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A BRANCH-AND-PRICE ALGORITHM FOR THE WINDY
RURAL POSTMAN PROBLEM

Hasan Murat Afsar1, Nicolas Jozefowiez2, 3 and Pierre
Lopez2, 4

Abstract. In this paper, we propose an exact solution method for
the Windy Rural Postman Problem (WRPP). The motivation to study
this problem comes from some real-life applications, such as garbage
collecting in a predefined sector with hills, where the traversing or the
servicing speed can change following the direction.
We present a Dantzig-Wolfe decomposition and a branch-and-price al-
gorithm to solve the WRPP. To the best of our knowledge, Dantzig-
Wolfe decomposition has never been used to solve that problem.
The numerical results show that optimal solutions are found in a very
reasonable amount of time on instances with up to 100 nodes and 180
edges.

Keywords: Branch-and-Price, Windy Rural Postman Problem

1. Introduction

The purpose of this paper is to investigate the use of a Dantzig-Wolfe decomposi-
tion and a branch-and-price algorithm to solve the Windy Rural Postman Problem
(WRPP). The WRPP is an asymmetric variant of the Rural Postman Problem
(RPP) [2]. The RPP is an arc routing problem that arises when a subset of the
arcs must be visited. It is a general case of the Chinese Postman Problem (CPP)
in which a circuit that visits all the arcs at least once must be found [2,14]. In the
WRPP, the cost of traversing an edge depends on the traveling direction.
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The problem can be described as follows: Given an undirected graph G = (V,E ∪
ER), a cost function is associated with every edge/direction (cij and cji are the
costs of traversing edge [i, j] in either directions) and ER is the subset of required
edges (i.e., needing service), which are supposed to be visited at least once. The
WRPP then consists in finding a minimum cost circuit traversing every edge of
ER at least once. Note that any edge can be visited many times without serving,
but each required edge is served only once.
First introduced by Orlof [15], the RPP has been shown to be NP-hard by Lenstra
and Rinnooy Kan, in the general case [12]. As the RPP is a special case of the
WRPP, the WRPP is also NP-hard. Christofides et al. [3] proposed a branch-
and-price method for the RPP. Branch-and-cut methods were also considered by
Sanchis [16], Corberán and Sanchis [6], Letchford [13], and more recently by Ghiani
and Laporte [8]. Benavent et al. [2] were inspired by a property obtained by
Win [17] for the windy version of the CPP to solve the WRPP. Win showed that
if the graph is Eulerian, the windy CPP is polynomial. A feasible solution for the
WCPP is also feasible for the WRPP, since the windy CPP is a special case of
the WRPP. By using a stochastic method to duplicate the edges or changing their
costs in a given range, Benavent et al. then present a multi-start scatter search
algorithm. They also detail a cutting-plane procedure to exactly solve or to obtain
lower bounds of the WRPP [1].
In our work, during a field analysis for a waste collection project, the WRPP
was used as a key component in order to find an optimal rotation of a truck.
Our main contribution is the study of the WRPP by means of a Dantzig-Wolfe
decomposition and its solution by means of a branch-and-price algorithm. The
proposed algorithm is shown to be competitive with a state-of-the-art branch-
and-cut algorithm from the literature [1] and appears as a good stepping stone for
further improvement.
The paper is organized as follows. Section 2 introduces mathematical models ob-
tained as results of the Dantzig-Wolfe decomposition and a mixed-integer model
for the sub-problem. Section 3 details the branch-and-price algorithm and algo-
rithms to solve the sub-problem. Computational results and conclusions follow in
Sections 4 and 5, respectively.

2. Mathematical Models

Starting from the edge-based model proposed by Benavent et al. [1], we propose a
Dantzig-Wolfe decomposition into a master problem and a sub-problem. We also
present a lower bound based on the Lagrangian relaxation of required edge service
constraints.

2.1. Edge-based model

Benavent et al. [1] give an extension to the WRPP of the mixed integer program-
ming (MIP) model proposed by Grötschel and Win [9] for the windy postman
problem. The integer decision variable uij counts the number of times the edge
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(i, j) is traversed from i to j. The set of the incident edges of vertex i is denoted by
δ(i). The sub-graph GR induced by ER is not necessarily connected. We denote
by V1, V2, ..., Vp the connected components of GR; they are called R-connected
components in [5].

Model 1

C
∗,(1)
WRPP , min

∑
(i,j)∈E

(cijuij + cjiuji) (1)

s.t.:
uij + uji ≥ 1 ∀(i, j) ∈ ER (2)∑

(i,j)∈δ(i)

(uij − uji) = 0 ∀i ∈ V (3)

∑
(i,j)|i∈S,j∈V \S

uij ≥ 1 ∀S =
⋃
k∈Q

Vk, Q ⊂ {1, ..., p} (4)

uij , uji ∈ N ∀(i, j) ∈ E (5)

In Model 1, the objective is to minimize the total travel cost defined by Equa-
tion (1). Constraints (2) impose that every required edge is visited at least once.
Constraints (3) are the flow conservation constraints. The connectivity between
connected components is ensured by constraints (4): there must be at least one
edge between any combination of connected components and the rest of the nodes.
Note that constraints (4) are binding constraints and they significantly complicate
the solution of the problem. Dantzig and Wolfe [7] propose a special reformulation
and decomposition of the problem into a master and a sub-problem. Constraints
(3) and (4) are considered by the sub-problem. The master problem takes into
account only the set covering constraints (2).

2.2. Mathematical Model of the Restricted Master Problem

The master problem (MP) obtained by the Dantzig-Wolfe decomposition is a path-
based model in which only the constraints related to the necessity of visiting all
the required arcs are kept. Now, each variable represents a feasible closed-walk,
i.e., a circuit passing at least once through each edge of ER. We will denote by P
the set of all the feasible closed-walks. The length of a closed-walk p ∈ P will be
denoted by cp. In spirit with the column generation approach we have adopted,
we will only consider at a time a subset P ′ ⊂ P . The restricted master problem
(RMP) is formulated as follows. For each p ∈ P ′, let λp ≥ 0 equal to 1 if and
only if p is used. For each edge (i, j) ∈ ER, and γijp is equal to 1 if and only if
the closed-walk p ∈ P ′ serves (i, j) by traveling from i to j. Then, the restricted
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master problem (RMP) is:

C∗RMP , min
∑
p∈P ′

cpλp (6)

s.t.:∑
p∈P ′

λp = 1 (7)

∑
p∈P ′

(γijp + γjip )λp = 1 ∀[i, j] ∈ ER (8)

λp ≥ 0 ∀p ∈ P ′. (9)

The objective function (6) minimizes the total cost of the chosen closed-walks.
Only one closed-walk should be chosen (constraint (7)). Constraints (8) guarantee
that every required edge in ER is used only once and in a unique direction.

2.3. Mixed Integer Model of the Sub-Problem

First, we must underline that, even if the graph is asymmetric and the cost of an
edge depends on the travel direction, an edge has a unique dual variable indepen-
dent from the direction. This is the main reason why we use edge notation instead
of arc notation.
In the sub-problem, we are looking for closed-walks with negative reduced costs.
Let π0 and πij be the dual variables associated to the constraints (7) and (8),
respectively. We define the reduced cost c̄p of a closed-walk p as follows:

c̄p = cp −
∑

[i,j]∈E

(γijp + γjip )πij − π0

We introduce a parameter βijp which counts the number of travels through edge
[i, j], from i to j, with or without service, on a closed-walk p. Hence βijp − γijp is
the number of times the vehicle traverses the edge [i, j] without servicing. The
cost of a closed-walk p can be rewritten as:

cp =
∑

[i,j]∈E

(βijp cij + βjip cji).
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For a given closed-walk p, π0 is constant. Thus, the reduced cost can be refor-
mulated as:

c̄p =
∑

[i,j]∈E

(βijp cij + βjip cji)−
∑

[i,j]∈ER

(γijp + γjip )πij − π0

=
∑

[i,j]∈ER

[γijp (cij − πij) + γjip (cji − πij)] +
∑

[i,j]∈ER

[(βijp − γijp )cij + (βjip − γjip )cji] +

∑
[i,j]∈ENR

(βijp cij + βjip cji)− π0

To formulate the sub-problem, we replace the parameters γijp and βijp − γijp by the
binary variables yij which indicate whether edge [i, j] is served on this closed-walk,
and the integer variables zij which count the traversing of [i, j] without servicing.
The integer variable xij is the total number of traversing. An artificial variable fij
for each (i, j) ∈ E forces the walks to be connected. As previously, the set of the
incident edges of vertex i is denoted by δ(i). Each edge has two costs (distances)
following the directions cij and cji. A large number M is used as well in the
formulation of the sub-problem.

Model 2

C
∗,(2)
WRPP , min

∑
[i,j]∈ER

{yij(cij −πij) + yji(cji−πij)}+
∑

[i,j]∈E

(zijcij + zjicji) (10)

s.t.:
yij + yji ≤ 1 ∀[i, j] ∈ ER (11)
yij + zij = xij ∀[i, j] ∈ E (12)
yji + zji = xji ∀[i, j] ∈ E (13)∑

[i,j]∈δ(i)

(xij − xji) = 0 ∀i ∈ V (14)

fij ≤ Mxij ∀[i, j] ∈ E (15)
fji ≤ Mxji ∀[i, j] ∈ E (16)∑

[i,j]∈δ(i)

(fij − fji) = 1 ∀i ∈ V \ {s} (17)

∑
(s,j)∈δ(s)

fsj ≥ 1 (18)

xij , xji ∈ R , zij , zji ∈ Z ∀[i, j] ∈ E
yij , yji ∈ {0, 1} , fij , fji ∈ R ∀[i, j] ∈ E (19)

The objective function (10) minimizes the reduced cost of the closed-walk. As
π0 is constant at a given iteration for all the closed-walks, it is dropped from the
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objective function which minimizes now the difference between the total distance
and the sum of the dual values. Constraints (11) allow serving a required edge
at most once, only in one direction. Total times of traveling through edges in
one or other direction are defined by constraints (12) and (13). Every time the
postman comes into a vertex, he must go out of it (flow conservation, constraints
(14)). Constraints (15) and (16) put in relation flow of type x and flow of type
f : If there is a flow on an edge in one direction, then traversing counter direction
should be greater than zero. There is a consumption of the flow at each vertex,
except the source s (constraints (17) and (18)); thanks to these constraints, the
walk is connected. If an edge is not used in the optimal solution, corresponding
counting and flow variables are equal to zero but there is always at least a couple
of incident edges for all vertices. As the variables yij and zij are defined as binary
and integer, respectively, xij and fij can be defined as real numbers (constraints
(19)).

2.4. Lagrangian Bound of the Master Problem

Lagrangian relaxation is a technique that works by removing hard constraints and
putting them into the objective function, assigned with weights called Lagrangian
multipliers. Each weight represents a penalty on the objective function if the par-
ticular constraint is not satisfied.We obtain the lower bound of the MP by pushing
the constraints (8) to the objective function (6) with Lagrangian multipliers (πij)
:

θ(π) = min
p∈P
{cp +

∑
[i,j]∈ER

πij(1− (γijp + γjip ))}. (20)

We denote by π = (πij)[i,j]∈E the vector of dual values associated with constraints
(8).
By reformulating equation (20), we obtain:

θ(π) = min
p∈P
{c̄p +

∑
e∈ER

πij + π0}.

The expression
∑
e∈ER

πij+π0 is constant for a given Lagrangian vector π. Therefore,

every time the minimum reduced cost (c̄∗p = min
p∈P

c̄p) is found, i.e., the sub-problem

is solved to optimality, the Lagrangian lower bound is easily calculated. Having a
valid lower bound of the MP can be useful to trigger an early stop of the column
generation procedure. At each iteration, we can find out the gap between the best
feasible solution found so far and the best Lagrangian lower bound (θ∗), which
can be written as follows:

θ∗ = max
π

θ(π) = max
π
{c̄∗p +

∑
e∈ER

πij + π0}.
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At each iteration, if the sub-problem is solved to optimality and the minimum
reduced cost calculated, the best Lagrangian lower bound (θ∗) is updated if the
new Lagrangian bound is better than the actual best Lagrangian lower bound.
This update is in constant time and the lower bound is used as an indicator. It
must be underlined that, when the column generation procedure terminates, the
optimal solution of the linear relaxation of the restricted master problem is equal
to the Lagrangian lower bound.

3. Column Generation Heuristics for the WRPP

A branch-and-price algorithm is proposed to solve the WRPP. The column gen-
eration heuristic is described in Section 3.1 and different algorithms to solve the
sub-problem are detailed in Sections 3.2 and 3.3. The branching strategy is given
in Section 3.4.

3.1. Column Generation Heuristic

The implementation of the standard column generation procedure for the WRPP
is described as follows: Starting from an initial set P ′ of closed-walks, which is
initialized by the insertion heuristic described in Section 3.3, the RMP is solved.
Then, we search for at most K closed-walks with negative reduced cost. We limit
the number of the closed-walks with reduced cost to prevent adding too many
columns during the first iterations, where the dual variables are not yet stabilized.
Negative reduced cost columns are first searched by means of a shortest path
based heuristic (SPBH) presented in Section 3.2. If the algorithm is unable to find
a negative reduced cost closed-walk p, we use the insertion heuristic detailed in
Section 3.3. If this method also fails, we solve to optimality the MIP described
in Section 2.3 by means of an MIP solver. Generated feasible closed-walks, which
have a positive reduced cost, are kept in a pool to be used as candidate columns
to be inserted in the RMP. We use the Lagrangian relaxation of the sub-problem
to stop the search if the gap is closed with the best closed-walk found so far.
The procedure comes to end when there is no more variable with negative reduced
cost to add to the MP.

3.2. Shortest Path Based Approach

We search for a shortest elementary path on G = (V,E). Each required edge
[i, j] is weighted by cij − πij (or cji − πij , according to the direction). Naturally
the weight of a non required edge is only its distance. The shortest path based
approach will minimize the function f(i, p) over a set of required edges not yet
serviced. This function f(i, p) is the reduced cost of the partial (and open) walk
p when the dual value π0 is dropped. To extend a partial walk p ending at node
k by a non-incident required edge [i, j], we have:

f∗(j, p ∪ [k, i] ∪ [i, j]) = min
[j,i]6∈p

f∗(k, p) + cki + cij − πij
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where
f∗(s, ∅) = 0 and f∗(s, p) = c̄p + π0.

Figure 1 illustrates such extension of a partial walk p.

p
k

i

j

Figure 1. Extending a partial walk with a non-incident required edge

It is obvious that, if the nodes k and i coincide, the partial walk p is directly
extended by a required edge ([k = i, j] ), and the intermediary non-required edge
cost disappears (cki = ckk = 0). Then, the expression becomes:

f∗(j, p ∪ [k, j]) = min
[j,i] 6∈p

f∗(k, p) + ckj − πkj .

Dijkstra’s label fixing algorithm (Algorithm 1) is used to find the shortest path.
Each label (lv) is initialized to infinity, except the label of the source node; at each
iteration, the label with the least cost is fixed and extended to the other nodes.
An alternative to this method is to weight the arcs by only dual values and to
search for the longest elementary path.

Algorithm 1 Shortest path based heuristic

p = {s} ; ST = V
for all v ∈ ST do
lv =∞

end for
ls = 0
while ST 6= ∅ do
Find u = arc min

v∈St

lv

ST = ST − {u}
for all v ∈ ST do

if f(v, p ∪ {v}) ≤ lv then
p = p ∪ {v}
lv = f(v, p)

end if
end for

end while
Find p = arcmin

v∈V
{f(v, p) + cvs}
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The shortest path based method does not necessarily visit all the required edges.
The following insertion algorithm is used to give a complete and feasible solution
to the WRPP.

3.3. Insertion Heuristic

The required edges are listed in a decreasing order of their dual values. Then every
edge in the list is inserted at the best position. Since the cost of an edge depends
on the direction, during the insertion two directions of the edge are compared for
every possible insertion point. The best insertion position is the one that causes
the least increase in the reduced cost. Let us assume that edge [i, j] is inserted,
in the position α, between edges [k, l] and [m,n]. Reduced cost increase (∆(c̄)) is
calculated as follows:

∆(c̄(α)) = min(cli + cij + cjm − πij , clj + cji + cim − πij).

If there is not an edge between nodes l and i, cli is the distance of the shortest
path between them. After inserting all required edges, the closed-walk is locally
improved by reversing or swapping edges.
The insertion algorithm (2) starts with a partial walk p which has only the source
node and at each iteration, the edge with the highest dual value, which is not
visited by p, is inserted into the best position (α).

Algorithm 2 Insertion heuristic

Sort edges in a decreasing order of dual values (LT )
p = {s}
for ∀e ∈ LT do
Find min

α
∆(c̄)

Insert e in the position α to p
end for

3.4. Branching Strategy

Column generation is applied at every node of the tree generated by the branch-
and-price algorithm. We branch when the flow over a non-required edge is not
an integer, i.e., zij = ξ where ξ 6∈ N. In that case two branches are created, with
zij ≥ dξe and zij ≤ bξc. These two constraints are easily added to the MIP of the
sub-problem. On the other hand, such a constraint is almost impossible to verify
with the insertion heuristic and the shortest path based approach. That is why,
these two heuristic approaches are only used at the root node of the branch-and-
price tree.
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4. Experimental Results

We tested our algorithm on the instances of Christofides et al. [4] and the instances
generated from Hertz et al. (1999) [11]. The RPP instances of Hertz et al. [10]
were transformed in WRPP instances by Benavent et al. in [2]. The instances of
Christofides et al. are small-size instances, whereas modified Hertz et al. instances
are large.
The proposed method is written in the programming language JAVA. CPLEX 11.1
is used as to solve LP and MIP. Experiments are conducted on an Intel dual core
3.0 GHz with 3 GB of RAM.
Each data set consists of 6 instances and the detail of each data set is given in
Table 1. The table gives the number of nodes |V |, of required edges |ER|, of
unrequired edges |ENR|, and of all edges |E|). The column |CC| represents the
number of connected components of the sub-graph induced by required edges. On
the last two columns, we give the average resolution mean time of each instance
family obtained by our branch-and-price algorithm and by the branch-and-cut
method of Benavent et al. [1] 1.
Almost all of the instances except three are solved to optimality by the proposed
branch-and-price algorithm. These three instances are in HG5, HG9, and C21.
The sub-problem for these instances cannot be solved in a reasonable amount of
time. Therefore even a Lagrangian lower bound cannot be computed to give a gap
and they are excluded from the calculation of the average solution times of HG5,
HG9, and C21.
It is interesting to see that the data set with the greatest execution time does not
correspond to the largest instances. Actually, five out of six instances in each set
need an execution time of less than 5 seconds. One instance in each set takes more
than 200 seconds. It should be noted that the execution time of the method varies
almost 50 times on two different instances that have exactly the same number of
nodes and same connections. The only difference between two instances of the
same family is the cost of the edges.
One of the best methods found in the literature on WRPPs is the scatter search of
Benavent et al. [2]. The best and worst mean gaps between their solution and the
optimal solution, as well as the mean execution time following the parameters are
given in Table 2 on the instances of Christofides et al. [4] (C) and the instances
generated from Hertz et al. [11] (HG).
Our exact method obtains the optimal solution, in less than 5 seconds on the
instances up to 180 edges except one instance which takes a little more than 200
seconds. All the instances are solved on the root node of the branch-and-price
tree.
Another interesting point is that, the branch-and-price algorithm is much less sen-
sitive to the number of connected components (|CC|) than the number of required
edges.

1on a Pentium III, clocked at 1.0 GHz
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Table 1. Data properties and execution mean times

Instance set |V | |ER| |ENR| |E| |CC| Time (sec.) Time (sec.)
(Benavent et al.)

HG1 60 41 64 105 20 2.0 –
HG2 68 49 70 119 21 4.0 –
HG3 64 44 72 116 21 5.0 –
HG4 82 73 75 148 14 3.0 –
HG5 92 77 88 165 19 50.3 –
HG6 91 82 80 162 12 3.0 –
HG7 97 113 61 174 5 4.7 –
HG8 100 107 73 180 10 6.0 –
HG9 97 109 66 175 7 4.9 –
C01 11 7 6 13 5 0.2 2.2
C02 14 12 21 33 5 0.4 2.5
C03 28 26 31 57 5 0.5 3.4
C04 17 22 13 35 4 0.4 2.5
C05 20 16 19 35 6 0.3 3.1
C06 24 20 26 46 8 0.4 3.5
C07 23 24 23 47 4 0.3 2.0
C08 17 24 16 40 3 0.3 2.0
C09 14 14 12 26 4 0.3 2.7
C10 12 10 10 20 5 0.2 2.5
C11 9 7 7 14 4 0.2 1.7
C12 7 5 13 18 4 0.2 1.8
C13 7 4 6 10 4 0.1 1.4
C14 28 31 48 79 7 1.0 3.8
C15 26 19 18 37 9 0.4 3.1
C16 31 34 60 94 8 1.0 4.6
C17 19 17 27 44 6 0.4 2.1
C18 23 16 21 37 9 0.5 2.5
C19 33 29 25 54 8 1.0 5.5
C20 50 63 35 98 8 5.4 5.6
C21 49 67 43 110 7 3.4 6.5
C22 50 74 110 184 7 6.4 5.2
C23 50 78 80 158 7 4.0 6.6
C24 41 55 70 125 8 1.9 3.6

Table 2. Scatter search performance of Benavent et al.

Type of instance set Best mean gap Worst mean gap Mean execution time (sec.)
C 0.27% 0.43% 0.68
HG 0.69% 1.11% 2.09
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5. Conclusions

This paper proposes a Branch-and-Price algorithm for solving the Windy Rural
Postman Problem. We find the optimal solution for all the instances tested except
three. Another advantage is that the column generation procedure is very fast, for
the instances up to 100 nodes and 180 edges of which more than 100 are required.
An interesting future work would be to understand why the proposed method
cannot give any result for three instances by observing in detail the features of
these instances. Discovering the structure of the difficult instances can help us to
identify and to modify other instances which could be transformed into easy ones.
This can led us to solve other and larger WRPP instances, which we cannot solve
in a reasonable amount of time, until now.

Another idea is to find valid inequalities for the sub-problem and accelerate the
solution of the Mixed Integer Program. The resulting Branch-and-Cut-and-Price
algorithm would be more efficient.
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