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Abstract

Topological data analysis (TDA) provides a set of data analysis tools for extracting
embedded topological structures from complex high-dimensional datasets. In recent
years, TDA has been a rapidly growing field which has found success in a wide
range of applications, including signal processing, neuroscience and network analysis.
In these applications, the online detection of changes is of crucial importance, but
this can be highly challenging since such changes often occur in a low-dimensional
embedding within high-dimensional data streams. We thus propose a new method,
called PERsistence diagram-based ChangE-PoinT detection (PERCEPT), which
leverages the learned topological structure from TDA to sequentially detect changes.
PERCEPT follows two key steps: it first learns the embedded topology as a point
cloud via persistence diagrams, then applies a non-parametric monitoring approach
for detecting changes in the resulting point cloud distributions. This yields a non-
parametric, topology-aware framework which can efficiently detect online changes
from high-dimensional data streams. We investigate the effectiveness of PERCEPT
over existing methods in a suite of numerical experiments where the data streams have
an embedded topological structure. We then demonstrate the usefulness of PERCEPT
in two applications in solar flare monitoring and human gesture detection.

Keywords: Change-Point Detection, Human Gesture Detection, Online Monitoring, Persis-
tent Homology, Solar Flare Monitoring, Topological Data Analysis.
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1 Introduction

Topological Data Analysis (TDA) is a thriving field at the intersection of statistics,

machine learning, and algebraic topology, which has gained traction in recent years. TDA

methods provide a set of tools for studying the shapes of complex high-dimensional datasets,

by extracting its underlying low-dimensional geometric structures. TDA has found success

in a wide range of applications, including signal processing (Perea and Harer, 2015),

computational biology (Cang et al., 2015), time series analysis (Seversky et al., 2016), and

neuroscience (Sizemore et al., 2019).

Despite promising developments in recent years, there has been little work on integrating

topological structure for sequential change-point detection, which is a fundamental problem

in many of the aforementioned applications. Change-point detection here refers to the

detection of a possible change in signal distribution over time. Traditional change-point

detection methods largely focus on likelihood ratio tests, which presume that observations

are independently and identically distributed, both before and after the change (Page, 1954;

Siegmund, 1985; Poor and Hadjiliadis, 2008; Basseville and Nikiforov, 1993; Tartakovsky

et al., 2015). When the pre- and post-change distributions are known, one can apply the

cumulative sum (CUSUM) detection rule, which has been proved to be optimal (Lorden,

1971; Moustakides, 1986). In practice, the post-change distribution is typically unknown, in

which case one can sequentially estimate it and construct a generalized likelihood ratio test

for change detection (Lai, 1998; Lau et al., 2018).

However, a key limitation with these traditional methods is that they may perform

poorly for high-dimensional data with complex low-dimensional structure. This is because

2



the distributions in such setting would typically be difficult to approximate well using

parametric families, and the required density ratio would thus be difficult to estimate

as well. One solution in this high-dimensional setting is to first extract the underlying

low-dimensional structure from data, and then construct detection statistics based on the

extracted information. CUSUM-type detection algorithms were proposed in Xie et al. (2020)

and Jiao et al. (2018) to detect changes characterized by an unknown subspace structure in

the covariance matrix. These methods work well when the true low-dimensional embedding

is precisely the embedding used in the detection procedure, i.e., a linear subspace. In complex

problems where the true embedding is nonlinear, however, this model misspecification may

result in considerable deterioration in detection performance (Molloy and Ford, 2017). There

is thus a need for a high-dimensional change detection method which can integrate a broader

yet realistic framework for modeling low-dimensional structure.

In recent years, the rise of TDA methods suggests that, for many problems, the underlying

data may have embedded topological structure which can be extracted via TDA. Indeed, in

such problems, the extracted topology from TDA often captures intuitive features from high-

dimensional data which are interpretable for the practitioner. For example, in computer

vision, topological features can represent segmented regions of a 3D shape (Beksi and

Papanikolopoulos, 2016). Similarly, for time series, periodic signals can be captured by

topological features via Taken’s Embedding (Seversky et al., 2016). However, the integration

of such structure for change detection has largely remained unexplored. A recent work

(Islambekov et al., 2019) proposed a TDA detection approach for time series data, by

converting this to a sequence of so-called Betti numbers (Edelsbrunner and Harer, 2008),
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which capture the number of k-dimensional holes on a topological surface. However, Betti

numbers are known to provide a weak summary of topology (Ghrist, 2008) and thus may

be insensitive to certain topological changes. Another recent work (Ofori-Boateng et al.,

2021) utilized a richer topological summary called a persistence diagram (Edelsbrunner and

Harer, 2008), which uniquely captures the topological features of the data at different spatial

resolutions (more on this in Section 2.1). With persistence diagrams computed at each

point in time, the method then makes use of the Wasserstein distance between diagrams

from adjacent times as the detection test statistic. However, there are two limitations with

this approach: (i) it relies on the Wasserstein distance, which may not fully capture the

topological differences between two persistence diagrams; and (ii) its test statistic relies on

information from only the immediate past, which can greatly reduce detection efficiency.

To address this, we propose a new non-parametric, topology-aware framework called

PERsistence diagram-based ChangE-PoinT detection (PERCEPT). As in Ofori-Boateng

et al. (2021), PERCEPT leverages the extracted persistence diagrams (which capture

topological features of the data at each time) for change detection. However, instead of

using the Wasserstein distance of diagrams from adjacent times, PERCEPT extends a recent

non-parametric change detection method (Xie and Xie, 2021) to detect changes directly

on the diagram point clouds. This yields two advantages: (i) it offers a distribution-based

approach which amplifies changes in topological features; and (ii) its test statistic makes

use of data within a past time window, which addresses information loss. We demonstrate

the effectiveness of PERCEPT over existing methods in a suite of simulation experiments

and in applications to solar flare monitoring and human gesture detection.
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The rest of the paper is organized as follows. Section 2 provides preliminaries on

persistent homology and motivations. Section 3 outlines the PERCEPT methodology.

Section 4 demonstrates the effectiveness of this method in numerical experiments. Section 5

applies the method to solar flare monitoring and human gesture detection.

2 Preliminaries and Motivation

We first provide a brief overview of TDA, then discuss two baseline methods, the

Hotelling’s T 2 statistic and the Wasserstein distance approach in Ofori-Boateng et al. (2021),

for high-dimensional change-point detection. We then motivate the proposed PERCEPT

method via an application to solar flare detection.

2.1 TDA Preliminaries

A primary tool in TDA is persistent homology, which extracts topological features (e.g.,

connected components, holes, and their higher-dimensional analogues) from point cloud data.

In what follows, we provide a brief overview of persistent homology, following Ghrist (2008)

and Edelsbrunner and Harer (2008). For a given point cloud dataset, persistent homology

provides a representation of this as a simplicial complex, defined as a set of vertices, edges,

triangles, and their higher-dimensional counterparts. A common simplicial complex is the

Rips complex, which depends on a single scale parameter ε. At a given radius ε > 0, the

Rips complex contains all edges between any two points whose distance is at most ε, and

contains triangular faces for any three points whose pairwise distances are at most ε. Figure

1 (adapted from Han et al., 2018) illustrates this for a toy dataset. Clearly, a single ε cannot

capture all geometric structures embedded in the data. Thus, a sequence of scale parameters
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is used to build a sequence (or filtration) of simplicial complexes. This filtration provides a

means for extracting topological structure from the data, e.g., zero-dimensional holes (or

connected components), one-dimensional holes, and their higher-dimensional analogues.

Under this framework, suppose a topological feature appears in the filtration at some

radius ε and disappears at a larger radius ε′ > ε. The pair (ε, ε′) gives the persistence of the

feature, with ε and ε′ being its birth and death, respectively. A prominent topological feature

in the point cloud data would have long persistence, whereas a small or noisy topological

feature would have short persistence. The persistence information from all topological

features can be captured by an (untilted) persistence diagram (PD), a collection of points

in R2 where each feature is represented by a point (ε, ε′), with ε is its birth time and ε′ is

its death time. Figure 1 illustrates the persistent homology pipeline from point cloud data

to a persistence diagram. We will distinguish this untilted PD from its tilted variant later.

We use a simple example to illustrate this translation of topological structure to a PD.

Figure 2 (left) shows the point cloud data generated from two disjoint circles with radii

1, and Figure 2 (right) shows the corresponding PD of this data. For the 0-d holes (black

points), we observe many points with small persistence, but one point which persists for

a long time. This last point with large persistence suggests the data has two connected

components, which is indeed true. For the 1-d holes (red points), we observe two red points

with large persistence, which reflects the two holes within the circles.

2.2 Existing Baseline Methods

A classic baseline approach for change detection in multivariate data is the parametric

Hotelling’s T 2 statistic (Hotelling, 1947). The Hotelling’s T 2 statistic makes use of the mean
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Figure 1: An illustration of the persistent homology pipeline, from point cloud data to a filtration
of simplicial complexes to a persistence diagram. The Rips complex with radius ε in the left plot
corresponds to the second simplicial complex in the filtration.

Figure 2: (left) Point cloud data generated from two disjoint circles, and (right) its corresponding
persistence diagram for 0-d and 1-d holes.

and covariance structure of data, and thus it can detect both the mean and covariance

shifts. Given data xt ∈ Rp at time t, t = 1, · · · , T , the Hotelling’s T 2 statistic is defined as

(x̄− µ0)ᵀΣ−1
0 (x̄− µ0), (1)

where x̄ is the sample mean vector, µ0 and Σ0 is the nominal mean vector and covariance

matrix, respectively (this is typically given or estimated from reference data). The vanilla

Hotelling’s T 2 statistic is calculated using only data at the current time t, with all historical
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data discarded.

To compute the test statistic more efficiently, it can be coupled with the CUSUM scheme

(Page, 1954), which makes use of a cumulative sum of the statistic over time. The resulting

detection statistic SHt is then given by:

SHt = (SHt−1)+ + (µ̄t−w,t − µ̂0)ᵀΣ̂−1
0 (µ̄t−w,t − µ̂0)− dH , SH0 = 0, (2)

where (x)+ = max{x, 0}, µ̄t−w,t denotes the sample average of the data vector {xt−w, . . . ,xt},

and µ̂0 and Σ̂0 are the pre-change mean vector and covariance matrix estimated from

historical data. Here, dH is a drift parameter that can also be trained using historical

data. When the data is known to be concentrated on a linear subspace, one can adapt the

Hotelling’s T 2 test by first performing Principal Component Analysis (PCA), then using

the resulting principal components as data within equation (2). With this, a change-point

is then declared at time t if the statistic SHt exceeds a pre-specified threshold b.

The second baseline method, the Wasserstein distance approach in Ofori-Boateng et al.

(2021), integrates topology in the following way. The Wasserstein distance (of order 1) for

two distributions P and Q on sample space Ω is defined as:

W1(P,Q) := min
γ∈Γ(P,Q)

{
E(ω,ω′)∼γ [c(ω, ω′)]

}
.

Here, c(·, ·) is a metric on Ω (in our case, this is taken as the Euclidean norm), and

Γ(P,Q) denotes the collection of all (Borel) probability measures on Ω× Ω with marginal

distributions P and Q.

With this, the Wasserstein distance method is straight-forward. First, at each time t, the
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(a)

(b) (c)

Figure 3: (a) Snapshots of the solar flare around the change-point t∗ = 49. (b) Hotelling’s T 2

statistics at each time t. (c) Wasserstein distance statistics at each time t.

persistence diagram Dt ∈ R2 is computed from the data xt. Next, the Wasserstein distances

SWt =W1(Dt,Dt+1) are computed between the PDs from adjacent time frames. One then

declares a change-point at time t when the test statistic SWt exceeds some pre-specified

threshold b.

We investigate these two baseline methods for a motivating solar flare monitoring

application (more on this in Section 5). The data consists of image snapshots (232× 292

pixels) of a solar flare, captured by the Solar Dynamics Observatory1 at NASA. Figure 3a

shows several snapshots of the flare before and after the true change-point at t∗ = 49, where

the flare bursts become more pronounced and bright. However, such a change can be quite

subtle visually, thus making monitoring a challenging task (Xie et al., 2012). We applied

the above two baseline methods, with the Hotelling’s T 2 applied by first vectorizing the

1See https://sdo.gsfc.nasa.gov/assets/docs/SDO_Guide.pdf.
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image data, then applying PCA to extract the top 15 principal components. Figures 3b-c

show the detection statistics as a function of time t. We see that both methods experience a

large detection delay from the true change-point at t∗ = 49. For the Hotelling’s T 2, the test

statistic increases quite slowly after the change-point, which suggests it was not capable in

capturing the changed image features. Similarly, the Wasserstein distance statistic appears

highly unstable and unable to detect the true change-point. Given the limitation of the

two baseline methods on solar flare monitoring, we introduce next a new non-parametric,

topology-aware method which provides a broader framework for integrating low-dimensional

geometric information for monitoring.

3 Persistence Diagram-based Change Detection

We now introduce the proposed PERsistence diagram-based ChangE-PoinT (PERCEPT)

monitoring method. We first describe the histogram binning for PDs, then show how the

extracted histograms can be used for non-parametric change detection. We then present

some supporting theory for PERCEPT, and discuss methodological developments on the

bin and weight optimization.

3.1 Persistence Histogram Binning

The first step in PERCEPT is to construct the so-called persistence histograms, a novel

histogram representation which captures persistence information from the computed PDs.

This histogram binning serves two purposes – it provides a robust way for filtering noise

in the PD data, and allows us to leverage recent developments in histogram-based change

detection methods within PERCEPT (shown next). To facilitate this, we assume all PDs
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are given in their tilted representation, where a feature is represented by a point (ε, ε′ − ε),

with ε is its birth time and ε′ − ε is its persistence time. Figure 1 provides an illustration.

Assume, as before, that the PDs Dt ∈ R2 are computed for the data xt at each time

t = 1, · · · , T . Further assume that the birth range for the PDs (i.e., the x-axis on Dt) is

partitioned into the L bins: [0, b1), [b1, b2), . . ., [bL−1, bL), where bl is the right break-point

for the l-th bin. With this, we can now bin the point cloud data Dt. Let ft,l be the sum of

persistences for points in Dt within the l-th bin, i.e.:

ft,l =
∑

(u,v)∈Dt,u∈[bl−1,bl)

v, (3)

and let ωt,l = ft,l/
∑L

l′=1 ft,l′ be its corresponding proportion. The histogram frequencies

and distribution of the PD Dt can thus be represented by the vectors ft = (ft,1, · · · , ft,L)

and ωt = (ωt,1, · · · , ωt,L), respectively. We will call ωt the persistence histogram of the PD

Dt. Figure 4a visualizes this binning procedure.

The breakpoints for the persistence histogram (i.e., b1, · · · , bL) can be placed such that

the bins have equal widths in the birth range using the “pre-change” PDs (i.e., the diagrams

prior to the change), then kept the same throughout the procedure. Figure 4a visualizes this

for the aforementioned solar flare application. The left figure shows the binned histogram

(with L = 10 bins) of a PD computed from a pre-change flare image, and the right figure

shows the histogram for a “post-change” image using the same bins. Given a significant

change in topological structure, the corresponding pre-change and post-change persistence

histograms (which capture topology information) should be sufficiently different to capture

this change. We will leverage this fact to formulate the following test statistic.
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3.2 Test Statistic

The second step in PERCEPT is to use the extracted persistence histograms to construct

a monitoring test statistic. The idea is as follows. Suppose the bins [0, b1), [b1, b2), · · · ,

[bL−1, bL) are fixed beforehand. Then, at each time t, one can treat the observed persistence

histograms ft as data sampled from an underlying discrete distribution with L levels. Let ppre

denote this so-called persistence distribution (with L levels) prior to the change, and ppost

be the persistence distribution after the change. The goal of detecting topological changes

can then be thought of as testing for differences between the persistence distributions ppre

and ppost. We thus desire a test which investigates the following hypotheses:

H0 : ppre = ppost, HA : ppre 6= ppost. (4)

To test (4), we extend a recent non-parametric test in Xie and Xie (2021) for detecting

changes on discrete distributions. At the current time t, we search for all possible change

points at time k < t within a fixed-sized window. To investigate whether time k is a change

point, we will consider four consecutive time intervals (see Figure 4b): the first two intervals

are immediately before time k, and the last two intervals are immediately after k. All four

intervals have the same time length of b(t − k)/2c. We call the first group of intervals

(representing potential pre-change times) as “Group 1”, and the latter group (representing

potential post-change times) as “Group 2”. We will discuss the choice of L in Section 3.5.

Suppose the histogram breakpoints b1, · · · , bL are given. Consider now the persistence

histogram proportions within the two time intervals in Group 1 and the two intervals in

Group 2; we denote this as ω
[1,1]
t,k , ω

[1,2]
t,k , ω

[2,1]
t,k and ω

[2,2]
t,k , respectively. This non-parametric
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(a) (b)

Figure 4: (a) Persistence histograms for a pre-change and post-change solar flare image. (b)
Visualizing the intervals used for the weighted `2 detection statistic.

weighted-`2 statistic can then be defined as

χt,k = (ω
[1,1]
t,k − ω

[2,1]
t,k )ᵀΣ(ω

[1,2]
t,k − ω

[2,2]
t,k ). (5)

Here, Σ = diag{σ1. · · · , σL} is the diagonal weight matrix, where σl ≥ 0, l = 1, · · · , L. Note

that, if time k were indeed a change point, the resulting test statistic χt,k would likely be

large, thus providing evidence for a change. A simple choice of Σ is the identity matrix,

which assumes equal weights over persistence histogram bins. We introduce a strategy for

optimizing this weight matrix at the end of the section.

With this in hand, an online detection procedure is then given by the stopping time:

T = inf{t : χmax
t ≥ b}, χmax

t = max
0≤k≤t

χk,t, (6)

where b is a pre-specified threshold parameter. Here, T is the time at which the procedure

raises an alarm indicating a change-point has occurred before time t, by taking the maximum

statistic χmaxt over all possible change-points k < t. A change is declared if and only if the

test statistic χmax
t exceeds a certain threshold, indicating the two persistence histograms

are sufficiently different to declare a change in topology.

The threshold b in (6) can be set by controlling the false alarm rate to a desired pre-
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specified level, or, equivalently, by controlling the average run length (ARL, more on this

later) to be above a pre-specified level. For the above weighted-l2 statistic, theoretical

approximations are available for the ARL as a function of threshold b (Xie and Xie, 2021):

E∞[T ] =
1

2

b−1eb
2/(2σ2

p)[2πσ2
p]

1/2∫ [4b2/(m0σ2
p)]1/2

[4b2/(m1σ2
p)]1/2

yν2(y)dy
(1 + o(1)).

Here, σ2
p := 4[

∑L
l=1 σ

2
i p

2
i (1 − pi)2 +

∑
i 6=j σiσjp

2
i p

2
j ], where p := ppre, m0 and m1 are two

known constants, and ν(·) is a special function that is easy to calculate. Further details can

be found in Xie and Xie (2021). With this approximation, one can then set the threshold b

to bound the ARL E∞[T ], which then controls the false alarm rate.

3.3 Connection between EDD and Topology

We now provide an interesting connection between the expected detection delay (EDD)

and topology, which sheds light on how PERCEPT may be useful for topological change

detection. Consider the following definitions of EDD and Average Run Length (ARL), two

fundamental metrics in online change-point detection. Let E∞ denote the expectation under

the probability measure when there is no change-point (i.e., the change-point equals to ∞),

and let E0 denote the expectation under the probability measure when the change happens

at time 0. For a given stopping time T of a monitoring procedure, its ARL is defined as

E∞[T ], the expected run length to false alarm when there is no change, and the EDD is

defined as E0[T ], the number of samples needed to detect the change. Theoretically, the

EDD is known to be linearly related to the log(ARL) (Tartakovsky et al., 2015).

Next, we introduce the bottleneck distance, a standard metric for topological distance

(Ghrist, 2008). Suppose, for two point cloud datasets with different topologies, one computes

14



its corresponding (untilted) PDs D1 and D2, respectively. The extracted topological features

in these PDs can then be compared via a matching η. This matching is performed in two

steps: (i) it pairs each point in the first PD D1 with a point in the second PD D2 or a point

on the diagonal line, and (ii) it pairs each point in D2 with a point in D1 or a point on

the diagonal. The bottleneck distance (Ghrist, 2008) between the PDs D1 and D2 is then

defined as:

dB(D1,D2) = inf
η

sup
y∈D1

||y − η(y)||∞.

Here, the supremum is taken over all matched points in D1, and the infimum is taken

over all possible matchings η. Clearly, a larger bottleneck distance indicates the extracted

features from the first PD are quite different from that for the second PD (and vice versa).

This then suggests the topology for the first dataset is markedly different from that for the

second dataset. This link between the bottleneck distance and topological differences is

formalized by the Stability Theorem (Cohen-Steiner et al., 2007), a key theorem in TDA.

With this in hand, the EDD of the proposed PERCEPT method can be then linked

to the bottleneck distance of the topologies of the pre- and post-change data. Recall that

PERCEPT makes use of the non-parametric l2-statistics in Xie and Xie (2021) on the

underlying persistence diagrams. It is known (Xie and Xie, 2021) that the EDD for such a

procedure can be upper bounded by:

EDD ≤ 2b

(mini Σii)||ppre − ppost||22
, (7)

where b is the pre-specified detection threshold and Σii is the i-th diagonal entry of Σ. In other
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words, the larger the difference between the pre- and post-change persistence distributions

ppre and ppost, the smaller the EDD for PERCEPT. We can then show (technical details in

Appendix C) that, under certain asymptotic approximations, this difference ||ppre − ppost||22

can be lower bounded by the bottleneck distance between a pre-change PD Dpre and post-

change PD Dpost, which quantifies differences in pre- and post-change topology. Hence,

together with (7), this suggests that, for PERCEPT, the greater (or smaller) the topological

difference is between pre- and post-change data, the smaller (or greater) its detection delay,

which is as desired.

3.4 Persistence Cluster Binning

The persistence histogram binning approach (Section 3.1) can be viewed as partitioning

the persistence space into vertical rectangular regions, which are then used to bin the

persistence diagrams for monitoring. This may have two practical limitations. First, since

persistences are summed within each bin, the procedure can distinguish topological features

with different birth times, but not features with similar birth times but different persistences.

Second, the restriction of partitions to be vertical and rectangular may hamper the ability

of this method in identifying regions of greatest change between the pre- and post-change

distributions. To address this, we propose an alternate novel persistence clustering approach,

which provides a more general partition of the persistence space.

Suppose we have training PDs for both pre- and post-change regimes. The idea is to find

a clustering of these point clouds, so that the corresponding partition of the persistence space

can discriminate well the pre- and post-change distributions. We construct these persistence

clusters as follows. First, we perform k-means clustering (Lloyd, 1982) on the pre-change
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(a) (b)

Figure 5: (a) A sample pre-change (orange) and post-change (green) PD. (b) Pre- and post-change
cluster centers and its corresponding persistence cluster via Voronoi diagrams.

PD point clouds, which returns Cpre cluster centers Cpre = c1, · · · , cCpre . We can do the

same clustering on the post-change PDs to obtain Cpost cluster centers Cpost = c′1, · · · , c′Cpost
.

Using both the pre- and post-change centers C = Cpre ∪ Cpost, we then form a Voronoi

diagram using centers C (Aurenhammer, 1991), i.e., a partition of R2 to its closest point in

C. Figure 5 visualizes this persistence clustering procedure. The number of clusters can be

determined by the elbow method in k-means clustering (Ketchen and Shook, 1996).

With this, we then employ the same weighted-`2 test statistic in (5). The only difference

is that, instead of taking ω
[1,1]
t,k , ω

[1,2]
t,k , ω

[2,1]
t,k and ω

[2,2]
t,k as persistence histogram proportions,

we take these as the proportions over persistence clusters. As Figure 5b shows, these

persistence clusters may yield improved discrimination between the pre- and post-change

distributions (compared to the earlier persistence histograms), particularly when there is a

large amount of points (or features) captured in the persistence diagrams. When there is

only a small number of features, however, the earlier persistence histogram approach should

be used instead, since there may be insufficient data to fit the more complex persistence

clusters. We will demonstrate this later in numerical experiments.
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3.5 Weight Optimization

We now discuss the specification of the weights Σ = diag{σ1, · · · , σL} in the test statistic

(5). When no training data are available on both pre- and post-change regimes, a standard

approach would be to set unit weights over all bins, i.e., σl = 1. However, when such training

data are available, we may be able to find a non-uniform choice of weights which amplifies

the differences between the pre- and post-change distributions. In our implementation

later, we adopt the weight optimization approach in Xie and Xie (2021), which aims to find

weights Σ to maximize the worst-case weighted `2 distance. This can be formulated as:

max
σ≥0,g(σ)≤1

f(σ),

f(σ) := min
ppre,ppost

{∑
i

σi(ppre,i − ppost,i)
2 : ppre, ppost ∈ ∆, ||ppre − ppost||2 ≥ ρ

}

g(σ) := max
ppre∈∆

∑
i

σ2
i p

2
pre,i

(8)

Here ppre,i and ppost,i denote the i-th entry in the vector ppre and ppost. The minimization in

f(σ) is taken over all possible pre- and post-change distributions ppre and ppost, within the

probability simplex ∆, that are ρ-separable for a given ρ > 0. The choice of ρ depends on

the scale of change that one wants to detect; in our experiments later, ρ is set to be 0.1.

For persistence histograms, the optimal number of bins L can be optimized simultaneously

by selecting L which yields the highest f(σ) in (8). In practice, the training pre- and

post-change data are required for estimating the persistence distributions ppre and ppost.

Further details on this optimization can be found in Xie and Xie (2021). These optimized

weights can then be used within the test statistic (5) for change detection.

In implementation, we have found that a small modification of (8) can yield noticeably
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improved performance. Note that when ppre,i/ppost,i or ppost,i/ppre,i is exceedingly larger

from 1, and |ppre,i − ppost,i| is small for some i, it may be difficult to pick out bin i as an

important bin using the above formulation. However, such a bin i distinguishes the pre-

and post-change distributions because their relative difference is large. Thus, we see that

this optimization is distribution-dependent; when ppre, ppost are extremely different from the

uniform distribution, the above weights may not be ideal for distribution discrimination. In

practice, we suggest using the relative difference of ppre and ppost instead of the absolute

difference in the above formulation, i.e., minimizing
∑

i σi{(ppre,i − ppost,i)/ppost,i}2 instead

of
∑

i σi(ppre,i − ppost,i)
2 for f(σ) in (8).

4 Simulation Study

We now explore the performance of the proposed PERCEPT method in a suite of

simulation studies where the underlying data is generated with topological structure. We

investigate several challenging change scenarios, including topology changes, noise changes,

and its scalability for higher-dimensional data.

Three baseline methods are used here for comparison. The first is the aforementioned

parametric Hotelling’s T 2 test, using the 15 extracted principal components from PCA on

the original data. The second is the Wasserstein distance method proposed in Ofori-Boateng

et al. (2021), which makes use of the Wasserstein distance between PDs in adjacent times.

Details on both methods can be found in Section 1. The third method is the maximum mean

discrepancy (MMD) test (Gretton et al., 2012; Li et al., 2015), a widely used non-parametric

change detection method. Given a class of functions F and two distributions p and q, the

MMD distance between p and q is defined as MMDF(p, q) = supf∈F(Ex∼p[f(x)]−Ey∼q[f(y)]).
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When F is a reproducing kernel Hilbert space (RKHS) associated with kernel function

K(·, ·), this MMD statistic can be written as:

SMt =
1

n2
pre

npre∑
i,i′=1

K(xi,xi′ ) +
1

n2
post

npost∑
j,j′=1

K(xj,xj′ )−
2

nprenpost

npre∑
i=1

npost∑
j=1

K(xi,xj). (9)

In our implementation, we used the standard Gaussian radius basis function (RBF) kernel

K(·, ·), where the kernel bandwidth is chosen using the so-called “median trick” (Bernhard

et al., 2018), i.e., set to be the median of the pairwise distances between data points. For

computational efficiency, instead of searching for all possible change-point k < t, we adopt

a window-limited procedure which considers only k ∈ [t−m1, t−m0], where m0 = 20 and

m1 = 80 throughout the experiments.

The simulation set-up is as follows. We simulate data x1, · · · ,xT with T = 400, and the

change-point is set at time t∗ = 200. In other words, x1, · · · ,x200 are generated from the

pre-change distribution, and x201, · · · ,x400 are generated from the post-change distribution.

In our simulations, this point cloud data is generated with topological structure from two

simple mgeometric shapes, the unit sphere and the ellipsoid (in varying dimensions). Under

a quick inspection of the persistence diagrams, we decide to use the persistence clustering

approach across all simulation studies. The goal is to have PERCEPT learn this topological

structure from data, then make use of such structure to quickly identify change-points.

4.1 Shape Change

We first consider the case of geometric shape changes, where the pre-change data

is sampled with noise from the unit two-dimensional (2-D) circle, and the post-change
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data is sampled with noise from a 2-D ellipse. Two noise settings are considered for

this experiment: N(0, 0.05) and N(0, 0.10). Figure 6 shows the detection statistics from

PERCEPT, Hotelling’s T 2 and MMD under the two noise settings. We see that both

PERCEPT and MMD are able to quickly detect the change-point: both monitoring statistics

peak up immediately after the change-point at t = 200. The Hotelling’s T 2 statistic, however,

shows a relatively larger delay. This suggests that, by integrating topological structure,

PERCEPT can yield improved performance over the Hotelling’s T 2. For the Wasserstein

distance method, the statistic experiences a large spike at exactly t = 200 for the noise

setting N(0, 0.05), but is unable to detect the change at the larger noise level N(0, 0.10).

4.2 Noise Change

Next, we consider the case of noise changes, where the pre- and post-change data

are generated from the same unit 2-D circle (or ellipse), but with noise levels N(0, 0.05)

and N(0, 0.10), respectively. Figure 7 shows the test statistics from PERCEPT and the

Hotelling’s T 2 for the circle and ellipse. We see that PERCEPT can quickly detect the

underlying change: its pre-change test statistic is quite stable, and it peaks up quickly after

the change-point at t = 200. The Wasserstein distance approach also seems to perform quite

well here, although its pre-change statistic is noticeably more unstable, which may lead to

increased false alarms (i.e., lower ARL). On the other hand, the Hotelling’s T 2 statistic

increases noticeably more slowly after the change, which suggests a larger detection delay.

For the MMD statistic, we see that while it peaks up after the change-point, its pre-change

statistic is quite unstable and volatile, which again leads to increased false alarms.
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(a)

(b)

Figure 6: (a) The `2 detection statistic χmax
t , Hotelling’s T 2 statistics, MMD statistics and

Wasserstein distance at each time t for Gaussian noise N(0, 0.05), with the vertical red dashed
line indicating the true change-point. (b) Same for Gaussian noise N(0, 0.10).

4.3 Increasing Dimensionality

We now investigate how well these methods perform on data generated on higher-

dimensional geometric structures, namely, the 3-D and 4-D unit spheres and ellipsoids. We

consider here the same noise change as in Section 4.2, and we compared the performance of

PERCEPT with the classic parametric Hotelling’s T 2 test, MMD statistics and Wasserstein

distance. Figure 8a-b shows the detection statistics for the 3-D and 4-D spheres. We

see that the proposed PERCEPT method consistently outperforms existing methods: its

pre-change statistics are stable, and its post-change statistics peak up quickly after the
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(a)

(b)

Figure 7: (a) The `2 detection statistic χmaxt , Hotelling’s T 2 statistics, MMD statistics and the
Wasserstein distance at each time t for the 2-D circle with the vertical red dashed line indicating
the true change-point, where the noise changes from N(0, 0.05) to N(0, 0.10). (b) Same for 2-D
ellipse.

change. Comparatively, the increase in the Hotelling-T 2 statistic is more subdued after

the change (which results in greater detection delay), and the MMD statistic pre-change

is noticeably more unstable (which results in increased false alarms). The Wasserstein

distance approach is not able to detect the change. Furthermore, comparing with the 2-D

results in Figure 7, the proposed method appears to yield improved performance to existing

methods, which is unsurprising since it leverages the underlying low-dimensional topological

structure in the high-dimensional data. Figures 8c-d show the detection statistics for the
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3-D and 4-D ellipsoid. Again, we see that PERCEPT yields improved performance over

the existing benchmarks, despite having slightly more unstable pre-change statistics. These

experiments suggest that, by learning and integrating low-dimensional topological structure,

the proposed method can efficiently detect changes in high-dimensional data.

4.4 ARL vs. EDD

Finally, we investigate the performance of these methods via the two metrics introduced

in Section 3.3: the Average Run Length (ARL) and the Expected Detection Delay (EDD).

Recall that the ARL measures the expected run length to a false alarm when there is no

change, the EDD measures the expected number of samples needed to detect a change.

We approximate the ARL and EDD of the compared methods using different thresholds b,

under the 2-D circle experiment with Gaussian noise N(0, 0.05) for pre-change regime and

Gaussian noise N(0, σ2) for post-change regime, where σ2 = 0.09, 0.10, 0.11. We adopted

the experiments from Xie and Xie (2021), and details can be found in Appendix A.

Figure 9 plots the log-ARL vs. EDD comparison for the compared methods in the 2-D

circle experiment. Here, a method with large ARL and small EDD is desired, since this

results in less false alarms and smaller detection delay. There are two interesting observations

to note. First, for all noise levels and any fixed ARL level, we see that PERCEPT yields much

lower EDD compared to the Hotelling’s T 2 procedure, which suggests that the proposed

method indeed yields improved detection performance by integrating topological structure.

Second, the proposed method appears to be much more robust to noise perturbations. As

the noise level decreases, the EDD for the Hotelling’s T 2 becomes noticeably larger for fixed

ARL levels. This is because the noise change becomes smaller as we decrease the noise
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(a)

(b)

(c)

(d)

Figure 8: (a) The `2 detection statistic χmaxt , Hotelling’s T 2 statistics, MMD statistics and the
Wasserstein distance at each time t for the 3-D sphere with the vertical red dashed line indicating
the true change-point, where the noise changes from N(0, 0.05) to N(0, 0.10). (b) Same for 4-D
sphere. (c). Same for 3-D ellipsoids. (d). Same for 4-D ellipsoids.

level of the post-change data. This is not surprising, since this change is difficult to detect

without first identifying the underlying topological structure. In contrast, the EDD for
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Figure 9: EDD–ARL curves for 2-D circle with varying noise levels for PERCEPT, the Hotelling’s
T 2, the MMD test and the Wasserstein distance procedure, respectively.

PERCEPT is more stable and nearly remains the same as the noise level increases, which

shows the robustness of PERCEPT. The relationship between ARL and EDD for the 4-D

case is not shown here because it’s computational expensive, but the same conclusion is

expected from the earlier results.

5 Applications

5.1 Solar Flare Change Detection

We now demonstrate the effectiveness of PERCEPT in the earlier motivating problem

on detecting changes in solar flares. A solar flare is an intense emission of radiation on the

Sun’s atmosphere, and the monitoring of such changes via satellite imaging is critical for

predicting geomagnetic storms (Xie et al., 2012). This detection can be highly challenging,

however, as noted in Section 2.2, due to the high dimensionality of image data and the

subtlety of such a change. Recent work in image processing suggests a wide range of

image features can be captured via topology (Bendich et al., 2011), which suggests our

topology-aware approach may provide a potential solution. The data used here are T = 100

image snapshots taken by the SDO at NASA, where the true change-point is at t∗ = 49.
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(a) (b)

Figure 10: (a) Triangulation of an image. (b) “Tilted” persistence diagram of the solar flare
image in (a).

Further details can be found in Section 2.2.

To apply PERCEPT, we need to first map the image data to a filtration, or a sequence

of simplicial complexes (see 2.1 for details). We will make use of the so-called lower star

filtration, which has shown success in capturing useful topological features in image data

(Bendich et al., 2011). Let f(x) be a mapping from each pixel location x to its intensity

value, and for a given ε, define the sublevel set of f as X(ε) = {x|f(x) ≤ ε}. One can then

form a simplicial complex from X(ε) by first considering image pixels as vertices on a grid,

then triangulating this grid by placing an edge between two points that are horizontally,

vertically, or diagonally adjacent, and a triangular face for any three adjacent points forming

a triangle. Figure 10a visualizes this mapping from image to simplicial complex. For a

sequence 0 < ε1 < ε2 < · · · < εm, the sublevel set filtration of the image is then defined as

Xi = X(εi), i = 1, · · · ,m, which forms a sequence of nested simplicial complexes. This

filtration can thus be used to construct a persistence diagram (Figure 10b) as described

in Section 2.1. One can view this filtration pipeline as a way to extract important image

topological features as a PD point cloud.

27



With the mapped PD in hand for each image, we can then proceed with the detection

framework outlined in Section 3. A quick inspection of the computed PDs show only a small

amount of points (or features), thus we decided to use persistence histograms instead of

persistence clusters (see Section 3.4). Here, the histogram breakpoints b1, · · · , bL are chosen

such that there is (roughly) an equal sum of persistences within each histogram bin in the

first solar flare image. The Hotelling’s T 2 is performed using the 30 extracted principal

components from PCA on the image data, and the MMD test is performed on the image

data directly, with the RBF kernel, and the bandwidth is chosen using the “median trick”

as describe in Section 4. The Wasserstein distance approach is performed on the mapped

PDs from lower star filtration.

Figure 11 shows the proposed detection statistic χmax
t using L = 10 histogram bins,

the Hotelling’s T 2, the MMD test statistics and the Wasserstein distance over time. For

PERCEPT, we note a sudden increase in the test statistic after the true change-point

t∗ = 49 (vertical red dashed line), which suggests the proposed method is able to pick out

the underlying topological change in the images with little detection delay. Comparatively,

for the Hotelling’s T 2, the increase in its test statistic is much more subdued and gradual,

which indicates a much larger detection delay. The MMD approach yields poor performance

here: its pre-change statistics are highly volatile and unstable, and its post-change statistics

experience a decrease after the change-point. The Wasserstein distance approach is not

able to detect the change: there is no large change in statistics at the change-point. This

shows that, by learning and integrating low-dimensional topological structure within a

non-parametric change detection framework, the proposed approach can yield significant
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Figure 11: Detection statistics for each compared method in the solar flare monitoring application.
The vertical red dashed line indicates the true change-point.

improvements over existing methods when such structure is indeed present for image data.

We also note that, despite the required mapping from images to PDs via the lower

star filtration, PERCEPT is quite computationally efficient. This is due in large part to

the availability of well-maintained packages for TDA algorithms. Here, using the Python

package Ripser (Tralie et al., 2018), the computation time for performing the lower star

filtration on 300 images is approximately 90 seconds on a standard desktop computer. Given

this computed filtration, the detection statistic χmax
t can then be evaluated with minimal

additional computation, thus allowing for efficient topology-aware online detection.

5.2 Human Gesture Change Detection

Next, we investigate the performance of PERCEPT in a human gesture detection

application. The detection of human body gestures is an important task in computer vision

(Turaga et al., 2008), and has immediate applications in visual surveillance and sign language

interpretation (Oh et al., 2011). One challenge for this detection lies in the high-dimensional

time series data, and the low-dimensional embedding of human body gestures within such

data. Recent developments in time series analysis suggest that many time series features can
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be captured via TDA (further details below), and thus PERCEPT may be promising for this

task. To explore this, we will use the human gestures dataset from the Microsoft Research

Cambridge-12 Kinect (Fothergill et al., 2012), which consists of time series observations of

human skeletal body part movements, collected from 20 sensors on 30 people performing

12 distinct gestures. We study in particular the transition of gestures from a “bow” to a

“throw” sequence, as shown in Figure 12a.

To apply PERCEPT, we need to first transform the multi-dimensional time series to

point cloud data, on which the usual TDA pipeline (see Section 2.1) can then be performed.

A popular transformation for this is Taken’s embedding (Gidea and Katz, 2017), which

is widely used in TDA. Suppose we observe the d-dimensional time series {zk(t), t ≥ 0},

k = 1, · · · , d (here, d = 20 × 3 = 60, since each of the 20 body sensors return a 3-D

coordinate). For each time t, define the point zt = (z1(t), · · · , zd(t)) as the cross-section of

the multivariate time series. With a given window size w, Taken’s embedding returns the

point cloud representation Zt = {zi, · · · , zi+w−1} at each time t. After this transformation

from a d-dimensional time series to the point cloud Zt, one can then perform the standard

TDA filtration in Section 2.1 to convert Zt to a persistence diagram Dt. It can be shown

(Gidea and Katz, 2017) that this embedding captures key periodicity and dynamic system

information on the multivariate time series. Figure 12b provides a visualization of Taken’s

embedding. Here, we set the window size w to be approximately the periodicity of the

gestures, which is based on prior knowledge.

With this, we can then apply PERCEPT for detecting gesture changes. A quick

inspection shows that there are limited points in the computed PDs Dt. Thus we use
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(a) (b) (c)

Figure 12: (a) Visualizing the two gestures: taking a bow (top) and throwing an object (bottom).
(b) Embedding of a multivariate time series to point cloud (PC) data to a persistence diagram. (c)
“Tilted” persistence Diagram of the embedded point cloud at t = 510.

the persistence histograms in Section 3.1 rather than the persistence clusters in Section

3.4. We then used 60 frames from “bow” and “throw” sequences to choose the number of

histogram bins and optimize weights. The Hotelling’s T 2 is performed using the 30 extracted

principal components from PCA on the embedded point cloud data Zt, and the MMD test

is performed on the embedded point cloud data Zt directly, with the RBF kernel, and the

bandwidth is chosen using the “median trick” as described in Section 4. The Wasserstein

distance approach is performed on the mapped PDs from the Rips filtration.

Figure 13 shows the proposed detection statistic χmax
t using L = 2 histogram bins, the

Hotelling’s T 2, the MMD test statistics, and the Wasserstein distance over time, with the

vertical line indicating the true change-point (i.e., the transition from “bow” to “throw”).

For PERCEPT, we see the test statistic is relatively stable pre-change and experiences a

large jump immediately after the change. This suggests our method has a large ARL and

small detection delay, which is as desired. The Hotelling’s T 2 again experiences a much

more subtle and gradual increase after the change, which indicates a large detection delay.

As before, the MMD method performs poorly: its pre-change statistic is highly unstable pre-
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Figure 13: Detection statistics for each compared method in the human gesture change detection
application. The vertical dashed line indicates the true change-point from “bow” to “throw”.

change and experiences a notable decrease post-change, which suggests it is unable to detect

the change at all. The Wasserstein distance is again not able to detect the change-point. The

distance hits zero regularly, indicating the similar topological structure between the adjacent

embedded point clouds, which shows the importance of using historical data for change-point

detection. This demonstrates the advantages of a topology-aware non-parametric change

detection framework: when such a low-dimensional structure exists and can be leveraged,

one can achieve efficient monitoring performance even with high-dimensional data.

6 Conclusion

We have proposed a novel topology-aware, non-parametric monitoring framework called

the Persistence Diagram-based Change-Point Detection (PERCEPT) method, which lever-

ages tools from topological data analysis for change detection. The idea is to first extract the

topological structure of the data via persistence diagrams, then leverage a non-parametric,

histogram-based change detection approach on these diagrams to sequentially detect topo-

logical changes. A suite of simulation experiments and two applications show that, when

the underlying change is topological in nature, the proposed PERCEPT approach yields
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noticeably improved detection performance over existing approaches.

Despite these promising results, there are several interesting future directions for refining

PERCEPT for broader applications. First, we are exploring a more localized detection

approach, which can pinpoint and monitor local changes (e.g., local translation/rotation

shifts) in topology. Second, there has been recent work on two-parameter persistence (Wright

and Zheng, 2020), particularly on its robustness in extracting topological structure in the

presence of noise; integrating such ideas within PERCEPT would allow for a more robust

topology-aware monitoring approach. Finally, we will investigate broader uses of PERCEPT

in applications for which TDA has found recent success, particularly neuroscience (Wang

et al., 2020, 2022) and complex physical systems (Mak et al., 2018).
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Appendices

A Experiments for approximating the ARL and EDD

Experiment 1: To compute the ARL, we generate n sequences of pre-change samples of

length m. We create a random pool with M pre-change samples to reduce the computational

cost. For each sequence, m samples are drawn randomly from the pool with replacement,

and we repeat this process n times. Let T be the stopping time of the detection procedure,

and if there is no change-point in the sequence of length m (all samples are drawn from the

pre-change distribution), from the discussion in Xie and Xie (2021) we have:

P (T > m) = P ( max
0≤t≤m

χt < b) ≈ exp{−m/λ},

where λ is the estimation of the ARL. For any given threshold b, we could get the estimation

of the ARL based on the percentage of sequences whose maximum online statistics is

below the threshold, among all n sequences. More specifically, we approximate the ARL as

m/(− ln p̂), where p̂ is the percentage.

Experiment 2: To compute the EDD, we generate n sequences of pre-change samples

of length m′ followed by post-change samples of length m. The pre-change samples are

only used as historical data, in order to construct the pre-change histograms ω
[1,1]
t,k , ω

[1,2]
t,k

as shown in Figure 4b. The online test statistics are calculated only from the onset of

post-change samples to obtain the detection delay. We consider the same list of threshold b

as we used in computing the ARL, and find the average detection delay over n sequences.
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Figure 14: Visualizing a regular point (left) and a saddle point (right) in the lower star filtration.

B Details on the lower star filtration

When a new vertex is added in the sublevel set, the topological change depends on

whether the vertex is a maximum, minimum, regular, or a saddle of the function. Figure

14 visualizes a regular point and saddle point (in yellow), and the edges and faces in the

sublevel sets (in blue). The topological features do not change after introducing a regular

point, but the number of connected components decreases by one after introducing a saddle

point.

C Connection on distributional & bottleneck distances

Here, we elaborate further on the connection between the difference between the pre-

and post-change persistence distributions, ‖ppre − ppost‖2, and its corresponding bottleneck

distance dB(Dpre,Dpost). Since the bottleneck distance is defined on the sampled PDs

Dpre and Dpost at a given time t, we will make this connection on the empirical pre- and

post-change persistence distributions p̂pre and p̂post at time t, respectively.

The following proposition provides a link between the empirical persistence distribution

difference ‖p̂pre−p̂post‖2 and the bottleneck distance of its corresponding persistence diagrams

Dpre and Dpost, under asymptotic conditions.
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Proposition 1. Let Dpre and Dpost be the PDs of samples from pre- and post-change data

at time t, and let p̂pre and p̂post be the corresponding persistence histograms given a fixed

partition of L bins at time t. Suppose all birth times are unique, and suppose the number of

histogram bins L are sufficiently large such that the persistence histograms at each time has

at most one point in each bin. Then ||p̂pre − p̂post||22 ≥ d2
B(Dpre,Dpost).

In other words, as the number of histogram bins L goes to infinity, the distributional

difference ||p̂pre − p̂post||2 can be lower bounded by the bottleneck distance dB(Dpre,Dpost).

This, combined with Equation (7) of the main paper, suggests that the greater the topological

difference is between pre- and post-change data, the smaller its detection delay, which is as

desired.
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