
RAIRO Operations Research
RAIRO Oper. Res.41 (2007) 235–251

DOI: 10.1051/ro:2007021

A BRANCH-AND-CUT ALGORITHM
FOR A RESOURCE-CONSTRAINED SCHEDULING

PROBLEM ∗

Renaud Sirdey
1, 2

and Hervé L. M. Kerivin
3

Abstract. This paper is devoted to the exact resolution of a strongly
NP -hard resource-constrained scheduling problem, the Process Move
Programming problem, which arises in relation to the operability of
certain high-availability real-time distributed systems. Based on the
study of the polytope defined as the convex hull of the incidence vectors
of the admissible process move programs, we present a branch-and-cut
algorithm along with extensive computational results demonstrating its
practical relevance, in terms of both exact and approximate resolution
when the instance size increases.

Keywords. Polyhedral combinatorics, scheduling, branch-and-cut,
distributed systems.

Mathematics Subject Classification. 90C57, 68M14.

Introduction

In this paper, we present a branch-and-cut algorithm for the Process Move
Programming (PMP) problem. This problem arises in relation to the operability of
certain high-availability distributed switching systems. For example [27], consider
a telecom switch managing radio cells on a set of call processing modules, hereafter
referred to as processors, of finite capacity in terms of erlangs, CPU, memory,

Received March 16, 2006. Accepted December 21, 2006.

∗ This research was supported in part by ANRT grant CIFRE-121/2004.

1 Service d’architecture BSC (PC 12A7), Nortel GSM Access R&D, Parc d’activités de Ma-
gny-Châteaufort, 78928 Yvelines Cedex 09, France; renauds@nortel.com
2 UMR CNRS Heudiasyc (Université de Technologie de Compiègne), Centre de recherches de
Royallieu, BP 20529, 60205 Compiègne Cedex, France.
3 UMR CNRS Limos (Université de Clermont-Ferrand II), Complexe scientifique des Cézeaux,
63177 Aubière Cedex, France; kerivin@math.univ-bpclermont.fr

c© EDP Sciences, ROADEF, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/ro:2007021

http://www.edpsciences.org
http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:2007021

236 R. SIRDEY AND H.L.M. KERIVIN

9
11

38

39

45

8

18

20

23

2

10
24

25

27

42

6

22

32

46

5

7

14

16

26

29

30

36

44

12

15

17

19

21

34

1

4

28

31

13

33

35

40

43

3

37

41

1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

19

21

28

38

9
11

18

27

30

1

8

15

35

16

17

22

37

4

13

25

45

5

7

23

24

42

3

6

14

32

43

12

20

33

39

44

10

26

36

41

46

2

29

31

34

40

1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Figure 1. Example of an instance of the PMP problem.

ports, etc.; each radio cell being managed by a dedicated process running on
some processor. During network operation, some cells may be dynamically added,
modified (transreceivers may be added or removed) or removed, potentially leading
to unsatisfactory resource utilisation in the system. This issue is addressed by
first obtaining a better system configuration and by subsequently reconfiguring
the system, without violation of the capacity constraints on the processors.

Figure 1 provides an example of an instance of the PMP problem for a system
with 10 processors, one resource and 46 processes. The capacity of each of the
processors is equal to 30 and the sum of the consumptions of the processes is
281. The top and bottom figures respectively represent the initial and the final
system states. For example, process number 23 must be moved from processor 2 to
processor 6.

We now proceed with a formal definition of the problem.
Let us consider a distributed system composed of a set U of processors, each

processor offering an amount Cu ∈ N of a given resource. We are also given a set
P of applications, hereafter referred to as processes, which consume the resources
offered by the processors. The set P is sometimes referred to as the payload of the
system. For each process p ∈ P , wp ∈ N denotes the amount of resource which is
consumed by process p. Note that neither Cu nor wp vary with time.

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 237

An admissible state for the system is defined as a mapping f : P −→ U ∪{u∞},
where u∞ is a dummy processor having infinite capacity, such that for all u ∈ U
we have ∑

p∈P (u;f)

wp ≤ Cu, (1)

where P (u; f) = {p ∈ P : f(p) = u}. The processes in P̄ (f) = P (u∞; f) are not
instantiated and, when this set is non empty, the system is in degraded mode.

An instance of the PMP problem is then specified by two arbitrary system
states fi and ft respectively referred to as the initial system state and the final
system state or, for short, the initial state and the final state1.

A process may be moved from one processor to another in two different ways:
either it is migrated, in which case it consumes resources on both processors for the
duration of the migration and this operation has virtually no impact on service, or
it is interrupted, that is removed from the first processor and later restarted on the
other one. Of course, this latter operation has an impact on service. Additionally,
it is required that the capacity constraints (1) are always satisfied during the
reconfiguration and that a process is moved (i.e., migrated or interrupted) at most
once. This latest constraint is motivated by the fact that a process migration is
far from being a lightweight operation (for reasons related to distributed data
consistency which are out of the scope of this paper, see e.g. [16]) and, as a
consequence, it is desirable to avoid processes hopping around processors.

Throughout this paper, when it is said that a move is interrupted, it is meant
that the process associated to the move is interrupted. This slightly abusive ter-
minology significantly lightens our discourse.

For each processor u, a process p in P (u; fi)\P (u; ft) must be moved from u to
ft(p). Let M denote the set of process moves thus induced by the initial and final
states. Then for each m ∈ M , wm, sm and tm respectively denote the amount
of resource consumed by the process moved by m, the processor from which the
process is moved that is the source of the move and the processor to which the
process is moved that is the target of the move. Lastly, S(u) = {m ∈ M : sm = u}
and T (u) = {m ∈ M : tm = u}.

A pair (I, σ), where I ⊆ M and σ : M \ I −→ {1, . . . , |M \ I|} is a bijection,
defines an admissible process move program, if provided that the moves in I are
interrupted (for operational reasons, the interruptions are performed at the be-
ginning) the other moves can be performed according to σ without inducing any
violation of the capacity constraints (1). Formally, (I, σ) is an admissible program
if for all m ∈ M \ I we have

wm ≤ Ktm +
∑

m′∈I
sm′=tm

wm′ +
∑

m′∈S(tm)\I
σ(m′)<σ(m)

wm′ −
∑

m′∈T (tm)\I
σ(m′)<σ(m)

wm′ , (2)

1Throughout the rest of this paper, it is assumed that P̄ (fi) = P̄ (ft) = ∅. When this is not
the case the processes in P̄ (ft) \ P̄ (fi) should be stopped before the reconfiguration, hence some
resources are freed, the processes in P̄ (fi)\ P̄ (ft) should be started after the reconfiguration and
the processes in P̄ (fi) ∩ P̄ (ft) are irrelevant.

238 R. SIRDEY AND H.L.M. KERIVIN

where Ku = Cu −∑
p∈P (u;fi)

wp denotes the remaining capacity on processor u in
the initial state, thereby guaranteeing that the intermediate states are admissible.

Also note that because the final state is admissible, we have for each proces-
sor u ∈ U

Ku +
∑

m∈S(u)

wm −
∑

m∈T (u)

wm ≥ 0. (3)

Let cm denote the cost of interrupting m ∈ M , the PMP problem then formally
consists, given a set of moves, in finding a pair (I, σ) such that c(I) =

∑
m∈I cm

is minimum.
Previous research on distributed system reconfiguration and other related prob-

lems [2–4, 6, 7, 15, 22] has mainly dealt with the approximate minimization of
makespan related criteria under a set of constraints on the legal parallelism and has
either ignored or only considered quite loose capacity constraints. As emphasized
throughout this paper, the PMP problem or, more precisely, our model of the PMP
problem shares some features with the linear ordering problem, which consists in
finding a spanning acyclic tournament of maximum weight in a complete weighted
digraph [21]. In terms of exact resolution, Gröstchel, Jünger and Reinelt [13] re-
port solving real-world instances having up to 60 vertices with an algorithm that
could be considered the first branch-and-cut ever. More recently, Christof and
Reinelt [5] were able to solve “hard” instances having up to around 80 vertices
with a parallel branch-and-cut algorithm using facets from low-dimensional poly-
topes. Lastly, Mitchell and Borchers [19] report solving instances with up to 250
vertices with a combined interior point/simplex cutting plane algorithm, though
their instances appear easier than those of Christof and Reinelt. Needless to em-
phasize that, despite of certain structural similarities between the two problems,
the presence of the capacity constraint implies that the PMP problem is in essence
fairly different from the linear ordering problem.

Sirdey et al. [23] have shown that the PMP problem is strongly NP -hard, exhib-
ited some polynomially solvable special cases (the most notable one being |R| = 1
and wm = w for all m ∈ M) as well as proposed a “combinatorial” branch-and-
bound algorithm for the general case. Also, they provided an thorough literature
survey. Additionally, approximate resolution algorithms have been proposed by
Sirdey, Carlier and Nace [24,25] (simulated annealing-based approach and Grasp-
based approach, respectively). Lastly, in a series of two papers [18, 26] we have
investigated the PMP problem from the polyhedral viewpoint: we formulated the
PMP problem as an integer linear program and introduced several classes of valid
inequalities, all of which being facet-defining for the associated polytope under
mildly restrictive assumptions.

This paper intends to assess the practical relevance of the latter polyhedral
results. To the best of the authors’ knowledge, this is the first application of the
polyhedral approach to a distributed system reconfiguration problem as well as
the first attempt to tackle such a problem exactly, to the exception of the branch-
and-bound algorithm presented in [23].

The paper is organized as follows. In Section 1, we provide the theoretical back-
ground laying at the basis of our algorithm. Our branch-and-cut algorithm is then

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 239

presented in Section 2. Finally, we provide, in Section 3, extensive computational
results which demonstrate the practical usefulness of the approach.

1. Polyhedral combinatorics of the PMP problem

In this section, we provide the theoretical background required in order to make
this paper self-contained. We present an integer linear programming formulation
of the problem along with a selection of facet-defining inequalities which are used
in the algorithm. All the results in this section are proved in [18, 26], proofs are
therefore omitted.

1.1. An integer linear programming formulation

In this section, we formulate the PMP problem as an integer linear program. We
first focus on obtaining a formulation for the decision problem which asks whether
or not there exists an admissible process move program of the form (∅, σ), that
is an admissible program of zero cost. We subsequently refine the model so as to
encompass the notion of interruption.

For each ordered pair of distinct moves of M , say m and m′, we introduce the
linear ordering variables [20]

δmm′ =
{

1 if m precedes m′,
0 otherwise.

In order for these variables to define a valid ordering, it is natural to ask for the
following constraints to be satisfied

{
δmm′ + δm′m = 1 ∀{m, m′} ⊆ M , (4)
δmm′ + δm′m′′ − δmm′′ ≤ 1 m 	= m′ 	= m′′ 	= m ∈ M . (5)

Constraints of type (4) simply express that either m precedes m′ or m′ precedes
m. Constraints of type (5) are known as the transitivity constraints and simply
state that if m precedes m′ and if m′ precedes m′′ then m precedes m′′. Along
with the constraints

δmm′ ∈ {0, 1} m 	= m′ ∈ M, (6)

constraints of types (4) and (5) describe a linear ordering polytope, that is the
convex hull of the incidence vectors of the linear orderings of the moves in M (see
for example Grötschel, Jünger and Reinelt [12] or Fishburn [9] for details).

Since interruptions are (so far) disallowed, constraints of type (2) can be ex-
pressed as follows

wm ≤ Ktm +
∑

m′∈S(tm)

wm′δm′m −
∑

m′∈T (tm)\{m}
wm′δm′m ∀m ∈ M. (7)

240 R. SIRDEY AND H.L.M. KERIVIN

LP 1: Formulation of the PMP problem as an integer linear program

It follows that any integral solution to the linear system of inequalities defined by
the sets of constraints (4), (5), (6) and (7) (should such a solution exists) provides
an admissible process move program of zero cost.

We now turn to the PMP problem and start by, for each move m ∈ M , intro-
ducing the variables

δmm =
{

1 if m is interrupted,
0 otherwise.

Constraints of type (2) can then be written as follows

(1− δmm)wm ≤ Ktm +
∑

m′∈S(tm)

wm′(δm′m′ + δm′m)−
∑

m′∈T (tm)\{m}
wm′δm′m, (8)

for all m ∈ M . The transitivity constraints (5) remain unchanged and constraints
of type (4) must be replaced by constraints

δmm′ + δm′m = 1 − max(δmm, δm′m′) ∀{m, m′} ⊆ M. (9)

These constraints simply express that if either m or m′ is interrupted then neither
m precedes m′ nor m′ precedes m (recall that the interruptions are performed at
the beginning). Additionally, constraints of type (9) are equivalent to the following
set of constraints

{
δmm′ + δm′m + δmm + δm′m′ ≥ 1 ∀{m, m′} ⊆ M , (10)
δmm′ + δm′m + δmm ≤ 1 m 	= m′ ∈ M . (11)

Inequalities of types (10) and (11) are respectively referred to as the 2-clique and
1-unicycle inequalities [26].

The resulting integer linear program for the process move programming problem
is given in LP 1. The polytope associated to this program is hereafter referred to
as the process move program polytope or, for short, the PMP polytope and denoted
PM

PMP.
Note that PM

PMP is fully dimensional under mildly restrictive assumptions [18] and
that full dimensionality is hereafter assumed unless stated otherwise.

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 241

1.2. Facets of the process move program polytope

It turns out that the 2-clique inequalities (10) and the 1-unicycle inequalities
(11) along with inequalities δmm′ ≥ 0 for all m, m′ ∈ M with m 	= m′ define facets
of PM

PMP.
This is not the case for inequalities δmm ≥ 0 for all m ∈ M , for inequalities

δmm′ ≤ 1 for all m, m′ ∈ M as well as for the transitivity constraints (5) and the
capacity constraints (8).

The transitivity constraints can however be replaced by the extended transitivity
constraints

δmm′ + δm′m′′ − δmm′′ + δm′m′ ≤ 1 m 	= m′ 	= m′′ 	= m ∈ M, (12)

which are facet-defining for PM
PMP.

Let m0 ∈ M and let ∅ ⊂ A ⊆ T (sm0) and B ⊆ S(sm0) \ {m0} be such that

∑
m∈A

wm > Ksm0
+

∑
m∈B̄

wm, (13)

with B̄ = S(sm0) \ (B ∪ {m0}) and define the source cover inequality generated
by m0, A and B as

∑
m∈A

δmm0 +
∑
m∈B

δm0m ≤ (|A| + |B| − 1)(1 − δm0m0). (14)

Also, let m0 ∈ M and let A ⊆ T (tm0) \ {m0} and ∅ ⊂ B ⊆ S(tm0) be such that

wm0 +
∑
m∈A

wm > Ktm0
+

∑
m∈B̄

wm, (15)

with B̄ = S(tm0) \ B, the target cover inequality generated by m0, A and B is
then defined as

∑
m∈A

δmm0 +
∑
m∈B

δm0m ≤ (|A| + |B| − 1)(1 − δm0m0). (16)

These inequalities have the following meaning. Condition (13) (respectively
(15)) expresses the fact that all of the moves in A (respectively A∪ {m0}) cannot
be performed if none of the moves in B ∪ {m0} (respectively B) have been or, in
other words, that performing all the moves in B̄ does not free enough resources to
perform all the moves in A (respectively A∪{m0}) and inequality (14) (respectively
(16)) prevents that from happening as soon as m0 is not interrupted.

It has been shown in [18] that the source and target cover inequalities are both
valid (unconditionally) and facet-defining (under reasonably restrictive assump-
tions) for PM

PMP. It also turns out, as we shall later see, that both the source and
target cover inequalities can be separated in pseudopolynomial time.

242 R. SIRDEY AND H.L.M. KERIVIN

Other classes of facet-defining inequalities for PM
PMP which are not presently

used in our branch-and-cut algorithm can be found in [18, 26], in particular, the
2-clique and 1-unicycle inequalities were generalized, yielding the k-clique (k ≥ 2)
and k-unicycle (k ≥ 1) inequalities which are facet-defining for PM

PMP.

2. A branch-and-cut algorithm

Our branch-and-cut algorithm is based on the linear relaxation which includes
the trivial, 2-clique and 1-unicycle inequalities (0 ≤ δmm′ ≤ 1 for all m, m′ ∈ M ,
(10) and (11), respectively) along with the extended transitivity and capacity con-
straints ((12) and (8), respectively) as well as the source and target cover inequa-
lities ((14) and (16), respectively). Because all of these constraints are polynomial
in number, apart from the latter two which can be separated in pseudopolynomial
time, this linear relaxation can, in theory, be solved in pseudopolynomial time
using the ellipsoid algorithm [14].

2.1. Solving the relaxation

In practice, the above linear relaxation is solved using a cutting-plane algorithm.
Separation-wise, the O(|M |2) 2-clique inequalities, the O(|M |2) 1-unicycle in-

equalities and the O(|M |3) extended transitivity inequalities are handled by brute-
force.

The separation of the source and target cover inequalities, on the other hand,
requires the resolution of 2|M | knapsack problems, each of these being solved in
pseudopolynomial time using the well-known Bellman recursion [17].

Indeed, given m0 ∈ M and δ� ∈ R
|M|2 , the separation problem for the source

cover inequalities asks for two sets A ⊆ T (sm0) and B ⊆ S(sm0) \ {m0} which
satisfy condition (13) and such that

∑
m∈A

δ�
mm0

+
∑
m∈B

δ�
m0m > (|A| + |B| − 1)(1 − δ�

m0m0
). (17)

For m ∈ T (sm0) ∪ S(sm0) \ {m0}, let xm = 1 if and only if either m ∈ A or
m ∈ B. Since

∑
m∈B̄ wm =

∑
m∈S(sm0) wm−∑

m∈B wm−wm0 , condition (13) can
be rewritten

∑
m∈T (sm0)

wmxm +
∑

m∈S(sm0)\{m0}
wmxm ≥ Ksm0

+
∑

m∈S(sm0)

wm − wm0 + 1.

Since |A| =
∑

m∈T (sm0) xm and |B| =
∑

m∈S(sm0)\{m0} xm, inequality (17) can be
rewritten (after rearrangement)

∑
m∈T (sm0)

ξmxm +
∑

m∈S(sm0)\{m0}
ζmxm < 1 − δ�

m0m0
,

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 243

where ξm = 1− δ�
mm0

− δ�
m0m0

and ζm = 1− δ�
m0m − δ�

m0m0
. Letting ym = 1− xm

leads to the following knapsack problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z = Maximize
∑

m∈T (sm0)

ξmym +
∑

m∈S(sm0)\{m0}
ζmym,

s. t.∑
m∈T (sm0)

wmym +
∑

m∈S(sm0)\{m0}
wmym ≤

∑
m∈T (sm0)

wm − Ksm0
− 1,

ym ∈ {0, 1}, m ∈ T (sm0) ∪ S(sm0) \ {m0}.

Then, if z exists (that is the case only when
∑

m∈T (sm0) wm − Ksm0
− 1 ≥ 0) and

if
z > δ�

m0m0
− 1 +

∑
m∈T (sm0)

ξm +
∑

m∈S(sm0)\{m0}
ζm,

a violated source cover inequality generated by m0 has been found. Otherwise, it
can be concluded that none exists.

A similar argument applies to the separation problem for the target cover in-
equalities.

At the beginning of the cutting plane algorithm, only the trivial inequalities
and the capacity constraints are included. Then, at each iteration, at most the
100 most violated 2-clique inequalities, at most the 100 most violated 1-unicycle
inequalities and at most the 100 most violated extended transitivity constraints
are added along with, for each move, the most violated source and target cover
inequalities, if any.

The augmented linear relaxation is then reoptimized and, in order to keep its
size reasonably small, we remove all the inequalities which have a positive slack
at the current optimum to the exception of those initially present in the program,
that is the trivial inequalities and the capacity constraints, although this might
result in some inequalities being added and removed a few times. Note that this
technique has already been used by Grötschel, Jünger and Reinelt on the linear
ordering problem [11] which, as already stressed, shares some features (including
having constraints which are polynomial in numbers and which cannot practically
be handled in their entirety) with the present problem.

2.2. Overview of the algorithm

First, a “good” initial incumbent is obtained using the simulated annealing
algorithm of Sirdey, Carlier and Nace [24], this algorithm being designed so as to
produce (α, β)-acceptable solutions that is, given α and β ∈ [0, 1], to produce, with
probability at least α, solutions of value less than or equal to OPT+β(S−OPT),
where OPT is the value of an optimal solution and S =

∑
m cm is the value of the

worst possible one which consists in interrupting all the moves. Still, these are not
theoretical guarantees but extensive computational experiments reported in [24]
strongly suggest that, in practice, the algorithm actually meets its design intent

244 R. SIRDEY AND H.L.M. KERIVIN

when α = 0.95 and β = 0.05 (these values also being those used in the present
study).

At the root node of the search tree, the algorithm starts by solving the initial
linear relaxation using the cutting-plane algorithm presented in Section 2.1. Early
termination occurs if the ceiling of the current relaxation value becomes equal to
the initial incumbent, in which case the optimality of the latter is established.
Unless the solution of the relaxation is integral, hence optimal, branching occurs.
Note that the ceiling of the value of the solution of the initial relaxation then
serves as a global lower bound, hereafter denoted GLB.

Then, at each subsequent node of the search tree, the linear relaxation (in
which some variables have been fixed) is solved, starting from the linear program
obtained, before branching, at the parent node (note that the constraints are added
or removed only locally). Early termination of the cutting-plane algorithm occurs
either if the linear program is proven infeasible or if the ceiling of the current
relaxation value becomes equal to the value of the incumbent. The incumbent is
then updated if the solution of the relaxation is integral and, otherwise, branching
occurs.

The search tree is traversed using depth-first search and a fairly simple bran-
ching scheme: a variable whose value, say v, is closest to 1

2 in the relaxation is
selected and 0 (respectively 1) is chosen first for branching if v ≤ 1

2 (respectively
v > 1

2), branching on 1 (respectively 0) subsequently occurs only if the incumbent
is still greater than the global lower bound.

3. Computational experiments

In this section, we report on computational experiments carried out so as to
assess the practical relevance of our branch-and-cut algorithm. These experiments
have been performed on a Sun Ultra 10 workstation with a 440 MHz Sparc mi-
croprocessor, 512 MB of memory and the Solaris 5.8 operating system. The linear
programs have been solved using COIN-OR implementation of the simplex algo-
rithm [1]. Lastly, a time limit of four hours was imposed.

3.1. Instance generation

Given U the set of processors and C the processor capacity, an instance is
generated as follows.

First, the set of candidate processes is built by drawing consumptions uniformly
in {1, . . . , C} until

∑
p∈P wp ≥ C|U |. The initial state, fi, is then generated by

randomly assigning the processes to the processors: the processor to which a
process is assigned is drawn uniformly from the set of processors which remaining
capacity is sufficient (note that not all processes necessarily end up assigned to
a processor). The final state, ft, is built in the very same way to the exception
that only the processes which are assigned to a processor in the initial state are
considered. An instance is considered valid only if all the processes assigned to
a processor in the initial state are also assigned to a processor in the final state.
Invalid instances are discarded and the construction process is repeated until a

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 245

valid instance is obtained. The set of moves is then built as explained in the
introduction.

It should be emphasized that the above scheme generates instances for which
the capacity constraints are extremely tight, instances which can be expected to
be hard and, in particular, significantly harder than those occurring in practice.
Indeed, as far as the system to which this work is to be applied (see Sirdey,
Plainfossé and Gauthier [27]) is concerned, the capacity constraints are fairly loose
due to the fact that some spare capacity is provisioned for fault tolerance purpose
and that this spare capacity is spread among all the processors. Additionally,
it should be stressed that the system carries at most 100 processes and that a
preprocessing technique, based on the fact that the properties of a system state
are invariant by a permutation of the processors, is used to decrease the number
of moves by around 25% on average. This preprocessing addresses the operational
need to keep the number of moves as low as possible by solving a minimum cost
bipartite matching problem so as to find the permutation of the processors which
minimizes that number, this is achieved by letting |P (u; fi) \P (u′; ft)| be the cost
of pairing processors u and u′.

Considering this, it turned out that our algorithm was able to solve virtually all
practical instances to optimality within a few seconds and that, as a consequence,
we had to consider more aggressive instance generation schemes, such as the above,
in order to fairly evaluate its performances.

Lastly, we have supposed that cm = wm, which is quite natural for our applica-
tion as it is reasonable to assume that the amount of service provided by a process
is proportional to the amount of resources it consumes.

3.2. Computational results

In our experiments, |U |, the number of processors, was ranging from 15 to 100
(with a step size of 5) and C, the processor capacity, was set to 100. For each
value of |U | a set of 10 instances were generated. Hence, the algorithm was tried
on 190 instances which sizes, in terms of number of moves, range from 17 to 184.

When the time limit was reached the algorithm output the best solution it
found along with an upper bound on the optimality gap.

Given a solution of value z, distance to optimality was measured using the ratio

d(z) =
z − OPT
S − OPT

,

where OPT (OPT, when unknown, being replaced by GLB) and S =
∑

m cm re-
spectively denote the value of an optimal solution and of the worst possible one,
which simply consists in interrupting all the moves. This is consistent with the def-
inition of (α, β)-acceptability (Sect. 2.2). Additionally, 1−d(z) can be interpreted
either as a differential approximation ratio (recall that differential approximation is
concerned with how far the value of a solution is from the worst possible value [8])

246 R. SIRDEY AND H.L.M. KERIVIN

Table 1. Illustration of the results obtained using our algorithm
on a set of 10 instances with |U | = 25.

|U | |M | z0 d(z0) % GLB d(GLB) % # it. # cont. z� # nodes CPU (s)
25 45 84 0.00 78 0.33 144 3667 84 5 113.88
25 38 173 3.40 110 0.00 53 2394 110 3 36.35
25 50 161 2.26 110 0.24 225 4352 115 13 330.35
25 37 218 3.51 155 0.00 48 2529 155 1 49.78
25 36 206 2.96 153 0.00 54 2263 153 4 31.28
25 41 68 0.00 68 0.00 ≥ 99 - 68 1 70.85
25 40 118 2.01 77 0.22 73 2657 81 15 52.79
25 55 74 1.23 49 0.00 325 4652 49 5 329.06
25 47 158 1.27 135 0.00 151 3700 135 6 130.71
25 42 128 3.30 69 0.00 43 2671 69 2 39.09

43.1 1.99 0.08

or as a conventional approximation ratio [10] for the maximization problem com-
plementary to the PMP problem which asks to maximize the sum of the costs of
the moves which are not interrupted.

Table 1 illustrates the results obtained using our algorithm on a set of instances
with around 45 moves (column “|M |”) and 25 processors (column “|U |”).Columns
“z0” and “d(z0)” respectively indicate the value of the initial incumbent and the
distance between that value and the optimum one. Columns “GLB”, “d(GLB)”,
“# it.” and “# cont.” respectively provide the value of the initial relaxation,
the distance between that value and the optimum one along with the number of
iterations of the cutting-plane algorithm required to solve the relaxation and the
number of constraints in the linear program before branching. Columns “z�”,
“# nodes” and “CPU” respectively indicate the value of an optimum solution,
the number of nodes explored by the algorithm and the total running time. The
average instance size, the average distance between the initial incumbent value
and the optimal one as well as the average distance between the initial relaxation
value and the optimal one are indicated at the bottom of the table.

Note that for the fourth instance an integral solution was obtained before
branching and that for the sixth one the initial incumbent was proven optimal
before completing the resolution of the initial relaxation.

Table 2 provides a summary of the results which were obtained using our branch-
and-cut algorithm on the overall instance set. For each value of |U |, column “|M |”
provides the average number of moves of the instances in the set, columns “# inst.”
and “# solved” respectively indicate the number of instances which were generated
and the number of instances which the algorithm was able to solve to optimality
within the four hours time limit, additionally, columns “d̄(z0)”, “d̄(GLB)”, “d̄(zf)”
give upper bounds on, respectively, the average distance between the initial incum-
bent value and the optimal one, the average distance between the initial relaxation

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 247

Table 2. Summary of the results obtained using our branch-and-
cut algorithm on the overall instance set.

|U | |M | # inst. # solved d̄(z0) % d̄(GLB) % d̄(zf) %
15 23.2 10 10 1.92 0.07 0.00
20 34.1 10 10 1.20 0.33 0.00
25 43.1 10 10 1.99 0.08 0.00
30 53.1 10 6 ≤ 2.01 ≤ 1.05 ≤ 0.74
35 61.8 10 7 ≤ 2.38 ≤ 0.98 ≤ 0.86
40 67.5 10 6 ≤ 2.23 ≤ 0.48 ≤ 0.43
45 76.5 10 6 ≤ 2.50 ≤ 1.15 ≤ 1.02
50 88.5 10 3 ≤ 2.69 ≤ 1.80 ≤ 1.72
55 93.6 10 4 ≤ 3.22 ≤ 1.34 ≤ 1.27
60 108.4 10 2 ≤ 2.80 ≤ 2.52 ≤ 2.52
75 117.7 10 0 ≤ 3.69 ≤ 3.69 ≤ 3.69
70 122.3 10 1 ≤ 3.32 ≤ 3.02 ≤ 3.00
75 131.3 10 0 ≤ 4.08 ≤ 4.08 ≤ 4.08
80 137.4 10 0 ≤ 3.30 ≤ 3.30 ≤ 3.30
85 148.5 10 0 ≤ 3.67 ≤ 3.67 ≤ 3.67
90 157.4 10 0 ≤ 3.79 ≤ 3.79 ≤ 3.79
95 169.2 10 0 ≤ 4.77 ≤ 4.77 ≤ 4.77
100 177.2 10 0 ≤ 4.62 ≤ 4.62 ≤ 4.62

value and the optimal one as well as the average optimality gap. For example, the
third row (|U | = 25) is a summary of Table 1.

In terms of exact resolution, our algorithm was quite successful up to |U | = 45
(i.e., with instances of size up to around 80 moves) in the sense that most instances
were either solved to optimality or with an integrality gap of less than 2% within
the allowed four hours.

As the instance size increased, along with |U |, fewer instances ended up being
solved to optimality, within the four hours limit. Nevertheless, the algorithm is
still practically relevant as it was able to find solutions with an optimality gap of
less than 5% for all but 7 of the instances on which it was tried.

Overall, the biggest instance which was solved to optimality within the four
hours time limit had size 119 (|U | = 70), and was solved in 2 h 11 m 57 s, and
the smallest instance which was not solved to optimality had size 49 (|U | = 30),
though the optimality gap was less than or equal to 1.02%. Additionally, for only
one instance, of size 172, the bound on the optimality gap was greater than 6%
(actually 6.12%). Table 3 indicates for each range of the optimality gap, the size
of the smallest instance which was not solved and the size of the biggest instance
which was solved with a gap bound in that range.

Lastly, it should be emphasized that from |U | = 75 onward, the initial incum-
bent was rarely improved during the branch-and-cut phase. This latter phase,

248 R. SIRDEY AND H.L.M. KERIVIN

Table 3. Sizes of the smallest instance which was not solved and
of the biggest instance which was solved within a given optimality
gap bound range.

Gap]0%, 1%]]1%, 2%]]2%, 3%]]3%, 4%]]4%, 5%]]5%, 6%]
Smallest 49 56 56 85 119 172
Biggest 101 139 155 180 184 184

Table 4. Experimental comparison between our branch-and-cut
algorithm and the branch-and-bound algorithm presented in [23]
on the set of 10 instances of Table 1. A “∗” indicates that the al-
gorithm was able to find an optimum solution but not to complete
the optimality proof.

|M | 45 38 50 37 36
BC 113.88 s 36.35 s 330.35 s 49.78 s 31.28 s
BB > 3600∗ s 103.08 s > 3600 s > 3600 s 2779.19 s
|M | 41 40 55 47 42
BC 70.85 s 52.79 s 329.06 s 130.71 s 39.09 s
BB > 3600∗ s 381.07 s > 3600 s > 3600 s > 3600∗ s

however, allowed to obtain a reasonable estimate of the optimality gap. This il-
lustrates the relevance of hybridizing a carefully designed metaheuristic, such as
the simulated annealing algorithm used to obtain the initial incumbent [24], and
a polyhedral bound when tackling problems in the realm of bigger instances.

Empirically, the branch-and-cut algorithm presented in this paper appears com-
plementary to the combinatorial algorithm presented in [23]. Although the latter
algorithm turns out being faster when dealing with small instances, due to the
comparatively low per node computational cost, as well as with instances having
relatively homogeneous process weights, mainly due to the presence of dominance
relations which are particularly efficient in that context, it suffers from the lack
of a strong lower bound. As emphasized by the above results, our branch-and-
cut algorithm does not suffer from such a drawback: the strength of the linear
programming bound presented in this paper allows it to tackle, either exactly or
within a few percents to optimality, instances which are out of the reach of the
aforementioned combinatorial algorithm. Table 4 illustrates this on the set of 10
instances of Table 12. Indeed, although the branch-and-bound algorithm was able
to find an optimum solution for 6 of the 10 instances, it was able to complete the
optimality proof for only 3 of them, within a one hour time limit. Moreover, on
these 3 instances, the calculation time was longer than that of the branch-and-cut
algorithm.

2To be fair, the branch-and-bound algorithm was also provided with the initial incumbent
obtained with the simulated annealing algorithm discussed in Section 2.2.

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 249

4. Conclusion

In this paper, we have proposed a branch-and-cut algorithm for the Process
Move Programming problem, a strongly NP -hard scheduling problem which con-
sists, starting from an arbitrary initial process distribution on the processors of
a distributed system, in finding the least disruptive sequence of operations (non-
impacting process migrations or temporary process interruptions) at the end of
which the system ends up in another predefined arbitrary state. The main con-
straint is that the capacity of the processors must not be exceeded during the
reconfiguration. This problem has applications in the design of high-availability
real-time distributed switching systems such as the one discussed by Sirdey, Plain-
fossé and Gauthier [27].

The main ingredient of our branch-and-cut algorithm is a linear relaxation which
is made up of exponentially many inequalities which are facet-defining for the PMP
polytope. This relaxation, which can theoretically be solved in pseudopolynomial
time, is solved, at each node of the search tree, using a cutting-plane algorithm.

From an industrial perspective, it can be considered that the PMP problem is
solved by this algorithm as it is able to close virtually all practical instances within
a few seconds. Additionally, we have reported on computational experiments
illustrating the practical relevance of the algorithm when used to solve instances
significantly harder than those occurring in practice, in terms both of size and
tightness of the capacity constraints. Indeed the algorithm was able to solve
instances with up to 119 moves (70 processors) within a four hours time limit.
Although one should only expect to have good chances to solve instances of size
up to around 80 moves within a four hours limit, our experiments still suggest
that, when the instance size increases, the truncated version of the algorithm has
fairly good approximate resolution capabilities as it was able to provably obtain
solutions with an optimality gap of less than 5% for most instances of size up to
around 180 moves, still within the four hours time limit.

Lastly, note that further research work will be carried out so as to assess the
practical relevance of the classes of facet-defining inequalities identified in [18] and
which, for simplicity sake, are so far not used in our branch-and-cut algorithm.

Acknowledgements. The authors wish to thank the two anonymous referees for several
suggestions that led to improvements in the paper.

References

[1] Computational infrastructure for operations research (www.coin-or.org), last access on July
the 18th (2006).

[2] G. Aggarwal, R. Motwani and A. Zhu, The load rebalancing problem, in Proceedings of
the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures (2003)
258–265.

250 R. SIRDEY AND H.L.M. KERIVIN

[3] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A.R. Karlin, J. Saia, R. Swaminathan and
J. Wilkes, An experimental study of data migration algorithms. In Proceedings of the 5th
International Workshop on Algorithm Engineering. Lect. Notes Comput. Sci. (2001) 145.

[4] J. Carlier. Le problème de l’ordonnancement des paiements de dettes. RAIRO: Oper. Res.
18 février (1984).

[5] T. Christof and G. Reinelt, Algorithmic aspects of using small instance relaxations in par-
allel branch-and-cut. Technical report, Heidelberg University (1998).

[6] E.G. Coffman, M.R. Garey, D.S. Johnson and A.S. Lapaugh, Scheduling file transfers in
distributed networks, in Proceedings of the 2nd Annual ACM Symposium on Principles of
Distributed Computing (1983) 254–266.

[7] E.G. Coffman, M.R. Garey, D.S. Johnson and A.S. Lapaugh, Scheduling file transfers. SIAM
J. Comput. 14 (1985).

[8] M. Demange and V.T. Paschos, On an approximation measure founded on the links be-
tween optimization and polynomial approximation theory. Theor. Comput. Sci. 158 (1996)
117–141.

[9] P.C. Fishburn, Induced binary probabilities and the linear ordering polytope: a status
report. Math. Social Sci. 23 (1992) 67–80.

[10] M.R. Garey and D.S. Johnson, Computers and intractability—A guide to the theory of

NP -completeness. W. H. Freeman and Company (1979).
[11] M. Grötschel, M. Jünger and G. Reinelt, A cutting plane algorithm for the linear ordering

problem. Oper. Res. 32 (1984) 1195–1220.
[12] M. Grötschel, M. Jünger and G. Reinelt, Facets of the linear ordering polytope. Math.

Program. 33 (1985) 43–60.
[13] M. Grötschel, M. Jünger and G. Reinelt, On the acyclic subgraph polytope. Math. Program.

33 (1985) 28–42.
[14] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial opti-

mization, Vol. 2 Algorithms and Combinatorics. Springer (1988).
[15] J. Hall, J. Hartline, A.R. Karlin, J. Saia and J. Wilkes, On algorithms for efficient data mi-

gration. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(2001) 620–629.

[16] P. Jalote, Fault tolerance in distributed systems. Distributed Systems. Prentice Hall (1994).
[17] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack problems. Springer (2004).
[18] H. Kerivin and R. Sirdey, Polyhedral combinatorics of a resource-constrained ordering prob-

lem part II: on the process move program polytope. Technical Report PE/BSC/INF/017913
V01/EN, service d’architecture BSC, Nortel GSM Access R&D, France (submitted to Math.
Program. (2006).

[19] J. E. Mitchell and B. Borchers, Solving linear ordering problems with a combined interior
point/simplex cutting plane algorithm, in High performance optimization, 349–366. Kluwer,
2000.

[20] M. Queyranne and A.S. Schulz, Polyhedral approaches to machine scheduling. Technical
Report 408/1994, Berlin University of Technology (1994).

[21] G. Reinelt, The linear ordering problem: algorithms and applications, volume 8 of Research
and exposition in mathematics. Heldermann Verlag, Berlin (1985).

[22] J.C. Saia, Data migration with edge capacities and machine speeds. Technical report, Wash-
ington University (2001).

[23] R. Sirdey, J. Carlier, H. Kerivin and D. Nace, On a resource-constrained scheduling problem
with application to distributed systems reconfiguration. Eur. J. Oper. Res. (to appear, DOI :
10.1016/j.ejor.2006.10.011) (2005).

[24] R. Sirdey, J. Carlier and D. Nace, Approximate resolution of a resource-constrained sched-
uling problem. J. Heuristics (in press) (2006).

[25] R. Sirdey, J. Carlier and D. Nace, A fast heuristic for a resource-constrained scheduling prob-
lem. Technical Report PE/BSC/INF/017254 V01/EN, service d’architecture BSC, Nortel
GSM Access R&D, France (2005).

RESOLUTION OF A RESOURCE-CONSTRAINED SCHEDULING PROBLEM 251

[26] R. Sirdey and H. Kerivin, Polyhedral combinatorics of a resource-constrained ordering prob-
lem part I: on the partial linear ordering polytope. Technical Report PE/BSC/INF/017912
V01/EN, service d’architecture BSC, Nortel GSM Access R&D, France (submitted to Math.
Program.) (2006).

[27] R. Sirdey, D. Plainfossé and J.-P. Gauthier, A practical approach to combinatorial opti-
mization problems encountered in the design of a high availability distributed system. in
Proceedings of the International Network Optimization Conference (2003) 532–539.

To access this journal online:
www.edpsciences.org

