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Abstract

The choice of a member of a parametric family of iterative methods is
not always easy. The family of Chebyshev-Halley schemes is a good exam-
ple of it. The analysis of bifurcation points of this family allows us to define
a real interval in which there exist several problematic behaviors: attract-
ing points that become doubled, other ones that become periodic orbits,...
These are aspects to be avoided in an iterative procedure, so it is important
to determinate the regions where this conduct takes place.

In this paper we obtain that this family admits attractive 2-cycles in two
different intervals, for real values of the parameter.

1 Introduction

The application of iterative methods for solving nonlinear equations f(z) = 0,
with f : C — C, give rise to rational functions whose dynamics are not well-
known. The simplest model is obtained when f(z) is a quadratic polynomial and
the iterative process is Newton’s method. This dynamical study has been extended
to other point-to-point iterative methods used for solving nonlinear equations,
with higher order of convergence (see, for example [1], [2] and, more recently,
[4] and [5]).

The most of the well-known point-to-point cubically convergent method be-
longs to the one-parameter family called of Chebyshev-Halley. This set of iter-
ative schemes has been widely analyzed under different points of view. In this




work we focus our attention in the dynamical behavior of the rational function
associated to this family. From the numerical point of view, this dynamical be-
havior give us important information about its stability and reliability. In this line,
Varona in [6] described the dynamical behavior of several well-known iterative
methods. The dynamics of some third order iterative methods is also studied in
[2], [3] and, more recently, in [4] and [7].

In this paper we are interested in the study of period doubling bifurcations
in the Chebyshev-Halley family when it is applied on quadratic polynomials. In
a previous paper [10], we have obtained that the corresponding rational function
has different fixed points depending on the values on the parameter. As we have
proved, two of these fixed points are always superattractive, but the stability of the
others (called strange fixed points) depends on the parameter values.

In fact, we check in Section 4 that there are, at least, two real intervals for
which attractive 2-cycles appear and therefore three period doubling and on pitch-
fork bifurcation occur changing the stability of the strange fixed points.

1.1 Basic dynamical concepts

Now, let us recall some basic concepts on complex dynamics (see [8]). Given a
rational function R : C — C, where C is the Riemann sphere, the orbit of a point
20 € C is defined as:

20, R (20), R? (20) ..., B (20) ,

We are interested in the study of the asymptotic behavior of the orbits depending
on the initial condition z, that is, we are going to analyze the phase plane of the
map R defined by the different iterative methods.

To obtain these phase spaces, the first of all is to classify the starting points
from the asymptotic behavior of their orbits.

A 2, € C is called a fixed point if it satisfies: R (29) = 20. A periodic point
2o of period p > 1 is a point such that RP (z) = z and R* (z0) # 20, k < p.
A pre-periodic point is a point z that is not periodic but there exists a k > 0
such that R (2) is periodic. A critical point z, is a point where the derivative of
rational function vanishes, R’ (z5) = 0.

On the other hand, a fixed point zq is called attractor if |R'(z0)| < 1, superat-
tractor if | R/ ()| = 0, repulsor if |R'(z)| > 1 and parabolic if |R'(z)| = 1.

The basin of attraction of an attractor « is defined as the set of pre-images of
any order:

A(a) ={z € C : R"(z)—a, n—oo}.

The set of points z € C such that their families {R" (z)}, . are normal in
some neighborhood U (z), is the Fatou set, F (R), that is, the Fatou set is com-
posed by the set of points whose orbits tend to an attractor (fixed point, periodic
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orbit or infinity). Its complement in C is the Julia set, J (R) ; therefore, the Julia
set includes all repelling fixed points, periodic orbits and their pre-images. That
means that the basin of attraction of any fixed point belongs to the Fatou set. On
the contrary, the boundaries of the basins of attraction belong to the Julia set. The
invariant Julia set for Chebyshev’s method applied to quadratic polynomials is
more complicated than for Newton’s method and it has been studied in [9].

The rest of this paper is organized as follows: in Section 2 we introduce the
previous results needed to develop the present study. In Section 3 we show the
parametric space associated to the parametric family. Section 4 is devoted to
characterize the bifurcation points and to classify them. We finish the paper with
some remarks and conclusions.

2 Previous results

The family of Chebyshev-Halley type methods can be written as the iterative
method

1
Zn-‘rl:Zn*(l‘}‘_ G

Ly (2n) f (20) f(2) [ (2)
21—(];Lf (zn)) L)

f'(zn)’ (F @)
Our interest is focused on the study of the dynamics of the corresponding fixed

point operator when it is applied on the quadratic polynomial p (z) = 2z + ¢. For
this polynomial, the operator corresponds to the rational function:

Gl 24 (=3 + 2a) + 6¢2% + * (1 — 2a)
T 4z (22 (-2 + a) + ac)

)

depending on two parameters: « and c.
The parameter ¢ can be obviated by considering the conjugacy map

M=%
with the following properties:
h(o0) = 1,k (iv/c) = 0,k (—iv/c) = oo.
Accordingly, we are interested in the dynamics of the operator

L g Z=2a —1]

Op(z)z(hoGpoh_l)(z)wz1_2(a_1)z. (1)




2.1 Fixed and critical points

We have began the study of the dynamics of this operator in function of the pa-
rameter « in [10]. As we have proved, the number and stability of fixed points
depends on the parameter a.

—34+2a+£+b—12a + 4a?

Oyl =g=z2=0,e=1L28—= 5

2)

The last two fixed points are the roots of 22 + (3 — 2a)z + 1 = 0, denoted by s;
and s,. Furthermore, these two points are not independent as s; = —.
52
We need the derivative of the operator (1) to study the stability of fixed points:
1—a)+22(8—4a+202)+322(1—a)
(I—=2(a=1)2)"

oL (2) = 2223( . (3)

From (3) we obtain that the origin and oo are always super-attractive fixed
points, but the stability of the other fixed points change depending on the values
of the parameter «. These points are called strange fixed points. Their stability
satisfies the following statements:

Proposition 1 (see [10]) The stability of the fixed point z = 1 satisfies the follow-
ing statements:

o If ‘oz = 1—63‘ < % then z = 1 is an attractor. In particular, it is a superattrac-
torif a = 2.

oFor‘oz—E =

& | = 3, 2 = lis a parabolic point.

e Finally, z = 1 is a repulsive fixed point for any other value of a.

Proposition 2 (see [10]) The stability of the fixed points z = s;, © = 1,2 satisfies
the following statements:

o If |a — 3| < 3, then sy and sy are two different attractive fixed points. In
particular, for o = 3 then s1 and so are superattractors.

o If |a —3| = 1, then sy and sy are parabolic. In particular, for o = 2
81 = SS9 = 5

e For any other value of o € C, they are repulsive fixed points.




The critical points are those points where the first derivative of the rational
operator vanishes, that is

3 —4da+2a® ++v—6a+ 1902 — 1603 + 4ot

z=10,2=100,4 = Ble =T )

(4)

the last two critical points are denoted by c¢; and c¢s. In addition, they are not
independent as ¢; = é

3 The parameter space

The dynamical behavior of the operator (1) depends on the values of the parameter
«. It can be seen in the parameter space, shown in Figure 1.

In this parameter space we observe a black figure (let us to call it the cat set),
with a certain similarity with the Mandelbrot set (see [11]): for values of a outside
this cat set the Julia set is disconnected. The two disks in the main body of the cat
set correspond to the o values for those the fixed points z = 1 (the head) and s;
and s, became attractive (the body). We also observe a curve similar to a circle
that passes through the cat’s neck, we call it the necklace. As we have proved in
[10] the parameter space inside this curve is topologically equivalent to a disk.

Figure 1: Parameter plane

The head of the cat corresponds to | — 2| < 1, for which the fixed point
z = 1 is attractive. The body of the cat set corresponds to values of the parameter

such that |a — 3| < % In this case s; and s, are attractors and have their own




basin of attraction, as there exists one critical point in each basin. The intersection
5

point of both disks is in their common boundary and corresponds to o = 3. For
o= % the three strange fixed points coincide z = 1 = s; = s5 and it is parabolic,
\O’p (1)‘ = 1, with multiplicity 3. We know, by the flower theorem of Latou (see
[12], for example), that this parabolic point is in the common boundary of two
attractive regions. The points of an orbit inside each region approach to z = 1
without leaving the region.

The boundary of the cat set is exactly the bifurcation locus of the family of
Chebyshev-Halley type family acting on quadratic polynomial; that is, the set of
parameters for which the dynamics changes abruptly under small changes of «. In
this paper we are interested in the study of some of these bifurcations, those that

involve cycles of period 2.

4 Local bifurcations

For a discrete dynamical system z,,; = F'(2,, «) where F'is a smooth function,
a necessary condition for (zp, ap) to be a bifurcation point (see, for example [13])
is ‘%—Z (20, ao)‘ = 1. If %g (20, a9) = 1, the bifurcation is either a saddle-node,
transcritical or pitchfork bifurcation. If %—Z (20, 0) = —1, it is a period-doubling
(or flip) bifurcation; otherwise, it is a Hopf bifurcation.

In this paper we are interested in the study of bifurcations for this family of
iterative methods. As we will see in the following section, this family suffers
various period-doubling and one pitchfork bifurcations for different values of the
parameter. It is known that period-doubling bifurcation is characterized by one
attractive (or repulsive) fixed point that becomes repulsive (attractive) after the
bifurcation point, and simultaneously one attractive (repulsive) 2-cycle appears.
For the pitchfork bifurcation one attractive (or repulsive) fixed point becomes re-
pulsive (attractive) after the bifurcation point, and simultaneously two attractive
(repulsive) fixed points appear.

4.1 The bulb of period 2 of the head

It is easy to check that z = 1 is an hyperbolic point for all these values of o
131

- - 1
belonging to the circle Ia — & =338

2e¥ +1
O, (1) = E i |@, @ =1,
As we have seen in [10], if & > ¥ then O] (1) < 1, if a = & then O} (1) = 1
and when v < & then Oj, (1) > 1.




We are going to show that there is a doubling period bifurcation for o = %.
Fora < the periodic point z = 1 become repulsive and one attractive cycle of

period 2 appears 88 (2= 1L a= g) will be a doubling period bifurcation point.

Proposition 3 For o € (o*, &), a € R, the dynamical plane of O,(z) contains
an attractive cycle of period 2 where:

» éf/(134 + 18\/5) »

~ 1.7041.

5
3¢/ (134 + 18/57) HC
Proof. It is known that a 2-cycle verifies O} (z) — z = 0. This implies that

z(—142) (1432 —2az+2%) f (2, 2) g(a,2) =0,
where
flz,a) =14+ (3 —-2a)z+ (3 -20)2%+ (3 —2a) 2%+ 2*
and
g(z,0) = 1+(3—4a)z+ (2—6a+4a®) 2>+
(3 — 60+ 4a®) 2 + (9 — 220 + 200” — 8a®) 2* +
(3—6a+40%) 2° + (2 — 60+ 40%) 2° + (3 — 4a) 2" + 2°.
As we have seen, the product z (—1 + 2) (1 + 3z — 2az + 2?) yields to the

fixed points. So, 2-periodic points come from f (z,«) = 0 or g (z,) = 0. We

observe that f (z, &) = 1 (32% + 4z + 3) (2 — 1)” so that the periodic points that
collapse with the fixed point z = 1 for o = % come from the zeros of this
function. In fact, we will focus our attention on function f (z,«), as it yields
periodic orbits in the bulb of the head, while roots of ¢ (z, a) give rise to 2-orbits
in the bulb of the body whose intersection point is « = %

A new factorization of f is obtained
f(Z,O!) = fl (Z,O!) f2 (Z,Oé) )
where
fl (Z> O{) =

(3 D 5—4a+4a2)z+z2,
falz,0) = 1+ )

(3—2a+\/5—4a+4a2 z+ 22,

[\DIH[\'JM—A

and we observe that f; (11 ) (1- z)2 and f (11 ) =
the cycle of period 2 that becomes attractive comes from f;

3 — 4z + 322). So,

3 (
(e, z) = 0.
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The points of the 2-cycle in the bulb of period 2 on the head are:

3 1 1 1
Bl g gty 5—4a+4a2+1\/~2—16a+8a2+(~6+4a)\/5—4a+4c12
SRl 1 1
7z = ~Z+—2-a+1\/5——4014—4012—Z\/—Q—16a+8a2+(—6+4oz)\/5—4oz+4oz2
because

Op(z1) =2z and Op(2) = 2.
The function of stability is

S(a) = 0, (z1) - Oy (),

p
that is,

=54+ 132a — 16602 + 112a° — 400 4 6(a — 1)(3 — a + 202)V/5 — 4a + 402

S(a
(@) —9 + 26a — 3402 + 2303 — 8at 4+ 2(a — 1)(2 — 3a + 202)V5 — da + 4a?

To know the range where this cycle is attractor we demand
|8{a)| = IO;, (z1) - O;, (zg)‘ = 1.
For a0 € R this implies that
(1 - 2a)® (6 — 11) (=19 + 22 — 200* + 8a®) = 0.

The only real root inside the head of the cat (corresponding to the real root of the
third-degree polynomial in the last equation) is

e l{5/(134 +18V57) - - + 2~ 17041
s 3y/(134+18v57)  °

s = |5 ()

Moreover, we observe that this cycle is attractive in the interval o* < o < %
by drawing the function O, (1) - O, (#2) in this interval (see Figure 2).

| |

We observe that there is one value where this cycle is super-attractive, that
coincides with the minimum of the function Oy, (z1) - O, (22)

and
= 1.

O, (z1) - O, (22) = 0,00 = 1.7738.

Let us point out that these points are complex for values of « in the interval

(a*,%).




06k

04

Figure 2: Behavior of the stability function O, (21) - O, (22)

4.2 The bulb of period 2 in the body of the cat

We know (see [10]) that for o = % the strange fixed points, $7 = 2 — v/3 and
s9 = 2+ /3, become parabolic |0’ (s1)| = |0’ (s3)| = 1. Forreal a >  these
strange fixed points are repulsive. In this section we show that for real o > %

there is a bulb where two attractive cycles of period 2 appear. As in the previous
section, a doubling period bifurcation occurs for each strange fixed point.

Proposition 4 For o € (%, a™), a € R, the dynamical plane of O,(z) contains
two attractive cycles of period 2 where o = 3.738271.

7
Proof. We can prove that, for « = 3 s1 and sq are two roots of OZQ, (z) — z, that

is, (z — 51) (z — $9) = 2% — 4z + 1 is a factor of O? (z) — z since
7 2)2 2 3 4
g z,§ z(lﬂ4z+z) (1—32—122 — 3z +z).

Therefore, as happened in the previous section with f(z, ), the cycles of period
2 that collapse with s; and so, for « = =, come from the roots of g (z, a) .

We can factorize g (z,a) = g1 (2, @) 92 (2, @) g3 (2, @) g4 (2, @) where g; (z, )
are polynomials of degree two, g; (2, @) = 1+ b;z + 22. The relationships that the
coefficients must satisfy are:

bi+by+bs+bs = 3—4a,
Bibs + Dby L Biba +Bobs - bobu - el = 4a® —6a—2,
bybobs + biboby + bibsby + bobsby = 4a? — 6a — 6,
bibobsby = —8a3 + 120 — 10a + 7.

The solution of this system is:




bl (Oé)

b2 (Oé)

bg (a)

b4 (Oé)

=

—3 1 900 — 3202
3—4a—\/—3+8a~\/§\/23—16a+8a2+ i A 2

v =3+ 8«

B~ =

v =3+ 8«

-

—3+20a — 3202
3—4a+\/—3+8a—\/5\/23—16a+80z2+ ol L Liod

v =3+ 8«

> =

We define the function:

hi(z, a)

= g1(z,a) 92 (2, )

34 9200 — 3202
(3—4a+\/—3+8a+\/§\/23—16a+8a2+ it

v —=3 + 8«

= 1+%(3—4&—\/—3+8a)z+%(—1+2a) (1++v=-3+38a)2?

—|—% (3—404—\/——3—1—8a)z3—l—z4,

The four solutions of 4 (z, a) = 0 are:

z1 ()

that coincides with the factorization of the strange fixed points for a = %
%(—3 +4a+ V=3 +8a+ \/E\/za — 16 + 802 + (1 — 4a) V=3 + 8a
——\/~6 +8a + 2v/8a = 3\J \/5\/23 — 16a + 802 + (1 — 4a) V=3 F 8a — (_&xz il s 12+£11+ e by 3),

z9 (@)

z3 (o)

z4 (o)

1
S8+ 4ot V=EFBa + v21/23 — 16a + 8a2 + (1 — 4a) V=3 ¥ 8a

+y/—6+ 80 +2v85 = s\l V21/23 — 16a + 8a2 + (1 - 4a) V=3 F 8a — (

1
S(-3+4a+t V=3 8a — \/5\/23 — 16a +8a2 + (1 — 4a) V=3 T 8a

48a2+6a+1+(1+2a)x/—v8a—3>
2 — 1

-6 - 8a—2\/8a—3)J\/2—\/23 166 862 4 (1~ 46) \/—3+8a+<

1
g(—3 +4a+4+v/=3 T 8a — \/5\/23 — 16+ 8a2 + (1 — 4a) V=3 T 8a

78a2+6a+1+(1+2a)«/—*8a73>

2a — 1

+\/(678a — 2v/8a — 3)\J\/5\/53— 16a + 8a2 + (1 — 4a) V=3 + 8o+ (

10

2a — 1

—8a% + 6a+ 1+ (14 2a) \/'8&—3)




It easy to see that 2; (%) = 23 () = s1 and 23 () = 2 (§) = so. Therefore

the cycles of period 2 will be (21, 23) and (2, 24) . It can be checked that
Op (Zl) = 23, Op (23) = 21 Op (24) = Z9, Op (Zg) = Z4.
Moreover, it can be checked graphically that

|0, (1) O, (23)| <1 and |0, (2) O, (24)] < 1.

175K 1.75
1.5F R 7 1L.5F
1.25 \\ i 1.25 % ///
N / R /

y < 7 : P
0.75 “ 7 0.75 N P
0.5 \ // 0.5 X //
0.25 N 4 0.25 N 7

M A \'x e
3.5 3.6 3T 3.8 3.5 3.6 e 3.8

1 i / / 1 o / !

Figure 3: |0}, (21) O}, (23)| Figure 4: |0}, (22) O,, (24)|

So, we observe that there is one interval where these 2-cycles are attractive
(see Figures 3 and 4). We also obtain that

0! (21) 0, (23) = —1 = o™ = 3.738271.

|

In particular, it can be checked that O, (21) O, (23) = 1 and O, (22) O, (24) =
1 fora = % Moreover, the 2-cycle (21, z3) is superattractive for a ~ 3.6218839102;
and the 2-cycle (23, 24) is superattractive for a ~ 3.621883885696156.

4.3 Diagram of bifurcations

Summarizing the results obtained in the previous subsections and in paper [10]

(Propositions 1 and 2), we know that for a € (a*, ) there is an attractive 2-cycle,
that collapses for a = % with the repulsive fixed point 2 = 1. For o € (%, g)

the fixed point z = 1 is attractive. For a = g the fixed point z = 1 collapses
with the repulsive fixed points s; and s,. For o € (g, %) these fixed points s; and
$o become attractive. For o > g, s1 and sy become repulsive and two attractive
2-cycles appear.
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2.5 3 B:5 4

Figure 5: Bifurcation diagram for the strange fixed points, o € (o*, &™)

So, the bifurcations pointsare (z = 1,a = &), (z=1,a=2),(z=2-v3,a=1)

6 2
and (z =24++3,a= %) By applying the operator (3) we obtain

11
O;,(z:l,oz:—):—l , O'<z=1,a:§>=1
6 B 2

So, as we see in Figure 5 there are three period doubling bifurcations: (z =1l,a=
Ez =2-+3,a= %) and (z =2++3,a= %) and one pitchfork bifurcation in

iy .5
Z—]_,O[—i

5 Conclusions

We have characterized bifurcations of Chebyshev-Halley family, for real values
of parameter . It has been stated that some doubling period and pitchfork bifur-
cations appear for values of the parameter in the interval (a*, a**). This is a very
useful information from the numerical point of view, as the behavior of the itera-
tive methods out of this interval will be more reliable, since there are not attracting
elements different from the roots.
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