
An Implementation of the Number Field Sieve
Marije Elkenbracht-Huizing

CONTENTS

1. Introduction

2. Description of the NFS

3. Outline of the Implementation
4. Free Relations

5. Choice of the Polynomials
6. The Sieving

7. The Filtering

8. The Block Lanczos Method

9. Extracting the Square Root
10. Experimental Results
Acknowledgements
References

AMS Subject Classification (1991): 11Y05, 11Y40

Keywords: nUIJlber field sieve, factorization.

This research is funded by the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (Netherlands Organization for
Scientific Research, NWO) through the Stichting Mathematisch
Centrum (SMC), under grant number 611-307-022.

The Number Field Sieve (NFS) is the asymptotically fastest
known factoring algorithm for large integers. This article de­
scribes an implementation of the NFS, including the choice of
two quadratic polynomials, both classical sieving and a special
form of lattice sieving (line sieving), the block Lanczos method
and a new square root algorithm. Finally some data on factor­
izations obtained with this implementation are listed, including
the record factorization of 121s1 - 1.

1. INTRODUCTION

The Number Field Sieve {NFS), introduced in 1988
[Pollard 1993a], is the asymptotically fastest known
algorithm for factoring integers. Two forms of the
NFS have been considered: the Special NFS, or
SNFS, tailored especially to integers of the form
n = c1rt + c2su, and the General NFS, or GNFS,
applicable to arbitrary numbers. The NFS factors
integers n in heuristic time

exp((c + o(l))(logn)113(log logn)213)

as n -+ oo, where c = (~) 113 ;::::: 1.5 for the SNFS

and c = (\1) 113 ;::::: 1.9 for the GNFS [Buhler et al.
1993]. These expressions should be compared with
the time

exp((1 + o(l))(logn)112(log log n) 112)

taken by the Multiple Polynomial Quadratic Sieve,
or MPQS [Pomerance 1985], still the best general­
purpose factoring algorithm for integers with less
than approximately 105 digits.

We describe here several experiments carried out
with an implementation of the NFS written by J.
Buhler, R. M. Elkenbracht-Huizing, P. L. Mont­
gomery, R. Robson and R. Ruby. It has been used,
among others, for the record SNFS factorization

© A K Peters, Ltd.
1058-6458/96 $0.50 per pa.ge

232 Experimental Mathematics, Vol. 5 (1996), No. 3

of (12151 - 1)/11, a number of 162 decimal digits,

and a GNFS factorization of a 107-digit cofactor of

5223+1. We start with a description of the NFS and

an outline of the implementation, then discuss in

more detail several aspects of the implementation,

and finally state the results of the factorization ex­

periments. Detailed descriptions of the NFS can be

found in [Lenstra et al. 1993b; Buhler et al. 1993].

2. DESCRIPTION Of THE NFS

Let n be the odd number to be factored. It is easy

to check whether n is a prime number or a prime

power [Lenstra et al. 1993c, § 2.5], and we assume
that it is neither. Like MPQS, the NFS tries to

find a solution of the equation v 2 = w2 mod n. For
at least half of the pairs (v mod n, w mod n) with

v2 = w2 mod n and v and w relatively prime to n,
the greatest common divisor of n and v - w gives
a nontrivial factor of n.

To construct v and w we first choose two poly­
nomials

!1(x) = C1,d1Xd1 + C1,d,-1Xd,-l + ... + C1,o

f2(x) = C2,d2Xd2 + C2,d2-1Xd,-l + ... + C2,o

over Z, with Ji f ±f2 , both irreducible over Zand

having content cont Ji := gcd(c;,d,, ... , C;,o) equal
to l; we also choose an integer m that is a common

root modulo n of f 1 and f 2 . In our implementa­
tion this is the only step in which the SNFS and

the GNFS differ: in the SNFS we use the special
form of n to pick these polynomials by hand. One

polynomial will have very small coefficients com­
pared to the coefficients of the polynomials we will

use with the GNFS, where we search for a pair

of polynomials with help of the computer. This

makes SNFS faster than GNFS [Buhler et al. 1993,

§ 1 J. See Section 5 for a detailed description of the
selection of the polynomials.

Let a;, for i = 1, 2, be a root of f;(x) in <C.
Let Qn denote the ring of rational numbers with
denominator coprime to n. We want to find a

nonempty set S of pairs (a, b) of coprime integers

such that both ITs (a - bai) and I1s (a - ba2) are

squares-,82 and 12, say-in Qn[a1] and Qn[a2],
respectively. Applying to ,82 and / 2 the two nat­

ural ring homomorphisms c.p; : Qn [a;] -+ Z/n'll

determined by Soi (Cl';) = m mod n gives 'P1 (/J2) =
ip2(t2) modn. This yields <p1(,8) 2 = <,02(/) 2 modn.

When <p1 (,8) and <p2 (I) are relatively prime to n,

calculating gcd(n, l/Ji (,8) - cp2 (/)) will yield a non­
trivial factor of n in at least half the cases.

For Tis (a-bai) to be a square in Qn [ai], its norm

N(Tis(a-ba;)) must be a square in Q. Denote by

Fi(x,y) = yd'f;(x/y) E 'll[x,y] the homogeneous

form of f;(x). From N(a - ba;) = F;(a, b)/c;,d,
we can deduce that if the cardinality of the set S

is even and if Tis F;(a, b) is a square in Z, then

N(f1 8 (a - ba;)) is a square in Q.
The algorithm searches for a pair (a, b) of co­

prime integers such that both integers Fi (a, b) fac­

tor completely over the prime numbers below some

user-determined bounds B;. We call such integers

F;(a, b) smooth and such (a, b)-pairs relations. For

a relation (ai, bi) we can write

F (a· b·) = IT pe,(j,p) 1 Jl J ,

pEX1
(2.1)

F2(aj, bi)= II pe,(j,p),

pEX2

where e;(j,p) E N, for i = 1, 2, and where X1 and

X2 contain -1 and the prime numbers below B1
and B2 , respectively.

In order for ITs F;(a, b) to be a square in 'll, every
exponent Le; e;(j,p) in

II F;(aj, bJ = II pL-s e;(j,p)

(a;,b;)ES pEX;

should be even. Let v (aJ, bi) be a vector of length

1 + IX1I + IX2I, constructed as follows: its first

entry is 1 and the rest of v (ai, bi) is filled with

all exponents e1 (j,p) and e2 (j,p) modulo 2, in an

order which is fixed for all (ai, bi)· If Sis a subset of

the relations such that L(a,b)ES v(a, b) = 0 mod 2,

then the cardinality of S is even and Ls e;(j,p) =
0 mod 2 for i = 1, 2 and all p E Xi; hence both
N(I18 (a - ba;)) are squares in Q.

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 233

Unfortunately N(Tis (a-ba;)) being a square in
Q is not sufficient for f1 3 (a - bai) to be a square
in Qn [o:J By looking at what kind of p divides
F;(a, b), we will almost overcome this problem. For
each prime number p we define the set

::R;(p) = {(r1: r2) E P 1(JFP) I Fi(r1,r2) = 0 modp},
(2.2)

where P 1 (1Fp) denotes the projective line over JFP.
For a and b coprime, the integer F; (a, b) is divisible
by a prime number p if and only if (a mod p : b mod

p) E ::R; (p). Therefore the set ::R; (p) is partitioning
all (a, b)-pairs for whichp divides F;(a, b) according
to (a mod p : b mod p).

Next, for C E N, let ::f;(C) be the set of pairs
(p, (r1: r2)), where p is a prime less than C and

(r1: r2) E ::R;(p). Heuristically, /:T;(C)/ is approxi­
mately the number of primes below C [Lang 1970,
Chapter VIII, § 4]. :11 (B1) and :12 (B2) are called
the factor bases. We now can write (2.1) as

II
(p,(r1 :r2))E'.J,(B;)

for i = 1, 2, where e;(j,p, ri, r2) = e;(j,p) if

(aJ mod p: bi mod p) = (r1: r2)

and 0 otherwise.
In order for f1 3 (a-ba;) to be a square in «J!n[ai],

every exponent 2:::: s e; (j, p, r 1 , r2) in

II
(a;,b;)ES

should be even. Let v(aJ, bJ) be a vector oflength

1 + l:11(Bi)/ + /:12(B2)/ containing 1 and the values
of ei(j,p,ri,r2) mod 2 and e2(j,p,r1,r2) mod 2, in
an order that is fixed for all relations (ai, bj). A
nonempty subset S of relations such that

L v (a, b) = 0 mod 2
s

is almost sufficient to ensure that Ils (a - bai) be a
square in «J!n [ai] for i = 1, 2 [Buhler et al. 1993,
§ 12.7]. That it is not totally sufficient is only
partly caused by the fact that we only forced the

product fis / F; (a, b) / to be a square in Z. We can
see that it is not totally sufficient from the follow­
ing example: In the field Q(v'3) generated by a
root of the polynomial f(x) = x2 - 3, the element
2 + v'3 has norm F(2, -1) = 1. So all exponents
ei(j,p,r1,r2) and e2(j,p,r1,r2) will be zero. Fur­
thermore v(2, -1) + v(l, 0) = 0 mod 2. But the
square root of 2 + v'3 is (V6 + .J2)/2, which is not
an element of Q(v'3).

The small gap between being almost a square
and being practically certainly a square is over­
come by using quadratic characters, following an
idea of Adleman [1991]. For S a set consisting of
pairs (a, b) of co prime integers, let Tis (a - bai) be a
square in Qn [o:i], and let q be an odd prime number
not dividing c1,d1 c2,d2 • If (s1: s2) E '.R.;(q) is such
that JJ(s1s2 1 mod q) =I= 0 mod q and (a mod q
bmodq) =J (s1 : s2) for all (a,b) ES, then

II (a -b (s18:1 mod q)) = 1 (2.4)

(a,b)ES

where (;];) denotes the Legendre symbol [Buhler et
al. 1993, § 8, § 12.7]. We use this by taking for each
polynomial several primes q larger than Bi and not
dividing ci,d,, together with an element (s1 : Sz) E

::Ri(q) such that JJ(s1s21 mod q) =I= 0 mod q. Since
q > B; we have (a mod q: b mod q) =J (81: 82) for
all relations (a, b). Append to the vector v(a, b) for
all pairs (q, (s1: 82)) a 0 if

(a-b(s 1stmodq)) =l

and a 1 otherwise. Now a nonempty subset S
of all relations such that Z::::s v(a, b) = 0 mod 2
guarantees that (2.4) holds for all chosen primes
q together with their elements (s1: s2) E ::R;(q).
Taking enough quadratic characters - we took 32

per polynomial - makes it practically certain that
both Tis (a - ba;) are squares in «J!n [o:;]. The coun­
terexample given earlier could have been caught
with the use of quadratic characters: take q = 11
and (s 1 : s2) = (5, 1) E ::R(ll). The Legendre sym­
bol becomes (2~5), which is -1.

234 Experimental Mathematics, Vol. 5 (1996), No. 3

If Q is the total number of quadratic charac­
ters used, then a nonempty subset S such that
:Es v(a, b) = 0 mod 2 can always be found if the
number of relations exceeds

3. OUTLINE OF THE IMPLEMENTATION

The implementation can be divided into five stages.
In the first stage we select the polynomials f1(x)
and / 2(x) in .Z[x], and the integer m such that
m is a common root of j 1(x) and / 2 (x) modulo
n. We also choose the sieving region- that is,
the collection of (a, b)-pairs for which both Fi(a, b)
are checked for smoothness-and, for each poly­
nomial, a factor base bound Bi.

The second stage, the sieving in which the re­
lations are found, is the most time-consuming. In
this implementation a relation is a pair (a, b) from
the sieving region such that both Fi (a, b) factor
completely over the primes below Bi, except for at
most two large prime numbers, which should be
between Bi and a large prime bound Li. By using
lattice sieving [Pollard 1993b] - a special form of
which will be desribed in Section 6 - one of the two
integers Fi (a, b) is allowed to have three primes be­
tween Bi and Li. The product in (2.3) is taken over
:t(Li), and the vectors v(a, b) have to be adapted
accordingly.

This is followed by a filtering stage with the pur­
pose of reducing the amount of data. Here some re­
lations are eliminated and others are grouped into
relation-sets.

In the fourth stage, we construct a matrix by
taking the vectors v (a, b) and the vectors

L v(a,b)
(c,b)EV

for all remaining relations and relation-sets V as
columns. Finding a nonempty set S such that

L v (a, b) = 0 mod 2
g

is the same as calculating a nontrivial vector from
the null space of this matrix over lF 2 • For huge
sparse matrices the best known methods are iter­
ative ones, such as the block Lanczos algorithm
[Montgomery 1995]. The output of this stage is a
subset S of the relations such that both Ils(a-bo:i)
and Ils(a - bo:2) are squares {32 and 'Y2 in 'Gn[o:1]

and 'Gn [o:2], respectively.
The final stage consists of extracting the square

roots f3 and 'Y. This is done by a new algorithm,
developed by Montgomery [1994] and also itera­
tive. Successive approximations are found, leaving
over "smaller" remainders of which we have to ex­
tract the square root. If the remainder is small
enough we use a conventional method. Finally we
apply the homomorphisms <.p1 and cp2 to the square
roots f3 and 'Y, respectively, and calculate the gcd
of n and cp1(f3) - cp2 ('y), which will split n into two
nontrivial factors in at least half of the cases.

4. FREE RELATIONS

Denote the order of the Galois group of f 1 (x) '2 (x)
by g. For approximately 1/ g of the primes q <
min(Li, L 2), both polynomials Fi(x, y) split into di
linear factors modulo q [Frobenius 1896, § 2, The­
orem 1; Neukirch 1992, p. 566]:

d;

Fi(x, y) = l!i,d, IT (r~ilx - r~i>y) mod q (4.1)

j=l

If such a prime q does not divide the discriminants
of / 1 (x) or j 2 (x) (and therefore both polynomials
Fi (x, y) split into di different linear factors modulo
q) and if q does not divide c1,d1 • c2,d2 , we call q a
free prime. This terminology comes from the fact
that we can select such primes that are smaller
than min(B1, B2) without extra effort when cal­
culating the factor bases :ri(Bi)· They are said
to give rise to free relations because we now re­
quire (TipET p) (TI(c,b)ES (a- bai)) to be a square in
'Gn[ai], for i = 1, 2, where 'J is a suitably chosen
subset of the set of free primes. With N(p) =pd•,
we have

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 235

N((rrP)(TI (a-bai)))
pE'T (a,b)ES

= (rr Pd') (n F;(a, b)),
pE'T (a,b)ES C;,d,

which represents a square in Q if ISI is even and

(TipE'T Pd') (II(a,b)ES F; (a, b)) is a square in Z. As
we partitioned the primes p dividing TI(a,b)ESF;(a, b)
according to the roots (a mod p : b mod p) E '.R; (p),
we consider pd• as the product of one factor p for
every root (r 1 : r2) E '.R; (p). We associate with ev­
ery free prime p < min(Li, L 2) a vector v(p) of
length 1 + l:Fi(Li)I + l'.r2(L2)I + Q, which contains
a one for every (p, (r~i): r~i))) occurring in (4.1) for
both polynomials, and for every quadratic charac­
ter (q, (s1 : s2)) for which (E) = -1. The rest is

q

filled with zeros. We will look for 'J and S such

that l:vE'Tv(p) + l:(a,b)ES v(a, b) = 0 mod 2.

5. CHOICE OF THE POLYNOMIALS

The conjectured running time for the application
of the SNFS to a number of the form n = c1rt+c2 s"'
depends on the size of n. If only small factors of
n are known, the SNFS algorithm is certainly the
best one to use. If already a substantial nonalge­
braic factor of n is known, the GNFS or the MPQS
might be faster.

Using the SNFS for a factor n of an integer
C1rt + c2s"' with gcd(c1r,c2s) = 1, we pick the two
possibly nonmonic polynomials by hand. Select a
small positive integer di - usually 4 or 5- which
will be the degree of f i (x). Write t = d1 t' + t"
and u = d1u' + u" with t", u" E {O, 1, ... , di - 1 }.
In practice fi(x) := c2s""' xd1 + cirt" is irreducible
over Z, and f1(x), j 2(x) := rt'x - s"'', and m :=

s"'' r-t' mod n satisfy the requirements mentioned
in Section 2. If f 1 (x) is not irreducible, a nontriv­
ial factor of f 1 is likely to give rise to a nontrivial
factor of n, and otherwise f 1 can be replaced by
a suitable factor. (This is also applicable in the
case of the GNFS.) An algorithm to test whether
a polynomial is irreducible and to factor it if it is
not can be found in [Lenstra et al. 1982]. If we

encounter a polynomial f;(x) with cont f;(x) f:= l,
we can divide all coefficients of f; (x) by the con­
tent, assuming that cont f;(x) and n are relatively
prime. Using the SNFS we sometimes find better
pairs of polynomials, together with a value for m,
by trying to factor a multiple of n. Examples can
be found in the last section of this article.

Using the GNFS one can find two polynomials
by the base m method. Select a small positive in­
teger d1 -usually 4 or 5-which will again be the
degree of fi(x). Set m = ln1/diJ and write n in
base mas

with 0:::; c; < m. Now

and f2(x) = x - m satisfy the requirements. This
method implies cd1 = 1 [Buhler et al. 1993, § 3].
In [Buhler et al. 1993, § 12.2] one can find slightly
better variants of this method, resulting in a lin­
ear and a higher-degree polynomial with leading
coefficients possibly larger than one and possibly
negative coefficients. For these variants the poly­
nomial coefficients are eJ(n1/(d1+1l).

The task is to find suitable polynomials f i and
/2, factor base bounds B1 , B2, large prime bounds
Li, L 2, and a sieving region. For a good choice
four characteristics of the polynomials should be
taken into account. First, the maximal values of
I Fi (a, b) I should be small, making them more likely
to be smooth over the primes below B;. Secondly,
when a polynomial has many real roots, more ra­
tios a/b will be near a root and more values Fi(a, b)
are expected to be small. As a refinement of this
characteristic we can look at the absolute value of
the real roots. A polynomial having a real root
near max !al/ max lbl is a good choice. The impor­
tance of this characteristic is made clear in Fig­
ure 1. Thirdly, polynomials that have many roots
modulo (preferably different) small primes are pre­
ferred over ones that do not. This enlarges the
probability that F; (a, b) is small after dividing it by

236 Experimental Mathematics, Vol. 5 (1996), No. 3

these small prime numbers, making it more likely
to be smooth over the primes below Bi. Finally, it
is better to choose polynomials for which the order
of the Galois group of f 1 (x) f 2 (x) is small, since we
saw in the previous section that they provide more
free relations. With these criteria in mind we se­
lect the pair of polynomials which is expected to
be the best.

FIGURE 1. Number of relations found for 60000
a-values and 8625 b-values for the factorization of
a 119-digit factor of 3319 1 (see Section 10 for
details). One polynomial is fi(x) = x5 +x4 -4x3 -

3x2 + 3x + 1, with 5 real roots. The five ridges
indicate a higher yield for pairs (a, b) with a/b near
a root.

We experimented with a choice of two quadratic
polynomials selected according to ideas of Mont­
gomery [Buhler et al. 1994]. He observed that
!1(x) = C1,2X2 + C1,1X + C1,o and f2(x) = C2,2X2 +
c2,1X + c2,o E Z[x] have a common root m modulo
n if and only ifthe vectors a= (c1,o, c1,1, c1,2f and
b = (c2,o, c2,1, c2,2)T are orthogonal to (1, m, m2f
over Z/nZ using the standard inner product. Sup­
pose f1 (x) and !2(x) are irreducible over Z, have
content 1, and do not satisfy f 1(x) = ±f2(x). As
will be explained further on, we can find in prac­
tice a and b of which the coefficients are appoxi­
mately <'.:J(n114), so the space orthogonal to a and
b has rank 1 (both over Z and over Z/nZ). If

c = a x b (cross product), then c must be a multi­
ple of (1,m,m2)T over Z/n7l. The fact that f 1(x)
and f 2 (x) are not multiples of each other ensures
that c is not the zero vector. If c = (c0 ,c1,c2)T,
then c0 ,c1 ,c2 is a geometric progression in Z/n7l.
It is not a geometric progression over Z, since then
f 1 (x) and f2(x) would have a common factor x-m
over Z.

Montgomery's algorithm for finding f1(x) and
f2(x) reverses this construction and starts with a
vector c = (c0 , c1 , c2)T E 'Z.3, where eo, C1, c2 is age­
ometric progression with ratio m over Z/n7l, but
not over Z. The vector c can be constructed as
follows: for p prime such that p < fo and n a
quadratic residue modulo p, choose c1 such that
c~ = n mod p and lei - n 1121 ::::; p/2. The elements
of c = (p, ci, (ci-n) / p) T form a geometric progres­
sion with ratio cif p over Z/n'll.., not over Z. Fur­
thermore ci = <'.:l(n112) (i=0,1,2). Take s E Z/pZ
such that c1s = 1 modp. With c2 = (ci - n)/p,
the vectors

are both orthogonal to c. From a' x b' = -c and
gcd(c0 , c1, c2) = 1 we deduce that a' and b' span
the sublattice of Z3 orthogonal to c. Denote by
(a, b) the inner product of a and b, and remember
that a (a, b)/(a, a) is the projection of bona. By
reducing the basis {a', b'}, one can find "small"
vectors a and b with {a, b} a basis of the sublattice
of 'll} orthogonal to c, such that

I (a, b) I 1 d
-(-) :::; 2 an a,a l

(a,b)I<.!.
(b,b) - 2 •

The angle 0 between these vectors will be between
60° and 120°. Since the surface of the parallelo­
gram spanned by a and bis both equal to Ila x bJI
and llall · llbll sine, we have

llall · llbll = Jt=1L ::::; 2llcll = <'.:J(llcll) = <'.:J(n112).
sme V3

(5.1)

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 237

In practice both llall and llbll are (')(n 114). For dif­
ferent values of p we will get a different pair of
polynomials. The program findquad tries to find
two polynomials each having two real roots, many
roots modulo small primes, and such that the in­
tegral of I;i=1,2 log IFi(x, y)J is small, where (x, y)
runs through the sieving region for (a, b).

When using line sieving (a special form of lat­
tice sieving, explained in Section 6), we like to
use a large range of a-values, say lal < M and
only b = 1. To try to induce F;(a, 1) = c;,2a 2 +
c;,1 a + C;,o to be smooth over the prime numbers
below B;, we would prefer ci,z = <:J(n114 /M), c;, 1 =
t:.:J(n114), and c;,o = <9(n114 M) rather than all of
them being ('.)(n114). We achieve this by first choos­
ing Co = p = C'J(fo/M), whence c1 = ('.)(y'n)
and c2 = ('.)(.jnM). The resulting coefficients of
a'= (a~,ai,a~) and b' = (b~,bi,b~) have approx­
imately the right ratio. To keep this ratio while
reducing the basis, we reduce the vectors a" =
(a~,aiM,a~M2) and b" = (b~,biM,b;M2) instead.
Note that a" x b" = Mc" with c" = (c0M 2, c1 M, c2),

which is still a geometric progression with ratio
ci/pM over Z/nZ, not over Z. Using (5.1) with
c = Mc" we find that the resulting vectors a =
(ao, a1M, a2M2) and b = (b0 , b1M, bzM2) will be
both ('.)(n114M). Using f 1 (x) = a2x 2 +a1x+ao and
f 2 (x) = b2x2 + b1 x + b0 results in the desired orders
of the coefficients of / 1 and fz.

We also have to choose the factor base bounds
Bi, the large prime bounds L;, and the sieving
region. In the experiments described in Section
10, where we factored numbers in the 98-162 dig­
its range with the SNFS and numbers in the 87-
107 digits range with the GNFS, we used factor
base bounds between 5 -105 and 2.9 -106 and large
prime bounds between 12 · 106 and 4 · 107 . When
using classical sieving, the sieving region was a
rectangle for which we took a in a subinterval of
[-2 · 106 , 2 · 106] and b between 1 and some upper
bound, in our experiments between 16 · 103 and
48 · 104 • First we chose the factor base bounds and
generated the corresponding factor bases :Y;(Bi),
as described in the next section. Then we chose

the large prime bounds Li and fixed a range of a­

values. For all these a-values and a few b-values,
preferably equidistributed over the expected range
of b-values, we checked whether the (a, b)-pair is a
relation, in a way we will describe in the next sec­
tion. Allowing F;(a, b) to contain two large primes
between Bi and Li, instead of demanding it to be
smooth over the primes below Bi, we increase the
probability that (a, b) is a relation. On the other
hand, Fi(a, b) is now factored over :J'i(Li) instead
of J';(B;), which enlarges the number of relations
needed too. In practice this adjustment has shown
to be useful. In our experiments we needed approx­
imately 0.8 · {7r(L1) + n(L2) - 7r(min(L1, L2))/g}
relations.

From the number of relations we got for these
few b-values we could estimate the range of b-values
needed and from the time the experiment took we
could estimate the time needed for the whole siev­
ing step. In this way we selected a good combi­
nation of pair of polynomials, factor base bounds,
large prime bounds and sieving region.

6. THE SIEVING

The sieving is the part of the algorithm during
which we collect the relations. Before we start
the sieving we have to generate the factor bases
:J'i(B;) defined on page 233, just before (2.3). If
we identify P 1(Fp) with lFP U { oo} by identifying
(r1 : r2) with rif r 2 , then '.Ri(P) (defined in (2.2))
consists of those r = ri/rz E lB'v for which fi(r) =
0 mod p, together with oo if ci,d, = 0 mod p. The
program rootfinder finds for both polynomials
f; (x) and for all primes p below Bi all roots mod­
ulo p. Repeated roots appear only once in the
list. When the prime p divides the leading coeffi­
cient c;,d., rootfinder includes the projective root
(1, 0), which it represents by p. We recall that for a
and b coprime, p I Fi (a, b) if and only if (a mod p :
b mod p) E '.R;(p). In terms of the roots of fi(x)
this means that for a and b coprime, p I Fi (a, b) if
and only if (a= br mod p and fi(r) = 0 mod p) or
(p I ci,d; and p \ b).

238 Experimental Mathematics, Vol. 5 (1996li No. 3

Two ways of sieving have been implemented: the
"classical" sieve [Lenstra et al. 1993b, § 4; Buhler
et al. 1993, § 12], and line sieving, a special form of
lattice sieving [Pollard 1993b].

In the classical way of sieving we first choose
the a-interval and the b-interval. We start sieving
with b = 1 and augment b until we reach its upper
bound. The program gnf s estimates the maximum
value of F; (a, b) over all values of a and b for both
polynomials. The polynomial for which this esti­
mate is larger is sieved first. Probably fewer pairs
(a, b) will have a smooth value of F; (a, b) for this
polynomial, so fewer pairs have to be stored. Fur­
thermore this largest value is used to decide upon
the base of the logarithm, which we choose in such
a way that the log of the maximum fits in one byte.
Suppose we start sieving with polynomial fj.

To sieve for the first polynomial fj we fix b and
initialize to zero an array that contains one byte
per a-value. For every prime p < Bi and ev­
ery r with fi(r) = 0 mod p we add [logp] (where
[·] is the nearest integer function) to all array
elements corresponding with a = br mod p. For
every prime p < Bi with p I Cj,d; and p I b we
add [log p] to every array element. Then we split
the a-interval recursively in subintervals until the
value of ci (a, b) = Fi (a, b) / L; does not vary more
than a prescribed amount within a subinterval. If
the value of an array element is close enough to
log Cj (a, b), then Fi (a, b) is potentially smooth and
we store the value of a. Now the same sieving pro­
cess takes place for the other polynomial h-i· If
for a pair (a, b) both F1 (a, b) and F2 (a, b) are poten­
tially smooth - (a, b) is now called a candidate re­
lation-, we use trial division (where we first test if
a = br mod p before applying an expensive multi­
ple precision division of Fi (a, b) on p) to extract all
factors below B; from Fi(a,b), for i = 1,2. This is
necessary, since during the sieving we use rounded
logarithms and other techniques, which not only
make the sieving faster, but also make the final
value in the array elements less accurate.

(In [Golliver et al. 1994] experiments were made
with repeating the sieving procedure once again,

instead of using trial division. The candidate rela­
tions are marked in the sieving array. In a second
sieving round the primes p themselves are stored
instead of adding [log p] to the array elements for
the candidate relations. Next the integers F1 (a, b)
and F 2(a, b) are calculated for the candidate rela­
tions and the stored primes are divided out. This
approach costs more memory, but is likely faster.)

By increasing p, and comparing the sieved log­
arithms with the sum of the logarithms of primes
divided out of Fi(a, b) during trial division so far,
one can sometimes skip an interval of primes. If
after the trial division there remains a composite
part smaller than Li, we try to factor it first us­
ing SQUFOF, and if that fails using Pollard Rho
[Riesel 1985, pp. 191-198, 174-183]. A pair (a, b) is
a relation if both Fi (a, b) factor over the primes be­
low Bi except for at most two large primes between
Bi and Li. It is stored together with the primes di­
viding F; (a, b) that exceed some user-determined
printing bounds Wi, where i = 1, 2. With these
bounds W; one can monitor the amount of output
of the gnf s program. They should be chosen in
such a way that it fits in the available disk space.

Using the lattice sieve, we only sieve over pairs
(a, b) of which we know that one Fi(a, b), say for
i = j E {1, 2}, is divisible by a special large prime
between L(!) and L(u), which are the user-chosen
lower and upper bound for the large primes, re­
spectively. The advantage is that the remaining
part of Fj (a, b) is more likely to be smooth. On
the other hand we will miss the relations for which
both F;(a, b) are smooth over the primes below L(l).

For the implementation of the lattice sieve we use
an extra feature implemented in the classical way
of sieving. There we have a possibility of sieving
over a sublattice of the (a, b)-pairs. We can choose
an integral, nonsingular matrix M and sieve over
pairs (a, b) of the form:

while the program sieves over x and y. This is
done by substituting the expressions of a and b in

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 239

terms of x and y in both ~ (a, b) resulting in new
polynomials Gi(x, y), which are now the polyno­
mials whose values should be smooth. Of course

the roots of the polynomials Fi have to be adapted
to the roots of the polynomials Gi. When a pair

(x, y) is a relation, the corresponding pair (a, b),
together with the primes dividing Gi(x, y) and ex­
ceeding wi' are stored.

The lattice sieve sieves for every prime q in the
range [L(L), L(u)], for a fixed value of b over all roots

(r1: r2) E fR1 (q) U '.R2 (q)} with r 2 I- 0. When siev­
ing over a root (r1 : r 2) of '.Rj(q) we sieve only over
the a-values with a = br1r; 1 mod q, thus guaran­
teeing that Fj (a, b) is divisible by q. This is the
same as using a matrix

M = (q r1r2 1 mod q)
0 1 '

with y fixed to band x in an interval such that qx+
b(r1r2 1 mod q) just fits in the a-interval. (Note
that, when we compare our notation with that

used in [Pollard 1993b], we have Vi = (q, 0) and
V2 = (r1r21 mod q, 1), and that we are applying
the "sieving by rows" strategy.) Gi(x, y)/q should
be smooth over the primes below Bi, except for
at most two large primes between Bj and q. The
other G3-i(x, y) should be smooth over the primes
below B 3_j, except for at most two large primes
between B 3_i and q. Not allowing primes equal to
or bigger than q to divide one of the Gi(x, y) avoids
generating duplicate relations, but misses relations
having two large primes smaller than q for Gi(x, y)
and a large prime larger than q for G3_i(x,y). Af­
ter we have sieved over all roots in '.R1 (q) and '.R2(q)
we take the next value of b; after we have sieved
over all values of b we take the next prime in the in­
terval [L(u), L<1l]. We implemented lattice sieving

only for the case of two quadratic polynomials.
Since the sieving is the most time-consuming

step of the algorithm, its implementation is critical.
It is a lot of work to sieve over a small prime p, and
just a small amount of [logp] is added to the array
elements. Therefore we sieve only over primes and
prime powers larger than 30. Also we do not add

[log p] to all array elements for primes p < Bj with
p I cj,dj and p I b, but we divide cj (a, b) by p. Fur­
thermore we split the a-interval into subintervals
that fit in the secondary cache of the computer,
making the sieving faster. For a group of small
primes, which consists of the primes for which we
sieve over a power rather than over the prime it­
self, we again split the subintervals into smaller
subintervals which fit into the primary cache. The
user can install several "early abort" bounds: if the
leftover part of F; (a, b) after trial division over all
primes below a bound B < Bi is bigger than a user­
speci:fied constant times the square of the large
prime bound, then the pair (a, b) is not considered
to be a candidate for a relation and is thrown away.
In the case of lattice sieving, the values of a with
a= br1r21 mod q are far away from each other for
a fixed value of b. In Section 5 we explained how
we select polynomials such that we can increase the
efficiency of the sieving by taking a huge a-interval
and b = 1. Therefore we call it line sieving.

7. THE FILTERING

The aim of filtering is just the reduction of the
amount of data. We want to find a subset S of all
relations { (a, b)} found in the sieving step and a
subset 'J of the set of free rational primes p such
that (flrP) (f18 (a - bai)) is a square in Qn[a;],
for i = 1, 2. Therefore every algebraic prime p di­
viding one of the products (H:r pd;)(Ils Fi (a, b))
for a certain root (r1 : r 2) E '.Ri(P) (from now on
denoted by P(ri :r2)) must occur to an even power
with respect to this root. (Here we should see
pd' as the product of one factor p for every root

(r1 : r2) E '.Ri (p)). A prime Pc r 1 , r 2) occurs in a rela­
tion (a, b) for polynomial i if p divides F; (a, b) and
(amodp: bmodp) = (r1:r2). A prime P(r1 :r2)

occurs in a free relation for both polynomials if p

is a free prime. We say that a prime P(r1 :r2) occurs
in a relation for polynomial i if it occurs in a rela­
tion (a, b) for polynomial i or if p is a free prime.
It is obvious that a relation in which some prime
P(r, :r2) occurs to an odd power for one of the two

240 Experimental Mathematics, Vol. 5 (1996), No. 3

polynomials is useless, if this prime is not occur­
ring in some other relation to an odd power for the
same polynomial. The filtering stage throws away
such relations. If a prime Ph:r2) occurs to an odd
power in just two relations for the same polyno­
mial and one of them belongs to the set S, the
other one should also be part of S. In the filtering
stage the two relations are grouped into a relation­
set. If one relation from a relation-set is chosen
in the set S, then all relations from that relation­
set should be in S. By creating the relation-set we
have eliminated the need to take care of the prime
P(r1 :r2) when looking for the set S. In this way the
amount of data and the size of the matrix for the
next linear algebra step are reduced.

The relations found in the sieving step are read
in sequentially. In order to regulate the amount
of memory used, the user first chooses a number
of temporary files among which the data will be
distributed. During the filtering process data from
only one temporary file will be in the working mem­
ory of the computer. A hash function is imple­
mented that distributes the primes equally over
the temporary files. For all the primes in the input
file with norm larger than some user-determined
bound U ~ max(W1 , W2) and occurring to an odd
power in one of the Fi(a, b), the filter program
calculates the index of the corresponding tempo­
rary file by using the hash function on the prime.
The relation is written to the file with the small­
est number it gets from all these primes. We store
a, b, and the primes that were written in the in­
put file. Extra features in this program have been
added, such as looking only at the primes below
some user-determined bound and throwing away
all the relations containing a prime bigger than
some user-determined bound.

When all relations are read in and stored in the
corresponding files, the combining and throwing
out process starts. First all relations (a, b) of the
first file are read in and stored in a heap [Stan­
dish 1980, § 3.7.1] in descending order according
to the largest prime that led to the storage of the
relation in this file. We start by considering the

relations in which the largest prime p correspond­
ing to this file occur. We calculate the root (r1: r2)
for this prime for the relations (a, b) by calculating
(a mod p : b mod p). If d1 + d2 different roots for
this prime appear in these relations, we append the
free relation for this prime. If, while looking at a
prime P(r, : r 2), we see the same relation (a, b) twice,
we throw out one of the occurrences. If some prime
P(r1 :r2) occurs exactly once for one of the polynomi­
als, the corresponding relation is thrown out. If a
prime P(r,: r 2) occurs twice for one of the polynomi­
als, the two corresponding relations are grouped in
a relation-set. If the user wishes, for primes P(r1 :r2)

that occur just three times for one of the polynomi­
als, the program replaces the three corresponding
relations by two relation-sets of two relations each.

Next the resulting relation-sets and the relations
that were not combined are stored at the next place
corresponding to the hash function. If the rela­
tion or relation-set contains smaller primes to an
odd power that correspond to the same file, we
keep the relation(-set) in the working memory. We
store the relation(-set) in the heap according to the
largest of those primes. Otherwise, if the relation
(-set) contains primes to an odd power that corre­
spond to other files, we store the relation(-set) in
the file among those with the smallest number ex­
ceeding the number of the file which we currently
have in memory, or, if there is no such file, in the
file among those with the smallest number. If the
relation(-set) only contains larger primes to an odd
power that correspond to the same file, we keep the
relation(-set) in the same file, but write it to disk.
If the relation(-set) does not contain any primes
larger than wi to an odd power anymore, we write
it to an output file. This circular queue is con­
structed in such a way that, when trying to throw
out relation(-set)s or combining relation(-set)s into
(new) relation-sets for some prime p, all relation
(-set)s containing that prime to an odd power will
be considered. When we store a relation-set we
store all relations it contains, together with their
primes exceeding Wi and the free primes of the
relation-set.

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 241

After the first temporary file is treated in this
way, the same process takes place consecutively
on the other files. Of course, relation-sets can
also be combined with each other. Relation-sets
that become too large, in the sense that they con­
tain more relations than a user-determined bound,
are thrown away, in an attempt to keep the ma­
trix for the next linear algebra step sparse. The
user can fix the maximum number of relation-sets
that can be thrown away. When the last file has
been processed the program starts again on the
first file, until no changes have taken place in the
last round or the number of passes has reached a
user-chosen bound. Then all relation(-set)s that
are still in the temporary files are written to the
output file.

The filter program counts the number ofrela­
tions and relation-sets that remain and the number
of primes P(r, :r2) occurring to an odd power in one
of the relations or relation-sets with norm larger
than U. From these data one can estimate whether
there are enough relations.

In practice we used filter several times for one
number. To save disk space we chose big printing
bounds, W1 = W2 = 106 , say. First we applied the
filter program to the output of the sieving step
with U = W1 . On the remaining relation(-set)s
we applied the program factorrelations to com­
pute the prime factors between a smaller bound
W' and Wi of F 1 (a, b) and F2 (a, b) for all relations
(a, b) and store the relation(-set)s, now with all
primes exceeding W'. Then we again applied the
filter program, now on all primes exceeding U',
with W'::; U' < U. These steps were repeated un­
til we reached a bound below which many primes
occur at least four times, so no combining or throw­
ing out could be done, or until we were content with
the resulting matrix size.

Another method that can be used for reducing
the amount of data is structured Gaussian elimina­
tion, described in [LaMacchia et al. 1991], for ex­
ample. A comparison between our filtering method
and structured Gaussian elimination has not yet
been made.

8. THE BLOCK lANCZOS METHOD

After enough relations have been collected and the
filter program has reduced the amount of data,
we try to find a subset S of the remaining rela­
tions and a subset 'J of the set of free primes such

that (TI 'J' p) (Ils (a - ba;)) is a square in Q~ [ai), for
i = 1, 2. For simplicity, from now on we view a re­
lation left after the filtering stage as a relation-set
containing only one relation. To this collection of
relation-sets we append a relation-set for every free
prime below max:(W1, W2), containing this prime.

A relation-set V consists of two (possibly empty)
subsets V f and V r that contain the free primes ~nd
the relations of V, respectively. For every relat10n­
set V we construct a vector

v(V) = L v(p) + L v(a, b).
V,, Vr

The vectors v (a, b) are as described in Sections 2
and 3; the vectors v(p) are described in Section 4.
We build a matrix M whose columns are all vec­
tors v(V). We remove the rows that contain only
zeros. They correspond to primes (q, (r1: r2)) oc­
curring to an even power in every relation-set V.
We want to calculate some nontrivial vectors of
the null space of this matrix.

Since Gaussian elimination [Knuth 1981, § 4.6.2,
Algorithm N] requires too much memory f~r ~he
large sparse matrices we have, we use a variation
of the iterative Lanczos method. Proofs on both
standard Lanczos and block Lanczos can be found
in [Montgomery 1995]. The standard. ~anczos ~1-
gorithm starts with a symmetric, pos1t1ve defikmte
k x k matrix A over the field K = JR. If b E IR we
solve Aa: = b by the following iterative procedure:
set w0 =band

i-1

wi = Awi-I - L C;jWj (8.1)
j=O

for i > 0, where

242 Experimental Mathematics, Vol. 5 (1996), No. 3

It can be shown that after at most k iterations we
will find W,; = O. If l is the first value of i such
that w, = 0, we have wf Aw, =/= 0 for 0 ~ i < l,
wJ Aw,;= 0 for i =/= j, and AW~ W, where W is
the span of w0, w1, .•. , WL-l • One can deduce that

is a solution of Az =b. Since wf A 2w;-1 = 0 for
j < i - 2 we can simplify the calculation of W; to

for i 2:: 2.
Standard Lanczos can also be applied over other

fields, provided that wf Aw; =/= 0 when w; =/= 0 dur­
ing this process. Working over the field lF2 instead
of lR has the advantage that one can apply a ma­
trix to N different vectors simultaneously, where
N is the computer word size. Inspired by work
of Coppersmith [1993], Montgomery [1995] imple­
mented the block Lanczos method, which exploits
this advantage.

The block Lanczos algorithm creates a sequence
of subspaces W; instead of vectors w,;. Applying
standard Lanczos over lF2 has the problem that in
approximately half of the cases the requirement
wf Aw, =/= 0 if w,; =/= 0 is violated. In the block
Lanczos algorithm the analogous requirement is
~hat no nonzero vector in W; is A-orthogonal to
VY,. This will hold when Wt AW; is invertible,
nhere W; is a matrix whose column vectors span
w,.

For A a symmetric k x k matrix over a field K
and Vo an arbitrary k x N matrix, the block Lanc­
zos algorithm proceeds by setting, for i = O, 1, ... ,

(8.3)

i

Vi+i = AWiSi +Vi - L wjci+l,j· (8.s)
j=O

In (8.4), j ranges from 0 through i. In (8.3) the
N x N; matrix S,; (where N; ~ N) consists of zeros
except for exactly one 1 per column and at most
one 1 per row, thus selecting columns from Vi for
W,;. We choose the columns of Vi in such a way
that the corresponding columns of V? A Vi are a
linearly independent spanning set of all columns of
V? AVi. Thus N; = rank(V? AVi), and one can
prove that the resulting matrix Wt AW, is invert­
ible. The iteration process stops when ~TA Vi =
0, for i = l say.

If lli = 0, the matrix Wt A Wi is invertible for
0 ~ i < l, and we have

wt A Wi = O for i =/= j, (8.6)

W[AVi = O for 0 ~ j < i ~ l, (8.7)

and finally AW ~ W, where W is the span of
Wo, W1, ... , Wz_1. If b E W one can further de­
duce that the vector

1-1

a: = L W;(Wt AW;)-1Wtb
i=O

is a solution of Aa: = b.
If we can choose Si in such a way that span(Vi) ~

span(Wo, W1, ••• , W,;+i), it is possible to simplify
the calculation of Vi+1 in (8.5) in a way similar to
that in which the calculation of W,; in (8.1) was
simplified to (8.2):

l-i+i = AWisr +Vi - W,;C,;+1,i

- W;-1C;+i,i-1 - W;-2C,;+1,,;-2, (8.8)

for i :;::: 2. The requirement is fulfilled when the
columns of Vi are in span(W;, W.:+1). From (8.8)
we can deduce that

Vi+i = AW,;S[+ 1-i - W,

where W is a k x N matrix whose columns are
linear combinations of the columns of W;, W,;_ 1

and Wi-2· Notice that the columns that were not
selected from Vi are zero in S'! and in AW.,· S'! • •
as well. Therefore a nonselected column of Vi is
equal to the sum of the corresponding columns of

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 243

Vi+i and W. Using (8.7) and (8.6) we can de­
duce that such a column of W must be a linear
combination of the columns of Wi only. Choos­
ing the columns of Vi+i which were not selected
in Vi guarantees that the nonselected columns of
Vi are in span(Wi, Wi+1). If these columns of Vi
are independent but the corresponding columns of
~~1 A Vi+1 are dependent we cannot fulfi.11 the re­
quirement that Wi~1 A Wi+1 is invertible, and the
algorithm fails. In practice this has never hap­
pened. Otherwise we choose a spanning set of
columns for ~r1 A Vi+i including the columns that
were not selected for Vi, and choose Si+1 accord­
ingly.

To apply the block Lanczos method to our ma­
trix M, we have to deal with several obstructions.
First M need not be symmetric and therefore we
apply the algorithm to the symmetric matrix A =
MT M. It is obvious that any solution of M ::z: = 0
satisfies Az = 0, but the converse need not be
true. Secondly, if we want to find a vector from
the null space of A and start with b = 0, we will
find the trivial solution. We overcome this prob­
lem by starting with a random vector y and taking
b = Ay. When x is a solution of Az = b = Ay,
then x - y will be a random vector from the null
space of A. Thirdly, several vectors from the null
space of M have to be found, since not every de­
pendency corresponding with such a vector will
lead to a nontrivial factor of n. Note that during
the iteration steps the vector b only is involved in
the calculation of the solution vector ::z:. Therefore
replacing b by a k x N matrix B in the calculation
of :z: will give a solution of AX = B, with X also
a k x N matrix. To find several vectors in the null
space of A we start with a random k x N matrix
Y and calculate solutions of AX= AY. The N
column vectors of X - Y will be random vectors in
the null space of A and we extract the ones which
are also in the null space of M.

Final obstructions are the two requirements for
:z: to be a solution of Az = b. First b has to
be in W = span(W0 , Wll ... , W1-1)- This c<m: be
arranged by initializing Vo as AY, where Y 1s a

random k x N matrix. Secondly, the algorithm
often terminates with Vt A Vi = 0 but Vi -:/- 0.
Montgomery presumes that the column vectors of
A(X - Y) and A Vi are both in span(Vi), which
has maximal rank N, but in practice the rank is
much smaller. We may expect that some linear
combinations of these vectors are in the null space
of A. Combined with the need to find vectors in
the null space of M instead of A, it suffices to
construct a suitable matrix U such that M ZU =
0, where Z is a k x 2N matrix of the columns of
X - Y and Vi. We first compute MZ. Then we
determine a matrix U whose columns span the null
space of M Z. The output is a basis for ZU.

For implementing the calculation of Vi+i in (8.8)
one can bring further down the number of calcula­
tions by using the following steps: for i = 0, 1, .. .,
set

v;+l = A v;sisr + v;ni+l + v;_1Ei+l + Vi-2..fi'i+11

where

ni+l =IN - W."(~T A2v;s,.sr + ~T Av;),

~* = Si(Sf~TAv;s,.)- 1 Sf,

Ei+l = -W,"._1 ~T Av;s,sr,

Fi+1 = -W."._2(1N- ~:1 AVi-1W,"._1)
(~:1A2Vi-1S1-1S[1 + ~:1AV.-1)S;S[,

and where, for i < 0, Wt and V. are 0 and S, is
IN. When Si-l = IN then F1+1 = 0 and the term
Tr F.· m· the expression for Vi+i can be omitted.
t' i-2 •+l

For large sparse matrices Lanczos' algorithm re-
quires less storage than Gaussian elimination. It
only needs the original matrix and some extra vec­
tors of length k and some N x N matrices, while
Gaussian elimination causes fill-in and therefore
needs approximately k2 bits. When M has d non­
zero entries per row on average, the time needed
by block Lanczos is O(dk2 /N) + <'.J(k2). When d
is much smaller than k this is considerably better
than CJ(k3 /N) for Gaussian elimination. .

In practice we make M extra sparse by removmg
the first row containing only ones and not append-

244 Experimental Mathematics, Vol. 5 (1996), No. 3

ing any character rows. Also one could implement
the possibility to remove some of the dense rows
corresponding to small primes. If M is a kl x k2
matrix, the output of the block Lanczos algorithm
will consist of a k2 x N matrix P with N "pseudo­
dependencies" of which we still have to find linear
combinations to get a set S we look for. We solve
this problem here, although in our implementation
it is a part of the square root program. For sev­
eral quadratic characters (q, (81: 82))-chosen as
described in Section 2 with q larger than any prime
dividing any Fi(a,b)-we form a vector q(q,(s1 :s2))
of length k2 by inserting a zero for all of the k2
relation-sets V with

II(~) IIC-b (81821 mod q)) = 1
v q v q

p f

and a one otherwise. A vector of length N or­
thogonal to all vectors q(q,(si:s2))P is indicating a
linear combination of the N pseudo-dependencies
which is favourable to all chosen quadratic charac­
ters. We construct a basis for the space orthogo­
nal to all vectors q(q,(s, :s2))p· Each of these basis
vectors indicates which pseudo-dependencies of P
should be combined for a real dependency, thereby
indicating a set S.

9. EXTRACTING THE SQUARE ROOT

At this stage we have two squares (3 2 = (IlpET p) x

(TI(a,b)Es(a-bai)) and')'2 = (IlpETP)(Il(a,b)ES(a­
ba2)) in Qn[a1] and Qn[a2], respectively. We have
to calculate f3 and 1 · If we write both squares
as polynomials of degree less than di in o:i, the
coefficients will be gigantic. Then a conventional
method such as the one described in [Cohen 1993,
§ 3.6.2] cannot be used. Couveignes [1993] calcu­
lates the square roots modulo several primes and
applies the Chinese Remainder Theorem, a method
that presently works only for number fields of odd
degree.

Montgomery [1994] attacks the problem using an
iterative process. He starts by partitioning the set
S in two subsets S1 and S2 and the set 'J in two

subsets 'J1 and 'J2 to advance the cancellation of
primes P(r, :r2) in both products

n Pd; CT F(a b) pE'.ri (a,b)ES1 ' ' (9.1)

npE'T2pdi Tica,b)ES2 Fi(a, b)'

i = 1, 2. Here, the expressions pdi for the free
primes p E {'J1 U'J2} should be seen as the product
of one factor p for every root (r1: r2) E ~i(p). We
can for example choose S1 = S, S2 empty, 'J1 = T
and 'J2 empty; or we can distribute S and 'J over
the sets Sj and 'Jj randomly. At the end of this
section we will see how we tried to optimize this
selection.

Set
2 TI.,1Pils1(a-bo:i)

v1 = TI.,2Pils2(a-bo:1)'

2 TI:r, p Ils1 (a - bo:2).
l.12 = TI.,2P Ils2 (a - ba2)'

then we will calculate v1 and v2 , for which the con­
gruence ('f?1(v1))2 = ('f?2(v2)) 2 mod n holds. The
following algorithm is applied twice, first to calcu­
late v = v1 and then to calculate v = V2. In the
rest of this section we suppress the index i when
referring to vi, fi, di, ci,k and o:i.

Starting with r 1 = v 2 , where v is unknown, we
will approximate in iteration step j 2': 1 the numer­
ator (if j is odd) or the denominator (if j is even)
of .Jij by 1/j (to be explained below) and calculate
rH1 using the formula

(9.2)

Hence
L .t.:µ J 2

2 Ilz=1 'r/21-1
v = Tj+l LiJ 2

Ilr=1 'r/21
(9.3)

The product of the norms of the numerator and
the denominator of Tj+l in (9.3) will decrease at
every iteration step. Small norms of numerator
and denominator, however, do not guarantee that
the coefficients of Tj+l as a polynomial of degree
:S d - 1 in a are small. Let o:1 , o:2, ... , ad be the
conjugates of o:. For any polynomial h(x) E Q[x]

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 245

of degree at most d - 1 the Lagrange interpolation
formula gives

d-1 d

h(x) = l:xk Lh(az)cki,
k=O l=l

where the ckz can be calculated from

f(x) d-1 k

((= l:ckzx.
x - az)f' az) k=O

Therefore we can bound the coefficients of h(x)
in terms of the lh(az)I. We use this observation
by choosing the approximation 7/i in such a way
that not only the product of the numerator and
the denominator norms of the successive r 3+i 's de­
creases, but also lrJ+1(a1)1 tends to decrease for all
l. When the norms and the embeddings become
small enough, we will express the final r 3+1 as a
polynomial of degree ~ d - 1 in a and find its
square root by using the computer package P ARI
[Batut et al. 1995].

In order to find the ry/s we work with ideals.
Denote by ('.) the ring of integers in <Q[a] and for
X3 E <Q[a] by (x1 , ••• , Xn)('.) the fractional ideal gen­
erated by x1, ... , Xn in ('.). Suppose

(9.4)

is the factorization of (J7j)<9 into prime ideals :P1

of('.), where c1 E Z+ for all l. At each iteration step
we select an ideal 'J dividing the numerator (if j
is odd) or the denominator (if j is even) of (9.4).
The approximation T/i will be a 'small' element of
'J. If 'J divides the numerator, we divide (J?j) ('.) by
(ry3)<9 and this will result in the disappearance of
'J in the numerator of (J?j) (j and the appearance
of a new integral ideal Q of ('.) in the denominator
of (..Jfj)<9. If 'J divides the denominator the con­
verse happens. If N('J) is sufficiently large, than
N(Q) will be much smaller than N('J). In this way
the product of the numerator and the denominator
norms will decrease every iteration step.

To factor (r3) ('.) into prime ideals, we use the ideal

We have 8 ~ r:J and (1, a)<98 = r:J (Montgomery
1994]. From this we deduce (a-ba)<98 ~ ('.). There­
fore, if we multiply an ideal (a - ba) (j by 8 we can
factor the result in prime ideals, all with a positive
exponent. The ideals f,p)('.) with p E 'J are already
integral, so multiplication with a is not necessary
for these ideals. We start with

(r) = g#s2 Ilr1 t.J>)t9 Ils1 {(a - ba}t98}
1 (j (f#Si Il.,2 {,p)(9 Ils2 {(a - ba)('.)8}

(9.5)

and factor the ideals f,p)t9 and (a - ba)('.)3 into
prime ideals. Therefore we split the primes in
two subsets: the set of "special" primes which di­
vide the index [C'.J: Z[a]] and the remaining primes
which we call normal. To every prime p and every
root (r1: r2) E :R(p) there correspond prime ideals
dividing f,p)('.) if p is an element of'J'1U'J2 or dividing
(a - ba)CJ8 if p divides F(a,b) ((a,b) E S1 U S2).
For a special prime there may exist more prime
ideals corresponding to the same root, but for a
normal prime p the prime ideal :J> corresponding
to a root (r 1 : r2) E :R(p) is uniquely determined.
Based on practical experience Montgomery sus­
pects-which we cannot prove-that in the latter
case the correspondence is given by

{
(p, cda - cdr1r21 mod p)('.) if Pf cd,

:J> = (p)C'.J +a if PI cd, r2 = o,
a. (p, a - r1r2 1 mod p)r:J if PI cd, r2 # o.

(9.6)
For the special primes p and for all their roots

(r1 : r 2) E :R(p), we calculate the ideal '.P using (9.6)
and factor it into prime ideals with help of the
computer package PARI. While we read in the free
primes and relations we accumulate a product of
the factors of the right hand side of (9.5). We make
a hash table containing an entry for each normal
prime p and (r1 : r 2) E :R(p) we encounter. Each
entry contains the exponent of the corresponding
prime ideal in the accumulated product so far: if

246 Experimental Mathematics, Vol. 5 (1996), No. 3

we meet a normal prime P(ri :r2) dividing a free
prime or F(a, b) in the numerator (or denomina­
tor) of (r1)('.) to the power x, we add (or subtract)
x to this exponent. If we encounter a special prime
P(ri:f'2)' dividing a free prime p or one of the F(a, b),
we use PARI to calculate the valuation of (p)r.:J or
(a - ba)('.)8, respectively, at the ideals of P(r1 :r2)

we computed earlier. Also for these special ideals
we keep track of the exponent of the ideal in the
accumulated product so far. We also have to keep
track of the exponent of a in the accumulated prod­
uct. For each ideal (a - bo:)C98 in the numerator
or denominator we add or subtract 1, respectively.
When we have read in all free primes and rela­
tions we have factored (r1)('.) into prime ideals and
a power of a.

Now we start the iterative approximation pro­
cess in which we use the LLL lattice basis reduction
algorithm [Lenstra et al. 1982]. Assume we want
to simplify the numerator. The algorithm selects
an ideal 'J = ::P~1 ••• P~" dividing the numerator of
(.J7j)C9, with Sr > 0 for all r. N('J) should be
chosen as large as computationally convenient for
this first lattice basis reduction. Let { ai, ... , ad}
be an integral bases of ('.). With help of PARI we
construct a basis in Hermite Normal Form (HNF)
[Cohen 1993, §4.7.2] expressed in {a1, ... ,ad} for
each prime ideal P1 occurring in 'J. P ARI uses these
bases to construct a basis of 'J, also in HNF ex­
pressed in {a1, ... ,ad}· Then we apply a lattice
basis reduction to these d basis vectors of 'J. We
find a basis of 'J consisting of 'small' vectors. In
practice, when using one of these small vectors for
our approximation T/i, the norm of the numerator
of (r3+i)<9 will decrease by a factor N('J) in com­
parison with the norm of the numerator of (r3) ('.).

In comparison with the norm of the denominator
of (r3)C9, the norm of the denominator of (rj+i)('.)
will increase by a factor much smaller than N('J).

We apply a second lattice basis reduction to a
slight modification of the basis which we find after
the first lattice basis reduction, to search for an
element T/i in 'J, which still has the same effect on
the norm of (7)+1)('.), but yields small irJ+i(o:1)1 for

all l. Let v(l), v<2l, ... , v(d) be the reduced basis
after the first lattice basis reduction, where v(r) =
E::~ Vkr) o:k. While we read in the free primes and
relations we calculate an approximation of r 1 (o:1)

for 1 ::; l ::; d. We choose c such that

d Lmax (N(rJ)) 1/ 2

c = N('J) (Disc(! /cd))1/2'

where Disc(g) is the discriminant of the polynomial
g and Lmax = 10100 . If all conjugates 0:1, .•• , ad of
a are real, we construct the vectors

for 1 ::; r ::; d. If 0:8 and O:t are complex conjugates,
we replace

and

Im(v(rl(o:8))

by cv'2 irJ(o:s)ll/2

in the construction of Tv(r). In this way all entries
of the Tv(r) will be real and the absolute value
of the determinant of the matrix formed by the
last d entries of these vectors remains the same.
The determinant equals ±Lmax, which constant has
been chosen in such a way that the second lattice
basis reduction algorithm performs well. We apply
the second lattice basis reduction to the vectors
{Tv(r)}~=l and take the first d coordinates of one
of the resulting vectors for T/i· When dividing TJ

by TJ] the ideal 'J in the numerator of (r;) ('.) will
disappear. At the same time the denominator of
(TJ) ('.) will be multiplied by the square of a new
ideal

(TJJ)('.)/'J =: Q. (9.7)

In practice also for this T/J we have that N(Q) is
much smaller than N('J).

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 247

If we simplify the denominator of r· we select
.d 3

an 1 eal :J = P~1 ••• P~" which divides the denom-
inator of (.JTj)fJ. For the first LLL reduction the
algorithm proceeds as above. For the second LLL
reduction the vectors Tv(r) become

Tv(r) = (v~r), ..• , v~~ll

cvCr) (a1)lri(a1) 1112' ... 'c v(r) (ad)lri(ad) 11/2) T

for 1 ~ r ~ d, and we replace cvCrl(aa)h(aa)l 1/ 2

by cV'2Re(vCrl(aa))h(a8)1 112 and

CV(r)(at)!ri(at)l 112 by cV2Im(v(r)(a8))h(a8)1 1/ 2

in the construction of Tv(r) if a 8 = at. The con­
stant c should be calculated from

d Lmax c = -=-:-:-.....,--~~~--=-=--~~~~
N(:J) (Disc(! /cd))l/2 (N(ri))l/2 ·

In the next iteration step we avoid factoring Q
into prime ideals by including this ideal as a fac­
tor of the new :J. Its basis in HNF is found by
using (9. 7). Furthermore we need the embeddings
of r3 for the second LLL reduction. Using (9.2) we
can calculate lri+i(az)I from lri(a1)I and l11i(a1)12.
We stop with the iterative process when the norms
of numerator and denominator and the embeddings
of T;+ 1 are small enough.

Next we calculate the square root yl1j+l. with
help of PAR!. We first write Tj+i as a polynomial
in a. We construct an integer t, being the product
of the index and the norms of all ideals which are
still in the denominator of T;+l· Hence tri+i is a
polynomial of degree d in a with coefficients in Z.
During the algorithm we keep track of the coeffi­
cients of the numerator and the denominator of Tj

as a polynomial in a of degree < d modulo several
large primes. We use this to express the final tr;+1
as a polynomial in a of degree < d modulo these
primes and we use the Chinese Remainder Theo­
rem to find its coefficients in Z. We divide this
element of Z[a] by t and find its square root by us­
ing the method mentioned in [Cohen 1993, § 3.6.2].
This completes the computation of v.

We now apply the homomorphism 'Pii for i =
1, 2, to the expressions found for vi:

l illJ
"'·(v·) = ~(m)l11=~ 1/21-1(m) d
ri i v • J+l L J. J mo n.

l1i~11/21(m)

Here the 1/i(m) mod n are calculated and multi­
plied with the 1/i (m) mod n, for j < i, straight
after 1/i has been calculated, so there is no need to
store a history. We calculate gcd(<p1 (v1) -<p2 (v2), n)
and hope to find a nontrivial factor of n.

In practice the second lattice basis reduction ap­
plied to the Tv(r) will yield linear combinations of
the vC1l(ai}, ... , v(d<)(a,) with small coefficients.
Therefore we can round the entries of the Tv(r)

without introducing a lot of round-off accumula­
tion. This is the reason why we do not perform
one single lattice basis reduction. Now both re­
ductions use integer arithmetic.

It is important for the speed of the algorithm
to select the sets S1, S2, 'J1 and 'J2 such that we
get as much cancellation of primes P(ri:~) as pos­
sible. We start with putting half the number of
relations of S and half the number of free primes of
'Jin S1 and 'Ji, respectively, and the rest in S2 and
'J2• While we read in all relations and free primes
for one of the polynomials, /i(x) say, and accumu­
late the prime ideal factorization of the numerator
and the denominator of Vi, we decide whether it
is profitable to put the current relation (a, b) or
free prime p in the denominator while it was orig­
inally scheduled for the numerator (or vice-versa).
H we decide to do so, then we put this relation for
this /i in the denominator and compensate this by
multiplying the final 'Pi(v,) with a - bm mod nor
p mod n respectively.

When using PARJ for calculations in number
fields it is necessary to use the function ini talg,
which calculates amongst others an integral basis.
This function needs to factor the discriminant of
the polynomial, which can be too hard for PARJ.
We solve this problem by factoring the discrimi­
nant ourselves and giving the primes to PARl with
the function addprimes.

248 Experimental Mathematics, Vol. 5 (1996), No. 3

10. EXPERIMENTAL RESULTS

In this section we summarize factorization runs for
several integers of up to 162 digits, indicating the
time spent on each major step of the algorithm.

Except for 7299 +1, all numbers were initially ex­
posed to trial division and the elliptic curve method
[Cohen 1993, § 10.3] to find the factors below 40
digits. Thus, in the tables, "C98 from 7128 + 6128"
means a 98-digit divisor of 7128 + 6128 obtained by
elimination of "small" primes (3329 and 7329793).
If we found only a few small factors we applied the
SNFS; otherwise we applied the GNFS.

The numbers factored with the SNFS are listed
below, and the relevant statistics appear in Table 1.
Figure 1 on page 236 showed the dependence on
a and b of the number of relations found, for the

Cl19 from 3319 -1. Figure 2 shows the dependence
on b of the number of relations, and Figure 3 the
average computation time per relation, for the C98
from 712s + 6128.

The numbers factored with the GNFS are listed
below, and the relevant statistics appear in Table 2.
Figure 4 shows, for the C97 from 12441+ 1, the effect
that varying the printing bounds W1 = W2 has
on the time needed for the square root step. The
square root program needs the full factorization of
both integers F;(a, b) of the relations in S. Primes
larger than W; are printed in the input file, while
smaller ones have to be found with trial division.
With large printing bounds trial divisions become
very time-consuming. This dependence explains
the varying results for square root timings in the
preceding tables.

098 from 7128 + 6128, factored into two primes of 49 and 50 digits,
10660 05182 57236 29640 65225 03966 77363 03849 50429 0049 and
57198 45548 36062 92671 60809 76987 21205 78590 7158143489.

0106 from 2543 - 1, factored into two primes of 42 and 64 digits,
53495 5385319592 51122 741917587257602 50633 51 and
23078 80312 51405 0317 4 34 773 23375 33794 87634 08223 08108 08744 50183 6223.

OlUJ from 3319 -1, factored into two primes of 41 and 79 digits,
26425 3874214904 71188 79373 47631 77943 61332 9 and
27428 5258218630 29446 25818 32587 63622 21386 27169 38311 70052 36010 98185 10078 84358 4437.
Note that 91(z) = z10 + z9 + · · · + :i; + 1, g2(z):;:::; :i; - 329 , and m = 329 satisfy the requirements. Now express
91(z)/:t5 as a polynomial in x + (1/x).

0123 from 2511 - 1, factored into two primes of 57 and 67 digits,
14478 0974187086 26090 39350 3476141374 56436 36578 29092 4150417 and
25375 99745 02551913415676116426 759191352183553 55292 24725 59253 8658153.
Note that Y1(x) = x6 + a:5 + · · · + x + 1, g2(x) = x - 273, and m9 = 273 satisfy the requirements. Expressing
U1(x)/x3 as a polynomial in x + (1/a:) yields h1(x) = ::c3 + x 2 - 2x - 1 with mh = 273 + 2-73. Use
mh = 2((236 + 2-37) 2 -1) to rewrite h1 (x) as a polynomial in 236 + 2-37 • This yields
k1(x) = 8x6 - 20x4 +12x2 -1 and mk = 236 + 2-37. Finally ft(x) = 8k1(x/2), so m1 =237+2-36.

0135 from 7373 +1, factored into two primes of 55 and 80 digits,
45963 69165 5852911123 52829 63785233915709014470 88078 32677 and
30968 64234 937216855602856 08720 92954 38228 95151 06526 40624 34659 217 44 90064 58993 26733.

The 0162 (12151 -1)/11, factored into two primes of 44 and 119 digits,
16537 2378515646 88924 26140 70416 48853 99065 7743 and 49717 86780 03233 78818 76339 90059 60016\

487476598349539211569747005759153228241911167 043200927016884 2857310302 4883134912 6419.

Numbers factored with the SNFS.

Elkenbracht-Huizing: An Implementation of the Number Field Sieve 249

C98 C106 0119

factor of 7128 + 6128 2543 - 1 3319 - 1
fi(x) x4 +1 4x4 + 2x2 + 1 x5 + x 4 - 4x3 - 3x2 + 3x + 1
h(x) 532x _ 732 x - 290 329x - 358 - 1
m 7326- 32 mod n 290 329 + 3-29 mod n
sieving region lal S 2 · 106 la! S 3.5 · 105 Jal S 16 · 105, 1SbS103000;

1sbs16 · 103 1sbs105 !al S 12·105, 103001SbS345000
B1 1.6 . 106 5·105 106

B2 1.6 . 106 8.1·105 1.4. 106

Li 3 · 107 12. 106 2 · 107

L2 3·107 12. 106 2.5. 107

sieving time 450 hours 250 hours 800 hours
sieving rel. 2,337,618 1,106,949 2,221,686
filter rel. / sets 982,672/587,076 264,583/126,254 774,265/349,961
matrix size 539,020 x 620,650 128,546 x 133,738 348,852 x 367,182
bl. Lanczos time 74 min 6 ruin 38 min
square root time 69 min 47 min 62 min
#trials 1 2 1

Cl23 0135 0162

factor of 2511 - 1 7373 +1 12151 - 1

Ji (x) x 6 - 10x4 + 24x2 - 8 x 5 + 732 12x5 -1
h(x) 236x - 273 -1 x - 7315 x -1230

m 237 + 2-36 mod n 7315 1230

sieving region Jal S 6 · 105 Ja! S 2·106 ?

1sbs37·104 1 s b s 2.6 . 105

B1 15. 105 2. 106 ?

B2 11·105 2. 106 ?

L1 3. 107 3. 107 108

L2 2.5. 107 3 · 107 108

sieving time 700 hours 2150 hours see caption

sieving rel. 1,901,187 2,746,848 8.98·106

filter rel. / sets 420,896/222,014 1,154,111/583,631 1,807,808/822,361
matrix size 430,018 x 439,058 581,870 x 590,573 828, 077 x 833, 017

bl. Lanczos time 97 hours 92 min 205 min

square root time 13 hours 130 min 10.5 hours

#trials 1 1 2

TABLE 1. Statistics of SNFS runs. The square root timings are given for one dependency. "Sieving time" is
a rough estimate on an SGI Indy workstation (100 MHz R4000SC processor), except for the Cl62, where it
represents 8 weeks of idle time on 30 workstations at Oregon State University, Corwallis (USA). "Block Lanczos
time" is time on one processor of a Cray C98, except for the 0123, where it is on one processor of an SGI
Challenge (150 MHz R4400SC processor). "Square root time" is always on one 150 MHz R4400SC processor of
an SGI Challenge. A question mark indicates that records have been lost. See also Figure 1 for the 0119 and
Figures 2 and 3 for the C98.

250 Experimental Mathematics, Vol. 5 (1996), No. 3

ACKNOWLEDGEMENTS

I am particularly grateful to P. L. Montgomery for
helping me understand the Number Field Sieve and
for sharing with me his NFS program, developed
partially by A. K. Lenstra and Oregon State Uni­
versity. I thank H. W. Lenstra, Jr., P. L. Mont­
gomery, H. J. J. te Riele, and R. Tijdeman for
reading the paper and for suggesting several im-

provements. I also thank the referee for remarks
that helped improve the presentation in Section 10.

This work was sponsored by the Stichting Na­
tionale Computerfaciliteiten (National Computing
Facilities Foundation, NCF) for the use of super­
computer facilities, with financial support from the
Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (Netherlands Organization for Scien­
tific Research, NWO).

C8'1 from 7299 + 1, factored into two primes of 28 and 59 digits,
80975 407891689909106 86588 841 and 16798 25963 43052 65460 7764318240 65479 28992 59252 26507 26238 4081.
151128965885928672997:11, -1445482064037103573036:1: - 8289110711415033862728
10193 0205349942 5445447 z2 + 6959100565 51957 538M 28~ - 73926 1567848940 7526$ 915
129714918197797 46345 5765215880 55986 93259 36651203o900057 23712 501519760440714 27556 35889 06

729879993:1:' + 19574 917fil.87828 93290 2 :II - 77557 88285642471233065859 2664 7 4816
211321794711:2 - 7907605467511404251356:11 - 23092862466613462049239427852471175
915846356041789 38356370529300221754 0971328747 97358 88020 12186 3949714431 09944 13684 20046 6

CDT from 12441 - 1, factored into two primes of 44 and 53 digits,
80563 59586 39915 46010 6611158818 06884 967004027 and
34988 88222.91413 ~249194565198 20527 95623 4275~ 61821641.
-30177 ~ 3 e2 +. 43549182451078739044. 895h. + 35629 878935642a22300 4846061872 83613 50
-53619927"'8J)h2 .-. 480394A)l304579497453 6.1008z + -T94~1943'T800'l"l$SS097948l9 80102858
-~329914 27719~1~7 J,39247~~52443268,"61,38$;1687~~~1613203$13827 86658 32257 58151286534

... C1U$ from·3~1 ~ 1, factored Uito two p~ fi52 .and 54 digits,
· 1511495257 84007071~~9$86569492 29319 35039928231~04~3 and
. 50195 39973 89244528404247900279 090654,1054 $$962124251929.
342910527737 e2 + 86817 06933 3519465483 64.161.2 :i: + 54075 9o62@04'1829'7135 71395 36186 42487 4771
· 12420602550'19 :r.2·· - 9130492731817~ 8161162559218 :i: + 1291287673-00065233631168229536 26798 24208 oo
22914 35905 5$869 46906211$81;.$38SS'l~1923164230 75426621W65193563$802756 74926 8939812282 4548140116 05440 05942

0100. from 121~7 + 1 Was ~· mto two primes of .43 .and. 63,. digits,
59016 4847916668 269~9387519o8o 942004Q637197 and
78003475451)486944147524191887775478241509$147758932024091338211.
19oos041611sr _. uu64s163n4436mo6~00:294a:...:, 32A~o.281000495H614s9103171598233762s5144
-7850832606 ~:II~ - 40196864tl05l742 f;B3442801 72:t'.+ 164i0860800.0l456QM17923$7 66543 25668 77138 27
~~~~~~-~~~~~~~~~~~~~~9 

0107' from 6223 +11 fBctored int~2 primes of48$11d 59 digits, 
8351906552 5919.78'ro586319955878 '1'6,4574136S ·53fm' 743 an.A 
16600 ss9a1sa8555566406800 i9mA7465ossw 911841sm 85200 6987. 
-5401617762 83 za - 42$1942$3028714 253779289al5 a: ...,, 46786 .116410 85791 7980610186 3478910720 07155 8 
~24179951.48.05~~+16311970$1612$7 ~~85 31988 $b ·...,, 31165.39943 5W1867081 97753 30136 4345135069 86 
1263153059 9467'7767618531284126 2427113734 77Ji!l~;l8i:jg92404 83922 81605 2~25 32707 972644098132306 53725 40515 54848 92 

Numbers factored with the GNFS. After each factorization we give the polynomials ft and f2 used in the run, 
and the integer m. The C87 was factored twice, once with classical sieving (first set of values of /i. '2, m) and 
once with lattice sieving. See also Figure 4 for the C97. 



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 251 

I 

C87 C87 C97 
factor of 7299 + 1 7299 +1 12441+1 
sieving method classical lattice lattice 
sieving region !af S 2 · 106 , 1 S b S 48 · 104 !al S 7.5 · 1012 , b = 1 /a/ S 25 · 1012, b = I 
B1 =B2 1.6. 106 106 2.2 · 106 
L(l) (L1=4·107) 106 10. 106 
L(u) (L2=4·107) 2.346·106 £(u) = 24 · 106 

sieving time 2100 hours 1500 hours 3500 hours 
# sieving rel. 3,480,325 521,901 3,599,014 
# filter rel. / sets 741,930/338,580 426,241/409,699 1,247,094/604,205 
matrix size 364,215 x 366,907 273, 475 x 437, 441 637, 711 x 644, 950 
bl. Lanczos time 41 min<2) 26 min<2l 123 min(2l 
square root time 128 min(3) 36 min<3l 78 min(3) 

#trials 1 2 2 

C105 C106 C107 

factor of 3367 -1 12157 + 1 6223+1 

sieving method lattice lattice lattice 
sieving region !al S 7.5 · 1014, b = 1 !al S 1015 , b = 1 !al S 1015, b = 1 

B1 =B2 1.6. 106 2.7 · 106 2.9 · 106 

£(!) 23·106 2.7·107 2.72 · 107 

£(u) 30·106 3·107 3·107 

sieving time see caption 11900 hours 11200 hours 

# sieving rel. 3.59 · 106 3,272,224 3,098,987 

# filter rel. / sets ? /1,218,633 2,151,431/1,191,636 2,152,685/1,155,270 

matrix size 1,284,719x1,294,861 1,266,098x1,295,043 1, 226, 577 x 1, 252, 846 

bl. Lanczos time 439 znin(2) 423 min<2> 421 min<2l 

square root time 4.8 hours<3l 2.0 hours<4l 2.1 hours<3l 

#trials 1 1 5 

TABLE 2. Statistics of GNFS runs. The square root timings are given for one dependency. "Sieving time" is 
a rough estimate on an SGI Indy workstation (lOOMHz R4000SC processor), except for the C105, where it 
represents 8 weeks of idle time on 40 workstations at Oregon State University, Corwallis (USA). "Block Lanczos 
time" is time on one processor of a Cray C98. "Square root time" is on one processor of an SGI Challenge 
(150MHz R4400SC processor), except for the Cl06, where the clock rate was 200MHz. A question mark 
indicates that records have been lost. See also Figure 4 for the C97. 

REFERENCES 

[Adleman 1991] L. M. Adleman, "Factoring numbers 
using singular integers", pp. 64-71 in Proceedings 
23rd Annual ACM Symposium on Theory of Com­
puting (New Orleans, 1991), ACM, New York, 1991. 

[Batut et al. 1995] C. Batut, D. Bernardi, H. Cohen 

and M. Olivier, User's Guide to Pari-GP. This 
manual is part of the program distribution, available 
by anonymous ftp from the host megrez.math. 
u-bordeaux.fr. 

[Buhler et al. 1993] J.P. Buhler, H. W. Lenstra, Jr., and 
C. Pomerance, "Factoring integers with the number 
field sieve", pp. 50-94 in (Lenstra et al. 1993a]. 



252 Experimental Mathematics, Vol. 5 (1996), No. 3 

:. 
rels 1 

80000 .j 

70000 

.. . . 
. . 

. . 

min 

5200 

4800 

4400 

4000 

printing 
bound 

0 5000 10000 15000 b 

3600 • 
L__l_00~0-0~~-+-~~-30~0~0~0~~-+-~~~5~00~0~0;--~-t-

sec 

FIGURE 2. Number of relations found in each 
range of 500 b-values for the factorization of the 
C98 from 7128 + 512s. 

.. 

LO 

. . 

0.9 

min 

400 

300 

200 

FIGURE 4. Square root timings (on one 150 MHz 
R4400SC processor of an SGI Challenge) for the 
C97 from 12441 + 1. 

100 .. 

#columns x #rows 

0 5000 10000 15000 b 0.5 x 1012 1.0 x 1012 

FIGURE 3. Approximate average time per relation 
needed in the factorization run of the C98 from 
7128 + 6128 , again as a function of b. Times are on 
an SGI Indy workstation with a 100 MHz R4000SC 
processor. 

FIGURE 5. All matrices from the experiments had 
close to the average of 30.3 nonzero elements per 
row. Here we show the dependence of the block 
Lanczos timings on the product of the number of 
rows and columns. 



Elkenbracht-Huizing: An Implementation of the Number Field Sieve 253 

[Buhler et al. 1994] J. P. Buhler, P. L. Montgomery, 
R. Robson, and R. Ruby, "Technical report imple­
menting the number field sieve", Oregon State Uni­
versity, Corwallis, OR, 1994. 

[Cohen 1993] H. Cohen, A Course in Computational 
Algebraic Number Theory, Springer, Berlin, 1993. 

[Coppersmith 1993] D. Coppersmith, "Solving linear 
equations over GF(2): Block Lanczos algorithm", 
Linear Algebra and its Applications 192 (1993), 33-
60. 

[Couveignes 1993] J.-M. Couveignes, "Computing a 
square root for the number field sieve", pp. 95-102 
in [Lenstra et al. 1993a]. 

[Frobenius 1896] F. G. Frobenius. "Uber Beziehun­
gen zwischen den Primidealen eines algebraischen 
Korpers und den Substitutionen seiner Gruppe", 
Sitzungsberichte der Koniglich PreufJischen Akademie 
der Wissenschaften zu Berlin (1896), pp. 689-703. 
Reprinted in Gesammelte Abhandlungen, Band II, 
Springer, Berlin, 1968. 

[Golliver et al. 1994] R. A. Golliver, A. K. Lenstra, and 
K. S. McCurley, "Lattice sieving and trial division", 
pp. 18-27 in Algorithmic Number Theory (edited by 
L. M. Adleman and M.-D. Huang), Lecture Notes in 
Comp. Sci. 877, Springer, Berlin, 1994. 

[Knuth 1981] D. E. Knuth, The Art of Computer 
Programming, vol. 2: Seminumerical Algorithms, 2nd 
ed., Addison-Wesley, Reading, MA, 1981(or3rd ed., 
1997). 

[LaMacchia et al. 1991] B. A. LaMacchia and A. M. 
Odlyzko, "Solving large sparse linear systems over 
finite fields", pp. 109-133 Advances in Cryptology: 
CRYPTO '90 (edited by A. J. Menezes and S. 
A. Vanstone), Lecture Notes in Comp. Sci. 537, 
Springer, Berlin, 1991. 

[Lang 1970] S. Lang, Algebmic Number Theory, 
Addison-Wesley, Reading, MA, 1970. 

[Lenstra et al. 1993a] A. K. Lenstra and H. W. Lenstra, 
Jr., The Development of the Number Field Sieve, 
Lecture Notes in Math. 1554, Springer, Berlin, 1993. 

[Lenstra et al. 1982] A. K. Lenstra, H. W. Lenstra, Jr., 
and L. Lovasz, "Factoring polynomials with rational 
coefficients", Mathematische Annalen, 261 (1982), 
515-534. 

[Lenstra et al. 1993b] A. K. Lenstra, H. W. Lenstra, 
Jr., M. S. Manasse, and J.M. Pollard, "The number 
field sieve", pp. 11-42 in [Lenstra et al. 1993a]. 

[Lenstra et al. 1993c] A. K. Lenstra, H. W. Lenstra, 
Jr., M. S. Manasse, and J. M. Pollard, "The factor­
ization of the ninth Fermat number", Mathematics 
of Computation, 61 (1993), 319-349. 

[Montgomery 1994] Peter L. Montgomery, "Square 
roots of products of algebraic numbers", pp. 567-
571 in Mathematics of Computation 1943-1993: A. 
Half-Century of Computational Mathematics (edited 
by Walter Gautschi), Proceedings of Symposia in 
Applied Mathematics, American Math. Soc., Prov­
idence, 1994. Long version to appear. 

[Montgomery 1995] Peter 1. Montgomery, "A block 
Lanczos algorithm for finding dependencies ove;· 
GF(2)", pp. 106-120 in Advances in Cryptology: 
Eurocrypt '95 (edited by L. C. Guillou a.n.d J.­
J. Quisquater), Lecture Notes in Comp. Sci. 921, 
Springer, Berlin, 1995. 

[Neukirch 1992] J. Neukirch, Algebraische Zahlentheo­
rie, Springer, Berlin, 1992. 

[Pollard 1993a] J. M. Pollard, "Factoring "';ith cubic 
integers", pp. 4-10 in [Lenstra et al. 1993aj. 

[Pollard 1993b] J. M. Pollard, "The lattice sieve", 
pp. 43-49 in [Lenstra et al. 1993a]. 

[Pomerance 1985] C. Pomerance, "The quadratic sieve 
factoring algorithm", pp. 169-182 in Aduances in 

Cryptology: Eurocrypt '84 (edited by T. Beth, N. Cot, 
and I. Ingemarsson), Lecture Notes in Comp. Sci. 
209, Springer, New York, 1985. 

[Riesel 1985] H. Riesel, Prime Numbers and Computer 
Methods for Factorization, Birkhii.user, Boston, 1985. 

[Standish 1980] T. A. Standish, Data Structure Tech­
niques, Addison-Wesley, Reading, MA, 1980. 

M ·· Elk b ht H · · CWI po Box 94079 1090 GB Amsterdam, The Netherlands (marije@cwi.nl) anJe en rac - mz1ng, , . . ' 

Received August 24, 1995; accepted in revised form April 9, 1996 


