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Abstract We study the two-player safe game of Competitive Diffusion, a game-theoretic model
for the diffusion of technologies or influence through a social network. In game theory, safe
strategies are mixed strategies with a minimum expected gain against unknown strategies of
the opponents. Safe strategies for competitive diffusion lead to maximum spread of influence
in the presence of uncertainty about the other players. We study the safe game on two specific
classes of trees, spiders and complete trees, and give tight bounds on the minimum expected
gain. We then use these results to give an algorithm that suggests a safe strategy for a player on
any tree. We test this algorithm on randomly generated trees and show that it finds strategies
that are close to optimal.

1. INTRODUCTION

Online social networks such as Facebook, Twitter, and LinkedIn have an increasingly
important role in the spread of information through society. News about all kind of topics
can spread quickly along the “friend” or “follower” links in the network. Understanding
and modeling this process, and determining best strategies for reaching a large number
of users, is instrumental for commercial applications such as viral marketing, but also for
social activism and societal benefit, such as countering false rumors, spreading information
about safe health practices, etc.

Competitive Diffusion, which was introduced in [1] is a game-theoretic model for the
diffusion of information in a network, This game is built on the assumption that there are
several players, who wish to spread competing information. One can think of companies
encouraging consumers to adopt their products, or political organizations spreading a point
of view about a contentious issue. The goal of each player is to reach the largest possible
number of users. The messages spread by the players are assumed to be competitive, so
any user who adopts the view of one of the players will not be susceptible to the messages
sent by the other players. Moreover, users adopt the view of the player whose message is
the first to reach them. If two competing messages reach the user at the same time, the user
adopts a neutral position and effectively blocks the passage of information.

Competitive diffusion lends itself to analysis via game theory. Because of the pos-
sibilities that users turn “neutral,” it is not a zero-sum game. In this study, we consider
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the associated safe game. This game focuses on one particular player, here referred
to as Player 1, and the aim is to maximize the minimum gain of Player 1, regardless
of the strategies of the other players. The safe game can be interpreted as the game in which
the goal of all other players is to minimize the gain of Player 1, rather than to in which the
goal of maximize their own gain. The reason to adopt the safe game scenario is because the
traditional game assumes full information about the strategies of the other player. The safe
game explores the scenario where in the strategies of the other players are unknown, thus,
the safest scenario for Player 1 is to assume that the other players are actively countering
his/her strategy. This contrasts with the analysis of competitive diffusion in terms of pure
Nash equilibria, in which the assumption is that everyone is fully aware of the strategies of
the other players, but the aim is for all players to maximize their own gain.

Our results concern the safe game of competitive diffusion played on trees. We give
an optimal safe strategy for full q-ary trees, and give asymptotically optimal safe strategies
for spiders. For spiders consisting of a number of paths of equal length joined at a common
vertex, we show that the safety value equals the gain of the disadvantaged player in a Nash
equilibrium for competitive diffusion. In other words, we cannot improve on the safe gain
by assuming the fully open and self-interested game rather than the adversarial setting.

Finally, we use results for special types of trees in order to develop a heuristic
algorithm that can be applied to any tree. We show that the algorithm gives optimal
results when applied to certain subclasses of trees. We also test the algorithm on randomly
generated trees and show that the safe strategies found by the algorithm perform close to
optimally.

1.1. Related Work

The first studies on the spread of influence through social networks assumed a passive
model. The goal was to predict how information diffuses through a network starting from a
given set of vertices. If the information reaches a vertex, this vertex is said to be activated.
There are two main types of diffusion models: threshold models and cascade models. The
difference in these models is in how vertices become activated.

In threshold models, vertices become activated once a variable associated with the
neighborhood of a vertex surpasses a certain threshold. The most commonly used is the
linear threshold model (see [7] and [9]). In this model, each vertex v has a threshold θv , and
a vertex v is influenced by each of its neighbors, w, by a weight bv,w. A vertex becomes
activated once the sum of the weights of its activated neighbours exceeds θv .

In cascade models, as a vertex becomes activated, it activates each of its neighbors
with a given probability. The most well-known is the independent cascade model (see [5]
and [9]). In this model, we also start with an initial set of activated vertices. Here, each edge
vw is assigned a probability pv,w. If vertex v becomes activated, its neighbor w will become
activated in the next round with probability pv,w. The spread of influence in competitive
diffusion can be seen as a cascade model in which the activation probability equals 1.

The optimization problem studied in these diffusion models is to choose the set of
starting vertices so that the expected diffusion is maximized (see [9], [3], and [16]). In
other words, the goal is to identify a set of initial influenced users who will bring a greater
overall influence throughout the network. A related approach is through Voronoi games on
graphs (see [22] and [2]). Here the players choose a set of vertices, and all other vertices
are assigned to the starting vertex that is closest to it.
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Competitive diffusion, as proposed in [1], is the first game-theoretic model in which
the players are considered to be outside the social networks. Players choose initial users to
influence and their goal is to reach the most users. In [1] (see also erratum [21]), the authors
discuss the relationship between the diameter of the graph and the existence of pure Nash
equilibria. A pure Nash equilibrium is a strategy that corresponds to a set of initial vertices,
whereas a mixed strategy represents a probabilistic approach wherein starting vertices are
chosen with a certain probability. In [20], the existence of a pure Nash equilibrium for
competitive diffusion on trees is shown, whereas in [17], results on pure Nash equilibria are
given for several classes of graphs. Moreover, [19] considers the competitive diffusion on
a recently proposed model for online social networks and discusses the existence of Nash
equilibria. The safe game for competitive diffusion was introduced in [4], and some results
for paths were given.

Generalizations of competitive diffusion were proposed in [6] and [23]. In [6], the
agents choose an allocation of budgeted seeds over the vertices, and the diffusion process is
stochastic. In [23], the agents choose an initial set of vertices and the diffusion is a threshold
model.

2. PRELIMINARIES

2.1. Competitive Diffusion Model

Let us start by recalling the model competitive diffusion from [1]. Let G be a graph
with n vertices and suppose there are p players, P1, . . . , Pp, each having a distinct assigned
color (not white or grey). The strategy of each player is to choose a vertex in G as her/his
starting vertex. Initially, all vertices are white. The game begins by coloring each of the
starting vertices of the players and then proceeds by diffusing colors through G as follows:
at each wave of diffusion, a vertex that has one or more neighbors with a certain color
inherits that color while a vertex that has two neighbors with different colors turns grey.
The diffusion finishes when all the vertices have either inherited a color, turned grey, or
been forced to stay uncolored (white), due to being blocked off by grey vertices. In the
end, the gain of each player is the number of vertices that has assumed his or her color.
The winner of the game is the player that has the greatest gain. We note that if two or more
players have the same starting vertex, then this vertex immediately turns grey.

Althougth the game can be played with any finite number of players, this article
concentrates on the two-player version of the game. In the following, the two players will
be called Player 1 (She) and Player 2 (He).

2.2. Mixed Strategies

Consider competitive diffusion on an undirected graph G with vertex set V (G) =
{v1, v2, . . . , vn}. We will denote the game matrix of Player 1 by AG. Precisely, this is
the matrix so that the entry (AG)ij gives Player 1’s gain if she chooses starting vertex
vi and Player 2 chooses starting vertex vj . A mixed strategy for a player is a vector
(x1, x2, . . . , xn) so that

∑n
i=1 xi = 1 and xi ≥ 0 for i = 1, . . . , n. It should be interpreted

as a probabilistic strategy, where xi is the probability the player chooses vertex vi as the
starting vertex. Accordingly, the expected gain of Player 1 when she plays the mixed
strategy X = (x1, x2, . . . , xn) and Player 2 plays the mixed strategy Y = (y1, y2, . . . , yn) is

Gain(G,X, Y ) = XAGYT . (2.1)
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Let Sn = {(z1, z2, . . . , zn) | zi ≥ 0, 1 ≤ i ≤ n,
∑n

i=1 zi = 1} be the strategy set of
the players. We will use the special notation Z(vk) for a mixed strategy equivalent to a pure
strategy, i.e., when a player chooses vertex vk ∈ V (G) with probability 1 and the other
vertices with probability 0. Precisely, Z(vk) = (z1, z2, . . . , zn) with

zi =
{

1 if i = k

0 otherwise.
(2.2)

2.3. Safe Game and Notations

The safe game for competitive diffusion is the zero-sum game in which the game
matrix is AG, which is the game matrix for Player 1 in competitive diffusion. The safety
value for Player 1 is

value(AG) = min
Y∈Sn

max
X∈Sn

XAGYT = max
X∈Sn

min
Y∈Sn

XAGYT .

Moreover, if Gain(G,X∗, Y ∗) = value(AG), then X∗ is called the maxmin strategy for
Player 1, and Y ∗ is called the minmax strategy for Player 2. The existence of strategies X∗

and Y ∗ and the uniqueness of valueAG is guaranteed by Nash’s Existence theorem [15].
Indeed, X∗ and Y ∗ form a Nash equilibrium in the safe game.

Any (mixed) strategy for Player 1 in the safe game will be referred to as a safe
strategy. Correspondingly, any mixed strategy for Player 2 in the safe game will be called
an opposing strategy. In this article, all strategies are assumed to refer to the safe game,
unless stated otherwise.

The guaranteed gain of Player 1 with the safe strategy X, GGain(G,X), is the
minimum gain that Player 1 could receive with the strategy X, i.e.,

GGain(G,X) = min
Y∈Sn

XAGYT = min
Y∈Sn

Gain(G,X, Y ) = min
vi∈V (G)

Gain(G,X,Z(vi)). (2.3)

The last step follows because any mixed strategy is a weighted average of pure strategies,
thus, the minimum is always achieved by a pure strategy. A similar argument explains the
last step in Equation (2.4), to follow.

The maximal gain of Player 1 against the opposing strategy Y of Player 2 is the
maximum gain that Player 1 could receive when Player 2 chooses the strategy Y , i.e.,

MGain(G,Y ) = max
X∈Sn

XAGYT = min
X∈Sn

Gain(G,X, Y ) max
vi∈V (G)

Gain(G,Z(vi), Y ). (2.4)

Note also that the guaranteed gain of Player 1 with any pure strategy Z(vk) equals
zero, because Player 2 can counter by playing the same strategy Z(vk), reducing the gain
of Player 1 to zero. Thus, any optimal safe strategy will be mixed.

The guaranteed gain with any safe strategy X for Player 1 is a lower bound on the
safety value whereas the maximum gain of Player 1 against any opposing strategy Y of
Player 2 is an upper bound on the safety value. Mathematically, we have

GGain(G,X) ≤ value(AG) ≤ MGain(G,Y ). (2.5)
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Thus, any pair of strategies for Player 1 and Player 2 give a lower and upper bound on
the safe gain value(AG). In the following sections, we find strategies so that these bounds
are tight or asymptotically tight.

2.4. Trees: Weights and Centroid

In this work, we study the safe game for competitive diffusion on trees. Here we
introduce some facts about trees that are relevant to our analysis.

There exists more than one notion of center in a graph. We use the “branch weight"
notion of centroid from [14]. A branch of a tree T at a vertex v is a maximal subtree of T,
which has v as a leaf. Correspondingly, the weight of the vertex v, w(v), is the maximum
number of edges in any branch of v. The centroid of T, denoted C(T ), is the set of vertices
that have the minimum weight in T . Unless stated otherwise, we will use n to denote the
order (number of vertices) of the tree.

In a tree, it is known that the centroid is either a single vertex or two adjacent vertices
[10]. Moreover, a tree that has only one vertex as centroid is called a centroidal tree and a
tree that has two vertices as centroid is called a bicentroidal tree. We also have the following
condition for a vertex to be in the centroid of a tree.

Theorem 2.1. (from [8]) Let T be a tree of order n, and let v be a vertex of T . Suppose
there are k branches at v having n1, n2, . . . , nk edges, respectively. Vertex v is a centroid
vertex of T if and only if ni ≤ n

2 for 1 ≤ i ≤ k.

The following lemmas on the weights of vertices will be helpful in establishing the
main results.

Lemma 2.2. For any tree T of order n, if v is a vertex of T not part of the centroid C(T ),
then its weight w(v) is the number of edges in the branch at v in which C(T ) is located.

Proof. By way of contradiction, let B be the branch at v in which the centroid is located,
let B ′ be the branch at v′ that achieves the maximum weight, and assume B and B ′ are
distinct. Therefore, the edge sets of B and B ′ are disjoint, thus, |E(B)| + |E(B ′)| ≤ n − 1.

Let c be a vertex in the centroid. So one of the branches at c contains v, therefore,
it contains all edges in branches at v other than B. Because the weight of a vertex is the
maximum number of edges in one of its branches, we have w(c) ≥ n − 1 − |E(B)|.

On the other hand, because B is not the branch at v with the maximum number of
edges, we have w(v) = |E(B ′)| ≤ n − 1 − |E(B)|. Thus, n − 1 − |E(B)| ≤ w(c) ≤
w(v) ≤ n − 1 − |E(B)| because centroidal vertices have minimum weight in T . Hence,
w(c) = w(v), which is a contradiction because v is not a vertex in the centroid of T .

We will use the notation w(v) = n − w(v), where n is the order of T . Given a vertex
v, if B is the branch at v that has the maximum number of edges, then w(v) = |E(B)| =
|V (B)| − 1. Thus w(v) = n − |E(B)| = n − |V (B)| + 1 is the number of vertices in the
tree obtained from T by deleting all vertices of B except v.
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Lemma 2.3. For any tree T of order n, if v is a vertex of T not part of the centroid C(T ),
then

w(v) > w(v). (2.6)

Proof. If v is not a centroid vertex, at least one of its branches must have more than n
2

edges by Theorem 2.1. Since w(v) is the number of edges in the largest branch at v, we
must have w(v) > n

2 . Thus w(v) > n − w(v).

3. SPIDERS

We start the study of the two-player safe game of competitive diffusion by giving
tight bounds on the safety value for the game on special cases of trees; spiders and complete
trees. The corresponding safe strategies suggest a good safe strategy for a player on any
tree.

A spider is a tree with one and only one vertex of degree exceeding 2. The vertex
with degree exceeding 2 is called the body of the spider. Moreover, any branch at the body
of the spider is none other than a nontrivial path and is called a leg of the spider; see [18].

Let us denote the m legs of a spider S by {s1, s2, . . . , sm} and their lengths, respectively,
by {l(s1), l(s2), . . . , l(sm)}. We will label a vertex vi in S by an ordered pair (d, s) where d

is the distance from the vertex vi to the body of the spider and s ∈ {1, 2, . . . , m} is the index
of the leg the vertex belongs to. By convention, the body of the spider will be identified by
the ordered pair (0, 0). We suggest the following safe strategy for Player 1 on a spider with
legs of equal lengths. The strategy has positive probabilities of choosing the body of the
spider and the first k vertices of the legs.

Definition 3.1. Given a spider, S, with m legs, each having � vertices, let the vertices
of S be labeled v0, v1, . . . , vm�, where v0 is the body of S, and for d ∈ {1, 2, . . . , �} and
s ∈ {1, 2, . . . , m}, the vertex vi where i = d + (s − 1)� is the vertex labeled by the
ordered pair (d, s). For any k ∈ {0, 1, . . . , �}, define the strategy CS(k) to be the strategy
(z0, z1, z2, . . . , zm�) as follows. Consider vertex vi with label (d, s). Then its probability

zi =
{

0 if k < d ≤ �,
1

mk+1 if 0 ≤ d ≤ k.
(3.1)

Considering the strategy CS(k) as a safe strategy for Player 1 and as an opposing
strategy for Player 2 leads to the following bounds on the safety value.

Theorem 3.2. In the two-player competitive diffusion on S with m legs, each having �

vertices, the safety value of Player 1 is between �−
√

�√
m

+O(1) and � (asymptotic as � goes
to infinity).

Proof. Assume the vertices of the spider are labeled as in the statement of Definition 3.1,
that is, if vertex vj has label (d, s), then j = d + (s − 1)�. As a lower bound, we have the
guaranteed gain of Player 1 with the strategy CS(k). As stated in (2.3), the guaranteed gain
is the minimum gain of Player 1 over all the possible starting vertices for Player 2. Because
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of symmetry, we need to consider only the body of the spider and the vertices on one of
the legs of S. When Player 2 chooses a vertex other than the body, then Player 1 can play
the body and gain all vertices except possibly those in one leg. Thus, Player 1 can achieve
a gain of at least n − � > n/2 vertices. If Player 2 chooses the body, then Player 1 can
gain only the vertices in the leg that contains the starting vertex, so the gain of Player 1 is
at most � < n/2. Therefore, the minimum gain for Player 1 occurs when Player 2 chooses
the body. Thus, GGain(S,CS(k)) = Gain(S,CS(k), Z(v0)).

The expected gain of Player 1 when Player 2 chooses the body is

Gain(S,CS(k), Z(v0)) = 1

mk + 1

(
0 + m

k∑
δ=1

(
� −

⌊
δ

2

⌋))
.

Here, the summation is over the gain obtained when Player 1 chooses a vertex at distance
δ from the body. Evaluating the sum, we obtain

Gain(S,CS(k), Z(v0)) =

⎧⎪⎪⎨
⎪⎪⎩

m

mk + 1

(
k� − k2

4

)
if k is even

m

mk + 1

(
k� − k2

4
+ 1

4

)
if k is odd.

Maximizing GGain(S,CS(k)) over k gives k∗ = 2
√

�√
m

+ O(1) as the optimal integer

choice for k and GGain(S,CS(k∗)) = � −
√

�√
m

+ O(1).
For the upper bound, we have the maximum gain of Player 1 when Player 2 has the

strategy CS(k) with k = 0. If k = 0, the strategy of Player 2 is simply to choose the body of
the spider. In this case, the maximum gain Player 1 can obtain is �, the number of vertices
in one leg.

4. COMPLETE m-ARY TREES

A complete m-ary tree (m ≥ 2) of height h, which we will denote by T (m,h), is
a rooted tree in which every internal vertex has exactly m children and all leaves have
distance h to the root. The distance to the root of a vertex v is called the depth of v, and
the set of all vertices with depth d is called level d. The number of vertices in T (m,h) is
n = mh+1−1

m−1 . Let us identify a vertex vj by an ordered pair (d, e), where d is the depth of vj ,
and e is the position of the vertex in level d if the vertices in the level are numbered from
left to right by {0, 1, 2, . . . , md − 1}. By convention, the root of the tree will be identified
by the ordered pair (0, 0).

In the following, we will use the notation Z(d, e) to denote the pure strategy Z(vj ),
where vj has label (d, e).

We suggest the following safe strategy for Player 1 and opposing strategy for Player
2. The strategies have positive probabilities of choosing the root and the vertices in the first
level of T (m,h).
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Definition 4.1. Let the strategy μ1 be a mixed strategy (x1, x2, . . . , xn) on T (m,h) where
n = mh+1−1

m−1 and for all i ∈ {1, 2, . . . , n},

xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1 = mh − 1

mh+2 − mh+1 + mh − 1
if vi is the root,

β1 = (m − 1)mh

mh+2 − mh+1 + mh − 1
if vihas depth 1,

0 if vihas depth d > 1.

The probabilities α1 and β1 in the strategy μ1 were obtained by solving

Gain(T (m,h), μ1, Z(0, 0)) = Gain(T (m,h), μ1, Z(1, 1))

⇔ α1 · 0 + mβ1 ·
(

mh − 1

m − 1

)
= α1 · mh + β1 · 0 + (m − 1)β1 ·

(
mh − 1

m − 1

)
, (4.1)

subject to the condition that α1 + mβ2 = 1.

Definition 4.2. Let the strategy μ2 be a mixed strategy (y1, y2, . . . , yn) on T (m,h) where
n = mh+1−1

m−1 and for all i ∈ {1, 2, . . . , n},

yi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α2 = (m − 1)(mh+1 − mh + 1)

mh+2 − mh+1 + mh − 1
if vi is the root,

β2 = mh − 1

mh+2 − mh+1 + mh − 1
if vi has depth 1

0 if vi has depth d > 1.

The probabilities α2 and β2 in the strategy μ2 were obtained by solving

Gain(T (m,h), Z(0, 0), μ2) = Gain(T (m,h), Z(1, 1), μ2)

⇔ α2 · 0 + mβ2 · mh = α2 ·
(

mh − 1

m − 1

)
+ β2 · 0 + (m − 1)β2

(
mh − 1

m − 1

)
, (4.2)

subject to α2 + mβ2 = 1. In both these scenarios, it makes sense to equalize the expected
gains because the players do not want to give an advantage to their opponent.

Considering the strategy μ1 as a safe strategy for Player 1 on T (m,h) and the strategy
μ2 as an opposing strategy for Player 2 on T (m,h) leads to the following result.

Theorem 4.3. In the two-player game of competitive diffusion on T (m,h), the safety
value of Player 1 is

(n − 1)((m − 1)n + 1)

n(m2 − m + 1) + m − 1
,

where n = mh+1−1
m−1 . Moreover, Player 1 achieves the greatest gain with the safe strategy μ1,

and the best opposing strategy for Player 2 is strategy μ2.
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Proof. As a lower bound, we have the guaranteed gain of Player 1 with the strategy μ1.
It is determined similarly as for the spiders, by taking the minimum gain for Player 1 over
all pure opposing strategies Z(d, e). Due to symmetry, we need to consider only the root
of the tree and one vertex of each level as possible starting vertices for Player 2. By (4.1)
we have that

Gain(T (m,h), μ1, Z(0, 0)) = Gain(T (m,h), μ1, Z(1, e))

= α1 · 0 + mβ1

(
mh − 1

m − 1

)

= mh+1(mh − 1)

mh+2 − mh+1 + mh − 1
. (4.3)

If 2 ≤ d ≤ h, so if Player 2 plays a vertex with depth at least 2, then Player 1
can play the body and win all vertices that are not in the subtree of the root in which
the start vertex of Player 2 is located. Each subtree contains mh−1

m−1 vertices, so Player

1 wins at least n − mh−1
m−1 = mh vertices. Moreover, mh is greater than (4.3). Thus,

GGain(T (m,h), μ1) = Gain(T (m,h), μ1, Z(0, 0)).
For the upper bound, we have the maximum gain of Player 1 when Player 2 chooses

the strategy μ2. It is determined by taking the maximum gain over all pure strategies Z(d, e)
for Player 1. By (4.2) we have that

Gain(T (m,h), Z(0, 0), μ2) = Gain(T (m,h), Z(1, e), μ2)

= α2 · 0 + mβ2 · mh

= mh+1(mh − 1)

mh+2 − mh+1 + mh − 1
.

Furthermore, for 2 ≤ d ≤ h,

Gain(T (m,h), Z(d, e), μ2) ≤ (α2 + β2)

(
mh−1 − 1

m − 1

)
+ (m − 1)β2

(
mh − 1

m − 1

)
.

Substituting the expressions for α2 and β2, we can show that this gain is smaller than
Gain(T (m,h), Z(0, 0), μ2). Thus, MGain(T (m,h), μ2) = Gain(T (m,h), Z(0, 0), μ2). Fi-
nally, we have

GGain(T (m,h), μ1) = MGain(T (m,h), μ2) = (n − 1)((m − 1)n + 1)

n(m2 − m + 1) + m − 1
.

The last equality follows by making the substitution n = mh+1−1
m−1 in the common expression

for GGain(T (m,h), μ1) and MGain(T (m,h), μ2).

5. AN ALGORITHM TO FIND SAFE STRATEGIES FOR TREES IN GENERAL

In this section we exploit our earlier results to develop a heuristic algorithm in order
to find a good safe strategy for any tree. We assume our tree to be centroidal. Such a tree
has the centroid as its root, and n − 1 vertices divided among a number of branches. For
bicentroidal trees, we can adopt a similar approach by considering one of the two vertices
of the centroid to be the root.
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The branches extending from the centroid can have different configurations. In spi-
ders, all the branches at the centroid are nontrivial paths. We showed that a safe strategy
that chooses positive probability vertices on the branches up to a certain distance has a
guaranteed gain near the safety value. However, the branches in a complete tree are more
clustered. We showed that a safe strategy that has a guaranteed gain equal to the safety value
chooses only the root and the first vertex of each branch. This suggests considering different
types of branches at the centroid and defining, accordingly, a distribution of probabilities
on the vertices in the branch.

5.1. Branches at the Centroid

We distinguish three different types of branches at the centroid.

Definition 5.1. A thick branch at the centroid is a branch for which we have

w2 ≥ n − w1 + w2
1

n
,

where w2 is the second-lowest weight in the branch and w1 is the lowest weight in the
branch.

A medium branch at the centroid is a branch for which we have

w2 < n − w1 + w2
1

n
and w3 ≥ n − w2 + w2

2 + (w2 − w1)2

n + (w2 − w1)
,

where w3 is the third-lowest weight in the branch, w2 is the second-lowest weight in the
branch, and w1 is the lowest weight in the branch.

A thin branch at the centroid is a branch for which we have

w2 < n − w1 + w2
1

n
and w3 < n − w2 + w2

2 + (w2 − w1)2

n + (w2 − w1)
, (5.1)

where w3 is the third-lowest weight in the branch, w2 is the second-lowest weight in the
branch and w1 is the lowest weight in the branch.

By considering that the weight of a vertex is the number of edges in the branch in
which lies the centroid (see Lemma 2.2), one can show that the vertex with the lowest
weight in a branch is adjacent to the centroid and that the vertex with the second-lowest
weight is adjacent to the first. The vertex with the next-lowest weight in the branch could be
adjacent to either of these vertices. However, condition (5.1) assures us that the vertex with
the third-lowest weight in a thin branch is adjacent to the vertex with the second-lowest
weight. It would be impossible to have condition (5.1) and the vertices with second- and
third-lowest weights on two different branches at the vertex with the lowest weight, since
this would imply n − 1 = w1 + (n − w2) + (n − w3).

Following an approach similar to that involved in finding the strategies μ1 and μ2,
we give an algorithm that, given any centroidal tree T of size n, assigns a distribution of
probabilities on the vertices of a branch that depends on the type of the branch. Let Bi be a
branch of T and let ui , ti , and si be the vertices in Bi such that w(ui) ≤ w(ti) ≤ w(si) ≤
w(vk) for any other vertex vk in Bi . As explained in the previous paragraph, ui is adjacent
to the root, and ti is adjacent to ui . Vertex si could be adjacent to ui or ti , but in case of a
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thin branch, si is adjacent to ti . The algorithm proposed here will assign a probability α to
the root (centroid) and, in each branch Bi , assigns probabilities βi , γi , and δi to the vertices
ui , ti and si , respectively, and probability zero to all other vertices in Bi .

The probabilities βi , γi , and δi are given below. The expressions are given in terms
of the weights of vertices ui , ti , and si and of α, the probability assigned to the root vertex.
The expression depends on whether the branch Bi is a thin, medium, or thick branch.

(i) If Bi is a thin branch,

βi =
(

w(ti)(w(ui)w(si) + (w(ti) − w(si))(w(ti) − w(ui)))

w(si)w(ui)w(ti) + w(si)w(ti)(w(si) − w(ti))

)
α,

γi =
(

w(ti)

w(ti)

)
βi, and

δi =
(

w(si)

w(si)

)
γi +

(
w(ti) − w(ui)

w(si)

)
α. (5.2)

(ii) If Bi is a medium branch,

βi =
(

w(ui)

w(ui)

)
α,

γi =
(

w(ti)

w(ti)

)
βi, and

δi = 0. (5.3)

(iii) If Bi is a thick branch,

βi =
(

w(ui)

w(ui)

)
α,

γi = 0, and

δi = 0. (5.4)

If Bi is a thin branch, the suggested probabilities are obtained by equalizing the
expected gains of Player 1 when Player 2 chooses the centroid, the vertex ui , the vertex ti ,
and the vertex si , solving for βi , γi , and δi . Note that all probabilities are expressed in terms
of α, the probability Player 1 chooses as the centroid. This will allow for rescaling during
the algorithm.

Similarly, the suggested probabilities if Bi is a medium branch were obtained by first
setting δi to zero, then equalizing the expected gains of Player 1 when Player 2 chooses the
centroid, the vertex ui , and the vertex ti . Finally, if Bi is a thick branch, we set γi and δi to
zero and we equalize the expected gains of Player 1 when Player 2 chooses the centroid and
the vertex ui . The distribution of probabilities in the branches will be used in the suggested
safe strategy for Player 1.
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5.2. Centroidal Safe Strategy (CSS) Algorithm

A centroidal tree can have diverse proportions of thin, medium, and thick branches.
Moreover, unlike spiders and complete trees, the number of vertices varies from branch to
branch. Thus, some branches might have very few vertices compared to other branches.
Therefore, it would be unreasonable to suggest a safe strategy for Player 1, which has
positive probability of choosing vertices in every branch at the centroid. As such, we define
an algorithm to suggest a safe strategy for Player 1. The algorithm starts by assigning
positive probabilities to vertices on one branch and then disperses probabilities on other
branches as long as it is beneficial to Player 1. To determine whether the assignment is
beneficial, we define the criterion of a branch. This criterion will be used in the algorithm to
order the branches and determine when the dispersion of probabilities on branches should
stop.

Definition 5.2. For a branch B in a centroidal tree, we define the criterion of B, Cr(B),
as follows. If B has fewer than three vertices, Cr(B) = 0. Else, let u, t , and s be the vertices
in B such that w(u) ≤ w(t) ≤ w(s) ≤ w(v) for any other vertex v in B. Then,

Cr(B) =⎧⎪⎨
⎪⎩

w(u) if B is a thick branch,(
w(t)
n

)
w(u) + (

w(t)
n

)
w(t) if B is a medium branch,

w(t)w(t)(n2−nw(s)−w(s)w(t)+w(t)2+2w(s)w(u)−w(t)w(u))
nw(t)w(s)+w(u)w(t)(−n+w(s)+w(t))+w(t)w(u)2 if B is a thin branch.

(5.5)

Algorithm 1 Centroidal Safe Strategy (CSS) Algorithm

INPUT: Centroidal tree, T, with d branches at the centroid.
STEP 1: Order the branches {B1, B2, . . . , Bd} such that Cr(Bi) ≥ Cr(Bi+1) for all 1 ≤
i ≤ d − 1.
STEP 2: Build a sequence of safe strategies σi for Player 1 by considering each branch in
order.

(a) If i = 0, form σ0, a strategy where the centroid is chosen with probability α.
(b) If i > 0, form, σi , a safe strategy in which the centroid is chosen with probability α,

the probabilities of choosing the vertices of the branches Bk , 1 ≤ k < i are the same
in terms of α as in the strategy σi−1 and the probabilities of choosing the vertices in
the branch Bi are as given by (5.2), if Bi is a thin branch, by (5.3), if Bi is a medium
branch and by (5.4), if Bi is a thick branch.

STEP 3: Determine α by solving α +∑i
j=1

(
βj + γj + δj

) = 1 and calculate the expected
gain of Player 1 with the strategy σi when Player 2 chooses the centroid,

Gain(T , σi, Z(c)) = α · 0 +
i∑

j=1

(
βj · w(uj ) + γj · w(tj ) + δj · w(tj )

)
. (5.6)

STEP 4:

(a) If i < d and Cr(Bi+1) ≥ Gain(T , σi, Z(c)) return to STEP 2 with i = i + 1.
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(b) If i < d and Cr(Bi+1) ≤ Gain(T (n), σi, Z(c)) or i = d, return the strategy σi and
its expected gain, Gain(T , σi, Z(c)).

OUTPUT: Safe strategy for Player 1, σi , with expected gain Gain(T , σi, Z(c)).

A few explanations on the algorithm are needed. In Step 4, we return to Step 2 to disperse
probabilities on another branch if Cr(Bi+1) ≥ Gain(T , σi, Z(c)). The criterion being greater
than the current expected gain results in an increase of the expected gain of Player 1. Thus,
the strategies σi give increased gain. This is shown in the following lemma.

Lemma 5.3. In the CSS algorithm, if Cr(Bi+1) ≥ Gain(T , σi, Z(c)), then

Gain(T , σi, Z(c)) ≤ Gain(T , σi+1, Z(c)) ≤ Cr(Bi+1). (5.7)

Proof. We refer here to the solved value of α in the strategy σi by α(i), and let strategy σi

be represented by the vector α(i)(x(i)
1 , x

(i)
2 , . . . , x(i)

n ). To form the strategy σi+1, probabilities
of βi+1, γi+1 and δi+1, were assigned to the vertices ui+1, ti+1 and si+1 of Bi+1. These
probabilities were all defined in terms of α. For clarity, let βi+1 = β∗

i+1α, γi+1 = γ ∗
i+1α,

and δi+1 = δ∗
i+1α, where the expressions for β∗

i+1, γ
∗
i+1, and δ∗

i+1 for the three types of
branches can be found in (5.4), (5.3) and (5.2). Finally, to form the strategy, a new value
for α, α(i+1) was computed to make sure the probabilities add to one.

Thus, we have the following relation between the probability vectors.

x
(i+1)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(i)
j if vj 	∈ {ui+1, ti+1, si+1}

β∗
i α(i+1) if vj = ui+1,

γ ∗
i α(i+1) if vj = ti+1,

δ∗
i α

(i+1) if vj = si+1.

and

1

α(i+1)
=

n∑
j=1

x
(i+1)
j = 1

α(i)
+ β∗

i+1 + γ ∗
i+1 + δ∗

i+1. (5.8)

Let vk ∈ {ui+1, ti+1, si+1}. Then we know that x
(i)
k = 0, since, initially, there were no

positive probabilities on the vertices of the branch Bi+1. Thus we have

Gain(T , σi+1, Z(c)) =
n∑

j=1

α(i+1)x
(i+1)
j · Gain(T ,Z(vj ), Z(c))

=
n∑

j=1

α(i+1)x
(i)
j Gain(T ,Z(vj ), Z(c))

+β∗
i+1α

(i+1)Gain(T ,Z(ui+1), Z(c))

+γ ∗
i+1α

(i+1)Gain(T ,Z(ti+1), Z(c))

+δ∗
i+1α

(i+1)Gain(T ,Z(si+1), Z(c)).
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We obtain

Gain(T , σi+1, Z(c)) = α(i+1)

α(i)
Gain(T , σi, Z(c))

+βi+1Gain(T ,Z(ui+1), Z(c))

+γi+1Gain(T ,Z(ti+1), Z(c))

+δi+1Gain(T ,Z(si+1), Z(c)) (5.9)

where α(i+1)

α(i) +βi+γi+δi = 1, by (5.8). Thus, Gain(T , σi+1, Z(c)) is the convex combination
of the four different specific gains. By assumption of the lemma, we have that Cr(Bi+1) ≥
Gain(T , σi, Z(c)). Moreover, βi+1, γi+1, and δi+1 are defined so that the three last terms
of the sum are at least as large as Cr(Bi+1). To verify this fact, we need to consider each
type of branch separately. We give the explicit argument here only for a thick branch. The
proof for the other types can be equally obtained by straightforward substitution of the
appropriate values for βi+1, γi+1, and δi+1.

Suppose Bi+1 is a thick branch. In this case, γi = δi = 0. Then Cr(Bi+1) = w(ui+1)
(see Definition 5.2). Recall from Lemma 2.2 that w(ui+1) is the number of edges in the
branch at ui+1, in which lies the centroid. Thus, there are w(ui+1) vertices in the branch
Bi+1 and so

Gain(T ,Z(ui+1), Z(c)) = w(ui+1) = Cr(Bi+1) ≥ Gain(T , σi, Z(c)).

By (5.9), Gain(T , σi+1, Z(c)) is a convex combination of Gain(T ,Z(ui+1), Z(c)) and
Gain(T , σi, Z(c)). Thus the inequalities stated in the lemma follow.

The lemma allows us to explain the ordering of the branches. After k loops in the
algorithm, suppose we have two branches at the centroid, Bi and Bj , such that Cr(Bi) ≥
Cr(Bj ) ≥ Gain(T , σk, Z(c)). By Lemma 5.3, we know that adding positive probabilities
on either of the branches Bi and Bj will increase the expected gain of Player 1. Moreover,
the resulting expected gains will not surpass Cr(Bi) and Cr(Bj ) respectively. If we start
by adding the probabilities on the branch Bj , the branch Bi remains a candidate to increase
the expected gain once more, since Cr(Bi) ≥ Cr(Bj ). Let ν be the resulting expected gain
of Player 1 with the two branches added. However, if we start with branch Bi , the resulting
expected gain might or might not be lower than Cr(Bj ). If it is, we can add the branch Bj

to get the expected gain ν. If it is not, then the resulting expected gain with only the branch
Bi is greater than ν. Thus, it is always advantageous to include the branch with the largest
criterion first. For this reason, we order the branches in decreasing order of criterion in the
algorithm.

Finally, we must show that the minimum expected gain of Player 1 with the strategy
σi is obtained when Player 2 chooses the centroid.

Theorem 5.4. Let T be a centroidal tree of size n with d branches at the centroid. Suppose
we apply the safe strategy algorithm to T and we get the mixed strategy σk of Player 1 as
output. Then,

GGain(T , σk) = Gain(T , σk, Z(c))

where c is the centroid of T .
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Proof. Suppose T has k1 thick branches, {iThk
1 , iThk

2 , . . . , iThk
k1

} ⊆ {1, 2, 3, . . . , k},
k2 medium branches, {iMed

1 , iMed
2 , . . . , iMed

k2
} ⊆ {1, 2, 3, . . . , k} and k3 thin branches,

{iT hn
1 , iT hn

2 , . . . , iT hn
k3

} ⊆ {1, 2, 3, . . . , k} from the set of branches {B1, B2, . . . , Bk}, where
k1 + k2 + k3 = k.

Proving this theorem consists of determining the expected gain of Player 1 over all the
possible starting vertices for Player 2 and showing that the minimum occurs when Player
2 chooses the centroid. If Player 2 chooses to start with the centroid, the expected gain of
Player 1 with the strategy σk is

Gain(T , σk, Z(c)) = α · 0 +
iThk
k1∑

j=iThk
1

βj · w(uj ) +
iMed
k2∑

j=iMed
1

(
βj · w(uj ) + γj · w(tj )

)

+
iThn
k3∑

j=iThn
1

(
βj · w(uj ) + γj · w(tj ) + δj · w(tj )

)
. (5.10)

The gain for all other pure strategies of Player 2 can be determined from the definitions
given earlier. The details of the proof are highly technical, and can be found in the Appendix.

6. EXPERIMENTAL ASSESSMENT OF THE CSS ALGORITHM

As a last section, we apply the CSS algorithm to some examples of centroidal trees in
order to evaluate its guaranteed gain. We generated random centroidal trees with n = 100
and n = 1000 vertices. To evaluate the proximity of the guaranteed gain to the safety
value, we calculate its difference to the maximum gain of Player 1 against a heuristic
strategy for Player 2. This heuristic strategy chooses with positive probabilities, obtained
experimentally, the centroid and some of the vertices at distances, 1 and 2 from the centroid.
As explained in the first section, any opposing strategy for Player 2 gives an upper bound
on the safety value. The smaller the gap between the safety value and any value obtained
by a strategy of Player 2, the better the bound. The results show that in many cases the CSS
algorithm renders a strategy that is close to optimal.

In our results, we give the gap between the opposing strategies as a proportion of
the weight of the centroid. The reason for doing this, opposed to, for example, giving it
as a proportion of the total number of vertices, n, is that we know for sure that the safety
value of Player 1 is not greater than the weight of the centroid. This is the case because
the maximal gain of Player 1 against the mixed strategy of Player 2 when he chooses the
centroid with probability 1, is the weight of the centroid. This said, if we want to estimate,
on a given centroidal tree, the difference between the payoff of the safe strategy from the
CSS algorithm and the safety value, the percentage of the weight will give an estimate
smaller than the weight of the centroid. Other wise if the difference is expressed as a
proportion of n, we could have a tree with a large number of vertices but not necessarily a
large centroid weight, for which the resulting estimation of difference could be bigger than
the weight of the centroid, i.e., a difference greater than the safety value itself.

The trees were generated using Maple
TM

[11] and the computation of the CSS algo-
rithm was carried out using MATLAB R© [13]. The Maple function used for the generation
of the trees is RandomTree(n) which has a randomized process as follows: “Starting with



STRATEGIES FOR COMPETITIVE DIFFUSION ON TREES 247

Figure 1 Frequency of the differences between the guaranteed gain of the CSS algorithm and the maximum
gain of Player 1 as a proportion of the weight of the centroid in 1000 random centroidal tree examples with total
number of vertices n.

the empty undirected graph T on n vertices, edges are chosen uniformly at random and
inserted into T if they not create a cycle. This is repeated until T has n − 1 edges" [12].
Figure 1 shows the number of examples with a difference between the guaranteed gain
obtained with the strategy given by the CSS algorithm, and the best upper bound. The
difference is given as a proportion of the weight of the centroid. The columns represent
the number of examples, out of a total of 1000, with a difference in the intervals [0, 0],
(0, 0.01], (0.01, 0.02], . . . , (0.29, 0.30], respectively.

We see that the algorithm performs well and even ideally on a number of examples.
A weaker performance was observed mostly for trees with large thin branches. This can
be explained from our result for spiders, where all branches are thin. For spiders, the best
strategy assigns positive probabilities to vertices at larger distance (about square root of
the length) from the root. The CSS algorithm limits the number of vertices with positive
probability in any branch to three. Thus, a trade-off of the versatility of the CSS algorithm
is that the performance on thin branches is not optimal.

7. CONCLUSION AND FUTURE WORK

We have explored the safe game for competitive diffusion for trees. We obtained
precise results for special classes of trees, namely spiders and complete trees. These results
were then incorporated in the CSS algorithm, which can be applied to any tree. This
algorithm was evaluated experimentally, and was shown to give good results.

However, performance of the CSS algorithm decreased with the presence of many
thin branches. Generalizing the ideas presented here to include positive probabilities on
more vertices on the branches would improve the algorithm. One might also consider
slightly modifying the ordering of the branches or the distribution of the probabilities to
compensate for the branches being considered isolated when the suggested distributions of
probabilities were calculated.

We believe that the ideas put forward in this article can be extended beyond trees.
Namely, the spread of influence can be seen as taking place in the form of a subtree of
the graph. The general approach of assigning positive probabilities to only relatively few
vertices close to the center of the graph, is likely to be of value here as well. Thus, it seems
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plausible that the CSS algorithm might be modified to a more general setting. It might not
be possible to obtain tight bounds for the safety value in the more general setting, but it
should be possible to generate safe strategies that perform well in practice.

APPENDIX: PROOF OF THEOREM 5.4

Proof.

If Player 2 chooses to start with the centroid c, the expected gain of Player 1 with the
strategy σk is as given earlier in (5.10). The labeling of the branches is as given after the
statement of Theorem 5.4.

Let us now consider the cases when Player 2 chooses a vertex in a thin branch, Br ,
r ∈ {iThn

1 , iThn
2 , . . . , iThn

k3
}.

(i) If Player 2 chooses to start with the vertex ur , the expected gain of Player 1 with the
strategy σk is

Gain(T , σk, Z(ur )) = α · w(ur ) +
iThk
k1∑

j=iThk
1

βj · w(uj )

+
iMed
k2∑

j=iMed
1

(
βj · w(uj ) + γj · w(uj )

)
+βr · 0 + γr · w(tr ) + δr · w(sr )

+
iThn
k2∑

j=iThn
1 , j 	=r

(
βj · w(uj ) + γj · w(uj ) + δj · w(tj )

)
. (A.1)

For all j ∈ {1, 2, . . . , k}, by definition we have that w(uj ) < w(tj ), and thus

w(uj ) > w(tj ). (A.2)

Also, by the definition of βr ,

βr · w(ur ) + δr · w(tr ) = α · w(ur ) + δr · w(sr ). (A.3)

Using these, we can show that the expected gain (A.1) is greater than or equal to
Gain(T , σk, c) of (5.10).

(ii) If Player 2 chooses vertex tr , the expected gain of Player 1 is

Gain(T , σk, Z(tr )) = α · w(ur ) +
iThk
k1∑

j=iThk
1

βj · w(ur )

+
iMed
k2∑

j=iMed
1

(
βj · w(ur ) + γj · w(uj )

)
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+βr · w(tr ) + γr · 0 + δr · w(sr )

+
iT hn
k3∑

j=iT hn
1 , j 	=r

(
βj · w(ur ) + γj · w(uj ) + δj · w(uj )

)
. (A.4)

For all j ∈ {1, 2, . . . k}, we have that

w(ur ) > w(uj ). (A.5)

If j 	= r , this follows since the branch at ur in which the centroid is located includes
the edges in the branch in which uj is located. If j = r , we have the result by Lemma
2.3. Moreover,

βr · w(tr ) = γr · w(tr )

by the definition of γr . Thus, the expected gain (A.4) is greater than or equal to
Gain(T , σk, ur ) of (5.10).

(iii) If Player 2 chooses vertex sr , the expected gain of Player 1 is

Gain(T , σk, Z(sr )) = α · w(tr ) +
iThk
k1∑

j=iThk
1

βj · w(ur )

+
iMed
k2∑

j=iMed
1

(
βj · w(ur ) + γj · w(ur )

)

+ βr · w(tr ) + γr · w(sr ) + δr · 0

+
iThn
k3∑

j=iThn
1 , j 	=r

(
βj · w(ur ) + γj · w(ur ) + δj · w(uj )

)
.

This expected gain is greater than or equal to Gain(T , σk, tr ) by (A.5) and since

α · w(ur ) + δr · w(sr ) = α · w(tr ) + γ · w(sr )

by the definition of δr .
(iv) If Player 2 chooses to start with a vertex vj , vj 	∈ {ur, tr , sr}, the payoff to Player 1 on

all vertices not part of the branch Br can only increase since Player 2’s starting vertex
is at a greater distance. Specifically, the payoff to Player 1 on the centroid is now at
least w(ur ). Moreover,

- If vj is a descendant of ur but not of tr , and sr then

Gain(T ,Z(ur ), Z(vj )) ≥ w(ur )

Gain(T ,Z(tr ), Z(vj )) ≥ w(tr )

Gain(T ,Z(sr ), Z(vj )) ≥ w(sr ).
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- If vj is a descendant of ur and tr , but not of sr then

Gain(T ,Z(ur ), Z(vj )) ≥ w(ur )

Gain(T ,Z(tr ), Z(vj )) ≥ w(tr )

Gain(T ,Z(sr ), Z(vj )) ≥ w(sr ).

- If vj is a descendant of ur , tr , and sr , then

Gain(T ,Z(ur ), Z(vj )) ≥ w(ur )

Gain(T ,Z(tr ), Z(vj )) ≥ w(tr )

Gain(T ,Z(sr ), Z(vj )) ≥ w(sr ).

Since w(v) > w(v) for any vertex v other than the centroid by Lemma 2.3, in all
cases we have

α · Gain(T ,Z(c), Z(vj )) + βr · Gain(T ,Z(ur ), Z(vj ))

+ γr · Gain(T ,Z(tr ), Z(vj )) + δr · Gain(T ,Z(sr ), Z(vj ))

≥ α · w(ur ) + βr · w(ur ) + γr · w(tr ) + δr · w(sr )

> α · w(ur ) + γr · w(tr ) + δr · w(sr )

= βr · w(ur ) + γr · w(tr ) + δr · w(tr ),

where the last equality follows from (A.3). Now,

Gain(T ,Z(c), Z(c)) = 0,

Gain(T ,Z(ur ), Z(c)) = w(ur ),

Gain(T ,Z(tr ), Z(c)) = w(tr ) and

Gain(T ,Z(sr ), Z(c)) = w(tr ),

Thus,

βr · w(ur ) + γr · w(tr ) + δr · w(tr )

= α · Gain(T ,Z(c), Z(c)) + βr · Gain(T ,Z(ur ), Z(c))

+ γr · Gain(T ,Z(tr ), Z(c)) + δr · Gain(T ,Z(sr ), Z(c)).

Therefore, the expected gain of Player 1 when Player 2 chooses the vertex vj is greater
than or equal to the expected gain of Player 1 when Player 2 chooses the centroid.

Similarly, we can show that the expected gain of Player 1 when Player 2 chooses to
start with a vertex in a medium branch or thick branch is greater than the expected gain of
Player 1 when Player 2 chooses to start with the centroid.

If Player 2 chooses a vertex in a branch Bi , i > k instead of the centroid, Player
1’s payoff on the vertices in the branches {B1, B2, . . . , Bk} can only increase. In this case,
strategy σk assigns no positive probabilities to any vertex in the branch. So, compared to
the centroid, Player 2’s starting vertex is at a greater distance from the vertices on which
Player 1 has positive probability. Player 1’s payoff on the centroid, being zero when Player
2 chooses the centroid, also increases. Thus, the expected gain of Player 1 is again greater.
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In summation, the expected gain of Player 1 with the strategy σk is minimum when
Player 2 chooses the centroid. Thus, Gain(T , σk, Z(c)) is the guaranteed gain of Player 1
with the strategy σk .
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