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SQUARE-ROOT RULE
OF TWO-DIMENSIONAL BANDWIDTH PROBLEM ∗

Lan Lin1, 2 and Yixun Lin3

Abstract. The bandwidth minimization problem is of significance
in network communication and related areas. Let G be a graph of
n vertices. The two-dimensional bandwidth B2(G) of G is the mini-
mum value of the maximum distance between adjacent vertices when
G is embedded into an n × n grid in the plane. As a discrete opti-
mization problem, determining B2(G) is NP-hard in general. How-
ever, exact results for this parameter can be derived for some special
classes of graphs. This paper studies the “square-root rule” of the two-
dimensional bandwidth, which is useful in evaluating B2(G) for some
typical graphs.

Mathematics Subject Classification. 05C78, 68R10.

1. Introduction

The bandwidth minimization problem of graphs and its variants have signifi-
cant background in sparse matrix computation, circuit layout designs, and network
communication. Especially, the two-dimensional bandwidth problem has close re-
lations to the VLSI layout designs and parallel algorithm simulations [1,2,6,12].
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Let us first formulate the problem as follows. Given a simple graph G =
(V (G), E(G)) on n vertices, a bijection f : V (G) → {1, 2, · · · , n} is called a la-
belling or one-dimensional embedding of G. This can be thought of as an embed-
ding of G into a path Pn of n vertices. The bandwidth of f for G is B(G, f) =
max {|f(u)−f(v)| : uv ∈ E(G)} and the bandwidth of G is B(G) = min {B(G, f) :
f is a labeling ofG}. The bandwidth problem in graph theory has been extensively
studied in over 50 years (see surveys [4–6]). A generalization of the bandwidth
problem is the two-dimensional bandwidth problem stated below.

First, {1, 2, · · · , N} × {1, 2, · · · , N} is called an N × N grid in the plane. The
cartesian product H = PN ×PN is a graph with vertex set V (H) = {1, 2, · · · , N}×
{1, 2, · · · , N} and with vertical and horizontal edges joining adjacent lattice points,
which is called a grid graph in the plane (see the next section for a formal defi-
nition). In circuit layout models, the wires are usually placed along the vertical
and horizontal directions. So the distance in the grid graph usually means the
rectilinear distance, namely the L1-norm distance. In other words, the distance
between two points (i, j), (i′, j′) ∈ V (H) is

dL1((i, j), (i
′, j′)) = |i − i′| + |j − j′|.

Moreover, for a graph G = (V (G), E(G)) on n vertices, an injection f : V (G) →
V (H) is called a two-dimensional embedding of G. The two-dimensional bandwidth
of an embedding f for G is

B2(G, f) = maxuv∈E(G)dL1(f(u), f(v)).

And the two-dimensional bandwidth of G is

B2(G) = minfB2(G, f),

where the minimum is taken over all embeddings f . An embedding f attaining
the above minimum is called an optimal embedding. Here, the grid graph H is
called the host graph, which may represent the parallel computer architecture in
the parallel computation system and graph G is called the guest graph, which
may represent the algorithm being performed in that system. In order that the
grid graph has enough room to hold any embedding, we may assume that N ≥
|V (G)| = n. However, it is sufficient to choose N = n.

In addition to the parallel computation, the two-dimensional bandwidth prob-
lem is mainly motivated by the VLSI layouts. However, there are some differences
between these two concepts. In fact, the edge routings in VLSI layout are not
allowed to overlap (edge-disjoint or with congestion 1) (see [1,12]). Instead, in the
two-dimensional bandwidth problem mentioned above, we need not consider the
edge routings (they are always along the shortest paths) and only the distances
are taken into account. Therefore, the two-dimensional bandwidth problem is a
relaxation of the “edge length” minimization problem in VLSI layout. So the two-
dimensional bandwidth B2(G) is a lower bound of the minimum edge length of
the VLSI layout.
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(a) P4 × P3 (b) P4 ⊗ P3

Figure 1. Grid graph and extended grid graph.

In the context of network layouts, the quality of an embedding is usually evalu-
ated by two parameters, the dilation and the congestion. The dilation leads to the
bandwidth problem (minimizing the maximum length of wires between two linked
nodes) and the congestion gives rise to the cutwidth problem (minimizing the max-
imum number of wires passing through any edge of H in the embedding). When
the host graph H is a path, we have the one-dimensional bandwidth and cutwidth
problems. When H is a grid graph, we have the two-dimensional bandwidth and
cutwidth problems. [5,6] presented surveys to these graph labelling and layout
problems. Relatively, there are few results on the two-dimensional bandwidth
problem. Some related work are as follows. [2] studied the dilation (bandwidth)
problem and the congestion (cutwidth) problem for n-cubes into two-dimensional
grids and presented lower and upper bounds. [3] solved the congestion problem
for n-cubes into grids. [11] solved the wirelength (bandwidth-sum) problem for n-
cubes into grids. Our previous paper [9] discussed two models of two-dimensional
bandwidth problem. In this paper, we further investigate a basic property of
two-dimensional bandwidth, called “square-root rule”, by which more results for
special graphs are derived.

The paper is organized as follows. In Section 2, we state some basic concepts
and known results. In Section 3, we study the “square-root” relation between
B2(G) and B(G). Section 4 is concerned with graph products. Section 5 discusses
a recursive algorithm for hypercubes. A short summary is given in Section 6.

2. Preliminaries

We first recall the notion of graph products. Let G1 = (V1, E1) and G2 =
(V2, E2) be two graphs. The cartesian product G1 × G2 is the graph with vertex
set V1 × V2 and two vertices (u, v) and (u′, v′) are adjacent if and only if either
[u = u′ and vv′ ∈ E2] or [v = v′ anduu′ ∈ E1]. Moreover, the strong product
G1 ⊗ G2 is the graph with vertex set V1 × V2 and two vertices (u, v) and (u′, v′)
are adjacent if and only if [u = u′ and vv′ ∈ E2] or [v = v′ anduu′ ∈ E1] or
[uu′ ∈ E1 and vv′ ∈ E2]. For example, H = Pm × Pn is the planar grid graph
(see Fig. 1a). Besides, we call H ′ = Pm ⊗ Pn the extended grid graph (following
the version of [12]), which can be obtained from Pm × Pn by adding two diagonal
edges in each mesh (see Fig. 1b).
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Moreover, we may consider another distance of L∞-norm, for which the distance
between two points (i, j), (i′, j′) ∈ V (H) is

dL∞((i, j), (i′, j′)) = max{|i − i′|, |j − j′|}.
This distance does not mean the length of wire connecting points (i, j) and (i′, j′),
but it is meaningful in representing dilation in some interconnection network ar-
chitectures (see, e.g., [12]). Based on this type of distance in the plane, we have
another model of two-dimensional bandwidth problem [9]: the bandwidth of la-
belling f for G is

B′
2(G, f) = maxuv∈E(G)dL∞(f(u), f(v))

and the bandwidth of G is

B′
2(G) = minfB′

2(G, f).

So we obtain two graph-theoretic invariants B2(G) and B′
2(G). We will study

them together. In fact, B2(G) is to consider embedding G into the grid graph
H = Pn ×Pn and B′

2(G) is to consider embedding G into the extended grid graph
H ′ = Pn ⊗ Pn. Clearly, we have

Proposition 2.1. B2(G) = 1 if and only if G is isomorphic to a subgraph of
Pn × Pn; B′

2(G) = 1 if and only if G is isomorphic to a subgraph of Pn ⊗ Pn.

Proof. If B2(G) = 1, then G can be embedded into H = Pn × Pn such that
each edge has length 1. So each edge of G coincides with an edge of H . Hence
the embedded graph of G is a subgraph of H . Conversely, if G is isomorphic
to a subgraph of H , then it has an embedding of edge-length 1 in H and thus
B2(G) = 1. Likewise, we have the second conclusion. �

It is known that deciding whether B2(G) = 1 even for a binary tree is NP-
complete (see Thm. 5.8 of [5]). Besides, the following basic relation is implied by
the definition:

Lemma 2.2. B′
2(G) ≤ B2(G) ≤ 2B′

2(G).

Proof. It follows from dL∞(x, y) ≤ dL1(x, y) ≤ 2dL∞(x, y). �
It turns out that a result for B′

2(G) is usually easier than that for B2(G) and
the former is a useful lower bound of the latter. In fact, if an optimal embedding
f of B′

2(G) satisfies B2(G, f) = B′
2(G, f), then f is also an optimal embedding

of B2(G) and thus B2(G) = B′
2(G). This fact may provide an efficient way for

determining B2(G) in some cases. Moreover, if we can obtain a result of B′
2(G),

then it provides at least a 2-approximation of B2(G). This relation would have
advantages in the study of asymptotic results.

The following lower bound, called density lower bound, plays an important role
in the study of B(G) [4,5]:

B(G) ≥
⌈

n − 1
D(G)

⌉
,
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(a) Power graph P 2
10 (b) 3-cube Q3

Figure 2. Subgraphs of Pn ⊗ Pn.

where D(G) is the diameter of G. For two-dimensional bandwidth, the density
lower bound and the corresponding upper bound are as follows (obtained in [5,9]).

Lemma 2.3. For any graph G with n vertices and diameter D(G),

⌈√
n − 1

D(G)

⌉
≤ B′

2(G) ≤ �√n − 1	,
⌈

δ(n)
D(G)

⌉
≤ B2(G) ≤ δ(n),

where

δ(n) = min
{

2
⌈√

2n − 1 − 1
2

⌉
, 2

⌈√
n

2

⌉
− 1

}
.

In brief, we have B2(G) = O(
√

n). This is the basic form of the square-root
property.

3. Bandwidth-k graphs

We are concerned with the relation between B(G) and B′
2(G) or B2(G) in this

section. A graph with B(G) = k is called a bandwidth-k graph. A well-known
characterization of the bandwidth is that B(G) is the smallest integer k such that
G can be embedded in P k

n , where P k
n is the kth power of path Pn (see [4]). Here

is an easy observation:

Proposition 3.1. For any bandwidth-2 graph G, B′
2(G) = 1.

Proof. If B(G) = 2, then G can be embedded in P 2
n , which can be viewed as a

subgraph of Pn ⊗ P2 (see Fig. 2a). By Proposition 2.1, the result follows. �

So this is a consequence of Proposition 2.1. Besides, there are more examples of
this kind. The embedding of Figure 2b shows that B′

2(Q3) = 1. Another example
can be seen in Proposition 4.4 (Fig. 6).
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Proposition 3.2. �√k + 1	 − 1 ≤ B′
2(P

k
n ) ≤ �√k + 1	.

Proof. Let G′ be a maximal complete subgraph of G = P k
n . In other words, V (G′)

is a maximal clique of G and |V (G′)| = k + 1. By Lemma 2.3, we have

B′
2(P

k
n ) ≥ B′

2(G
′) ≥ �√k + 1 − 1	.

On the other hand, let m = �√k + 1	 and r = � n
m	. Then we can embed G

into the grid graph H = Pr ⊗ Pm as follows. Let V (H) = {(i, j) : 1 ≤ i ≤
m, 1 ≤ j ≤ r} be the vertex set of the grid graph. Then we embed the n ver-
tices of G (in the order of path Pn) into V (H) column by column from left
to right. That is to say, the n vertices of G are put into the first n positions
of (1, 1), (2, 1), . . . , (m, 1), (1, 2), (2, 2), . . . , (m, 2), . . . , (1, r), (2, r), . . . , (m, r). Note
that in graph G = P k

n , any k+1 consecutive vertices form a maximal clique, which
has at most m2 vertices. It follows that each of such cliques occupies at most m+1
columns of V (H). Therefore the maximum L∞-distance of adjacent vertices in G
is m = �√k + 1	, proving the upper bound. This completes the proof. �

Proposition 3.3. For any bandwidth-k graph G, B′
2(G) ≤ �√k + 1	.

Proof. If B(G) = k, then G is a subgraph of P k
n , thus B′

2(G) ≤ B′
2(P

k
n ) ≤ �√k + 1	

by Proposition 3.2, as required. �
As a consequence, we have the following asymptotic result.

Proposition 3.4. B2(G) = O
(√

B(G)
)
.

This is the second form of the square-root property. To explain in detail, let
us see some interesting examples as follows. Notice that in determining the exact
value of the bandwidth, we have two things to do: on the one hand, we derive a
lower bound of the bandwidth; on the other hand, we construct an embedding of
the graph attaining this lower bound (so that we obtain an upper bound that is
equal to the lower bound).

• First, for the complete graph Kn, B(Kn) = n − 1 and B′
2(Kn) = �√n − 1	.

In fact, both results can be easily seen by the density lower bounds (note that
D(G) = 1).

• A typical example is B(Q3) = 4 for the 3-dimensional cube Q3 (see [4]). Now
we have B2(Q3) = 2 =

√
4, exactly the value of square root. In fact, the lower

bound is due to the fact that Q3 is not isomorphic to any subgraph of Pn × Pn

(since Q3 = C4 ×K2 and if two disjoint C4’s are embedded into two meshes of the
grid graph, then the distance between two corresponding vertices of the cycles is
at least two); and the upper bound is due to the embedding of Figure 2b above.

• The Möbius ladder M2k is a cycle of length 2k with all pairs of vertices at
distance k apart in the cycle joined by an edge (see Fig. 3a). It is also well known
that B(M2k) = 4 (Thm. 4.4.11 of [4]). By the embedding of Figure 3b, we can see
that B2(M2k) = B′

2(M2k) = 2 =
√

4, also fitting the square-root property exactly.
Note that the lower bound is also obtained by the fact that M2k is not isomorphic
to any subgraph of Pn × Pn (since M2k is not a planar graph).
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(a) Möbius ladder (b) Embedding

Figure 3. Optimal embedding of Möbius ladders.
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(a) Petersen graph (b) Embedding

Figure 4. Optimal embedding of Petersen graph.

• It is easy to show that the Petersen graph G has B(G) = 5 (the lower bound
5 is due to D(G) = 2 and the density lower bound). On the other hand, by the
two-dimensional embedding of Figure 4b, we have B2(G) = B′

2(G) = 2 for the
Petersen graph. In fact, the lower bound is also because it is not a subgraph of
Pn × Pn (since G is not a planar graph).

• Let T2,k be a complete binary tree with n = 2k+1 − 1 vertices. Paterson
et al. (1981) proved that B2(T2,k) = Θ(

√
n/logn) (see Thm. 5.5 of [5]). In fact,

since D(T2,k) = 2k = O(log n), the lower bound here is the same for B′(T2,k) in
Lemma 2.3. This is a meaningful example of asymptotic results for the square-root
rule.

4. Graph products

Note that in the extended grid graph H ′, in addition to the horizontal and ver-
tical lines, there are two families of parallel lines: one with slope +1 and one with
slope −1. We call them positive-slope lines and negative-slope lines respectively.

Let Pn, Cn, and Kn denote the path, the cycle, and the complete graph on
n vertices respectively. With respect to cartesian products of graphs, the basic
results on the one-dimensional bandwidth were established in early years:

• for planar grids Pm × Pn, B(Pm × Pn) = min {m, n};
• for cylinder grids Pm × Cn, B(Pm × Cn) = min {2m, n};
• for torus grids Cm × Cn, B(Cm × Cn) = 2 min {m, n} − δm,n.
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(a) C5 × P4
(b) C5 × C4

Figure 5. Cylinder and torus grids.

Here, the first two were presented by Chvátalová in 1975 (see [4]) and the third
one was presented by Li et al. in 1981 [8].

For the two-dimensional bandwidth, the corresponding results are relatively
easy. It is clear that B2(Pm × Pn) = B′

2(Pm × Pn) = 1 by Proposition 2.1.
Furthermore, we have

Proposition 4.1. For the cartesian product of a path and a cycle Pm × Cn (the
cylinder grid), B′

2(Pm × Cn) = 1 and B2(Pm × Cn) = 2 (m ≥ 2, n ≥ 3).

Proof. Let G = Pm × Cn. For this cartesian product, the horizontal copies are
paths Pm and vertical copies are cycles Cn.

First, for B′
2(G) = 1, it suffices to give an embedding of edge length 1 in H ′.

This can be done by putting the cycles Cn along two consecutive negative-slope
lines and then translating the cycles along the positive-slope lines (the direction
of Pm). An example is shown in Figure 5a.

Second, for B2(G) = 2, we first show the lower bound. Suppose to the contrary
that B2(G) = 1, that is, G can be embedded into a subgraph of the grid graph H
such that any two adjacent vertices have distance one. We take an edge e of the
vertical cycle Cn and let S be the set of m vertical copies of e. Then G − S is a
grid graph G′ = Pm × Pn, which has a unique embedding in H (in the sense of
symmetry). From this we can see that the edges in S must have length at least
n − 1 ≥ 2, which is a contradiction to B2(G) = 1. On the other hand, the upper
bound is obtained by the embedding of Figure 5a. This completes the proof. �

Proposition 4.2. For the cartesian product of two cycles (the torus grid), B2(Cm×
Cn) = B′

2(Cm × Cn) = 2 (m, n ≥ 3).

Proof. Let G = Cm × Cn. For this cartesian product, the horizontal copies are
cycles Cm and vertical copies are cycles Cn.

We first show the lower bound that B′
2(G) ≥ 2. Suppose not. Then B′

2(G) = 1
and by Proposition 2.1, G can be embedded into a subgraph of the extended grid
H ′ such that any two adjacent vertices have distance one. We may call this a
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distance-1 embedding. We take an edge e of the vertical cycle Cn and let S be the
set of m vertical copies of e. Then G−S is a cylinder grid G′ = Cm ×Pn. By the
previous proposition, G′ has a distance-1 embedding in H ′ (as shown in Fig. 5a).
Furthermore, we can prove the following
Claim. This distance-1 embedding of cylinder grid G′ = Cm × Pn is unique (up
to symmetry).

In fact, let us consider two consecutive copies of cycle Cm in the cylinder grid,
for which two corresponding vertices are joined by an edge. So there are m quadri-
lateral meshes (cycle C4) between these two cycles. Note that in a distance-1 em-
bedding, the opposite sides of a quadrilateral mesh are always parallel (no matter
it is a square or a rhombus). Therefore, shifting a copy of cycle Cm to the next
copy of Cm is a translation of distance one and these two copies are not overlapped.
For this embedding of cylinder grid G′ = Cm × Pn, due to the non-overlapping
translation, the only possible form of the embedding of cycle Cm is along two con-
secutive slope lines of one direction (say, negative-slope lines) and the translation
moves along the slope lines of other direction (say, positive-slope lines). Thus the
unique form of embedding is the one depicted in Figure 5a. Hence we show the
claim.

Applying this claim to the embedding of torus G, we conclude that the edges
in S must have length at least n − 1 ≥ 2, contradicting B′

2(G) = 1. This proves
the lower bound.

We next show the upper bound B2(G) ≤ 2. This can be done by constructing
an embedding f with B2(G, f) = 2. Recall the one-dimensional bandwidth em-
bedding (labelling) of B(Cn) = 2 for cycle Cn. Suppose that the vertices of Cn are
1, 2, · · · , n arranged clockwise. Then an optimal labelling (with bandwidth 2) is in
the order 1, n, 2, n− 1, · · · , n

2 , n
2 +1 (if n is even) or 1, n, 2, n− 1, · · · , n+1

2 +1, n+1
2

(if n is odd). Now let f1 be an optimal embedding of Cm on the horizontal line
and let f2 be an optimal embedding of Cn on the vertical line. Then f = (f1, f2)
is a two-dimensional embedding that each horizontal copy Cm is embedded by f1

while each vertical copy Cn is embedded by f2. An example is shown in Figure 5b.
So we have B2(G, f) = 2 and thus B2(G) ≤ 2.

Finally, combining the lower and upper bounds gives 2 ≤ B′
2(G) ≤ B2(G) ≤ 2.

Therefore B′
2(G) = B2(G) = 2. This completes the proof. �

The bandwidth of cartesian product of two complete graphs has been obtained
by Mai and Luo [10]: B(Kn × Kn) = n(n + 1)/2 − 1. The following also reflects
the square-root property.

Proposition 4.3. �(n − 1)/2	 ≤ B′
2(Kn × Kn) ≤ B2(Kn × Kn) ≤ n − 1 and the

bounds are tight.

Proof. Since the diameter of G = Kn × Kn is 2, the lower bound is due to
Lemma 2.3. On the other hand, the upper bound can be obtained by the following
embedding f : G is embedded in an n×n grid such that each horizontal or vertical
line holds a copy of Kn in a given order. Then B′

2(G, f) = B2(G, f) = B(G) =
n − 1, giving the upper bound. For example, B′

2(K3 × K3) = B2(K3 × K3) = 2
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Figure 6. Embedding of Tn.

(by Prop. 4.2) attains the upper bound; B′
2(K4 × K4) = 2 (by embedding G in a

4 × 4 grid with four copies of K4 at four corners) attains the lower bound. �

The bandwidth of triangulated triangles Tn was a difficult problem (posed by
D. West) in this direction. Here Tn is a graph with vertex set {(x, y, z) ∈ Z3 :
x+ y + z = n, x, y, z ≥ 0} and two vertices (x, y, z) and (x′, y′, z′) are joined by an
edge if |x−x′|+|y−y′|+|z−z′| ≤ 2 (they agree in one coordinate and differ by 1 in
the other two coordinates). Hochberg et al. [7] proved that B(Tn) = n + 1 for the
one-dimensional bandwidth. However, the result of two-dimensional bandwidth is
rather trivial:

Proposition 4.4. For the triangulated triangles Tn, B′
2(Tn) = 1 and B2(Tn) = 2.

Proof. We may define an embedding of Tn into the extended grid graph H ′ by
an injection f : (x, y, z) 
→ (x, y). Then the image of the vertex set V (Tn) =
{(x, y, z) ∈ Z3 : x + y + z = n, x, y, z ≥ 0} in the plane is {(x, y) ∈ Z2 : x +
y ≤ n, x, y ≥ 0}, and two vertices (x, y) and (x′, y′) are joined by an edge if
|x − x′| + |y − y′| ≤ 1 or |x − x′| + |y − y′| = 2 and x + y = x′ + y′. So this
embedding of Tn is a subgraph of H ′ (as shown in Fig. 6). Therefore B′

2(Tn) = 1.
Moreover, this embedding implies an upper bound that B2(Tn) ≤ B2(Tn, f) = 2.
On the other hand, as a subgraph of Tn, a triangle C3 has B2(C3) = 2. So we
deduce a lower bound that B2(Tn) ≥ B2(C3) = 2. Combining the lower and upper
bounds gives B2(Tn) = 2. The proof is complete. �

5. Hypercubes

In this section we proceed to consider the hypercubes. By an n-cube Qn, we
mean the graph whose vertex set is the set of all n-tuples of 0’s and 1’s, where
two vertices are adjacent if they differ in exactly one coordinate. Clearly, it has
2n vertices and diameter n, and it is also a cartesian product Qn = K2 × K2 ×
· · ·×K2. The one-dimensional bandwidth B(Qn) is a well-known result, due to L.
Harper (see surveys [4–6]). The two-dimensional bandwidth (dilation) problem of
embedding Qn into grid graph H has been studied and lower and upper bounds
are obtained in [2].

Now we consider embedding Qn into extended grid graph H ′.
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Figure 7. Embedding of Q2i.

Proposition 5.1. For the n-cube Qn on 2n vertices, we have

�(√2n − 1)/n	 ≤ B′
2(Qn) ≤ 2�

n
2 �−1.

Proof. The lower bound is due to Lemma 2.3. To show the upper bound, it
suffices to describe an embedding algorithm of Qn with the required bandwidth.
We distinguish two cases as follows.

Case 1: n is even. Clearly, Q2 is a 4-cycle, which can be embedded in a 2×2 grid
(see Fig. 7a) and so B′

2(Q2) = 1. Further, Q4 = Q2 × K2 × K2 can be embedded
in a 4 × 4 grid with four copies of Q2 at the four corners (see Fig. 7b). Note
that, by the definition of cartesian product, between two corresponding vertices
of two Q2’s in the same vertical or horizontal line, there is an edge joining them.
For convenience, we call the edges in each Q2 the inner edges, and those between
different Q2’s the outer edges. So, each inner edge has length 1 while each outer
edge has length 2. Thus the maximum length of edges in this embedding is 2. In
general, if Q2i has been embedded in a ai × ai grid, then we embed Q2i+2 in a
ai+1 × ai+1 grid, where ai+1 = 2ai, with four copies of Q2i at the four corners. By
the recursive relation ai+1 = 2ai and a1 = 2, we obtain ai = 2i. So the maximum
length of outer edges in this embedding of Q2i+2 is ai = 2i (where i = n/2 − 1).

Case 2: n is odd. We define a k-diamond to be a set of lattice points contained
in the intersection of k consecutive positive-slope lines and k consecutive negative-
slope lines. A 4-diamond is shown in Figure 8a. Now we state the embedding
algorithm. First, Q3 can be optimally embedded in a 4-diamond (see Fig. 8a) and
so B′

2(Q3) = 1. Similar to the previous case, if Q2i−1 has been embedded in a
ai-diamond, then we embed Q2i+1 = Q2i−1 × K2 × K2 in a ai+1-diamond, where
ai+1 = 2ai, with four copies of Q2i−1 at the four corners. For example, Q5 is
embedded in a 8-diamond with maximum edge-length 2 (see Fig. 8b, some outer
edges are omitted). By the recursive relation ai+1 = 2ai and a2 = 4, we obtain
ai = 2i. Consequently the length of each outer edge in this embedding of Q2i+1 is
ai/2 = 2i−1. So the maximum length of edges in this embedding is 2�

n
2 �−1. This

completes the proof. �
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(a) Q3 (b) Q5

Figure 8. Embedding of Q2i+1.

For small n, the above embedding is optimal:

Corollary 5.2. For n ≤ 5, the upper bound in Proposition 5.1 gives exact results:
B′

2(Q2) = B′
2(Q3) = 1, B′

2(Q4) = B′
2(Q5) = 2. Moreover, B2(Q4) = 2.

Proof. The former result is obvious. We next see B′
2(Q4) = 2. In fact, by using

the method of Proposition 4.2, we can show that B′
2(Q4) = 1 is impossible (since

Q4 = Q3 × K2 and the distance-1 embedding of Q3 is unique (see Fig. 8a), the
distance-1 translation of two copies of Q3 must be overlapped). So we have the
lower bound B′

2(Q4) ≥ 2. On the other hand, the upper bound B′
2(Q4) ≤ 2 is

obtained by the embedding of Figure 7b. This embedding also implies B2(Q4) = 2.
Finally, the lower bound of B′

2(Q5) follows from B′
2(Q5) ≥ B′

2(Q4) = 2 while the
upper bound is obtained by the embedding of Figure 8b. This completes the
proof. �

However, for large n the asymptotic behavior of Proposition 5.1 is not so good.
For even n, [2] obtained a better asymptotic result B2(Qn) = O(

√
2n/n). It seems

that no better result is known for odd n yet.

6. Conclusion

In the foregoing sections, we study the two-dimensional bandwidth B2(G) and
B′

2(G) for several classes of special graphs. The core is the square-root rule
B2(G) = O(

√
B(G)), which describes a general picture of the topic. However,

the exact relation of B(G) and B2(G) is rather complicated. In fact, the charac-
terization of B(G) = 1 is trivial while that of B2(G) = 1 is hard. On the other
hand, for the triangulated triangles Tn, the result of B(Tn) = n + 1 is quite in-
volved (see [7]) while B2(Tn) = 2 is almost trivial (see Prop. 4.4). Moreover, for
P k

n , the k-th power of path Pn, it is clear that B(P k
n ) = k. We have determined

B2(P k
n ) in Proposition 3.2 (with two possible values). It is known that the result
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of B(P k
n ) = k can be easily generalized to the proper interval graphs. The algo-

rithm for determining B2(P k
n ) in Proposition 3.2 can also be generalized to the

proper interval graphs. Furthermore, there has been polynomial-time algorithms
of determining B(G) for interval graphs. The problem of determining B2(G) for
interval graphs should be worthwhile to study. Finally, more results for typical
graphs are expected. Especially, the exact result for n-cubes should be settled for
all n.
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