M. Spatial networks. Physics Reports 499, 1–101 (2011).

9. Clark, C. Urban population densities. Journal of the Royal Statistical Society. Series A (Gen-

eral) 114, 490–496 (1951).

10. Newling, B. E. The spatial variation of urban population densities. Geographical Review

242–252 (1969).

11. McDonald, J. F. Econometric studies of urban population density: a survey. Journal of urban

economics 26, 361 (1989).

12. Vicsek, T. Fractal growth phenomena (World scientific, 1992).

22



13. Essam, J. W. Percolation theory. Reports on progress in physics 43, 833 (1980).

14. Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility

patterns. nature 453, 779–782 (2008).

15. Schrank, D., Eisele, B. & Lomax, T. Ttis 2012 urban mobility report. Texas A&M Transporta-

tion Institute. The Texas A&M University System 4 (2012).

16. Einstein, A. Investigations on the Theory of the Brownian Movement (Courier Corporation,

1956).

17. Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439,

462–465 (2006).

18. Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human

mobility. Nature Physics 6, 818–823 (2010).
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