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Abstract 

Computer simulations often involve both qualitative and numerical inputs. Existing 

Gaussian process (GP) methods for handling this mainly assume a different response surface 

for each combination of levels of the qualitative factors and relate them via a multiresponse 

cross-covariance matrix. We introduce a substantially different approach that maps each 

qualitative factor to an underlying numerical latent variable (LV), with the mapped value for 

each level estimated similarly to the correlation parameters. This provides a parsimonious GP 

parameterization that treats qualitative factors the same as numerical variables and views them 

as effecting the response via similar physical mechanisms. This has strong physical 

justification, as the effects of a qualitative factor in any physics-based simulation model must 

always be due to some underlying numerical variables. Even when the underlying variables 

are many, sufficient dimension reduction arguments imply that their effects can be represented 

by a low-dimensional LV. This conjecture is supported by the superior predictive performance 

observed across a variety of examples. Moreover, the mapped LVs provide substantial insight 

into the nature and effects of the qualitative factors. 
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1. INTRODUCTION 

 Computer simulations play essential roles in today’s science and engineering research. As 

an alternative to more difficult and expensive physical experiments, computer simulations help 

to explore or experiment with the physical process and understand how input factors affect a 

response of interest. Gaussian process (GP) models, a.k.a., kriging models have become the 

most popular method for modeling simulation response surfaces (Fang et al. 2006; Sacks et al. 

1989; Santner et al. 2003). These standard methods for the design and analysis of computer 

experiments were developed under the premise that all the input variables are quantitative, 

which fails to hold in many applications. For example, consider a stamping operation, in which 

the response is the maximum strain over a stamped panel, and one of the factors affecting strain 

is the qualitative factor lubricant type (e.g., three different types: A, B, and C). Another 

example is the fluid dynamics model for investigating the thermal dynamics of a data center 

(Qian et al. 2008), which involves qualitative factors such as “hot air return vent location” and 

“power unit type”. 

To make the discussion more concrete, let 𝑦𝑦(∙) denote the computer simulation response 

model with inputs 𝒘𝒘 = (𝒙𝒙, 𝒕𝒕) ∈ ℝ𝑝𝑝+𝑞𝑞 , where 𝒙𝒙 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝�  represents 𝑝𝑝  quantitative 

variables, and 𝒕𝒕 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑞𝑞� represents 𝑞𝑞 qualitative factors, with the 𝑗𝑗th qualitative factor 

having 𝑚𝑚𝑗𝑗 levels, 𝑗𝑗 = 1,2, … , 𝑞𝑞. For simplicity, when constructing the relationship between 𝑦𝑦 

and quantitative inputs 𝒙𝒙, consider the GP model 

𝑦𝑦(𝒙𝒙) = 𝜇𝜇 + 𝐺𝐺(𝒙𝒙), (1) 

where 𝜇𝜇 is the constant prior mean, 𝐺𝐺(𝒙𝒙) is a zero-mean GP with covariance function 𝐾𝐾(∙,∙) =

𝜎𝜎2𝑅𝑅(∙,∙) , 𝜎𝜎2  is the prior variance, and 𝑅𝑅(∙,∙ |𝝓𝝓)  denotes the correlation function with 



3 
 

parameters 𝝓𝝓. A commonly used correlation function for quantitative variables is the Gaussian 

correlation function 

𝑅𝑅(𝒙𝒙,𝒙𝒙′) = exp �−�𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑝𝑝

𝑖𝑖=1

� , (2) 

which represents the correlation between 𝐺𝐺(𝒙𝒙) and 𝐺𝐺(𝒙𝒙′) for any two input locations 𝒙𝒙 =

�𝑥𝑥1, … , 𝑥𝑥𝑝𝑝�  and 𝒙𝒙′ = �𝑥𝑥1′ , … , 𝑥𝑥𝑝𝑝′ � , where 𝝓𝝓 = �𝜙𝜙1, … ,𝜙𝜙𝑝𝑝�
𝑇𝑇

 is the vector of correlation 

parameters to be estimated via MLE, along with 𝜇𝜇 and 𝜎𝜎2. The correlation between 𝑦𝑦(𝒙𝒙) and 

𝑦𝑦(𝒙𝒙′) depend on the spatial distance between 𝒙𝒙 and 𝒙𝒙′ and the correlation parameters. Other 

choices of correlation functions include power exponential, Matèrn (Rasmussen et al. 2006), 

and lifted Brownian (Plumlee and Apley 2017).  

 These types of correlation functions cannot be directly used with qualitative factors 

because the distances between the levels of qualitative factors is not defined. To incorporate 

both qualitative and quantitative factors into GP modeling, one must construct some 

appropriate correlation structure that is applicable over the qualitative factors. A method using 

a quite general and unrestrictive correlation structure for qualitative factors was developed in 

Qian et al. (2008), which treats the computer model as a multi-response GP with a different 

response for each combination of levels of the qualitative factors and then models the cross-

correlation between different levels of the qualitative factors. As originally proposed, their 

method requires a rather complex optimization procedure to ensure that the correlation matrix 

is positive definite. Qian et al. (2008) also considered a number of special cases to simplify the 

structure. In Zhou et al. (2011), the authors employed hypersphere decomposition (Rebonato 

and Jäckel 1999) to model the correlation of qualitative factors, which significantly simplified 

the estimation procedure. Zhang and Notz (2015) showed that a certain representation of the 
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qualitative factors via indicator variables results in the Qian et al. (2008) covariance model and 

considered a number of special cases. An advantage of the indicator variable approach is that 

it allows one to handle qualitative factors using standard GP modeling software developed for 

quantitative inputs.  Correlation models with restrictions on the cross-correlation structure 

between the different factor levels were also proposed in (Joseph and Delaney 2007; McMillan 

et al. 1999; Qian et al. 2008). These can significantly reduce the complexity of the model, 

while sacrificing some flexibility for capturing various types of correlation structures for the 

qualitative factors. Recently, for multiple qualitative factors, Deng et al. (2017) proposed an 

additive GP model that is the sum of 𝑞𝑞  independent GPs over �𝒙𝒙, 𝑡𝑡𝑗𝑗�  for 𝑗𝑗 = 1,2, … , 𝑞𝑞 , 

assuming each GP has separable correlation in 𝒙𝒙 and 𝑡𝑡𝑗𝑗. We discuss the above methods in more 

detail in Section 3. 

 In this paper, we propose a fundamentally different method of handling qualitative factors 

in GP models that involves a latent variable representation of the qualitative factors. The 

fundamental idea behind the method is to map the levels of each qualitative factor to a set of 

numerical values for some underlying latent unobservable quantitative variable(s). After 

obtaining this mapping, our GP covariance model over (𝒙𝒙, 𝒕𝒕)  can be any standard GP 

covariance model for quantitative variables over �𝒙𝒙, 𝒛𝒛(𝒕𝒕)�, where 𝒛𝒛(𝒕𝒕) is the numerical vector 

of mapped latent variables. It is important to note that the mapped values {𝒛𝒛(𝒕𝒕)} are obtained 

in a straightforward and computationally stable manner via maximum likelihood estimation 

(MLE) along with the correlation parameters for 𝒙𝒙, and the mapping is scaled so that the 

correlation parameters for 𝒛𝒛  are unity. In Section 4, we show that over a broad array of 

mathematical and engineering examples, a two-dimensional latent variable space for each 

qualitative factor is sufficient and flexible enough to represent many correlation structures. As 
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a beneficial side-effect, the latent variable mapping provides an inherent ordering and structure 

for the levels of the qualitative factor(s), which can provide substantial insight into the effects 

of the qualitative factors. We also demonstrate this in the examples. 

There are strong physical arguments for why our mapped latent variable approach 

constitutes a covariance parameterization that, while tractable and involving relatively few 

parameters to estimate, is flexible enough to capture the behavior of many real physical 

systems. For any real physical system model having a qualitative input factor, there are always 

underlying physical variables that account for differences in the response across the different 

levels of the factor. For example, in the earlier stamping example, differences in the response 

(panel deformation and strain behavior) due to the different lubricant types must be due to the 

lubricant types having different underlying physical properties, such as lubricity, viscosity, 

density, thermal stability of the oil, etc. Otherwise, there is no way to code a simulation model 

to account for the effects of lubricant type. Thus, the lubricant type can indeed be represented 

by some underlying numerical variable(s).  

There may be many underlying variables, but the Pareto principle implies that their 

collective effect may often be attributed to just a few variables. Even without invoking the 

Pareto principle, if there are many underlying latent variables associated with the factor levels 

that effect the response, their collective effect on the response will usually be captured by some 

low-dimensional latent combination of the variables. To see this, suppose the effect of lubricant 

type 𝑡𝑡 on the response was due to 20 underlying numerical variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣20(𝑡𝑡)} 

associated with the type, in which case their collective effect on the response can be written as 

𝑦𝑦 = 𝑔𝑔(𝒙𝒙, 𝑣𝑣1, … , 𝑣𝑣20) for some function 𝑔𝑔(∙). If, for example, the dependence happens to be of 

the form 𝑦𝑦 ≅ 𝑔𝑔(𝒙𝒙,𝛽𝛽1𝑣𝑣1 + ⋯+ 𝛽𝛽20𝑣𝑣20), then a single one-dimensional latent variable 𝑧𝑧(𝑡𝑡) =
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𝛽𝛽1𝑣𝑣1(𝑡𝑡) + ⋯+ 𝛽𝛽20𝑣𝑣20(𝑡𝑡) suffices to capture the effects of the qualitative lubricant type. More 

generally, if the dependence happens to be of the form 𝑦𝑦 ≅ 𝑔𝑔�𝒙𝒙,ℎ1(𝑣𝑣1, 𝑣𝑣2, … ),ℎ2(𝑣𝑣1, 𝑣𝑣2, … )� 

for some functions 𝑔𝑔(∙) , ℎ1(∙)  and ℎ2(∙) , then a two-dimensional latent variable 𝒛𝒛(𝑡𝑡) =

�ℎ1(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … ), ℎ2(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … )� suffices to capture the effects of the qualitative 

lubricant type.  

The preceding is a rather broad and flexible structure for representing the effects of 

quantitative variables and qualitative factors on 𝑦𝑦 . For even more general 𝑔𝑔(∙)  and more 

complex dependence of the response on {𝑣𝑣1, 𝑣𝑣2, …}, the same arguments behind sufficient 

dimension reduction (Cook and Ni 2005) imply that the collective effects of {𝑣𝑣1, 𝑣𝑣2, …} can be 

represented approximately as a function of the coordinates over some lower-dimensional 

manifold in the {𝑣𝑣1, 𝑣𝑣2, …}-space. If the manifold is approximately two-dimensional, then 𝑦𝑦 ≅

𝑔𝑔�𝒙𝒙,ℎ1(𝑣𝑣1, 𝑣𝑣2, … ), ℎ2(𝑣𝑣1, 𝑣𝑣2, … )�, and the two-dimensional latent variable representation that 

we use in our approach will suffice. We illustrate these arguments more concretely with the 

beam bending example in Section 4. 

 Section 2 describes our GP model that uses a latent variable representation of qualitative 

factors, along with the MLE implementation for estimating all covariance parameters, 

including the latent variable mapping 𝒛𝒛(𝒕𝒕) . Section 3 reviews existing GP models for 

qualitative and quantitative variables and conceptually contrasts them with our proposed 

method. Section 4 reports numerical comparisons for a number of examples showing that our 

proposed latent variable method outperforms existing methods on both mathematical and 

realistic engineering examples. 
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2. LATENT VARIABLE REPRESENTATION OF 

QUALITATIVE FACTORS  

As illustrated with the lubricant example in Section 1, in most physical systems the 

dependence of the response on the qualitative factors may be represented by a set of underlying 

quantitative variables. We elaborate on this notion with the beam bending example that will be 

introduced in Section 4. In light of this, we propose a GP model with a latent variable 

representation of the qualitative factors. Using the latent variable representation 𝒛𝒛(𝒕𝒕), any 

standard correlation function for quantitative variables, such as the Gaussian correlation in (2), 

can be used over the joint space (𝒙𝒙, 𝒛𝒛).  

2.1. A 1D Latent Variable Representation for 𝒒𝒒 = 𝟏𝟏 

We first describe the approach in the context that we have a single qualitative factor 𝑡𝑡 with 

𝑚𝑚 levels (labeled 𝑡𝑡 = 1, 2, . . . ,𝑚𝑚) and are using a one-dimensional (1D) latent variable 𝑧𝑧(𝑡𝑡) to 

represent the 𝑚𝑚  levels. The 𝑚𝑚  levels of 𝑡𝑡  will be mapped to 𝑚𝑚  latent numerical values 

�𝑧𝑧(1), … , 𝑧𝑧(𝑚𝑚)� for 𝑧𝑧. The input 𝒘𝒘 = (𝒙𝒙, 𝑡𝑡) is therefore mapped to (𝒙𝒙, 𝑧𝑧(𝑡𝑡)), and using the 

Gaussian correlation function in (2), our covariance model is 

𝑅𝑅�𝑦𝑦(𝒙𝒙, 𝑡𝑡),𝑦𝑦(𝒙𝒙′, 𝑡𝑡′)� = 𝑅𝑅�𝑦𝑦�𝒙𝒙, 𝑧𝑧(𝑡𝑡)�,𝑦𝑦�𝒙𝒙′, 𝑧𝑧(𝑡𝑡′)� �

= exp �−�𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑝𝑝

𝑖𝑖=1

− � 𝑧𝑧(𝑡𝑡) −  𝑧𝑧(𝑡𝑡′)�2� , (3)
 

where 𝜙𝜙𝑖𝑖’s are the correlation parameters for the quantitative variables 𝒙𝒙. Note that there is no 

correlation parameter for 𝑧𝑧 . We take it to be unity, because when �𝑧𝑧(1), … , 𝑧𝑧(𝑚𝑚)�  are 

estimated in the MLE optimization, their spacing will appropriately account for the correlation 

between levels of the qualitative factor 𝑡𝑡.  
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Under the model (3), the log-likelihood function is  

𝑙𝑙(𝜇𝜇,𝜎𝜎,𝝓𝝓,𝐙𝐙) = −
𝑛𝑛
2

ln(2𝜋𝜋𝜎𝜎2) −
1
2

ln|𝐑𝐑(𝝓𝝓,𝐙𝐙)| −
1

2𝜎𝜎2
(𝐲𝐲 − 𝜇𝜇𝟏𝟏)𝑇𝑇𝐑𝐑(𝝓𝝓,𝐙𝐙)−1(𝐲𝐲 − 𝜇𝜇𝟏𝟏), (4) 

where 𝑛𝑛 is the sample size, 𝟏𝟏 is an n-by-1 vector of ones, 𝐲𝐲 is the n-by-1 vector of observed 

response values,  𝐙𝐙 = �𝑧𝑧(1), … , 𝑧𝑧(𝑚𝑚)�  represents the values of the latent variable 

corresponding to the 𝑚𝑚  levels of the qualitative variable 𝑡𝑡 , and 𝐑𝐑(𝝓𝝓,𝐙𝐙)  is the 𝑛𝑛 -by-𝑛𝑛 

correlation matrix whose elements are obtained by plugging pairs of the 𝑛𝑛 sample values of 

(𝒙𝒙, 𝑡𝑡) into (3). Without loss of generality, we set the first level 𝑡𝑡 = 1 to correspond to the origin 

in the latent variable space (i.e., 𝑧𝑧(1) = 0), because in (3) only the relative distances between 

levels of 𝑡𝑡 in the latent variable space affect the correlation. Fixing 𝑧𝑧(1) is also necessary to 

prevent indeterminacy or nonidentifiability during optimization in the MLE algorithm. By 

"indeterminacy", we mean that the MLE optimization solution would not be unique, since any 

translation of 𝐙𝐙 = �𝑧𝑧(1), … , 𝑧𝑧(𝑚𝑚)� would give the exact same covariance and likelihood.  

In the numerical studies in Section 4, we found that a 1D latent space effectively captures 

the correlation structure of qualitative factors in a variety of real and realistic examples. 

However, using the 1D latent representation has certain drawbacks in practice for the following 

reasons, and we prefer a 2D latent representation. Suppose the qualitative factor 𝑡𝑡 has three 

levels and that the response correlation 𝑅𝑅(𝑦𝑦(𝒙𝒙, 𝑡𝑡),𝑦𝑦(𝒙𝒙, 𝑡𝑡′)| 𝝓𝝓) for all levels 𝑡𝑡 and 𝑡𝑡′ is the same 

value (e.g., 0.6). To represent this via (3), the three levels must have equal pairwise distances 

in the latent variable space, which is impossible using a 1D representation. This is depicted in 

Figure 1a for the case that |𝑧𝑧(2) − 𝑧𝑧(1)| = |𝑧𝑧(3) − 𝑧𝑧(2)|, in which case |𝑧𝑧(3) − 𝑧𝑧(1)| =

2|𝑧𝑧(2) − 𝑧𝑧(1)|, so that the correlation between levels 𝑡𝑡 = 1 and 𝑡𝑡′ = 3 must be smaller than 

the correlation between the other two pairs of levels. To represent the equal correlation scenario, 
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a two-dimensional (2D) latent space shown in Figure 1b is necessary, in which the three latent 

mapped values �𝑧𝑧(1), 𝑧𝑧(2), 𝑧𝑧(3)�  can form an equilateral triangle. The 2D latent 

representation also provides correlation structure flexibility in other regards, beyond what the 

1D representation can provide. 

Another potential issue with a 1D latent representation can occur when the MLE optimizer 

adjusts the mapped latent values �𝑧𝑧(1), … , 𝑧𝑧(𝑚𝑚)� along the single latent dimension 𝑧𝑧.  If any 

two 𝑧𝑧 values become too close at any point in the optimization, this could cause singularity of 

the correlation matrix. For example, suppose the initial guesses for two latent points (say 𝑧𝑧(1) 

and 𝑧𝑧(2)) are reversed from what their MLEs are. As illustrated in Figure 1c, during the MLE 

optimization, 𝑧𝑧(1) and 𝑧𝑧(2) may need to gradually move toward each other to reverse their 

positions, which will cause covariance singularity when they get too close. With more 

qualitative levels, there is a higher probability of encountering singularity during optimization. 

In contrast, a 2D latent space can reduce the likelihood of singularity significantly, because the 

points can be moved around more freely in the 2D space. In the 2D space, the positions of 𝑧𝑧(1) 

and 𝑧𝑧(2) can be reversed without ever having to move them too close to each other, as shown 

in Figure 1d. 
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Figure 1: Limitations of 1D latent variable representation: a) in 1D the latent variable mappings 
cannot represent three equally correlated levels; b) in a 2D latent space, the three latent variable 
mappings 𝑧𝑧(1), 𝑧𝑧(2) and 𝑧𝑧(3) can be arranged as the vertices of an equilateral triangle to 
represent equal correlations among all three levels; c) the singularity issue of the covariance 
matrix when two points become too close to each other when exchanging positions during the 
MLE optimization search; d) in 2D, the latent variables can move freely to avoid covariance 
singularity when exchanging positions during the MLE optimization. 

2.2. A 2D Latent Variable Representation for 𝒒𝒒 = 𝟏𝟏 

As depicted in Figure 1, compared to the single latent variable representation, a 2D latent 

space provides more flexibility to capture complex correlation structures for qualitative factors, 

as well as better numerical behavior in the MLE optimization. With a single qualitative factor 

( 𝑞𝑞 = 1 ), to extend the model (3) to incorporate a two-dimensional latent variable 

𝒛𝒛 = (𝑧𝑧1, 𝑧𝑧2) ∈ ℝ2 , we map the 𝑚𝑚  levels of 𝑡𝑡  to the 𝑚𝑚  points �𝒛𝒛(1) =

�𝑧𝑧1(1), 𝑧𝑧2(1)�, … , 𝒛𝒛(𝑚𝑚) = �𝑧𝑧1(𝑚𝑚), 𝑧𝑧2(𝑚𝑚)�� in a 2D latent space. The input 𝒘𝒘 = (𝒙𝒙, 𝑡𝑡) maps 

to (𝒙𝒙, 𝒛𝒛(𝑡𝑡)), and the corresponding Gaussian correlation function is defined as 

𝑅𝑅�𝑦𝑦(𝒙𝒙, 𝑡𝑡),𝑦𝑦(𝒙𝒙′, 𝑡𝑡′)� = exp �−�𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑝𝑝

𝑖𝑖=1

− ‖𝒛𝒛(𝑡𝑡) − 𝒛𝒛( 𝑡𝑡′)‖22� , (5) 

where‖∙‖2  denotes the Euclidean 2-norm. The mapped values for the 𝑚𝑚  levels are again 

estimated via MLE, along with the other covariance parameters. A total of 2(𝑚𝑚− 1) − 1 =

2𝑚𝑚− 3 separate scalar latent values are required to represent the 𝑚𝑚  different levels of 𝑡𝑡 , 



11 
 

because (i) similar to the 1D case, the first level of 𝑡𝑡 can always be mapped to the origin (i.e., 

𝒛𝒛(1) = (0,0)) to remove the indeterminacy caused by translation invariance; and (ii) to remove 

indeterminacy due to rotational invariance in the 2D latent space, we can restrict the 2D 

position of the mapped value 𝒛𝒛(2) for the second level to lie on the horizontal axis. Figure 2 

illustrates this for 𝑚𝑚 = 3 by showing three different configurations of three mapped latent 

values {𝒛𝒛(1), 𝒛𝒛(2), 𝒛𝒛(3)} that are translated and rotated versions of each other. They therefore 

have the exact same pairwise distances and result in the same covariance structure via (5). Our 

convention of taking 𝒛𝒛(1) to be the origin and 𝒛𝒛(2) to lie on the horizontal axis removes the 

indeterminacy, as well as reduces the total number of free parameters to estimate from 2𝑚𝑚 to 

2𝑚𝑚− 3, which scales linearly with the number of levels of the qualitative variable. 

 

Figure 2: Indeterminancy caused by translation and rotation: Three different configurations 
for the mapped latent values {𝒛𝒛(1), 𝒛𝒛(2), 𝒛𝒛(3)} having the same  pairwise distances and the 

same covariance structure. 

With 𝑚𝑚 > 3 levels, one might consider a more general version of our approach that uses 

an (𝑚𝑚− 1) -dimensional latent variable representation 𝒛𝒛 = (𝑧𝑧1, … , 𝑧𝑧𝑚𝑚−1) ∈ ℝ𝑚𝑚−1  in (5). 

Similar to the two-dimensional scenario, to avoid indeterminacy due to rotation/translation 

invariance, the mapped value for the first level can be taken to be the origin 𝒛𝒛(1) = (0, … ,0) ∈
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ℝ𝑚𝑚−1 , and we can likewise restrict 𝒛𝒛(2) = ( 𝑧𝑧1(2), 0, … ,0) ∈ ℝ𝑚𝑚−1 , 𝒛𝒛(3) =

( 𝑧𝑧1(3), 𝑧𝑧2(3), 0, … ,0) ∈ ℝ𝑚𝑚−1 , . . ., and 𝒛𝒛(𝑚𝑚) = � 𝑧𝑧1(𝑚𝑚), 𝑧𝑧2(𝑚𝑚), … , 𝑧𝑧𝑚𝑚−1(𝑚𝑚)� ∈ ℝ𝑚𝑚−1 . 

Therefore, this model would require estimating 𝑚𝑚(𝑚𝑚− 1)/2  independent mapped latent 

variable values in total, which is the same as in the unrestrictive covariance model of Qian et 

al. (2008). This 𝑚𝑚 − 1 dimensional latent variable model is a very general covariance structure 

that allows independent representation of all 𝑚𝑚(𝑚𝑚− 1)/2  pairwise correlations of the 

response across the 𝑚𝑚 qualitative levels for 𝑡𝑡.  

However, we do not believe such a general (𝑚𝑚 − 1) -dimensional latent variable 

representation is needed for most problems. This is supported by the conceptual arguments 

given in Section 1, as well as the numerical results in Section 4, for which the correlation 

structures of qualitative factors have effective low dimensional representation (1D or 2D). A 

further explanation for this stems from the analogy between our proposed latent variable 

representation and something akin to multi-dimensional scaling (MDS) (Buja et al. 2007; 

Kruskal 1964). Given pairwise distances for higher-dimensional data, MDS seeks a lower 

dimensional representation whose pairwise distances reflect the high-dimensional distances as 

closely as possible. In many applications, a two-dimensional representation suffices to 

approximate the high dimensional data (Buja et al. 2007). Analogous to MDS, our proposed 

approach seeks a two-dimensional latent variable representation whose pairwise distances can 

approximate that of the full (𝑚𝑚 − 1)-dimensional representation of the qualitative factor. One 

important difference is that the approximation in our latent variable approach is estimated 

through MLE and takes into account the dependence of the response on the factor levels, which 

generally enables more extreme dimension reduction than typical MDS applications in which 

only the inputs variables are considered. This relates closely to the sufficient dimension 
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reduction arguments given in the introduction. Regardless of how many underlying latent 

physical numerical variables (e.g., {𝜈𝜈1, 𝜈𝜈2, … , 𝜈𝜈20 } in the lubricant type example in the 

introduction) truly account for the differences between levels, the functional dependence of the 

response on these variables will often be such that their effects can be represented by some 

low-dimensional (2D) latent variable representation. We believe this is the most compelling 

argument justifying our latent variable approach, although the MDS analogy may perhaps be 

a helpful way to view the 2D representation. 

2.3 A 2D Latent Variable Representation with Multiple Qualitative Factors 

Now suppose there are 𝑞𝑞 > 1 qualitative factors 𝒕𝒕 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑞𝑞�, where the 𝑗𝑗th factor 

𝑡𝑡𝑗𝑗 ∈ �1,2, … ,𝑚𝑚𝑗𝑗�, and 𝑚𝑚𝑗𝑗 denotes the number of levels of 𝑡𝑡𝑗𝑗.Our approach has a very efficient 

and natural way to handle multiple qualitative factors that is akin to how multiple numerical 

input variables are handled in GP modeling. We simply use a different 2D latent variable 𝒛𝒛𝑗𝑗 

to represent each qualitative factor 𝑡𝑡𝑗𝑗 (𝑗𝑗 = 1, 2, . . . , 𝑞𝑞). As explained earlier, there are 2𝑚𝑚𝑗𝑗 − 3 

parameters for each 𝒛𝒛 𝑗𝑗, so that the total number of parameters is only ∑ (2𝑚𝑚𝑗𝑗 − 3)𝑞𝑞
𝑗𝑗=1 .   

The corresponding Gaussian correlation function for our approach is 

𝑅𝑅 �𝑦𝑦 �𝒙𝒙, 𝒕𝒕 = �𝑡𝑡1, … , 𝑡𝑡𝑞𝑞�� ,𝑦𝑦�𝒙𝒙′, 𝒕𝒕′ = 𝑡𝑡1′ , … , 𝑡𝑡𝑞𝑞′ ��

= exp �−∑ 𝜙𝜙𝑗𝑗�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗′�
2𝑝𝑝

𝑗𝑗=1 − ∑ �𝒛𝒛𝑗𝑗�𝑡𝑡𝑗𝑗� − 𝒛𝒛𝑗𝑗�𝑡𝑡𝑗𝑗′��2
2𝑞𝑞

𝑗𝑗=1 � , (6)
  

where 𝒛𝒛𝑗𝑗(𝑙𝑙) = (𝑧𝑧1
𝑗𝑗(𝑙𝑙), 𝑧𝑧2

𝑗𝑗(𝑙𝑙))  denotes the 2D mapped latent variable for level 𝑙𝑙  of the 

qualitative factor 𝑡𝑡𝑗𝑗. The 2𝑚𝑚𝑗𝑗 − 3 values for the mapped latent variables for each factor 𝑡𝑡𝑗𝑗, 

along with the parameters 𝝓𝝓 and 𝜇𝜇 and 𝜎𝜎2 of the GP model, are estimated via MLE.  
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 In addition to yielding a relatively parsimonious yet flexible parameterization, this 

approach also has the following desirable characteristic. Using a separate 2D latent variable 𝒛𝒛𝑗𝑗 

to represent each qualitative factor results in an approach for handling multiple qualitative 

factors that is consistent with how numerical input variables are handled in GP modeling. 

Namely, the numerical inputs (𝑥𝑥𝑗𝑗 's) and the numerical surrogates (𝒛𝒛𝑗𝑗 's) for the qualitative 

factors appear in a similar manner in (6). Moreover, even though we have used the separable 

(in 𝒙𝒙 and 𝒛𝒛) Gaussian covariance in (6), any covariance model used for numerical variables, 

including nonseparable ones, can be used over the joint (𝒙𝒙, 𝒛𝒛) space. 

3. COMPARISONS WITH EXISTING APPROACHES FOR 

QUALITATIVE FACTORS 

3.1. Unrestrictive Covariance (UC)  

A popular approach in the literature for GP modeling with qualitative variables was introduced 

by Qian et al. (2008) and further developed in Zhou et al. (2011). They assumed 

𝑅𝑅�𝑦𝑦(𝒙𝒙, 𝑡𝑡),𝑦𝑦(𝒙𝒙′, 𝑡𝑡′)� = 𝜏𝜏𝑡𝑡,𝑡𝑡′ exp�−∑ 𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑝𝑝
𝑖𝑖=1 � , (7)  

where 𝜏𝜏𝑡𝑡,𝑡𝑡′ is the correlation between the responses corresponding to level 𝑡𝑡 and 𝑡𝑡′. An 𝑚𝑚 × 𝑚𝑚 

correlation matrix 𝝉𝝉 with row-𝑡𝑡 , column-𝑡𝑡′  entry 𝜏𝜏𝑡𝑡,𝑡𝑡′  is used to represent the correlations 

across all 𝑚𝑚 levels of the qualitative variable. To ensure that the correlation defined in (7) is 

valid, the matrix 𝝉𝝉 must be positive definite with unit diagonal elements (PDUDE). When there 

are 𝑞𝑞 > 1  qualitative factors, one approach is to define a single qualitative factor that 

represents combinations of levels of all the qualitative factors and then use (7). Alternatively, 

a somewhat more restrictive structure that was also considered in Qian et al. (2008) is the 

Kronecker product structure  
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𝑅𝑅 �𝑦𝑦 �𝒙𝒙, 𝒕𝒕 = �𝑡𝑡1, … , 𝑡𝑡𝑞𝑞�� ,𝑦𝑦�𝒙𝒙′, 𝒕𝒕′ = 𝑡𝑡1′ , … , 𝑡𝑡𝑞𝑞′ �� = ∏ 𝜏𝜏𝑡𝑡𝑗𝑗,𝑡𝑡𝑗𝑗
′

𝑗𝑗𝑞𝑞
𝑗𝑗=1 exp�−∑ 𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2

𝑝𝑝
𝑖𝑖=1 � , (8)  

where 𝜏𝜏𝑙𝑙,𝑙𝑙′
𝑗𝑗  represents the correlation between levels 𝑙𝑙 and 𝑙𝑙′ of 𝑡𝑡𝑗𝑗. 

Semidefinite programming was used in Qian et al. (2008) for the estimation of 𝝉𝝉 to ensure 

that it is positive definite. Zhou et al. (2011) later simplified the estimation procedure by using 

hypersphere decompositions (Rebonato and Jäckel 1999). Recently, in Zhang and Notz (2015), 

the authors showed that it is possible to use indicator variables in the Gaussian correlation 

function to generate the correlation structure in (8). For positive integers 𝑖𝑖, 𝑙𝑙, and 𝑙𝑙′, define the 

level indicator functions 

𝐼𝐼𝑙𝑙(𝑖𝑖) = �1 𝑖𝑖 = 𝑙𝑙
0 𝑖𝑖 ≠ 𝑙𝑙   

(9) 

and 

𝑊𝑊𝑙𝑙,𝑙𝑙′(𝑖𝑖) = �
𝐼𝐼𝑙𝑙(𝑖𝑖) + 𝐼𝐼𝑙𝑙′(𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑙𝑙 ≠ 𝑙𝑙′

𝐼𝐼𝑙𝑙(𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑙𝑙 = 𝑙𝑙′  ,
(10) 

and consider the correlation function 

𝑅𝑅 �𝑦𝑦�𝒙𝒙, 𝑡𝑡 = (𝑡𝑡1, … , 𝑡𝑡𝑞𝑞�,𝑦𝑦�𝒙𝒙′, 𝑡𝑡′ = (𝑡𝑡1′ , … , 𝑡𝑡𝑞𝑞′ ��

= ∏ exp �−∑ 𝜙𝜙𝑙𝑙,𝑙𝑙′
𝑗𝑗 �𝑊𝑊𝑙𝑙,𝑙𝑙′�𝑡𝑡𝑗𝑗� −𝑊𝑊𝑙𝑙,𝑙𝑙′�𝑡𝑡𝑗𝑗

′��
2𝑚𝑚𝑗𝑗−1

𝑙𝑙, 𝑙𝑙′=1 � exp�−∑ 𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑝𝑝
𝑖𝑖=1 �𝑞𝑞

𝑗𝑗=1 , (11)
  

where �𝜙𝜙𝑙𝑙,𝑙𝑙′
𝑗𝑗 : 1 ≤ 𝑙𝑙, 𝑙𝑙′ ≤ 𝑚𝑚𝑗𝑗 − 1� are additional parameters to be estimated via MLE. Zhang 

and Notz (2015) showed that (11) is equivalent to (8) for 𝜏𝜏𝑙𝑙,𝑙𝑙′
𝑗𝑗 > 0, in that there is a one-to-one 

correspondence between the 𝜙𝜙𝑙𝑙,𝑙𝑙′
𝑗𝑗 's (11) and the 𝜏𝜏𝑙𝑙,𝑙𝑙′

𝑗𝑗 's in (8). Using the formulation in (11) 

allows one to use standard GP fitting packages to estimate the 𝜏𝜏𝑙𝑙,𝑙𝑙′ 
𝑗𝑗 's in the Qian et al. (2008) 

method with a mild restriction that 𝜏𝜏𝑙𝑙,𝑙𝑙′ 
𝑗𝑗 > 0. When a single qualitative factor (𝑞𝑞 = 1) is used 
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to represent all the combinations of levels of multiple qualitative factors, (11) reduces to the 

equivalent version of (7), with 𝜏𝜏𝑙𝑙.𝑙𝑙′ > 0. There is no restriction on the elements of 𝝉𝝉 as long as 

it is a PDUDE, so the correlation in (7) is also referred to as an unrestrictive covariance (UC). 

Because of symmetry, there are 𝑚𝑚(𝑚𝑚− 1)/2  free parameters to be estimated in 𝝉𝝉, which 

represent all 𝑚𝑚(𝑚𝑚− 1)/2  pairwise correlations of the qualitative factor levels.  

 The Qian et al. (2008) method can be viewed as treating the response surfaces for different 

qualitative levels as separate response functions and using the 𝜏𝜏𝑙𝑙,𝑙𝑙′ parameters to represent the 

cross-correlation among the different responses in a multivariate GP approach. Our model is 

fundamentally different in that it considers the response 𝑦𝑦 at different levels of the qualitative 

factor(s) to be from a single response surface that is continuous over the space of some 

underlying latent numerical variables that account for the effects of the qualitative factors. As 

discussed earlier, this is more consistent with how GP models naturally handle quantitative 

variables, and it also allows any standard GP correlation function to be used over the joint set 

of quantitative and qualitative variables.  

 Regarding the latter, the UC model in (7) assumes the correlation structure is separable 

(i.e., multiplicative) in the qualitative factor 𝑡𝑡 and the numerical variables 𝒙𝒙. In contrast, our 

proposed latent variable approach is also applicable with correlation functions that are not 

separable over (𝒙𝒙, 𝒕𝒕), including the non-separable version of the power exponential, Matèrn 

(Rasmussen et al. 2006), and lifted Brownian (Plumlee and Apley 2017), which provide more 

flexibility in modeling complex correlations. Another advantage of our model is that the 

number of parameters (2𝑚𝑚 − 3) scales linearly with the number of levels of the qualitative 

variable, which is significantly less than the 𝑚𝑚(𝑚𝑚− 1)/2  parameters in the UC model when 

𝑚𝑚 is large. 
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3.2. Multiplicative Covariance 

 Qian et al. (2008) also discusses some simplified special cases of the unrestrictive 

covariance. The simplest model assumes 𝜏𝜏𝑙𝑙,𝑙𝑙′ = 𝜏𝜏 for all 𝑙𝑙 ≠ 𝑙𝑙′ , which is referred to as an 

exchangeable covariance (EC) (Joseph and Delaney 2007; Qian et al. 2008). Another 

simplified model termed the multiplicative covariance (MC) (McMillan et al. 1999; Qian et al. 

2008) assumes that for all 𝑡𝑡 ≠ 𝑡𝑡′ 

𝜏𝜏𝑡𝑡,𝑡𝑡′ = 𝑒𝑒−�𝜃𝜃𝑡𝑡+𝜃𝜃𝑡𝑡′�, (12) 

where 𝜃𝜃𝑙𝑙 > 0 is the parameter associated with level 𝑙𝑙 of the qualitative factor 𝑡𝑡, and there are 

𝑚𝑚 parameters needed in this model. As pointed out in Zhang and Notz (2015), this method is 

equivalent to using a standard GP for quantitative variables with the qualitative variable 

represented by the set of indicator variables in (9), analogous to how nominal categorical 

variables are handled in linear regression.  

When 𝑚𝑚 ≤ 3, the MC model is nearly equivalent to the UC model, with the only difference 

being that 𝜏𝜏𝑡𝑡,𝑡𝑡′ are restricted to being nonnegative (Zhang and Notz 2015). However, when 

𝑚𝑚 ≥ 4, the MC model has the following undesirable properties, as shown in Zhang and Notz 

(2015). Suppose 𝑚𝑚 = 4 and the response surfaces (over 𝒙𝒙) for levels 1 and 2 are highly 

correlated, the response surfaces for levels 3 and 4 are highly correlated, but the response 

surfaces for levels 1 and 2 are very different from the surfaces for levels 3 and 4. According to 

(12), since each 𝜃𝜃𝑙𝑙 > 0, in order to make 𝜏𝜏1,2 ≈ 𝜏𝜏3,4 ≈ 1, we must have 𝜃𝜃1,𝜃𝜃2,𝜃𝜃3, and 𝜃𝜃4 all 

close to 0. But in this case the correlation between levels 1 and 3 becomes 𝜏𝜏1,3 = 𝑒𝑒−(𝜃𝜃1+𝜃𝜃3) ≈

1, which contradicts the assumption that levels 1 and 3 are not correlated. The MC model fails 

in this case because it uses only 𝑚𝑚 parameters to specify 𝑚𝑚(𝑚𝑚 − 1)/2  pairwise correlations, 
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and the simplified parameterization fails to capture this common physical situation. In contrast, 

our proposed model can easily handle this case even with the 1D latent variable representations 

via setting 𝑧𝑧(2) ≈ 0 and 𝑧𝑧(3) ≈ 𝑧𝑧(4) ≫ 0. We believe that our simplified parameterization 

using latent variables is more consistent with many physical systems and generally is more 

effective at capturing commonly occurring correlation structures, while requiring only a small 

number of parameters. 

3.3. Additive GP Model with Qualitative Variables 

The UC and MC models both assume multiplicative forms of correlations across the 

quantitative factors and qualitative factors. Deng et al. (2017) pointed out that a potential 

drawback of (8) is that if some 𝜏𝜏𝑡𝑡𝑗𝑗, 𝑡𝑡𝑗𝑗
′

𝑗𝑗  is zero, then the response correlation at levels 𝑡𝑡𝑗𝑗 and  𝑡𝑡𝑗𝑗′ 

for factor 𝑗𝑗 must be zero for all level combinations of the other factors and for all 𝒙𝒙. Instead of 

using a multiplicative structure, Deng et al. (2017) proposed the additive covariance structure 

𝐾𝐾�𝑦𝑦(𝒙𝒙, 𝒕𝒕), 𝑦𝑦(𝒙𝒙′, 𝒕𝒕′)� = ∑ 𝜎𝜎𝑗𝑗2𝜏𝜏𝑡𝑡𝑗𝑗,𝑡𝑡𝑗𝑗
′

𝑗𝑗 𝑅𝑅(𝒙𝒙,𝒙𝒙′�𝝓𝝓(𝑗𝑗)�𝑞𝑞
1 , (13)  

where 𝑅𝑅(𝒙𝒙,𝒙𝒙′|𝝓𝝓(𝑗𝑗))  is the Gaussian correlation function defined in (2) with correlation 

parameters 𝝓𝝓(𝑗𝑗) associated qualitative factor 𝑡𝑡𝑗𝑗 , 𝜎𝜎𝑗𝑗2 is a prior variance term associated with 

qualitative factor 𝑡𝑡𝑗𝑗 , and 𝜏𝜏𝑡𝑡𝑗𝑗,𝑡𝑡𝑗𝑗
′

𝑗𝑗  has the same definition as in (8). This covariance model is 

equivalent to assuming 

𝑦𝑦�𝒙𝒙, 𝑡𝑡1, … , 𝑡𝑡𝑞𝑞� = 𝜇𝜇 + 𝐺𝐺1(𝒙𝒙, 𝑡𝑡1) + ⋯+ 𝐺𝐺𝑞𝑞�𝒙𝒙, 𝑡𝑡𝑞𝑞�, 

where 𝜇𝜇  is the overall mean, and the 𝐺𝐺𝑗𝑗 ’s are independent zero-mean GPs, each with 

covariance functions over �𝒙𝒙, 𝑡𝑡𝑗𝑗� given by the individual terms in (13). This formulation allows 

a different covariance structure over 𝒙𝒙 for each qualitative factor. When there is only one 
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qualitative factor, this model is equivalent to the covariance model (8). For 𝑞𝑞 > 1, Deng et al. 

(2017) argues that it provides more flexibility for modeling complex computer simulations 

than the model (8), which assumes a fixed covariance structure over 𝒙𝒙 for all quantitative 

factors.  

It should be noted that if all categorical inputs have two levels, our LVGP covariance (6), 

the Qian et al (2008) Kronecker product covariance (8), and the MC covariance (12) are 

equivalent to the standard GP approach for numerical inputs using binary numerical coding for 

the two-level categorical inputs. Hence, we focus on the situation of more than two levels for 

the categorical inputs. 

4. NUMERICAL COMPARISONS 

In this section, we conduct numerical studies to investigate the effectiveness of the 

proposed latent variable model (6) with Gaussian correlation function. We compare the 

proposed method with the three covariance structures reviewed in the previous section:  

(a) Unrestrictive correlation (UC) defined in (8) (Qian et al., 2008; Zhou et al., 2011), using 

the equivalent reformulation in (11) discussed in Zhang and Notz (2015); 

(b) Multiplicative correlation (MC) defined in (12) (McMillan et al. 1999; Qian et al. 2008; 

Zhang and Notz 2015), using the equivalent reformulation with indicator variables (9) 

discussed in Zhang and Notz (2015); 

(c) Additive GP with unrestrictive correlation (Add_UC), defined in (13), which is 

equivalent to UC when there is only a single qualitative factor. 
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The Gaussian correlation function in (2) is used for all quantitative variables 𝒙𝒙 in these four 

methods. To evaluate the model accuracy of each method, we use the relative root mean 

squared error (RRMSE) for the fitted GP model predictions over 𝑁𝑁 = 10,000 hold-out test 

points: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑦𝑦�(𝒘𝒘𝑖𝑖) − 𝑦𝑦(𝒘𝒘𝑖𝑖)�
2𝑁𝑁

𝑖𝑖=1
∑ (𝑦𝑦(𝒘𝒘𝑖𝑖) − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

, (14) 

where 𝑦𝑦�(𝒘𝒘𝑖𝑖) and 𝑦𝑦(𝒘𝒘𝑖𝑖) denote the predicted and the true values at input test location 𝒘𝒘𝑖𝑖 

respectively, and 𝑦𝑦� is the average of the true responses at the 10,000 test points. The 10,000 

test points are generated uniformly for both the quantitative variables and qualitative factors. 

For each example, we used 30 replicates, where on each replicate we generated a different 

"training" design, the data from which were used to fit the four covariance models, and then 

we calculated the resulting RRMSE for the four models. Each training design was a maximin 

Latin hypercube design (LHD), and the design sizes were chosen so that the RRMSE for the 

best model for each example was less than 0.1, to ensure that the designs were of sufficient 

size to allow reasonable prediction accuracy. 

 We fit the UC and MC models through the same optimization routine for MLE used in our 

latent variable model. MATLAB code from the supplemental materials of Deng et al. (2017) 

was used to fit the Add_UC model. To have a common basis for comparison, when fitting all 

models, we used 200 random initial guesses for the GP hyper-parameters to help ensure good 

MLE solutions. During optimization, the correlation parameters for all quantitative inputs are 

reparametrized as 𝜃𝜃𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜙𝜙𝑖𝑖), with 𝜃𝜃𝑖𝑖 ∈ [−3,3], and each latent variable is restricted to 

interval 𝑧𝑧𝑖𝑖
𝑗𝑗(𝑙𝑙) ∈ [−2,2]. Formerly, in general, we had used a much larger interval [−10,10] 

over which to search for the MLEs of the latent variables. However, their MLEs were almost 
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always much smaller than this, so we now restrict the search range to [−2,2]. This typically 

allows sufficiently small correlations between levels, when small correlations are needed. A 

LHD is used for generating the 200 random initial guesses to cover the search space as evenly 

as possible. For the MLE optimization, we use the MATLAB function fmincon, which uses an 

interior-point method with BFGS for a Hessian approximation.  

4.1. Mathematical Examples 

We first test the four methods on two mathematical functions that have been used in the 

literature as benchmark problems involving qualitative factors (Deng et al. 2017; Swiler et al. 

2014). We also include four engineering examples that are popular choices for assessing 

surrogate models with numerical inputs. In these examples, we converted some of the 

numerical input variables to qualitative factors. This has the benefit of providing a second 

means of assessing the effectiveness of our covariance model. Namely, since the qualitative 

factors in this case are truly due to some underlying numerical variables, and we know what 

values of the numerical variable correspond to the factor levels, we can compare the true values 

with our estimated latent variable values.  

Math Function 1 

The first mathematical test function adapted from Swiler et al. (2014) has one qualitative 

variable 𝑡𝑡  with five levels, and two continuous variables 𝑥𝑥1, 𝑥𝑥2 ∈ [0,1]. This function has 

regions where the response behaviors at different qualitative levels are very similar. The 

different levels of 𝑡𝑡 are associated with the coefficients of the second term in the following 

definition of the function 
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𝑦𝑦(𝒙𝒙, 𝑡𝑡) =  

⎩
⎪
⎨

⎪
⎧

7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)          𝑖𝑖𝑖𝑖 𝑡𝑡 = 1
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 13 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)    𝑖𝑖𝑖𝑖 𝑡𝑡 = 2
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 1.5 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)   𝑖𝑖𝑖𝑖 𝑡𝑡 = 3
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 9.0 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)   𝑖𝑖𝑖𝑖 𝑡𝑡 = 4
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 4.5 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)   𝑖𝑖𝑖𝑖 𝑡𝑡 = 5

. (15) 

The levels of 𝑡𝑡 therefore have a true ordering 1-3-5-4-2, which follows by comparing the 

coefficients of the third terms in (15). To fit the four GP models, a different training set of size 

70 is generated for each of the 30 replicates, using maximin LHDs for the quantitative variables 

𝑥𝑥1  and 𝑥𝑥2  with the levels of 𝑡𝑡  randomly assigned. The left panel of Figure 3 shows the 

prediction accuracy over the 10,000 hold-out points via boxplots of the 30 RRMSE values 

across the 30 replicates. The median values of the RRMSE for the ADD_UC, UC, MC, and 

LV models are 0.181, 0.103, 0.134, and 0.015, respectively. Thus, our LV model achieved an 

average RMSE that was roughly an order of magnitude smaller than for the other models for 

this example.  

In addition to more accurate response predictions, our LV model can provide valuable 

insight into the effects of the qualitative factor on the response. For example, the left panel of 

Figure 4 displays the estimated 2D latent variables for a typical replicate for this example. 

Even though the 2D latent variables were estimated, their MLE values fell almost exactly on a 

straight line. The straight line corresponds to the 𝑧𝑧1 axis, since 𝒛𝒛(1) is restricted to the origin, 

and 𝒛𝒛(2) is restricted to falling on the 𝑧𝑧1 axis. This result is desirable, since the qualitative 

variable truly corresponds to a 1D latent variable in this example, as discussed above. 

Moreover, the estimated latent variables are correctly ordered as 1-3-5-4-2 with levels 1 and 3 

positioned very close to each other. This is very consistent with (15), in which the response 

surfaces at level 1 and 3 have the smallest differences. The response surface at level 2 has the 

most substantial differences with the surface at level 1, and our estimated 𝒛𝒛(2) is correctly 
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positioned as the farthest from the origin. It should be noted that the estimated latent variables 

do have non-zero values in the 𝑧𝑧2 coordinate, although they are so small that they are visually 

indiscernible in Figure 4. 

Math Function 2 

The second function used for comparing the four models is from Deng et al. (2017) with 

𝑝𝑝 = 5 quantitative variables and 𝑞𝑞 = 5 qualitative factors, each having three levels:  

𝑦𝑦 = ∑ 𝑥𝑥𝑖𝑖(𝑡𝑡6−𝑖𝑖−2)
80

5
𝑖𝑖=1 + ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
� sin �50(𝑡𝑡6−𝑖𝑖−2)

√𝑖𝑖
�5

𝑖𝑖=1 , (16)  

where −100 ≤ 𝑥𝑥𝑖𝑖 ≤ 100, for 𝑖𝑖 = 1, … ,𝑝𝑝, and 𝑡𝑡𝑗𝑗 (𝑗𝑗 = 1, … ,5) are the five qualitative factors, 

each having three levels {1, 2, 3} . We generated a maximin LHD of size 𝑛𝑛 = 100 as the 

training set for the 𝑥𝑥𝑖𝑖’s in each of the 30 replicates, with the levels of the 𝑡𝑡𝑗𝑗’s randomly assigned. 

The qualitative factors affect the response 𝑦𝑦 in a nearly additive manner, and as a result, the 

additive GP model outperforms the UC and MC models, as seen in the middle boxplots in 

Figure 3. However, our proposed model works even better than the additive GP model, having 

the lowest median RRMSE value of 0.045, which is roughly four times smaller than the 

additive GP model’s 0.185 RRMSE. The estimated latent variables associated with 𝑡𝑡1  are 

shown in Figure 4 for a typical replicate, for which the three levels are approximately equally 

spaced along the 𝑧𝑧1 axis and correctly ordered as 1-2-3, which again agrees very closely with 

the true underlying numerical 𝑡𝑡𝑗𝑗  in (16). The estimated latent variables for 𝑡𝑡2 to 𝑡𝑡6 were in 

similar agreement and are not shown in Figure 4. 
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Figure 3: Boxplots of RRMSE over 30 replicates for the two mathematical functions with 
design sizes of 𝑛𝑛 = 70 and 100, respectively. Our LV approach outperforms the other three 
methods. Note that the y-axis is in log scale. 

 
Figure 4: Estimated 2D latent variables 𝒛𝒛 = (𝑧𝑧1, 𝑧𝑧2) representing the levels of the qualitative 
factors in the three mathematical test functions for typical replicates: the values of 𝑧𝑧2 are nearly 
zero for both examples, indicating the true 1D latent structure was correctly identified; and the 
estimated spacing of between the latent values match with the settings in each example. 

4.2. Engineering Examples 

We now compare the approaches on a set of real engineering examples. The response 

surface in each example has an explicit mathematical form but is based on the physics of the 

problem. In all examples, training sets are generated through maximin LHDs for quantitative 

variables, and the levels of qualitative factors are randomly sampled.  

Beam Bending 

First consider the classic beam bending problem in which the qualitative factor is the cross-

sectional shape of the beam with six levels: circular, square, I-shape, hollow square, hollow 

circular, and H-shape (shown in Figure 5). The beam has an elastic modulus E = 600GPa, and 
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is operating within its linear elastic range. The beam is fixed on one end, and a force of P = 

600N is applied vertically at the free end. The response 𝑦𝑦 is the amount of deformation at the 

free end. In addition to the cross-sectional shape represented by a qualitative factor 𝑡𝑡, there are 

two numerical input variables: beam length 𝐿𝐿 and beam width (which is the same as beam 

height) ℎ.  

This is a good example to illustrate the point we made in the introduction about the strong 

physical justification for our approach. Namely, in computer simulation models, any 

qualitative factor must always affect the response only via some set of underlying numerical 

variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …}. In a finite element simulation of the beam bending example, 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} would be the complete geometric positions (normalized by the cross-

sectional "size" parameter ℎ) of all elements in the finite element mesh of the beam cross-

section for section type 𝑡𝑡. However, the physics of this beam bending problem are transparent 

enough that we know the beam deflection 𝑦𝑦  depends on {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} via the 

response function 

𝑦𝑦(𝐿𝐿,ℎ, 𝑡𝑡) = 𝐿𝐿3

3×109ℎ4𝐼𝐼
, 

where 𝐼𝐼 = 𝐼𝐼(𝑡𝑡) = 𝐼𝐼(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), … ) is the normalized (by ℎ) moment of inertia of the 

cross-section, which is a function of the complete high-dimensional geometric descriptors 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} of the cross-section. Consequently, the underlying high-dimensional 

variables that govern the effect of the qualitative factor 𝑡𝑡 on 𝑦𝑦 can be mapped down to a single 

numerical variable 𝐼𝐼(𝑡𝑡). When applying our LV approach below, we do not incorporate this 

knowledge and, instead, let the approach attempt to discover the underlying effect of the 

qualitative cross-sectional shape factor. 



26 
 

 In light of the preceding, if our LV approach performs effectively, the estimated latent 

variable mapping 𝒛𝒛(𝑡𝑡)  will represent the normalized moment of inertia 𝐼𝐼(𝑡𝑡) . From basic 

mechanics, the normalized moments of inertia for the six cross-sections in Figure 5 are 𝐼𝐼1 =

𝜋𝜋/64 = 0.0491 , 𝐼𝐼2 = 1/12 = 0.0833 , 𝐼𝐼3 = 0.0449 , 𝐼𝐼4 = 0.0633 , 𝐼𝐼5 = 0.0373 , and 𝐼𝐼6 =

0.0167, and their inverses (which turn out to be very closely-related to the mapping 𝒛𝒛(𝑡𝑡)) are 

1/𝐼𝐼1 = 20.4, 1/𝐼𝐼2 = 12.0, 1/𝐼𝐼3 = 22.3, 1/𝐼𝐼4 = 15.8, 1/𝐼𝐼5 = 26.8, and 1/𝐼𝐼6 = 59.9. Notice 

that the H-shaped cross-section (level 𝑡𝑡 = 6) has substantially different 1/𝐼𝐼 than the other 

cross sections, and the six cross-sections are ordered from largest to smallest 1/𝐼𝐼 according to 

levels 6, 5, 3, 1, 4, then 2. The ordering and relative spacing agrees nearly perfectly with the 

estimated latent variables 𝒛𝒛(1)—𝒛𝒛(6) in Figure 7.  Consequently, our LV model correctly 

discovered the underlying mapped latent variable 𝒛𝒛(𝑡𝑡) that dictates the effect of the qualitative 

factor on 𝑦𝑦. 

 

Figure 5: Six cross-sectional shapes, representing six levels of the qualitative factor for the 
beam bending example: (1) circular cross-section with diameter h; (2) square cross-section 
with height and width h; (3) I-shaped cross-section with height and width h and thickness 
0.1h; (4) hollow square cross-section with outer side length h and thickness 0.15h; (5) hollow 
circular cross-section with outer diameter h and thickness 0.15h; (6) H-shape cross-section 
with height and width h and thickness 0.1h. 
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Borehole 

A commonly used function to study computer simulation surrogate modeling is the borehole 

function, 

𝑦𝑦 = 2𝜋𝜋𝑇𝑇𝑢𝑢(𝐻𝐻𝑢𝑢 − 𝐻𝐻𝑙𝑙) �log � 𝑟𝑟
𝑟𝑟𝑤𝑤
� �1 + 2 𝐿𝐿𝑇𝑇𝑢𝑢

log� 𝑟𝑟
𝑟𝑟𝑤𝑤
�𝑟𝑟𝑤𝑤2𝐾𝐾𝑤𝑤

+ 𝑇𝑇𝑢𝑢
𝑇𝑇𝑙𝑙
��

−1

, 

where the 8 inputs are (𝑇𝑇𝑢𝑢, 𝑟𝑟, 𝑟𝑟𝑤𝑤,𝐻𝐻𝑢𝑢,𝑇𝑇𝑙𝑙 ,𝐻𝐻𝑙𝑙 , 𝐿𝐿,𝐾𝐾𝑤𝑤). See Morris et al. (1993) for a full description 

of the variables. We treat 𝑟𝑟𝑤𝑤  and 𝐻𝐻𝑙𝑙  as qualitative factors with three and four levels, 

respectively. The levels for this and the subsequent examples are listed in Table 2 . 

OTL 

The midpoint voltage of a transformerless (OTL) circuit function is 

𝑦𝑦 = 𝐵𝐵 (𝑉𝑉𝑏𝑏1+0.74)(𝑅𝑅𝑐𝑐2+9)
𝐵𝐵(𝑅𝑅𝑐𝑐2+9)+𝑅𝑅𝑓𝑓

+ 11.35 𝑅𝑅𝑓𝑓
𝐵𝐵(𝑅𝑅𝑐𝑐2+9)+𝑅𝑅𝑓𝑓

+ 0.74𝐵𝐵 𝑅𝑅𝑓𝑓
𝑅𝑅𝑐𝑐1

 𝑅𝑅𝑐𝑐2+9
𝐵𝐵(𝑅𝑅𝑐𝑐2+9)+𝑅𝑅𝑓𝑓

, 

where 𝑉𝑉𝑏𝑏1 = 12𝑅𝑅𝑏𝑏2/(𝑅𝑅𝑏𝑏1 + 𝑅𝑅𝑏𝑏2), and the inputs are (𝑅𝑅𝑏𝑏1,𝑅𝑅𝑏𝑏2,𝑅𝑅𝑓𝑓,𝑅𝑅𝑐𝑐1,𝑅𝑅𝑐𝑐2,𝐵𝐵). See Ben-Ari 

and Steinberg (2007) for details. We treat 𝑅𝑅𝑓𝑓 and 𝐵𝐵 as qualitative factors having 4 and 6 levels, 

respectively.  

Piston 

The last example models the cycle time for a piston moving within a cylinder as 

𝑦𝑦 = 2𝜋𝜋�
𝑀𝑀

𝑘𝑘+𝑆𝑆2𝑃𝑃0𝑉𝑉0
𝑉𝑉2

𝑇𝑇𝛼𝛼
𝑇𝑇0

, where 𝑉𝑉 = 𝑆𝑆
2𝑘𝑘 �𝐴𝐴

2 + 4𝑘𝑘 𝑃𝑃0
𝑇𝑇0
𝑇𝑇 and 𝐴𝐴 = 𝑃𝑃0𝑆𝑆 + 19.62𝑀𝑀 − 𝑘𝑘𝑉𝑉0

𝑆𝑆
. 

The inputs are (𝑀𝑀, 𝑆𝑆,𝑉𝑉0, 𝑘𝑘,𝑃𝑃0,𝑇𝑇𝑎𝑎,𝑇𝑇0). See Sacks et al. (1989) for details. We treat the two 

variables 𝑃𝑃0 and 𝑘𝑘 as qualitative factors each having 3 and 5 levels, respectively. 
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Table 1: Quantitative input ranges for the four engineering examples 

Bending Borehole OTL circuit Piston 
𝐿𝐿 ∈ [10, 20] 𝑅𝑅𝑏𝑏1 ∈ [50,150] 𝑅𝑅𝑏𝑏1 ∈ [50,150] 𝑀𝑀 ∈ [30,60] 
ℎ ∈ [1, 2] 𝑅𝑅𝑏𝑏2 ∈ [25,70] 𝑅𝑅𝑏𝑏2 ∈ [25,70] 𝑆𝑆 ∈ [0.005, 0.020] 
 𝑅𝑅𝑐𝑐𝑐𝑐 ∈ [1.2, 2.5] 𝑅𝑅𝑐𝑐𝑐𝑐 ∈ [1.2, 2.5] 𝑉𝑉0 ∈ [0.002, 0.010] 
 𝑅𝑅𝑐𝑐2 ∈ [0.25, 1.20] 𝑅𝑅𝑐𝑐2 ∈ [0.25, 1.20] 𝑇𝑇𝑎𝑎 ∈ [290,296] 
   𝑇𝑇0 ∈ [340,360] 

 

Table 2: Qualitative factors and their levels for the four engineering examples 

 Bending Borehole OTL circuit Piston  
Level 𝑡𝑡 𝑡𝑡1 = 𝑟𝑟𝑤𝑤 𝑡𝑡2 = 𝐻𝐻𝑙𝑙 𝑡𝑡1 = 𝑅𝑅𝑓𝑓 𝑡𝑡2 = 𝐵𝐵 𝑡𝑡1 = 𝑃𝑃0 𝑡𝑡2

= 𝑘𝑘 
1 Circular 0.05 700 0.5 50 9000 1000 
2 Square 0.1 740 1.2 100 10000 2000 
3 I-shape 0.15 780 2.1 150 11000 3000 
4 Hollow Circular  820 2.9 200  4000 
5 Hollow Square    250  5000 
6 H-shape    300   

 

Table 1 lists the ranges of all quantitative input variables in these four examples, and Table 

2 displays the qualitative factors and their levels. Figure 6 shows boxplots of the RRMSE over 

the 10,000 hold-out test prediction points across 30 replicates. On each replicate, a different 

maximin LHD was generated and each of the four models refit. Our LV model performed the 

best in terms of having the lowest RRMSE across all four examples. The MC and UC models 

had similar performance, except that MC worked a little better than UC on the OTL example. 

The Add_UC model had the highest error across all four examples, which might be because 

these real engineering examples do not have the additive structure that it assumes. Figure 7 

displays the estimated 2D latent variables from our method for the four examples, from which 

we see that most are positioned nearly exactly along the horizontal 𝑧𝑧1 axis, correctly indicating 

that there is a single latent numerical variable associated with each qualitative factor 𝑡𝑡𝑗𝑗 and 
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matching the settings in Table 2. In addition, the ordering and relative distances between the 

numerical values of the mapped qualitative levels in Figure 7 closely mimic those for the true 

levels in Table 2. Recall that for the bending example, the inverse moments of inertia for the 

six cross-sectional shapes are 1/𝐼𝐼6 = 59.9, 1/𝐼𝐼5 = 26.8, 1/𝐼𝐼3 = 22.3, 1/𝐼𝐼1 = 20.4, 1/𝐼𝐼4 =

15.8, and 1/𝐼𝐼2 = 12.0, which agrees nearly perfectly with what is shown in Figure 7. 

 

Figure 6: boxplots of RRMSE across 30 replicates for the four engineering examples with 𝑛𝑛 = 
60, 80, 60, and 100, respectively. Our LV model achieves the smallest RRMSE for each 
example. Note that the y-axis is in log scale. 

 
Figure 7: Estimated 2D latent variables 𝒛𝒛 = (𝑧𝑧1, 𝑧𝑧𝟐𝟐) representing the levels of the qualitative 
factors in the four engineering examples for a typical replicate: the values of 𝑧𝑧2 are small 
compared to 𝑧𝑧1 , indicating that the estimated latent representation is a one-dimensional 
representation that closely matches the settings in Table 2.  
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4.3. Borehole Example Revisited with A True Latent Space That is 2D 

In all of the preceding examples, the effects of each qualitative factor could be reduced to 

a function of a single underlying numerical variable, so that the true latent numerical space for 

each qualitative factor was 1D. In this section we modify the borehole example by creating a 

qualitative factor 𝑡𝑡  having 12 levels that represent 12 discrete combinations of the two 

underlying numerical variables 𝑟𝑟𝑤𝑤 and 𝐻𝐻𝑙𝑙. The mapping from (𝑟𝑟𝑤𝑤,𝐻𝐻𝑙𝑙) to the level of 𝑡𝑡 is listed 

in Table 3. The other quantitative input variables all have the same ranges shown in Table 1. 

This example represents the case where multiple underlying numerical variables vary across 

the levels of a qualitative factor, and we demonstrate below that our LV model can successfully 

reveal the underlying structure. 

Table 3: Mapping from the 2D underlying numerical variables (rw, Hl) to the single qualitative 
factor t in the revised borehole example 

Level of t 𝑟𝑟𝑤𝑤 𝐻𝐻𝑙𝑙 Level of t 𝑟𝑟𝑤𝑤 𝐻𝐻𝑙𝑙 Level of t 𝑟𝑟𝑤𝑤 𝐻𝐻𝑙𝑙 
1 0.05 700 5 0.10 700 9 0.15 700 
2 0.05 740 6 0.10 740 10 0.15 740 
3 0.05 780 7 0.10 780 11 0.15 780 
4 0.05 820 8 0.10 820 12 0.15 820 

 

Figure 8a plots the estimated 2D latent variables associated with the qualitative factor 𝑡𝑡, from 

which we see that the 12 levels of 𝑡𝑡 are arranged into three groups, each representing a different 

level of 𝑟𝑟𝑤𝑤 . Moreover, within each group, as 𝐻𝐻𝑙𝑙  increases, the points move predominantly 

along the 𝑧𝑧1 direction. Thus, the estimated 2D latent variables have successfully revealed the 

dependence of the qualitative factor on the underlying numerical variables 𝑟𝑟𝑤𝑤 and 𝐻𝐻𝑙𝑙, with 𝑧𝑧2 

approximately representing 𝑟𝑟𝑤𝑤, and 𝑧𝑧1 approximately representing a combination of 𝐻𝐻𝑙𝑙 and 𝑟𝑟𝑤𝑤.  
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Notice that the levels of 𝑟𝑟𝑤𝑤 and 𝐻𝐻𝑙𝑙 are evenly spaced in their original units as shown in 

Table 3, but the estimated 𝑧𝑧1 and 𝑧𝑧2 values are not evenly spaced in Figure 8a. The reason is 

that in our LV model, the distances between latent variables depends on the response 

correlation across the qualitative levels, which depends not only on the distances between the 

underlying inputs but also on the behavior of the response. The response surface contour plot 

in Figure 8b further illustrates the reason: when 𝑟𝑟𝑤𝑤 is at its lower level 0.05, the response does 

not change as much along the 𝐻𝐻𝑙𝑙 dimension as when 𝑟𝑟𝑤𝑤 is at its higher level 0.15. Consequently 

levels 1—4 are more closely spaced in Figure 8a than are levels 9—12. In this sense, our LV 

model has correctly identified the structural dependence of the qualitative levels on a set of 

underlying numerical variables, in terms of capturing the response similarities/differences 

across the levels of the factor.  

 

Figure 8: a) estimated 2D mapped latent variables representing the 12 levels of the qualitative 
factor t in the revised borehole example. The latent representation successfully uncovered the 
structural dependence of the factor levels on the two underlying numerical variables:  the three 
levels of 𝑟𝑟𝑤𝑤  (represented by colors) are distributed along 𝑧𝑧2  dimension and within each 𝑟𝑟𝑤𝑤 
group the four levels of 𝐻𝐻𝑙𝑙 correspond to 𝑧𝑧1 varying; b) contour plot of the response in revised 
borehole example as a function of 𝑟𝑟𝑤𝑤 and 𝐻𝐻𝑙𝑙 with the other numerical variables in Table 1 fixed 
their mean values. 
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5. WHY USE QUALITATIVE FACTORS AT ALL? 

 Aside from the superior numerical performance for the LVGP approach demonstrated in 

our examples, its main justification is the observation that the effects of qualitative factors on 

a numerical response must always be due to differences in some set of underlying numerical 

variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} across the different levels of the factor. In light of this, one 

may question whether it would be better to simply identify what are the variables 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} that vary across the levels 𝑡𝑡 of the factor, and then to include these as 

numerical inputs in a standard GP model for only numerical variables. Identifying the 

numerical variables should generally be straightforward, albeit perhaps tedious, since whoever 

coded the simulation must know which variables he/she included in the code. Hence, the 

appropriateness of a purely numerical GP model largely depends on the dimension of 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} and on the level of prior knowledge regarding how they collectively 

impact the response variable. 

 To illustrate, reconsider the beam bending example, in which {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} for 

the cross-sectional qualitative factor are the complete set of 2D coordinates for every 

integration point in the finite element mesh of the cross-section. If 1,000 integration points are 

used, then there are 2,000 underlying numerical variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …,𝑣𝑣2000(𝑡𝑡)} 

that vary as the level 𝑡𝑡 (cross-section shape) varies. The best way to handle this is to have prior 

knowledge of the physics of the system and to know in advance that 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …,𝑣𝑣2000(𝑡𝑡)} only impact the response via the one-dimensional function 

𝐼𝐼(𝑡𝑡) = 𝐼𝐼�𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), … , 𝑣𝑣2000(𝑡𝑡)� that is the moment of inertia. In this case, it would 

be naive to treat the cross-sectional shape as a qualitative factor, as opposed to representing 
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cross-sectional shape via the single numerical variable 𝐼𝐼(𝑡𝑡) and including it in a standard GP 

model for numerical-only inputs (although our example below indicates that one might not 

lose too much if the LVGP approach is used).   

 Such strong prior knowledge of how {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} impact the response is not 

generally available. If {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} is low-dimensional (e.g., only one or two 

variables), then one should probably forego a qualitative factor treatment and, instead, include 

{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, …} as additional numerical variables in the simulation experiments. This would 

entail varying { 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … } over some experiment designed for numerical variables, 

conducting the simulation runs at these values, and then using a GP model for numerical 

variables to model the response surface.  

 On the other hand, if {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} is high-dimensional, it may be impossible to 

include them all as additional numerical variables in the simulation. This is clearly the case for 

the beam bending example, for which one would never attempt to include 

{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣2000} as 2,000 additional numerical variables in the simulation experiment and 

in the GP surrogate model. Instead, with only six different levels, one would be far better off 

treating the cross-section as qualitative factor and using the LVGP approach.  

 An added benefit of the LVGP approach is that it can help to discover the low-dimensional 

latent variables {𝑧𝑧1(𝑡𝑡), 𝑧𝑧2(𝑡𝑡)} = {𝑧𝑧1(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), … ), 𝑧𝑧2(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), … )} that 

capture the effects of the underlying high-dimensional variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} on 

the response. This is illustrated in the top-left panel of Fig. 7, which shows that there is only a 

single low-dimensional combination 𝑧𝑧1(𝑡𝑡) (since the estimated 2D 𝒛𝒛(𝑡𝑡) values fall on nearly 

a straight line) that captures the impact of {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …,𝑣𝑣2000(𝑡𝑡)} on the beam 

deflection. Recall that this learned 𝑧𝑧1(𝑡𝑡)  corresponds very closely to the inverse of 𝐼𝐼(𝑡𝑡) . 
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Similarly, for the example in Fig. 8, the LVGP approach has learned the correct two-

dimensional latent structure of how the qualitative factor affects the response. 

 In general, it may be better to forego a qualitative factor GP model and instead represent 

them as numerical inputs in a standard GP model if either (i) there are only a few underlying 

numerical variables that differ across the levels of the qualitative factor or (ii) there are many 

underlying numerical variables, but one has strong prior knowledge that they collectively effect 

the response only via a few low-dimensional combinations, and the functional forms of these 

combinations are known. If many underlying numerical variables differ across levels, and one 

does not understand the physics clearly enough to identify a few low-dimensional 

combinations on which the response depends, then a GP model for qualitative inputs should 

be used. 

 The remainder of this section investigates three additional examples related to the above 

points. The first two are modifications of the earlier simulation examples. In the modified 

versions, we compare our LVGP approach (in which only the qualitative levels of the input are 

available) with an approach that treats the underlying numerical variables 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} as available and uses them in a standard GP model for numerical 

inputs. We refer to the latter as the benchmark numerical GP (BNGP) approach, since it uses 

information (the underlying numerical variables) that is not used in the LVGP approach or the 

other approaches for qualitative inputs. The same designed experiments are used for both 

methods, so that the numerical variables used in the BNGP approach are only evaluated at 

locations corresponding to the qualitative levels.  
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LVGP vs. BNGP, and the Impact of Dimension.  In the first example, we replace the 

qualitative variable 𝑡𝑡 in Math Function 1 described in (15) by a set of 𝐽𝐽 underlying numerical 

variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …,𝑣𝑣𝐽𝐽(𝑡𝑡)} for various 𝐽𝐽. Specifically, the response is  

𝑦𝑦 �𝒙𝒙, 𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣𝐽𝐽(𝑡𝑡)� =  7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + �𝐽𝐽−1/2 ∑ 𝑣𝑣𝑗𝑗(𝑡𝑡)𝐽𝐽
𝑗𝑗=1 � ∗ sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋) . (17)  

To be consistent with the 𝑦𝑦(𝒙𝒙, 𝑡𝑡)  response surface in (15), we chose the 5 × 𝐽𝐽  values 

for {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣𝐽𝐽(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5}  so that {𝐽𝐽−1/2 ∑ 𝑣𝑣𝑗𝑗(𝑡𝑡)𝐽𝐽
𝑗𝑗=1 : 𝑡𝑡 = 1,2, … ,5} =

{1, 13, 1.5, 9.0, 4.5} . Beyond that, we randomly generated the values for 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣𝐽𝐽(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5}.  That is, we used the basis vectors 𝐀𝐀 = �𝐚𝐚1,𝐚𝐚2, … , 𝐚𝐚𝐽𝐽� 

for the 𝐽𝐽-dimensional space, where 𝐚𝐚1 = 𝐽𝐽−1/2𝟏𝟏, and 𝐚𝐚𝑗𝑗 = 𝐽𝐽−1/2(𝐽𝐽 − 1)−1/2�𝐽𝐽𝐞𝐞𝑗𝑗 − 𝟏𝟏� for 𝑗𝑗 =

2, 3, … , 𝐽𝐽, with 𝟏𝟏 and 𝐞𝐞𝑗𝑗 denoting the 𝐽𝐽-length column vector of ones and the 𝐽𝐽-length column 

vector of zeros with a one in the 𝑗𝑗-th position, respectively. Then, for each 𝑡𝑡 = 1,2, … ,5, we 

used [𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣𝐽𝐽(𝑡𝑡)]𝑇𝑇 = 𝐀𝐀[𝑣𝑣(𝑡𝑡),𝑢𝑢2(𝑡𝑡), … 𝑢𝑢𝐽𝐽(𝑡𝑡)]𝑇𝑇  with {𝑣𝑣(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5} =

{1, 13, 1.5, 9.0, 4.5}  and the 5 × (𝐽𝐽 − 1)  values for {𝑢𝑢2(𝑡𝑡),𝑢𝑢3(𝑡𝑡), … 𝑢𝑢𝐽𝐽(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5} 

randomly generated from a uniform distribution over the interval [0,10].  

 We conducted 20 replicates of the example, where on each replicate we generated a 

different set of 5 × (𝐽𝐽 − 1)  uniform random numbers for {𝑢𝑢2(𝑡𝑡),𝑢𝑢3(𝑡𝑡), … 𝑢𝑢𝐽𝐽(𝑡𝑡): 𝑡𝑡 =

1,2, … ,5} and a different experimental design. For the latter, we generated a size-𝑛𝑛 LHD in the 

{𝑥𝑥1, 𝑥𝑥2} space and then assigned the level for 𝑡𝑡 for each of the 𝑛𝑛 run by randomly sampling one 

of its five levels. The BNGP model was fit to the same data as the LVGP model but using the 

underlying numerical {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣𝐽𝐽(𝑡𝑡)} instead of 𝑡𝑡. Figure 9 compares the RRMSEs 

across 20 replicates for five different DOE sizes (𝑛𝑛 = 30, 40, 50, 60, and 70) and for four 

different values of 𝐽𝐽 (1, 3, 5, 10).  



36 
 

 The main conclusion drawn from Figure 9 is that if the underlying numerical variables are 

low-dimensional (𝐽𝐽 = 1), very little accuracy is lost if we use the LVGP approach, relative to 

using the BNGP approach that incorporates the numerical variable information; and if the 

underlying numerical variables are higher-dimensional (𝐽𝐽 ≥ 3), the LVGP gives much better 

accuracy than the BNGP approach. We note that for 𝐽𝐽 = 1 and the smaller designs (𝑛𝑛 < 50 

roughly), the BNGP approach does indeed perform slightly better than the LVGP approach, 

but the difference becomes negligible for the larger designs (𝑛𝑛 > 50 roughly).  

 

Figure 9: RRMSE comparison (each boxplot is for 20 replicates) of BNGP vs. LVGP for the 
example in (17) with design sizes 𝑛𝑛 = 30, 40, 50, 60, and 70 (corresponding to columns) when 
the dimension of the underlying numerical variables is 𝐽𝐽 = 1, 3, 5, 10 (corresponding to rows). 
Our LVGP model has only slightly higher error than the benchmark BNGP model that uses 
the underlying numerical 𝑣𝑣(𝑡𝑡) when 𝐽𝐽 = 1, and the differences decrease with larger 𝑛𝑛. The 
BNGP model degrades significantly when the dimension of the underlying numerical variables 
increases. 

Example with a 10-D {𝒗𝒗𝟏𝟏(𝑡𝑡),𝒗𝒗𝟐𝟐(𝑡𝑡),𝒗𝒗𝟑𝟑(𝑡𝑡), … } that Cannot be Reduced to a 2-D 𝒛𝒛(𝑡𝑡) .  

Throughout, we have used a two-dimensional latent variable 𝒛𝒛(𝑡𝑡) for each qualitative factor, 
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based in part on sufficient dimension reduction arguments that a two-dimensional 𝒛𝒛(𝑡𝑡) should 

provide a reasonable approximation of the effects of the underlying {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} 

for many qualitative factors. This was illustrated with the beam bending example, in which 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …,𝑣𝑣2000(𝑡𝑡)} is very high-dimensional, but their collective effect on the 

response is captured via the single one-dimensional combination 𝐼𝐼(𝑡𝑡) =

𝐼𝐼�𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), … , 𝑣𝑣2000(𝑡𝑡)�.  

The following example is a modification of Math Function 2 in which there are ten 

underlying numerical variables { 𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), … , 𝑣𝑣10(𝑡𝑡) } associated with a single 

qualitative factor 𝑡𝑡, but their effects cannot be captured exactly by a two-dimensional 𝒛𝒛(𝑡𝑡). 

The response function is 

𝑦𝑦�𝒙𝒙, 𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)� = ∑ 𝑥𝑥𝑖𝑖𝑣𝑣11−𝑖𝑖
4000

10
𝑖𝑖=1 + ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
� sin �𝑣𝑣11−𝑖𝑖

√𝑖𝑖
� ,10

𝑖𝑖=1  (18)  

where −100 ≤ 𝑥𝑥𝑖𝑖 ≤ 100, and −50 ≤ 𝑣𝑣𝑖𝑖 ≤  50, 𝑖𝑖 = 1, … ,10. The qualitative factor 𝑡𝑡  has 5 

levels, and we used the following mapping between 𝑡𝑡  and {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)} . We 

randomly generated all 50 values for {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5} uniformly within 

[-50, 50]. We used 20 replicates, and on each replicate, a different set of 50 values for 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5} were generated.  For the experimental design, on each 

replicate we generated a different size-n LHD in the  {𝑥𝑥1,𝑥𝑥2,… 𝑥𝑥10} space and then assigned 

the level for 𝑡𝑡 for each of the 𝑛𝑛 runs by randomly sampling one of its five levels. The BNGP 

model was fit to the same data as the LVGP model but using the underlying numerical 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)} instead of 𝑡𝑡. Figure 10 shows the RRMSE comparison of the two 

models with different numbers of starting points for hyperparameter estimation (24 and 120) 

and training design sizes (𝑛𝑛 =  80 and 100). Even though the LVGP model uses a two-
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dimensional  𝒛𝒛(𝑡𝑡), it achieved similar errors as the benchmark BNGP model and was evidently 

a reasonable approximation.  

 

Figure 10: RRMSE comparison for the example in (18) across 20 replicates. The two columns 
represent 24 and 120 starting points for hyperparameter estimation, while the two rows 
represent design sizes 𝑛𝑛 = 80 and 100. In all cases, our LVGP approach achieved similar errors 
as the BNGP approach that uses the underlying numerical {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)}.  

 

A Materials Design Example with Qualitative Inputs. As emphasized throughout this paper, 

all qualitative factors in physics-based simulations must impact the response via some 

underlying numerical variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …}. However, in many situations, the 

underlying numerical variables may be so high-dimensional and the simulation physics so 

complex that it precludes conveniently identifying them and incorporating them into a GP 

model with only numerical variables. This is the case in the following materials design example 

(Balachandran et al. 2016). The data set consists of the simulated shear modulus (the response, 

𝑦𝑦) of material compounds belonging to the family of M2AX phases. The M atom has ten levels 

(i.e., ten different candidate choices for the compound) {Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W}, 

the A atom has two levels {C, N}, and the X atom has twelve levels {Al, Si, P, S, Ga, Ge, As, 
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Cd, In, Sn, Tl, Pb}. Thus, there are three qualitative factors with 10, 2, and 12 levels, 

respectively, to represent the different choices of atoms for the compound. Among the total 

240 possible combinations, 17 combinations have negative shear modulus and thus are not 

considered in this example (see Balachandran (2016) for more details).  

 In the original study, the authors considered GP surrogate modeling. However, due to the 

high dimensionality and lack of transparency of the underlying {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …}, and 

due to the lack of effective GP modeling software for qualitative inputs, the authors used a GP 

model for numerical-only inputs with a relatively small set of numerical features (which can 

be viewed as a small subset of {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …}) that they suspected would have large 

impact on the response. In total, they chose seven features to serve as their numerical GP inputs, 

which are the s-, p-, and d-orbital radii for the M atom, and the s- and p-orbital radii for the A 

and X atoms. The orbital radii are from the Waber-Cromer scale. We refer to their GP modeling 

approach with only these seven features as numerical-only inputs as the "Quant_only" 

approach.  

 In the following, we show the advantages of using GP modeling with the original three 

qualitative inputs over the Quant-only GP model, and we also show the advantages of the 

LVGP model over existing GP models that can handle qualitative factors. We consider two 

versions of LVGP:  One using only the three qualitative inputs (denoted LV_qual), and the 

other using the three qualitative inputs in addition to the seven orbital radii numerical variables 

(denoted LV). The seven numerical variables are in some sense redundant if the three 

qualitative inputs are included, since the latter are functions of the former. However, one might 

speculate that there may be advantages to including them along with the qualitative inputs if 

they truly have large impact on the response.  The other three models that we compare are three 
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existing GP models that we discussed in Section 3 to handle qualitative and quantitative inputs 

(ADD_UC, UC, and MC), all with the three qualitative inputs plus the seven numerical inputs. 

There are 223 data points in total, and we used 200 of them for training and the remaining 

23 to compute the test RRMSE. The training and test sets were chosen randomly from the 223 

points, and we repeated this procedure for ten replicates, where on each replicate we chose 

different random subsets to serve as the training and test sets and repeated the modeling. Figure 

11 shows that our LV method has much lower RRMSE than any of the other approaches 

(except LV_qual). Notice that Quant_only results in consistently large RRMSE, likely due to 

the seven chosen numerical features providing an insufficient quantitative representation of the 

effects of the qualitative levels. Although it includes the qualitative factors along with the 

quantitative features, the UC approach does not improve the accuracy compared to Quant_only. 

This is likely due to the fact that two of the qualitative variables have relatively large numbers 

of levels (10 and 12), resulting in a large number of parameters to estimate in the UC model. 

Both MC and ADD_UC have better RRMSE than UC, although our LV model achieves even 

better RRMSE. The best performing model was LV_qual, since its 25th, 50th, and 75th RRMSE 

percentiles were all slightly better than those for the LV model, and substantially better than 

all other models. It is somewhat surprising that the LV_qual model performed better than the 

LV model, since the additional seven numerical features included in the LV model were 

speculated to have large effect. The benefit of including the additional seven numerical features 

appears to be offset by the additional challenge of estimating more hyperparameters. We view 

this as evidence that our LVGP approach handles qualitative factors efficiently enough that 

attempting to identify important numerical input features is not necessary. 
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This example illustrates an important reason why one would consider using qualitative 

factors in a GP model, even though their effects must be due to underlying numerical variables: 

Without definitive prior knowledge and a simulator whose mechanisms are transparent, 

selecting an appropriate set of low-dimensional features of the high-dimensional 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} is often subjective and provides an incomplete representation of the 

effects of the qualitative 𝑡𝑡. An LVGP model that includes the qualitative factors as inputs can 

account for the information not captured by quantitative variable features, thereby improving 

the GP model predictions. 

 

Figure 11: RRMSE comparison for the materials design example. Our LVGP method with (LV) 
or without (LV_qual) the additional seven numerical features achieved the lowest RRMSE. 

6. CONCLUSIONS 

In this article, we have developed a novel latent variable model for GP-based simulation 

response surface modeling with both quantitative and qualitative factors. The approach maps 

the qualitative factor levels to a corresponding set of 2D latent numerical variable values, so 

that distances in the latent variable space account for response correlations across levels of the 
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qualitative factors. We have argued that the proposed two-dimensional latent variable model 

(6) is flexible enough to accurately capture complex correlations of many qualitative factors. 

To support this, we have (1) demonstrated consistently superior predictive performance across 

a variety of both mathematical and engineering examples (Figure 3, Figure 6, Figure 11) and 

(2) provided a physical explanation of why differences in the response behavior across 

qualitative factor levels are truly due to underlying numerical variables that can be mapped 

down to a lower dimensional space of latent variables (e.g., the beam bending example in 

Section 4).  

Another desirable characteristic of our latent variable approach is that the estimated latent 

variables provide insight into the relationship between the levels of a factor, regarding how 

similar or different the response surfaces are for the different levels. In all of our examples, 

visualization of the latent variable space (Figure 4, Figure 7, and Figure 8) has successfully 

revealed the structure of the true underlying variables that account for the response differences 

between levels. Moreover, in contrast to the existing methods for handling qualitative factors 

that were reviewed in Section 3, our latent variable approach is compatible with any standard 

GP correlation function, including nonseparable correlation functions such as power 

exponential, Matèrn and lifted Brownian. This allows greater flexibility when modeling 

complex systems. The resulting covariance function in our latent variable model always results 

in a valid (nonnegative definite) covariance matrix without having to incorporate additional 

constraints, making the MLE routine easier to implement. 
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