
RESEARCH ARTICLE

Data relocation approach for terrain surface analysis on multi-GPU

systems: total viewshed problem as a case study

ARTICLE HISTORY

Compiled October 28, 2020

ABSTRACT
Digital Elevation Models (DEMs) are important datasets for modelling line-of-sight
phenomena such as radio signals, sound waves and human vision. These are com-
monly analysed using rotational sweep algorithms. However, such algorithms require
large numbers of memory accesses to 2D arrays which, despite being regular, result
in poor data locality in memory. This paper proposes a new methodology called
skewed Digital Elevation Model (sDEM), which substantially improves the locality
of memory accesses and largely increases the inherent parallelism involved in the
computation of rotational sweep-based algorithms. In particular, sDEM applies a
data restructuring technique before accessing the memory and performing the com-
putation. To demonstrate the high efficiency of sDEM, we use the problem of total
viewshed computation as a case study. Different implementations for single-core,
multi-core, single-GPU and multi-GPU platforms are provided. We conducted two
experiments in which sDEM is compared with (i) the most used geographic infor-
mation systems (GIS) software and (ii) the state-of-the-art algorithm. In the first
experiment, sDEM is in average 8.8x faster than current GIS software despite being
able to consider only few points because of their limitations. In the second exper-
iment, sDEM is 827.3x faster than the state-of-the-art algorithm, considering the
best studied case.

KEYWORDS
Data relocation, Digital Elevation Model (DEM); Geographic Information Systems
(GIS); Total viewshed; Visibility analysis

1. Introduction

There are some problems of terrain surface analysis which require the evaluation of the
data around a reference point. This is the case of the viewshed computation where the
reference point is usually called point of view (POV) in the Digital Elevation Model
(DEM). This topic has been thoroughly studied in the recent literature (Wang and
Dou 2019, Dou et al. 2019), being usually addressed using rotational plane sweep-based
algorithms, or just rotational sweep (Choset et al. 2005). In particular, a line is traced
from the POV, which works as a vertex in the plane. This line will be rotated by 2π
radians and all the points that cross that line are analyzed with respect to the vertex.
Another related approach involves the discretization of the plane in azimuthal sectors
radially starting from the reference point (Tabik et al. 2014). Every azimuthal sector
is represented by an axis placed in its centre, and points crossed over by the axis are
compared to the reference location. In this approach, the statistical representativeness
of every axis progressively decreases as we move away from the vertex since the width
of the sector increases linearly with the radius. However, in most cases, the required
accuracy will also be reduced to the same extent. This issue is exploited in some

situations where the reference location works as the transmitter or receiver of certain
signals whose strength decreases with the square of the distance, such as radio signals,
sound waves, and line of sight.

The azimuthal sector discretization method is also included in some visibility mod-
ules from geographic information systems (GIS) applications such as ArcGIS (ESRI
2010), GRASS GIS (Neteler et al. 2012), and Google Earth. A very common tool
provided by these programs is the viewshed computation, which is of great interest in
many areas such as telecommunications, environmental planning, ecology, tourism, and
archaeology (Cauchi-Saunders and Lewis 2015, Qarah and Tu 2019, Wang and Dou
2019). In these diverse fields, knowing the visibility in terrain is almost a requirement
to achieve optimal results.

There exists three types of viewshed problems in the literature (Figure 1) depending
on the number of observers considered for calculation: (i) singular, (ii) multiple, and
(iii) total viewshed. The first is the simplest visibility problem which comprises the
computation of the viewshed from one single observer at a certain elevation with
respect to the ground. To address this problem, the DEM is usually divided into
angular sectors in the plane around the POV. Then, different lines of sight (LoS),
which correspond to the axis of every sector, start from the POV and are radially
distributed towards the most distant areas. Every target point crossed over by this
line is sequentially compared to the POV based on the elevation values in order to
compute its visibility. The result is a boolean map containing visible and non-visible
points from the POV in the terrain. Likewise, the multiple viewshed for several POVs
can also be obtained by repeating the above procedure on every one of them and adding
up the viewshed results obtaining a similar map. A complete visibility analysis involves
knowing the viewshed of every point in the terrain in all directions. This information
can be used to address well-known problems such as siting multiple observers (Cervilla

Figure 1. Illustration of the different viewshed problems existing in the literature related to singular, multiple,
and total viewshed. This classification is based on the number of target points of view (POVs) in the Digital

Elevation Model (DEM) chosen as input, which produces different outputs for each of them. Our work focus

on the most computational demanding problem which is the total viewshed computation.

2

et al. 2015), and path planning with surveillance aims (Li et al. 2010). The first one is
related to finding the fewest possible number of POVs providing maximum viewshed
for a certain area. The second one involves designing a near optimal path aiming to
achieve maximum terrain coverage. Both problems would be substantially simplified
if the visibility of every point in the area is known beforehand (Franklin and Ray
1994). This problem is known as total viewshed and it is one of the most challenging
visibility calculations due to its complexity and high computational cost. It involves
obtaining the viewshed for each point in the DEM considered as POV and then,
accumulate their visibility results. This results in a new map where every point contains
the viewshed value of the corresponding location in the terrain measured, e.g., in
km2. Nowadays, most GIS software include specific modules for singular viewshed
computation. Few GIS software provide multiple viewshed calculation but using task
queues, which demonstrate poor computational performance as it is based on single
point viewshed.

In this work, we propose a new methodology called skewed Digital Elevation Model
(sDEM) considering the total viewshed problem as a case study. It involves a complete
restructuring of the DEM data in memory carried out prior to the computation of
the total viewshed. The DEM is transformed into a new structure named skwDEM
in which the data are aligned in memory to improve data locality in accessing the
memory and, therefore, increasing the speed of processing. Through this approach, it
is unnecessary to apply common techniques that reduce computational cost in total
viewshed problems, such as considering a maximum visibility distance within a circular
area around every POV. This methodology could improve the performance of other
applications that analyse relevant topographic features of the terrain surface such as
slope and elevation.

The contributions of the paper are as follows:

• We design a new methodology named sDEM (skewed Digital Elevation Model)
for faster processing in terrain surface analysis which largely improves data local-
ity in memory. In particular, this approach fully exploits the intrinsic parallelism
of the total viewshed computation, achieving maximum performance through ef-
ficient memory access.
• We present different implementations for single-core, multi-core, single-GPU,

and multi-GPU platforms. Each of them are compared with the state-of-the-art
regarding the total viewshed problem.

The remainder of this paper is organized as follows: Section 2 presents the state-of-the-
art in regards to the total viewshed computation. Section 3 reviews the background
related to this research. Section 4 explains the proposed sDEM methodology for com-
puting the total viewshed and presents the implementation for multi-GPU systems.
Section 5 compares the sDEM algorithm with the most used GIS software and the
state-of-the-art. Section 6 discusses the results of this study.

2. Related work

Terrain visibility, commonly known as viewshed analysis, is related to the problem of
obtaining the area of the terrain visible from a given POV located at a certain elevation
above the ground. This issue has been widely studied for many years given the mass of
interpolation computations required to produce precise results (Atallah 1983, Cabral
et al. 1987, Fisher 1992, Franklin and Ray 1994, Floriani and Magillo 1994). Authors

3

usually use LoS-based algorithms such as R3, R2 or DDA (Franklin et al. 1994, Kaučič
and Zalik 2002). These methods project rays starting from the observer toward the
boundary of the DEM to obtain the points included in processing. Another related
strategy is XDraw (Franklin et al. 1994) which computes the LoS function in stages
arranged as concentric squares centered on the position of the observer.

Many algorithms are developed for calculating the viewshed from one single POV,
or from a small number of POVs at best. In Gao et al. (2011) a singular viewshed
implementation was developed for built-in GPU systems based on the LoS method and
texture memory with bilinear interpolation. They achieve a speed-up up to 70x with
respect to the sequential CPU implementation. The GPU implementation proposed
by Stojanović and Stojanović (2013) achieves remarkable results in obtaining a boolean
raster map instead of a map containing viewshed values. A novel reconfiguration of the
XDraw algorithm for GPU context is described in Cauchi-Saunders and Lewis (2015)
which outperforms CPU and GPU implementations of well-known viewshed analysis
algorithms such as R3, R2, and XDraw. Furthermore, an efficient implementation of
the R2 viewshed algorithm is carried out in Osterman et al. (2014) with particular
focus on input/output efficiency and obtaining significant results in contrast to R3 and
R2 sequential CPU implementations. The algorithm described in Zhao et al. (2013)
focuses on a two-level spatial domain decomposition method to speed-up data transfers
and thus performs better than other well-known sequential algorithms. Other extended
approaches are focused on obtaining the viewshed for multiple points (Strnad 2011,
Song et al. 2016). More recent research is presented in Wang and Dou (2019) where
fast candidate viewpoints are obtained for multiple viewshed planning. These authors
have also investigated parallel XDraw analysis (Dou et al. 2018, 2019) improving the
results obtained by previous XDraw algorithms.

Nevertheless, few studies address the total viewshed computation problem and most
of them focus on tackling a simplified version of it. For example, the total viewshed
in Dungan et al. (2018) is obtained by drastically reducing the number of grid points
to be processed. Likewise, the approach used in Brughmans et al. (2018) computes
the visibility of small areas and not for specific points. So far, the only algorithm that
addresses the total viewshed problem on high resolution DEMs is the TVS algorithm
proposed by Tabik et al. (2013, 2014). It considers the closest points to the line of
sight as a sample set of points stored in a structure called band of sight (BoS). In this
approach, the distance to the axis determines the number of points in the BoS (Flo-
riani and Magillo 1994). Maximum memory utilization was achieved by reusing the
points contained in the list and obtaining the viewshed for every aligned point in the
particular sector. However, this algorithm has important limitations:

• For a given POV, the analysis of the points inside the BoS is performed sequen-
tially because it is impossible to know whether a target point is visible without
knowing the state of the previous one.
• The implementation of the data reuse of the BoS produces a significant overhead

caused by the selection of the corresponding points for every direction.
• It is not appropriate for implementation on high-throughput systems such as

GPUs and Xeon-Phi architectures, because parallelism is limited to sector level.

In this study, we propose computing total viewshed based on a compact and stable
data structure with the aim of increasing data and computation reuse, outperforming
the most commonly used GIS software. Our proposal will also be compared to the
TVS algorithm (Tabik et al. 2014).

4

3. Background: viewshed analysis

In this section, the basic concepts of the viewshed analysis are presented. Section 3.1
describes the singular viewshed problem. Section 3.2 explains the complexity of the
viewshed analysis. Section 3.3 deals with the total viewshed problem.

3.1. Singular viewshed

As a starting point, most viewshed computation algorithms perform an azimuthal
partition of the area. This division is carried out by splitting the area that surrounds
the observer (POV) into ns azimuthal sectors. Every sector is represented by its axis,
and the closest points to this structure are usually considered for the viewshed analysis.

Algorithm 1 presents a general approach for the calculation of the viewshed (V S)
considering one single POV on a particular DEM using a regular Cartesian grid.
The coordinates and height of the observation point are denoted as i, j, and POVh,
considering the observer is slightly above the ground (h); axis is the set of points
included in a particular sector s, and selectAxisPointSet adds candidate points within
the sector. This methodology analyzes the visibility in all the sectors based on the
linearV iewshed function (Algorithm 2). It calculates the visible area for a certain
sector with respect to an observer located on the axis of that sector. In practice, a

Algorithm 1 singularV iewshed(i, j, h)

global point POV = DEM [i][j]
POVh += h
float V S = 0
for s = 0, ns do

pointSet axis = selectAxisPointSet(DEM,POV, s)
V S += linearV iewshed(axis, true) // forward
V S += linearV iewshed(axis, false) // backward

end for
V S ∗= (π/ns) // Papus theorem scaling

Algorithm 2 linearV iewshed(axis, forward)

global bool visible = true
global float maxθ = −∞ // Max. angle
global pointSet visibleSet = emptySet
do
T = axis.next()
pointV iewshed(axis.POV, T)

while T != axis.last()
return visibleSet.measure()

Algorithm 3 pointV iewshed(POV, T)

float dist = sqrt((Tj − POVj)2 + (Ti − POVi)2)
float θ = (POVh − Th) / dist
bool prevV isible = visible
if (θ > maxθ) visible = 1
bool startRS = !prevV isible & visible
if (startRS) dist0 = dist
bool endRS = prevV isible & !visible
if (endRS) visibleSet.add(dist, dist0)

5

Figure 2. Side and zenithal views for a particular POV, with a specific height h, from which two segments

are visible (represented both by blue thick segments). The corresponding visible ring-sectors are obtained for

each one considering their starting points (startRS) and ending points (endRS).

linearized set of target points is considered as the visibility of every remaining point
in the axis is computed following the direction from the nearest point to the furthest
point.

As shown in Algorithm 3, a target point T is visible from the POV if its angular
altitude θ is higher than all the previous ones considered in the axis (maxθ). Visi-
ble points on the axis are included in a set of points called visibleSet. In order to
improve efficiency, only the starting and ending points of a segment are measured
(visibleSet.add) and considered in processing. This methodology uses startRS and
endRS variables to indicate whether a sequence of visible points has been found.
First, the distance between the POV and the first point found belonging to a visible
section is measured in dist0. Then, the final visible point of this visible segment is
found and its distance with respect to the POV is measured (dist). This process is
repeated until all points on the axis are analyzed as shown in the side view in Figure 2.
The projection of all visible segments throughout the sector results in the generation
of visible sections, commonly known as sector rings. The area of every visible section
(Avs), considering sectors of one degree of opening, is computed as follows:

Avs = (π/360) · (R2 − r2)

where R and r are the radius of the visible ring sector related to the endRS and
startRS values, respectively, with respect to a particular POV. Considering all the
above mentioned, the viewshed for one single location results from the addition of
the area of every visible section (visibleSet.measure). This approach reduces memory
accesses and mathematical calculations as proven in Tabik et al. (2014).

3.2. Real problem complexity

The rotational sweep method significantly reduce the complexity of the calculations
required in the viewshed analysis from at least O(N) to O(s · N1/2), where N is the
size of the 2D array measured in points. Considering that a common DEM widely
exceeds several millions of points and the discretization of the sector is rarely above
the required accuracy, the accomplished reduction is between one and three orders
of magnitude (Stewart 1998). For example, the complexity to obtain the viewshed
using point–to–point algorithms such as R3 is O(N3/2), whereas it is reduced up to
O(s · N1/2) using rotational sweep. However, there remains a large number of oper-

6

ations, which makes parallelism and supercomputing highly recommended for these
sorts of approaches. In particular, one of the visibility problems that was considered
unapproachable is the total viewshed computation, which is described in detail below.

3.3. Total viewshed

The problem of addressing the viewshed for all points in a particular area, represented
by a DEM with N points of observation, was almost impossible not long ago. The com-
putation of the singular viewshed is very high demanding in computational terms and,
therefore, repeating this procedure for every single point in the DEM would have been
incredibly time-consuming on CPU. The inherent complexity of the problem is up to
O(N3) if a non-optimized approach is applied N times over a problem of O(N2) com-
plexity. Nevertheless, using rotational sweep, the problem complexity can be reduced
up to O(s ·N3/2). Algorithm 4 introduces the steps required to address the total view-
shed problem, considering a DEM represented by a Cartesian grid with dimy x dimx
points. The viewshed value, i.e, the visible terrain area for every point in the DEM
is stored in the total viewshed matrix (TV S). This matrix has the same dimensions
as the DEM and every cell is filled with a particular viewshed value obtained after
performing the corresponding singular viewshed computation (Algorithm 1). Some
authors have observed that swapping the loops of Algorithm 4 and Algorithm 1 can
significantly improve data locality in memory (Stewart 1998, Tabik et al. 2014). This
is one of the pillars on which our proposal is based.

Algorithm 4 Total viewshed problem
for i = 0, dimy do

for j = 0, dimx do
TV S[i][j] = singularV iewshed(i, j, h)

end for
end for

4. sDEM: a grid reorganization approach

This section describes our proposed methodology called skewed Digital Elevation
Model (sDEM) designed to improve data locality in memory for terrain surface anal-
ysis using the total viewshed computation problem as a case study. This approach
takes into account the technical features of CPU (host) and GPU (device) processing
units to take full advantage of the intrinsic parallelism of the total viewshed compu-
tation. For the sake of simplicity, in the rest of the paper we will refer to the original
DEM as DEM and original DEM. We will refer to the modification of this structure
as skwDEM.

4.1. Proposed methodology

The data reuse is the key to achieve proper optimization in the total viewshed com-
putation so first, we have to introduce the structure that will manage this important
process. This structure is called band of sight (BoS) and it will serve as the basis for
the process of restructuring the DEM for every POV and sector. The BoS is used to
find the closest points to the line of sight for any reference POV and given sector.

7

(a) DEM; 2.5
√
N BoS (b) DEM;

√
N BoS (c) skwDEM;

√
N BoS

Figure 3. Three examples of band of sight (BoS), each one with different width and layout on the plane,
considering a sector s = 45o for simplicity. The cells of the DEM that contribute to the BoS computation

are shown in blue. (a) and (b) show two different BoS widths for the dimy x dimx original DEM; whereas

(c) presents the restructuring of the 2 · dimy x dimx skwDEM considering a BoS width of
√
N . For the sake

of clarity, A-D labels are located in the corner points of the DEM so that the restructuring approach can be

visualized, only one BoS is shown as well.

Thus, choosing the right size for this structure is vital to improve data locality in
accessing the memory. Figure 3(a) and 3(b) show two BoS widths of 2.5

√
N and

√
N ,

respectively, considering a sector s = 45o for the sake of simplicity; only the points
of the grid in dark color are considered for the visibility computation. The extensive
statistical study conducted in Tabik et al. (2014) proves that the size of this structure
is not a determining factor, as long as it is of the order of

√
N . Therefore, our sDEM

proposal uses the latter BoS size in order to address the data repetitive problem.
Once the BoS size has been fixed, complete relocation of the data is performed from

the original DEM (Figure 3(b)) to the skwDEM (Figure 3(c)). This is a new DEM
which is more or less skewed in shape depending on the width chosen for the BoS.
The use of this structure allows the exploitation of the existing parallelism without
adversely affecting the precision of the results based on the following considerations:

• We apply the Stewart sweep method (Stewart 1998) that places first the loop
that runs through all the sectors instead of all the points in the DEM. It is the
only model that guarantees the reuse of data aligned in every direction.
• Given a sector, all the possible parallel bands of sight that cross the DEM are

built simultaneously. We apply the interpolation method based on a simplified
version of the Bresenham’s algorithm, which is commonly used for line raster-
ization. This algorithm was chosen for its high speed as well as maintaining
sufficient fidelity to the problem under consideration.
• For each sector, the relocation is applied only once to the entire DEM. For

example, in the particular case of considering 180 sectors, the data relocation
takes place 180 times and always before starting the viewshed computation.
Thus, the relocation only depends on the selected sector. Another advantage is
that this method is especially appropriate for processing on the GPU. It aims

8

(a) DEM (b) Reorganized skwDEM (c) Compacted1 skwDEM (d) Compacted2 skwDEM

Figure 4. The original DEM and three possible results when applying our array redistribution procedure

considering sector s = 45o, for the sake of simplicity. (a) presents the input DEM, (b) shows the skwDEM used
in this work; (c) and (d) introduce two possible ways of compacting the data.

to reduce the conditional structures to the maximum, hence avoiding the well-
known thread divergence penalty.

Figure 4 shows the different possible redistributions of rows and columns using the
DEM of the * Natural Park (*, Spain), complementing Figure 3. The data of the same
latitudes are stored contiguously in memory in the original DEM (Figure 4(a)); that
is, the external loop runs from north to south, whereas the internal loop runs from
west to east. In Figure 4(b), the skewed model (skwDEM) is graphically represented.
Using the interpolation method, all parallel segments from Figure 4(a) were projected
into Figure 4(b) so that the size of both structures matches (the number of non-null
elements). In this reorganized dataset, unlike the original, all the points in a given
sector are placed in the same row and, therefore, memory accesses are sequentially
performed increasing locality.

The reorganized matrix shown in Figure 4(b) could later be compacted by: aligning
all data to the left of the structure (Figure 4(c)), or relocating the data within the
upper light color triangle to the lower right area of the structure, thus forming a dimy
x dimx square structure (Figure 4(d)). This last method aims to further compact the
information to make memory access as regular as possible but increasing the complex-
ity and hence, the building time. Although both approaches seem to fit better for GPU
processing in theory, they have not revealed significant differences in practice. There-
fore, only the simplest and fastest approach shown in Figure 4(b) for the skwDEM
structure is used in all implementations of the sDEM algorithm.

Given the above, our sDEM methodology can be described as follows (Figure 5):

(1) For each sector s ∈ [0, ns/2], do:
(a) Create the 2 · dimy x dimx skwDEM, which is unique to each sector, from

the dimy x dimx DEM and s.
(b) Calculate the horizontal (A,D) and vertical (B,C) limits of the skwDEM

structure, which depend on the sector s.
(c) Let POVi,j be the chosen point of view with i and j coordinates. For each

point POVi,j ∈ skwDEM with i ∈ [A,D] and j ∈ [B,C], do:
(i) Compute the linear viewshed considering sectors s and s + 180o, i.e.,

9

(a) Main loop (b) Single iteration

Figure 5. Flowchart of our sDEM proposal for total viewshed computation showing (a) the steps inside the

main loop which runs through all the sectors and (b) the outputs obtained in a single iteration of the same
loop. In the last, null and low values are represented in blue; whereas red cells represent maximum values.

analyze to the right and to the left the points in the row to which
POVi,j belongs in the skwDEM.

(ii) Accumulate the viewshed result in skwVS.
(d) Transform skwVS into VS by undoing the operations performed in Step 1a

(this procedure includes Pappus’s theorem and also corrects the deforma-
tion introduced by the skwDEM). Accumulate the results in VS.

The viewshed computation of all sectors is an embarrassingly parallel task because the
computation is independent of each other. This reduces the total viewshed problem to
calculating ns/2 times the singular viewshed problem for every point in the skwDEM .
Also, by skewing before carrying out the computation sDEM achieves that all the
points placed in the same row in the skwDEM constitute a common static BoS, for
a given sector, that must be reconstructed only ns/2 times. On the contrary, the BoS
used in (Tabik et al. 2014) must be reconstructed for each point and sector.

4.2. Multi-GPU implementation

Since this particular problem is similar to matrix processing, our proposal to accelerate
the calculation of the total viewshed focuses on exploiting the intrinsic parallelism of
this procedure through the use of GPU processing units. In practice, the ns/2 sectors
are distributed among all available devices so that each one is in charge of processing
a similar number of given sectors, which will depend on the chosen scheduling. Every
device sequentially launches three kernels, which will be further described, in order to

10

process the viewshed of all points in the DEM for the corresponding sectors. In this
way, each device contains partial viewshed results which are added up by the host in
a final stage to obtain the total viewshed. Our method is used to avoid dependencies
between threads while performing the viewshed computation.

We will denote block and thread identification numbers as bid and tid, respectively,
and thread block dimension as bdim.

4.2.1. Kernel-1: obtaining the skwDEM structure

This kernel is in charge of transforming the original DEM into the skwDEM structure
for a given sector (Algorithm 5). In this new model and for the chosen direction,
points located consecutively in the terrain are also stored sequentially in memory,
which improves the performance of the memory accesses. This is achieved by using the
interpolation based on Bresenham’s algorithm to soften the projection of the points.
Every thread is in charge of interpolating the corresponding point according to its 2D
thread identification number defined by i and j variables.

Regarding the implementation, this kernel is launched using Cby = dimy/8 and
Cbx = dimx/8 2D threads blocks with 8 threads per block, so as not to exceed the
maximum register file size shared between thread blocks, avoiding schedule problems.

Algorithm 5 The kernel in charge of generating the skwDEM structure from the
DEM given the sector s

int i = bidy · bdim + tidy
int j = bidx · bdim + tidx
float y = tan(s) · j
int dest = y
float r = y − dest
int p = dimy + i− dest
if i < dimy & j < dimx then
skwDEM [p · dimy][j] += (1− r) ·DEM [dimy · i][j]
skwDEM [p · dimy − 1][j] += r ·DEM [dimy · i][j]

end if

4.2.2. Kernel-2: viewshed computation on the skwDEM

This kernel computes the viewshed for a given sector and every point located in the
skwDEM , obtaining as a result the skwV S matrix. The pseudo-codes of this ker-
nel are shown in Algorithms 6 and 7, where each thread manages a particular point
POVt ∈ skwDEM, t = {i, j} considering t as the corresponding two dimensional

Algorithm 6 The kernel in charge of the skwV S computation on the skwDEM
int i = bidy · bdim + tidy
int j = bidx · bdim + tidx
float r = (1.0/cos(s))2

float cv = 0
if i < 2 · dimy & j < dimx then

float h += sDEM [i][j]
cv += linearV iewshed(i, j, h, skwDEM, true)
cv += linearV iewshed(i, j, h, skwDEM, false)
skwV S[i][j] = cv · r

end if

11

Algorithm 7 linearV iewshed(i, j, h, skwDEM, forward)

int k = j
int dir = 0
if (forward) then dir = 1 otherwise dir = −1
bool visible, above, opening, closing
float maxθ = −∞
while k ∈ nzSet do

∆d = |k − j|
θ = (skwDEM [i][k]− h)/∆d
if (θ > maxθ) then above = 1
opening = above & !visible
closing = !above & visible
visible = above
maxθ = max(θ,maxθ)
if (opening) then open∆d = ∆d
if (closing) then cv += ∆d ·∆d− open∆d · open∆d
k += dir

end while

thread. The variable h contains both the observer and location heights in this case.
Every thread obtains its computation range of non-zero values within the correspond-
ing row (contained in the nzSet structure) from the skwDEM matrix. Then, every
thread computes its visibility forward and backward across the row to which it be-
longs. The resulting viewshed value is thereafter stored in its corresponding position
of the skwV S matrix.

This kernel is launched with 2 ·Cby and Cbx 2D threads blocks using twice as many
thread blocks as in the y-dimension according to the size of the skwDEM matrix.

4.2.3. Kernel-3: obtaining the final viewshed on the DEM

Once the viewshed is computed on the skwDEM for every POV and stored in the
skwV S matrix, this kernel transforms the latter structure by undoing the rotation
performed in Kernel-1 to obtain the final viewshed V S matrix on the original DEM.
The pseudo-code in charge of performing this procedure is presented in Algorithm 8.
This kernel is also launched with the same configuration as Kernel-1.

Algorithm 8 The kernel in charge of transforming the skwV S on the skwDEM to
the V S structure on the original DEM

int i = bidy · bdim + tidy
int j = bidx · bdim + tidx
float y = tan(s) · j
int dest = y
float r = y − dest
int p = dimy + i− dest
if i < dimy & j < dimx then

float skwV Sa = skwV S[p · dimy][j]
float skwV Sb = skwV S[(p− 1) · dimy][j]
V S[i][j] += (1− r) · skwV Sa + r · skwV Sb

end if

12

Algorithm 9 Host code in charge of scheduling the work for the different devices
for d = 0, nd do
devd ← Allocate(|DEM |, |skwDEM |, |skwV S|, |V S|)

end for
for d = 0, nd do
devd ←MemcpyAsyncH2D(DEM)

end for
for s = 0, ns/2 do

int d = s% nd
devd ← Kernel − 1, 2, 3
devd ←MemcpyAsyncD2H(V Sd)

end for
for d = 0, nd parallel do
V S += V Sd

end for

4.2.4. Scheduling multi-GPU processing on the host

In order to perform the total viewshed calculation in a multi-GPU system, several
steps must be performed as shown in Algorithm 9. First, we must reserve the required
memory spaces to allocate the different matrices in all the available devices. Then,
the original DEM can be transferred from the host to each device (dev) of the total
available devices (nd). The target number of sectors ns/2 will be distributed among
the different devices so that the work load is balanced. Each device will execute the
three above-mentioned kernels accumulating the result of the viewshed computation,
considering all the points and every target sector, in their private V Sd structure.
Finally, these matrices are transferred from the devices to the host so that a final
parallel reduction can be performed, obtaining the total viewshed V S result.

5. Experiments

This section assesses the performance of our sDEM proposal with respect to well-
known GIS software and the state-of-the-art. Section 5.1 explains the experimental
setup. Section 5.2 presents the comparison between sDEM and GIS software in ad-
dressing the multiple viewshed problem. Section 5.3 evaluates the computational per-
formance of sDEM compared to the state-of-the-art algorithm using the total viewshed
problem as a case study in three scenarios: (i) sector viewshed computation for a ran-
dom direction, (ii) average sector viewshed computation, and (iii) total viewshed map
generation.

5.1. Experimental setup

We select two operating systems (OSs) for the experiments according to their require-
ments:

• Windows OS: Windows 10 with an Intel(R) Core(TM) i5-6500 CPU @3.20GHz
with 4 cores (4 threads) and 8GB DDR4 RAM.
• Linux OS: Ubuntu 16.04.5 LTS with an Intel(R) Xeon(R) E5-2698 v3 @2.30GHz

with 16 cores (32 threads) and 256GB DDR4 RAM, along with four GTX 980
Maxwell GPUs with 2048 CUDA cores, 16 SMs, 1.12GHz, and 4GB GDDR5
each one.

13

Table 1. Different DEMs used in the experiments.

UTM

Dataset Dimension Zonea Easting Northing

DEM10m-2k 2000x2000 30S 0310000mE 4070000mN
DEM10m-4k 4000x4000 30S 0360000mE 4100000mN
DEM10m-8k 8000x8000 30S 0360000mE 4140000mN

aLatitude band designator.

The experiment presented in Section 5.2 is executed on Windows OS because GIS
software is usually developed for this specific operating system; whereas the experiment
described in Section 5.3 is executed on Linux OS to obtain an optimal measurement of
the computational performance. These experiments were designed to be as representa-
tive as possible of a real problem where obtaining the visibility in a particular direction
or region is necessary. This is the reason why three DEMs of the * Natural Park with
10 meters of resolution and different dimensions, in relation to the number of points
in vertical and horizontal directions, were considered (Table 1). The calculation of the
total viewshed is not only limited to this area of interest, but includes the surrounding
area beyond it which is very geographically diverse. Observers are considered to be
located 1.5 meters above the ground.

Regarding the implementation, the OpenMP API is used to enable the multi-
threaded execution of every selected sector with dynamic scheduling since it has proved
to obtain the best performance. Host codes are compiled using the g++ 5.4 open-source
compiler with ffast-math, fopenmp, and O2 optimization flags. CUDA files make use
of the NVIDIA NVCC compiler from the CUDA compilation tools V10.0.130. The
multi-core implementation of our proposal is launched with the maximum number
of threads available in the system, the same way that single-GPU and multi-GPUs
implementations are configured to operate the devices at full capacity.

Figure 6. Computational performance comparison between the sDEM proposal and the most used GIS soft-

ware in solving the multiple viewshed problem considering 10 POVs randomly located in the DEM10m-2k.
Single-thread execution is considered to obtain the run-time of those programs not otherwise indicated. VS,

VS-2, and VI stand for the first and second version of the Viewshed tool and the Visibility one, respectively,

inside the Spatial Analyst extension of ArcGIS. QGIS-GRASS uses the r.viewshed module. 1multi-thread
execution was required using the maximum number of cores available. 2using PERIMETER SIGHTLINES
parameter. 3using ALL SIGHTLINES parameter. 4Google Earth does not have multiple/total viewshed com-

putation capability so the average time in computing singular viewshed has been multiply by the number of
POVs considered.

14

The GIS software used for comparison includes ArcGIS 10.7, specifically the Spa-
tial Analyst extension which contains the Viewshed 2 (VS-2), Viewshed (VS), and
Visibility (VI) tools. Google Earth Pro 7.3 and QGIS-GRASS 3.10.2 are also used.

5.2. Comparison with GIS software

A fair comparison in the context of this work would be comparing the total viewshed
computation using our approach and other GIS software/tools. However, as there
does not exist any public software/tool to compute total viewshed, we will compare
the results only for few points. This experiment assesses the computational perfor-
mance of sDEM and the most used GIS software in solving the multiple viewshed
problem. In particular, the object is to compute the accumulated viewshed consider-
ing 10 POVs randomly located in the DEM10m-2k. Single-threaded implementations
were used for our sDEM proposal, QGIS-GRASS, and Google Earth; whereas ArcGIS
has to be executed using all available cores. Moreover, the execution time obtained
using Google Earth results from extrapolating the singular viewshed computation to
the current case of 10 POVs since this software does not support this operation. Fig-
ure 6 shows the time each software requires to complete the multiple viewshed task.
Our sDEM proposal outperforms every analyzed GIS software: ArcGIS VS-2 with two
different configurations (23.7x, 2.4x), ArcGIS VS (1.3x), ArcGIS VI (13.4x), Google
Earth (5.1x), and QGIS-GRASS (6.7x). Although sDEM achieves significant results
in this multiple viewshed computation, the greatest gain is given in the total viewshed
computation discussed below.

5.3. Total viewshed analysis

To the best of our knowledge, our sDEM proposal and the TVS algorithm (Tabik
et al. 2014) are the only approaches in the literature capable of performing the total
viewshed computation on entire datasets without carrying out prior reductions in
workload. In order to achieve a fair analysis, a size of dimx has been chosen for the
BoS in the case of the TVS algorithm so that this structure coincides with the number
of points processed per row in the sDEM algorithm. Thus, the workload is similar
for both TVS and sDEM algorithms making it possible to perform a computational
performance comparison using speed-up and throughput values. We implement single-
threaded, multi-threaded, single-GPU, and multi-GPU versions of our sDEM proposal
and compared them to the single-thread implementation of the TVS algorithm. Three
experiments are set to assess the performance in the total viewshed computation.

5.3.1. Sector viewshed considering a random sector

The computational performance of our sDEM proposal is analyzed and compared
with the TVS algorithm in computing total viewshed considering a single random
sector, where the sector 10o is selected. Figure 7 presents the acceleration curves
and the throughput results (POVs processed per second) using three DEMs. Best-
studied cases show that our proposal outperforms the TVS algorithm, achieving a
maximum acceleration up to 232.8x using the 1-GPU implementation on DEM10m-
4k. Throughput results show that this variable increases about 177.7x for the same
implementation on DEM10m-2k. Multi-GPU implementations are not considered due
to the low workload when distributing one single sector among more than one device.

15

5.3.2. Sector viewshed based on average values

In this experiment, unlike the prior one, the direction range is selected from 0o up
to 45o to obtain average values per sector. This choice of design lies in the fact that
single-threaded executions of TVS and sDEM required several weeks to complete when
using a higher range. Besides, results within this range are representative and can be
extrapolated to any target range. Figure 8 introduces the acceleration curves and the
throughput results achieved. Best-studied cases show that the maximum speed-up
result achieved is up to 827.3x with the 4-GPUs implementation with respect to the
TVS algorithm considering DEM10m-4k. Throughput results show that this variable
increases about 511.1x for the same implementation on DEM10m-2k.

(a) Speed-up curves (b) Diagram of throughputs

Figure 7. Speed-up curves and throughput diagrams for the state-of-the-art total viewshed algorithm,

TVS (Tabik et al. 2014) and the different implementations of our sDEM proposal using single-core, multi-

core, single-GPU, and multi-GPU platforms to compute singular viewshed for a randomly selected sector,
s = 10o (BoS size of dimx points for the TVS algorithm). Every color is related to a particular dataset.

Logarithmic scale is used.

(a) Speed-up curves (b) Diagram of throughputs

Figure 8. Speed-up curves and throughput diagrams for the state-of-the-art total viewshed algorithm,

TVS (Tabik et al. 2014) and the different implementations of our sDEM proposal using single-core, multi-
core, single-GPU, and multi-GPU platforms to compute sector viewshed. Directions fulfilling 0o < s < 45o are

considered to obtain average values per sector (BoS size of dimx points for the TVS algorithm). Every color is
related to a particular dataset. Logarithmic scale is used.

16

5.3.3. Total viewshed map generation

The final outcome from computing our proposed sDEM algorithm to obtain the total
viewshed map of the * Natural Park (*, Spain) is presented in Figure 9. No substantial
differences have been found after analyzing the values of absolute and relative differ-
ences when comparing the total viewshed results from the TVS and sDEM algorithms.
The DEM10m-2k was used for this analysis, where the absolute difference found is up
to 1.18%, whereas the relative difference is up to 4.21%. All these values are fully
within the limits recommended in this field (Tabik et al. 2013).

Figure 9. Total viewshed map of the * Natural Park and its surroundings in the province of *, Spain.

6. Conclusions

In this paper, we present a new methodology called skewed Digital Elevation Model
(sDEM) to speed-up terrain surface analysis. Total viewshed computation was selected
as a case study to assess the performance of this new methodology, which is designed
from scratch and differs from state-of-the-art methods in the way that operations are
performed. It focuses on increasing the performance of memory accesses by applying a
data restructuring before starting the computation. The proposed data reorganization
opens the door for intensive use of GPUs in many algorithms for which it had never
been considered due to their irregularity and low efficiency.

Different versions of our algorithm have been proposed for single-core, multi-core,
single-GPU and multi-GPU platforms, along with intensive performance studies com-
pared to the literature. sDEM has been tested on Windows and Linux operating sys-
tems using two different systems and three DEMs of up to 64 millions of points from
the * Natural Park (*, Spain). Our implementations have proved to perform better
than the most used GIS software regarding the multiple viewshed computation. In fact,
this difference would be much greater when considering all the points in the terrain but

17

current GIS software is unable to carry out this computation. Moreover, sDEM largely
outperforms the state-of-the-art algorithm in terms of speed-up and throughput for
the three evaluated DEMs. In particular, our approach accelerates this computation
up to 827.3x for the best studied case with respect to the baseline single-threaded
implementation on a given DEM formed by 16 million POVs.

Our algorithm can be used for analyzing the surface of any terrain. For example,
the computation of the visibility map of any terrain is faster with sDEM than with the
approaches reported in the literature. Also, the analysis of other topographic features
such as slope and elevation could be improved by applying our methodology. Once this
paper is accepted, we will release a cross-platform plug-in so that the international
scientific community can reproduce our experiments with the sDEM algorithm and
use it with their own DEMs to obtain total viewshed maps.

Data and codes availability statement

The data and codes of the sDEM algorithm that support the findings of
this study are available in the ‘figshare.com’ repository with the identifier
‘https://figshare.com/s/010bfe676260d3bd41b4’.

Funding

*

References

Atallah, M.J., 1983. Dynamic computational geometry. In: Foundations of Computer Science,
1983., 24th Annual Symposium on. IEEE, 92–99.

Brughmans, T., van Garderen, M., and Gillings, M., 2018. Introducing visual neighbourhood
configurations for total viewsheds. Journal of Archaeological Science, 96, 14–25.

Cabral, B., Max, N., and Springmeyer, R., 1987. Bidirectional reflection functions from surface
bump maps. In: ACM SIGGRAPH Computer Graphics. ACM, 273–281.

Cauchi-Saunders, A.J. and Lewis, I.J., 2015. Gpu enabled xdraw viewshed analysis. Journal
of Parallel and Distributed Computing, 84, 87–93.

Cervilla, A., Tabik, S., and Romero, L., 2015. Siting multiple observers for maximum coverage:
An accurate approach. In: Proceedings of the 2015 International Conference on Computa-
tional Science, ICCS2015.

Choset, H.M., et al., 2005. Principles of robot motion: theory, algorithms, and implementation.
MIT press.

Dou, W., Li, Y., and Wang, Y., 2018. A fine-granularity scheduling algorithm for parallel
xdraw viewshed analysis. Earth Science Informatics, 11 (3), 433–447.

Dou, W., Li, Y., and Wang, Y., 2019. An equal-area triangulated partition method for parallel
xdraw viewshed analysis. Concurrency and Computation: Practice and Experience, 31 (17),
e5216.

Dungan, K.A., et al., 2018. A total viewshed approach to local visibility in the chaco world.
antiquity, 92 (364), 905–921.

ESRI, 2010. Arcgis software. version 9.3. Environmental Systems Research Institute.
Fisher, P.F., 1992. First experiments in viewshed uncertainty: simulating fuzzy viewsheds.

Photogrammetric engineering and remote sensing, 58, 345–345.

18

Floriani, L.D. and Magillo, P., 1994. Visibility algorithms on triangulated digital terrain mod-
els. International Journal of Geographical Information Systems, 8 (1), 13–41.

Franklin, W.R. and Ray, C., 1994. Higher isn’t necessarily better: Visibility algorithms and
experiments. In: Advances in GIS research: sixth international symposium on spatial data
handling. Taylor & Francis Edinburgh, vol. 2, 751–770.

Franklin, W.R., Ray, C.K., and Mehta, S., 1994. Geometric algorithms for siting of air defense
missile batteries. Research Project for Battle, 2756.

Gao, Y., et al., 2011. Optimization for viewshed analysis on gpu. In: 2011 19th International
Conference on Geoinformatics. IEEE, 1–5.

Kaučič, B. and Zalik, B., 2002. Comparison of viewshed algorithms on regular spaced points.
In: Proceedings of the 18th spring conference on Computer graphics. ACM, 177–183.

Li, J., Zheng, C., and Hu, X., 2010. An effective method for complete visual coverage path
planning. In: 2010 Third International Joint Conference on Computational Science and
Optimization. IEEE, vol. 1, 497–500.

Neteler, M., et al., 2012. GRASS GIS: a multi-purpose Open Source GIS. Environmental
Modelling & Software, 31, 124–130.

Osterman, A., Benedičič, L., and Ritoša, P., 2014. An io-efficient parallel implementation of
an r2 viewshed algorithm for large terrain maps on a cuda gpu. International Journal of
Geographical Information Science, 28 (11), 2304–2327.

Qarah, F.F. and Tu, Y.C., 2019. A fast exact viewshed algorithm on gpu. In: 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 3397–3405.

Song, X.D., et al., 2016. Parallel viewshed analysis on a pc cluster system using triple-based
irregular partition scheme. Earth Science Informatics, 9 (4), 511–523.

Stewart, A.J., 1998. Fast horizon computation at all points of a terrain with visibility and
shading applications. Visualization and Computer Graphics, IEEE Transactions on, 4 (1),
82–93.

Stojanović, N. and Stojanović, D., 2013. Performance improvement of viewshed analysis using
gpu. In: 2013 11th International Conference on Telecommunications in Modern Satellite,
Cable and Broadcasting Services (TELSIKS). IEEE, vol. 2, 397–400.

Strnad, D., 2011. Parallel terrain visibility calculation on the graphics processing unit. Con-
currency and Computation: Practice and Experience, 23 (18), 2452–2462.

Tabik, S., et al., 2014. Efficient data structure and highly scalable algorithm for total-viewshed
computation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 8 (1), 304–310.

Tabik, S., Zapata, E.L., and Romero, L.F., 2013. Simultaneous computation of total viewshed
on large high resolution grids. International Journal of Geographical Information Science,
27 (4), 804–814.

Wang, Y. and Dou, W., 2019. A fast candidate viewpoints filtering algorithm for multiple
viewshed site planning. International Journal of Geographical Information Science, 1–16.

Zhao, Y., Padmanabhan, A., and Wang, S., 2013. A parallel computing approach to view-
shed analysis of large terrain data using graphics processing units. International Journal of
Geographical Information Science, 27 (2), 363–384.

19

