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Abstract

People spend a significant amount of time behind the wheel of a car. Recent advances in data 

collection facilitate continuously monitoring this behavior. Previous work demonstrates the 

importance of this data in driving safety but does not extended beyond the driving domain. One 

potential extension of this data is to identify driver states related to health conditions such as 

obstructive sleep apnea (OSA). We collected driving data and medication adherence from a sample 

of 75 OSA patients over 3.5 months. We converted speed and acceleration behaviors to symbols 

using symbolic aggregate approximation and converted these symbols to pattern frequencies using 

a sliding window. The resulting frequency data was matched with treatment adherence 

information. A random forest model was trained on the data and evaluated using a held-aside test 

dataset. The random forest model detects lapses in treatment adherence. An assessment of variable 

importance suggests that the important patterns of driving in classification correspond to route 

decisions and patterns that may be associated with drowsy driving. The success of this approach 

suggests driving data may be valuable for evaluating new treatments, analyzing side effects of 

medications, and that the approach may benefit other drowsiness detection algorithms.
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Introduction

American drivers spend nearly 20 hours in their cars every week (Williams, 2009). 

Throughout these hours, drivers must maintain vehicle control and their safety through 

deliberate interaction with a steering wheel and pedals. In addition to these exchanges, 

drivers frequently interact with safety devices and entertainment options. Together these 
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interactions represent a rich behavioral dataset. Recent advancements in on-road Data 

Acquisition Systems (DAS) have made wide-scale collection of this behavior data possible 

(Shrestha, Lovell, & Tripodis, 2017). The 100-car Naturalistic Driving Study demonstrated 

that such behavioral data has significant potential to enhance understanding of vehicle 

crashes and their causes (Dingus et al., 2006). Given these insights, it is natural to wonder if 

the reach of naturalistic driving data extends beyond the connection between driver actions 

and driving performance to driver state.

The problem of driver state detection is often viewed in the context of designing driver 

support systems (Doshi, Morris, & Trivedi, 2011; McCall, Wipf, Trivedi, & Rao, 2007; 

Raksincharoensak et al., 2010; Rigas, Goletsis, Bougia, & Fotiadis, 2011; Rosenfeld et al., 

2015). Yet, driver states often extend beyond the vehicle cockpit, particularly medical 

conditions like obstructive sleep apnea (OSA). OSA is a chronic disorder associated with 

recurrent obstructive respiratory events and fragmented sleep that results in excessive 

daytime sleepiness and increased cardiovascular morbidity and mortality. OSA affects 

approximately 15% of middle-aged adults (Young et al., 2009) and is particularly pervasive 

in professional drivers (Moreno et al., 2004). A recent large meta-analysis showed that OSA 

drivers have a mean crash risk ratio of 2.72, having a 172% greater chance of a crash relative 

to the general population (Sassani et al., 2004; Stephen Tregear, Reston, Schoelles, & 

Phillips, 2009).

Despite its severity, OSA is a treatable condition. Continuous positive airway pressure 

(CPAP) is the treatment of choice for patients with clinically significant OSA (Kushida, 

Littner, & Hirshkowitz, 2006). Proper use of CPAP reduces crash risk and improves 

simulated driving performance in as little as two weeks of treatment (Barbé et al., 2007; 

Findley, Smith, Hooper, Dineen, & Suratt, 2000; Orth et al., 2005; Turkington, Sircar, 

Saralaya, & Elliott, 2004). Specifically, Tregear, Reston, Schoelles, and Phillips (2010) 

found that crash risk declines by 72% with CPAP. Unfortunately, CPAP treatment is often 

uncomfortable leading to reduced acceptance and adherence to CPAP therapy in many 

patients (Kribbs et al., 1993). In one study, only 72% of patients who started on CPAP 

agreed to continue it after the first night (Rauscher, Popp, Wanke, & Zwick, 1991). Patterns 

of use vary widely in patients who accept CPAP; about half use it an average of 6 hours in 

90% of nights, while the rest use it less than 4 hours in 2–79% of nights (Weaver et al., 

1997).

The connection between untreated sleep apnea and driving performance and the high 

likelihood of CPAP abandonment represent a promising opportunity to explore the use of 

driving behavioral data to address health problems outside the vehicle. This study addresses 

the opportunity by using driving data to detect CPAP adherence. The study describes a data 

reduction technique, symbolic aggregate approximation (SAX) (Lin, Keogh, Wei, & 

Lonardi, 2007), which can be used to convert the task of CPAP adherence prediction to a 

supervised learning problem. The work will illustrate a potential solution to this supervised 

learning problem, demonstrate the effectiveness of the approach, and assess the sensitivity of 

parameter selection.
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Methods for driving data reduction

Naturalistic driving data provides a unique opportunity to observe driver behavior beyond 

simulator studies and controlled on-road experimentation. Unfortunately, the collection and 

analysis of naturalistic driving data is difficult. From a data perspective, there are two central 

issues with naturalistic driving data: the size and the structure. The size of a naturalistic 

dataset is problematic because it makes visualization and comparison between multiple 

drives difficult. The structure of driving data is problematic because it is not amenable in its 

raw form to traditional statistical models such as Linear Regression. These problems lead 

naturalistic driving researchers to focus their analysis on safety critical events and the short-

time windows surrounding them (Dingus et al., 2006; Gordon et al., 2011; Guo, Klauer, 

Hankey, & Dingus, 2010). This approach creates a potential omitted variable bias in 

subsequent analyses and it ignores meaningful data (Jovanis, Aguero-Valverde, Wu, & 

Shankar, 2011). When driving data are considered over a longer time horizon, data are 

typically reduced using simple aggregating functions such as the mean and standard 

deviation calculated over a window of time (Dozza, Bärgman, & Lee, 2013). To balance the 

goals of preserving meaningful data and addressing “Big Data” problems, researchers might 

consider more advanced time-series data reduction techniques (Das, Zhou, & Lee, 2012).

Time-series data reduction methods

Time-series data reduction is accomplished by shifting perspectives from viewing the data as 

a series of observations to a sum of simple functions. In this new perspective, the key 

intuition is that a small subset of this sum of simple functions can represent the majority of 

the information of the time series. Many simple functions have been considered for time-

series data decomposition including sine waves, square waves, and constant values. These 

three simple functions represent the three most common methods of time-series data 

reduction: Discrete Fourier Transforms (DFTs), Discrete Wavelet Transforms (DWTs), and 

Piecewise Aggregate Approximation (PAA).

DFTs represent a time series as a sum of sine or cosine functions (Agrawal, Faloutsos, & 

Swami, 1993). DFTs are popular in the driving impairment detection literature because they 

are simple to apply and able to filter out noise in complex signals such as steering behavior 

(Das et al., 2012; Jap, Lal, Fischer, & Bekiaris, 2009; Krajewski, Sommer, Trutschel, 

Edwards, & Golz, 2009; Lal, Craig, Boord, Kirkup, & Nguyen, 2003). DFTs are limited for 

two reasons: they assume stationarity and are not localized in time. Stationarity refers to the 

fact that the distribution of the time series does not change over time. This assumption 

causes DFTs to perform poorly in the reduction of time series like stock prices that have a 

positive or negative trend in their mean. Time localization refers to the fact that DFT 

components are fit to an entire signal at once. This broad fitting causes DFTs to struggle 

when capturing emergent effects. DWTs, specifically Haar wavelet transforms, represent 

time series as a sum of square wave functions. They are advantageous relative to DFT 

because they are localized in time and can represent emergent phenomenon that arise and 

dissipate in the middle of a time series (Chan & Fu, 1999; Keogh, Chakrabarti, Pazzani, & 

Mehrotra, 2001). The primary disadvantage of DWTs is that they are only defined for time 

series of lengths equivalent to integral powers of 2 (i.e. 2n). PAA represents a time series as a 
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series of means or constant values. This conversion is accomplished by dividing the time 

series into equal sized windows, taking the mean of the samples within each window, and 

then creating a reduced representation of the original time series by simply concatenating the 

means into a vector (Keogh et al., 2001). Despite its simplicity, PAA produces the same 

reduction results as DWT with optimal parameter selection and appropriate length. This 

parameter selection is the primary limitation of PAA. The method requires setting two 

parameters: the window size and the percentage of overlap between the windows, which 

introduces a tradeoff between replication of the original signal and data reduction.

Each of the three primary time-series data reduction methods have been modified to extend 

their capacity, however these extensions do not fundamentally alter their performance. One 

exception is SAX. SAX is a modification to PAA that converts the output of PAA from a 

series of constants to a series of letters. This conversion is accomplished by adding 

additional steps to PAA, which bin the y-axis into quantiles of the normal distribution, 

assign a letter to each quantile, and then convert the PAA output into letters based on each 

mean’s associated y-axis quantile. This process is illustrated in Figure 1 for a sample of data.

The output of SAX is a series of letters that correspond to quantiles of the normal 

distribution (“dfghhhhhii” in Figure 1). Unfortunately, the addition of normalization and the 

symbolic conversion create two additional parameters, relative to PAA, which are subject to 

optimization. These parameters are global versus local normalization and the size of the 

alphabet to use.

Finding the preferred reduction method

Given this set of reduction methods, it is natural to compare them and find a clear optimal 

solution for naturalistic data reduction. Surprisingly, this process is quite difficult. The 

difficulty arises because the criteria for evaluation are ill-defined and all conclusions are 

highly data dependent. This latter point is demonstrated by Keogh and Kasetty who show 

that different outcomes of the comparison between DFT and DWT can be achieved by using 

different datasets (Keogh & Kasetty, 2003). The data dependency issue is especially 

complex in the driving domain because the data are quite diverse. For example, Figure 2 

shows a sample of speed and lateral acceleration data for a single drive. In the figure, there 

are several clear differences between the two data sources namely, the acceleration data is 

centered about zero and is significantly noisier than the speed data. These differences 

suggest that even within driving data, conclusions for a single variable may not generalize to 

others.

The data dependency and lack of clear evaluation metrics suggest that a data reduction 

method should be selected within the goals of a particular study. In this work, our broad goal 

is to develop predictive models of CPAP adherence using reduced driving data as input. The 

most useful data reduction method in this case would reduce the data while preserving the 

information most critical to discern between CPAP adherence and abandonment. This 

requirement suggests that SAX should be preferred over PAA (and by extension DWT) 

because the reduction performance is relatively similar and the symbolic output of SAX 

amenable to a larger range of data mining methods compared to the continuous PAA output 

(Lin et al., 2007). An additional consideration in this case is the feasibility of an 
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abandonment detection model in a real-world system. Such a system would most likely take 

daily or hourly driving data, reduce these data, apply the prediction model, and produce a 

prediction of adherence. Ideally, the prediction would be supported by objective measures 

that are easily interpretable for healthcare providers as well as individuals without access to 

medical data such as occupation supervisors and fleet managers. The requirement of simple 

interpretability suggests that SAX should be preferred to DFT because DFT reduces the data 

to a set of phases and magnitudes. These phases and magnitudes—describe behavior in the 

frequency domain rather than time domain—and are not easily related to driving behavior. 

In contrast, patterns of SAX data retain the shape of the time series and thus are easier to 

relate to behavior. Thus, this paper utilizes SAX as the data reduction method component of 

the CPAP adherence detection model.

Reducing driving data with SAX

The goal of this work is to develop a predictive model of CPAP adherence using driving data 

as input. The previous section suggests that SAX should be a preferred method for this type 

of data reduction. The next step in the development process is to apply SAX to driving data. 

This section describes data used in this work, the parameter settings of SAX, and the 

application of SAX to the data.

Naturalistic driving study data

The data considered are from an evaluation of CPAP therapy. One hundred and four 

participants completed the 3.5-month data collection process. The participants represent two 

groups: participants diagnosed with OSA and healthy control participants. The work here 

focuses solely on the participants with OSA. These patients represent 69 of the 104 drivers, 

47 of which are male with a mean age of 46 (SD = 7.7). Drivers were compensated for their 

time and effort at the completion of data collection. A summary of the demographic and 

anthropometric data from the participants is shown in Table 1.

An in-vehicle data acquisition system (IV-DAS) was installed in each participant’s personal 

vehicle to record GPS information, speed, three-axis accelerometer, and accelerator input at 

10 Hz. The IV-DAS also collects intermittent video of the driver’s face and the road. Data 

were collected for a period of two weeks prior to OSA participants receiving CPAP therapy 

and for 3 months following the start of CPAP therapy. The data were partitioned into 

individual drive files defined by ignition engagement and disengagement. In addition to 

driving data, participants’ CPAP usage was monitored daily. The CPAP data included 

nightly usage and several sleep quality measures.

The present analyses focus on CPAP usage, speed, and accelerometer data. Speed and 

accelerometer data were selected because they are the most robust data in the dataset, are 

inexpensive and unobtrusive to collect, and are likely diagnostic of the main crash and near 

crash types associated with drowsy driving: lane departures and rear-end collisions 

(MacLean, Davies, & Thiele, 2003). Lane departures are often preceded by a period of 

inactivity and followed by a large lateral acceleration as a driver attempts to avoid crashing. 

Rear-end collisions are often preceded by large changes in longitudinal acceleration and 

speed due to drivers applying the brake pedal strongly to avoid crashing. Alert drivers should 
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show more gradual deceleration and fewer peak acceleration events. In order to capture these 

phenomena, acceleration data were analyzed in three ways. Lateral and longitudinal 

acceleration measures were included separately in the data and then combined together in a 

vector sum (combined acceleration).

Setting the parameters of SAX

One of the limitations of SAX is that it introduces a number of free parameters into the 

reduction process. The size of the window, percentage of overlap between windows, 

alphabet size, and normalization are all adjustable parameters. The window size can range 

from the maximum resolution of the data to the duration of the entire dataset. The amount of 

overlap between windows can vary between 0 and 100%. The alphabet size defines the 

resolution of binning. The normalization can either be completed globally or locally within 

each window. The means and standard deviations for global normalization can be calculated 

across as entire sample or within groups of the sample such as a mean for each participant. 

Global normalization makes each SAX letter have consistent meeting, which facilitates 

comparisons between signals where amplitude has significant meaning such as speed. Local 

normalization preserves the shape of the signal and allows for comparison between shapes 

regardless of their location and amplitude.

The selection of these parameters is largely a subjective process although settings can be 

objectively evaluated through a sensitivity analysis. The parameters selected in this case 

were adapted from McDonald et al. (2012) and McLaurin et al. (2014). The parameters used 

in this case were window size of 3 s, no overlap between windows, and global normalization 

across the entire dataset. The window size was the minimum resolution that was robust to 

data dropouts from the recording device. The non-overlapping windows and global 

normalization correspond with McDonald et al. (2012). Alphabet size for acceleration was 

set to 4, which aligns with McLaurin et al. (2014). Alphabet size for speed was determined 

through a sensitivity analysis that compared a range of alphabet sizes from 9 to 23 letters.

Application of SAX

SAX time-series analysis was applied separately to speed, lateral acceleration, longitudinal 

acceleration, and the combined acceleration measure. The result of the four applications of 

SAX was a set of four words corresponding to speed, acceleration, lateral acceleration, and 

longitudinal acceleration, which characterized each drive. These words were merged with 

the CPAP usage from the previous evening thus forming a reduced dataset containing the 

date of each drive, the CPAP usage, and the set of four words describing the drive.

Model development

After the application of SAX, the problem has been reduced to an analysis of symbolic 

sequences. In any symbolic sequence analysis, the goal is to find a way of measuring the 

similarities between sequences. The simplest way to accomplish this goal is to compare two 

sequences directly and assess their differences based on each letter. Unfortunately, this 

technique is not amenable to sequences of different lengths and offsets. For example, 

consider two drivers who live next door to one another driving to a traffic signal at the end of 
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their street. One driver will have to drive for an extra few seconds before she reaches the 

other driver’s home. After this point, the drives might be exactly equivalent. If compared 

directly, the drives may look very different because of this small offset. A more informed 

approach would break the drive into smaller sequences and analyze their frequencies in the 

respective datasets (Leslie, Eskin, & Noble, 2002). In the previous example, this conversion 

makes the two drives very similar except for the frequency of the sequence that defines the 

drive between the two houses.

One underlying assumption of the example above is that the duration of each meaningful 

sequence is apparent in the data. In the OSA case, this assumption fails because specific 

patterns of data have not been associated with CPAP use or abandonment. In order to 

compensate for this, a range of sequence lengths, from one to ten letters, and their respective 

frequencies were examined for each of the four words. The result of this process is a dataset 

that contains columns for the date of the drive, the CPAP use in minutes, and one column for 

each sequence observed in the data.

Figure 3 demonstrates the process of creating this dataset for a sequence length of 3. At each 

step of the process, a sliding window is moved one letter to the right. If the sequence in the 

window is already in the dataset, then the frequency of that sequence is incremented by one. 

If the sequence has not been observed, it is added to the dataset with a frequency of one.

Additional data processing

The sequence frequency dataset contained one row for each of the 28,972 drives in the data, 

labeled with the CPAP usage from the previous night. This arrangement is somewhat 

problematic because often multiple drives occurred in one day for each driver and therefore 

the drive rows are not consistent with the daily CPAP use labels. To compensate for this 

differential, the sequence frequency data was aggregated to the day level. Thus, if the 

sequence “Speed_aaa” was observed once in three different drives on a given day, then the 

aggregate data would show “Speed_aaa” with a frequency of three.

Each row of aggregated data was labeled with a continuous measure of CPAP use during the 

previous evening specified in minutes. This continuous specification does not integrate well 

with most machine learning algorithms, which perform best with binary labels. Therefore, it 

was necessary to discretize the CPAP use measure into two levels, use and lack of use. The 

discretization consists of defining a threshold for each condition and then simply relabeling 

the data according to the thresholds. In this case, two thresholds were applied: more than 

240 minutes (4 hours) of use and 0 minutes of use, respectively. Nights when participants 

used their CPAP, but did so for less than 240 minutes were removed from the dataset. These 

limits were based on the clinical cutoff for acceptable adherence (Sawyer et al., 2011). The 

goal of the bounds and data removal was to create a clear separation between the adherence 

and non-adherence that ensured nights classified as positive CPAP use complied with 

recommended CPAP practices. After this reduction and the day aggregation, the final dataset 

contained 4,038 instances (days), corresponding to 1,838 days where participants used 

CPAP and 2,200 when they did not. The instances included data from 22,870 drives, 

approximately 80% of the original dataset. The data were further partitioned into training 

and testing datasets so that the generalizability of the algorithm could be assessed. 
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Generalizability in this context is an assessment of how the algorithm would perform on new 

data. The training and testing data were separated by driver (i.e. drivers appeared either in 

the training or testing dataset, but not both). This separation prevents the algorithm from 

making classifications based on driver habits or other factors unrelated to CPAP adherence. 

The training set contained approximately 90% of the drivers (62 drivers) and the testing set 

contained the remaining 10%. The testing set was withheld from all feature (measure) and 

algorithm selection decision-making processes.

Feature reduction

The feature creation process produces many irrelevant features. For example, an unexpected 

and rare occurrence such as a squirrel running into the road may cause a unique speed 

pattern in one of the driving days. Since the pattern is unique, it will be associated with 

CPAP use or disuse alone, and may be used to inaccurately differentiate between the two 

labels by an algorithm trained on the data. Other uninformative features are generated by 

common events such as stops at traffic signals, which will occur frequently regardless of 

CPAP adherence. These features are a hindrance to learning and cost processing time. In 

order to compensate for these two limitations sparse features, those found in less than 1% of 

days, were removed from the data and then an information-gain approach to feature 

selection was applied to the remaining data.

Information-gain-based feature selection involves ranking features by the amount they 

reduce entropy in the original data labels and then selecting the best n-features (Yang & 

Pedersen, 1997). Entropy reduction can be envisioned as a process where knowledge of 

certain information affects conclusions drawn based on other information. For example, the 

probability of a particular result in a die roll may be uncertain, but knowing that the die has 

the same number on all sides would reduce this uncertainty to 0. In contrast, knowing that 

the die is red or blue would provide little insight and thus no information gain. In this 

context, informative features represent patterns of driving associated CPAP adherence or 

CPAP non-adherence.

The 500 most informative features were retained. The final algorithm training dataset 

contained 3,757 days (2,103 days of CPAP use) each described by 500 different features 

corresponding to segments observed in speed, lateral acceleration, longitudinal acceleration, 

and combined acceleration lasting between 3 and 30 seconds. An example of the complete 

data reduction and feature generation process is shown in Figure 4.

Modeling results

This work sought to explore the feasibility of detecting CPAP lapses with driving data using 

an algorithm that provides explanatory power for the underlying phenomenon of OSA 

induced drowsy driving. These two goals are evaluated separately below.

Model training

The primary goal of this work is to create an algorithm that can identify CPAP usage from 

driving data. However, the interpretability of this algorithm is also important because it 

provides insight into OSA-induced drowsy driving. The measures here are inherently noisy 
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and may undermine algorithms that are sensitive to noise such as k-nearest neighbor and 

rule-based methods (Kotsiantis, Zaharakis, & Pintelas, 2007). The goals of interpretability 

and robustness to noise eliminate many modeling approaches including a Support Vector 

Machine with a string kernel, which would generally be associated with sequence frequency 

features (Leslie et al., 2002). One modeling approach that satisfies these requirements is 

random forests.

Random forests, developed by Breiman (2001), are a series of decision trees (Kotsiantis et 

al., 2007) trained on random bootstrapped samples of training data, and randomly selected 

feature subsets. Classification is performed by a majority vote among the predictions of the 

trees for each new instance. A key feature of random forests is that they naturally produce a 

measure of variable importance. This measure is based upon the frequency that a feature 

appears in the algorithm and its predictive power in each appearance. The variable 

importance compensates for the loss of interpretability of a multi-tree algorithm by 

demonstrating key variables associated with classification. In this study, important features 

represent driving patterns that differentiate between CPAP adherence and non-adherence.

Sensitivity analysis

One of the limitations of SAX is the amount of input parameters. Multiple SAX parameters 

could influence the results, in particular, the alphabet size. In order to understand the impact 

of this parameter and select an optimum, random forest models were fit to data reduced with 

SAX alphabet sizes between 9 and 23 letters. The model’s prediction performance was 

assessed with the area under the receiver operating characteristic curve (AUC). The AUC is 

a measure of classifier performance that is insensitive to distributions of positive and 

negative examples in the dataset. An AUC of 0.5 (the line with a slope of 1 in the receiver 

operating characteristic (ROC) plot) represents the performance of a random classifier and 

an AUC of 1.0 represents a perfect classifier (Fawcett, 2004).

Figure 5 shows the AUC at each SAX alphabet size along with a 95% bootstrapped 

confidence interval based on 2,000 replicates. While none of the differences between the 

models are statistically significant based on the bootstrapped confidence interval, there is a 

clear trend in the prediction performance that peaks at an alphabet size of 13 letters and 

drops off after 17 letters. This trend suggests that alphabet sizes between 13 and 17 more 

adequately capture driving patterns associated with untreated sleep apnea. Furthermore, the 

results suggest that 13 should be retained as the alphabet size for the final algorithm.

Prediction results

The sensitivity analysis suggests that the final algorithm should be based on a SAX alphabet 

with 13 letters. The ROC curve for this final algorithm is shown in Figure 6. The AUC for 

the algorithm is 0.74, the lower bound of the confidence interval is 0.68, and the upper 

bound of the confidence interval is 0.80. The algorithm AUC and the lower bound of the 

confidence interval are higher than 0.50, which suggests that the algorithm predicts CPAP 

adherence significantly better than random. Moreover, this result indicates that the algorithm 

is generalizable and that it is detecting meaningful associations in the data.
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Variable importance

The quality of the algorithm predictions demonstrated by the evaluation criteria suggests that 

this algorithm identifies meaningful associations between driving data and CPAP use. Thus, 

exploring the variable importance of the features used to train the algorithm can provide 

valuable insight. Figure 7 shows a plot of the variable importance for the ten most important 

features in the random forest CPAP use algorithm. The features in Figure 7 are identified by 

their associated variable followed by the appropriate sequence. Thus, the most important 

variable is the sequence, “bbbbbbbbbb” for the speed variable. Note that speed is on a scale 

from “a” to “m,” where “a” represents speeds over 90 kph and “m” represents speeds less 

than 6 kph, and that the acceleration values are on a scale of “a” to ‘d,” where “a” represents 

accelerations over 0.14 g an “d” represents 0 g of acceleration. The full table of speed and 

acceleration mappings is illustrated in Table 2.

Several interesting observations emerge from Figure 7. Many of the variables listed 

correspond to sustained periods of constant speed or acceleration. For example, 

“speed_bbbbbbbbbb” and “speed_bbbbbbbbb” correspond to 27 s and 30 s of sustained 

speed between 76 and 87 kph, or 45 and 54 mph. These speeds correspond to common speed 

limits on state highways. The prevalence of these factors may indicate that drivers with OSA 

change their route-choice based on their level of drowsiness or that drives involving highway 

travel are more likely to also include drowsiness events. This latter correlation is consistent 

with the drowsy driving literature (Brown, 1994). In contrast, the “latacc_aaa” variable 

corresponds to peak lateral acceleration. This pattern may be associated with turns or lane 

changes which may be common in more alert drivers.

Variable frequency analysis

The variables observed as most important in the prediction and classification of CPAP 

adherence warrant further analysis. One extension of the variable importance is to analyze 

the frequency of the variables across CPAP use definitions. This type of analysis enhances 

the variable importance measurement by illustrating the states where the ten most important 

features are common. Figure 8 shows the normalized frequencies of the ten most important 

features. The frequencies in these plots have been normalized relative to the number of 

drives in each condition and the overall distribution of treated and untreated days. Bars to the 

left of 0 in the chart indicate features are more common in the drivers that adhered to CPAP 

and the bars to the right of 0 show that the features are more common in drivers that did not 

adhere to CPAP. These results seem to confirm the hypothesis that drivers who adhere to 

CPAP make different route choices as compared to drivers that do not.

The data in Figure 8 can be further segregated by pre and post-CPAP adherence to provide 

further insight into the impact of CPAP use on driving pattern frequency. Figure 9 shows this 

breakdown. The figure shows the frequency of each pattern of speed and acceleration for 

drives prior to the start of CPAP (pre-CPAP), drives after the start of CPAP use where drivers 

did not use their CPAP (post-CPAP non-adhering), and drives after the start of CPAP use 

where drivers adhered (post-CPAP adhering). The figure illustrates that in most cases the 

pre-CPAP and post-CPAP non-adhering frequencies are aligned and that they differ 

significantly from the post-CPAP adhering frequencies. This result provides credence to the 
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decision to combine pre-CPAP and post-CPAP non-adhering cases in the training data for 

the model. It also confirms the previous literature findings that non-adherence to CPAP 

impairs drivers to similar levels of untreated OSA.

Analysis of healthy controls

The random forest CPAP adherence detection algorithm partitions participants based on 

CPAP adherence and non-adherence. A natural extension of this algorithm would be to 

apply it to differentiating healthy individuals from individuals with untreated sleep apnea. If 

the algorithm successfully differentiates healthy drivers, it suggests that it is sensitive to the 

differences between healthy drivers and those with untreated OSA. One method to 

accomplish this task is to apply SAX to the healthy control data and then use the model to 

predict the state of the healthy controls. The model predictions should identify the controls 

with treated OSA participants in most cases, because studies indicate that proper adherence 

to CPAP therapy reduces crash risk to nearly the level of healthy drivers (Tregear et al., 

2010). Table 3 shows the prediction results and accuracy of the predictions for the control 

participants after applying SAX and generating features following the same methods as the 

OSA data. Data from all 35 control participants were used in the predictions.

The table illustrates that the model is accurate on 81.41% of the predictions. This level of 

accuracy suggests that the algorithm effectively differentiates healthy drivers from drivers 

with OSA.

Discussion

OSA is a significant health and safety concern because it is associated with increased risks 

for cardiovascular diseases and automobile crashes. The link between untreated OSA and 

automobile crashes suggests that data collected from vehicles may be effective for 

developing algorithms identifying untreated and undiagnosed sleep apnea. The purpose of 

this study was to evaluate the effectiveness of using kinematic driving data and SAX to 

develop an algorithm for detecting CPAP treatment adherence. Such algorithms could be 

combined with unobtrusive data recording devices to help healthcare practitioners remotely 

monitor treatment adherence and effectiveness. Alternatively, the algorithms could be 

employed by professional driving companies to monitor their fleet of drivers and ensure that 

they are healthy and adhering to prescribed treatment or identify if drivers patterns of driving 

align with individuals diagnosed with OSA.

The study showed that a random forest algorithm containing speed- and acceleration-based 

SAX features (i.e. driving patterns) could detect CPAP treatment adherence significantly 

better than a random classifier. The important features of the algorithm appear to align with 

planning decisions and driving maneuvers. The success of this algorithm suggests that 

driving data is an effective tool for differentiating treatment adherence in patients with OSA. 

Subsequent analyses suggest that the algorithm may also be used to differentiate healthy 

control participants from those with untreated OSA. Furthermore, the results suggest that 

SAX is an effective approach for feature generation in driving algorithms. For example, this 

approach may be used to supplement other drowsiness detection algorithms such as the sleep 

apnea component of the Bayesian Network model in Ji, Zhu, and Lan (2004). Future 
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analyses should explore this approach on a larger dataset with a more exhaustive evaluation 

of SAX parameters and comparisons with other time-series feature generation techniques.

Despite its success, this method is limited in several respects. The size of the dataset and 

scope of recruiting criteria may limit the conclusions based on this model. In addition, the 

binary labeling and exclusion of CPAP use between 0 and 4 hours may limit the ability of 

the model to classify data in a more realistic setting. The model structure is also limited, as it 

does not capture trends in CPAP use over time. These limitations could be addressed with 

additional data and a temporal modeling framework such as a Hidden Markov Model 

(HMM). The HMM framework allows for uncertainty of CPAP prediction which might be 

used to capture degrees of CPAP usage and directly models the temporal dependencies of 

CPAP use. These extensions should be explored in future work.

Conclusion

This article considers driving data from OSA patients and demonstrates that cars can detect 

compliance with CPAP treatment adherence and differentiate healthy drivers. This work 

represents a preliminary step toward integrating driving data with other health indicators, 

which may be valuable for evaluating new devices, analyzing side effects of medications, 

and augmenting current drowsiness detection algorithms. Future work should consider 

expanding the dataset size, evaluating other driving behavioral indicators, more complex 

modeling architectures, and integration with other drowsiness detection algorithms. In 

addition to OSA, the analysis process here could be applied to evaluate other chronic 

conditions such diabetes and age-related illness that may impact driving behavior.
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Figure 1. 
Demonstration of SAX steps for a 10 s sample of data.
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Figure 2. 
Samples of speed and lateral acceleration data for a single drive.
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Figure 3. 
Demonstration of three steps of the sequence frequency dataset creation.
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Figure 4. 
Depiction of the data reduction process for a single feature (speed_llk), subject, and day. The 

top right plot shows the unprocessed 60 Hz drives on a street map, occurrences of the feature 

are highlighted in black points. The top left plot shows the 1 Hz reduced speed data for the 

drives occurring over the day with the feature occurrences highlighted by black points. The 

bottom left table shows the SAX conversion of the speed data for each drive with 

occurrences of the feature highlighted. The bottom right table shows the row in the final 

dataset for the date and the total count of occurrences of the speed_llk feature, 53.
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Figure 5. 
Area under the curve and 95% bootstrapped confidence intervals for the SAX alphabet sizes 

evaluated.
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Figure 6. 
ROC curve for the random forest model trained on SAX pattern frequency data. The grey 

band represents a bootstrapped 95% confidence interval based on 2,000 replicates. The label 

shows the AUC and the bounds of the bootstrapped confidence interval.
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Figure 7. 
Variable importance pin plot for the ten most important variables in the random forest CPAP 

prediction algorithm. Note that the raw variable importance has been scaled from 0 to 100 

relative to the most important variable.
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Figure 8. 
Bar chart of normalized frequencies for the most important speed variables in the training 

and test data. Negative values indicate the variables are more common than expected in 

treated patients, positive values indicate the variable is more common in untreated patients.
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Figure 9. 
Normalized frequency of speed and acceleration patterns broken down bypre-CPAP, post-

CPAP with adherence, post-CPAP with non-adherence. Data are normalized relative to the 

number of drives in each area.

McDonald et al. Page 24

J Intell Transp Syst. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McDonald et al. Page 25

Table 1

Demographic and anthropometric data for the naturalistic driving study participants.

Variable OSA participants
Control

participants

Number of participants 69 35

Age (years) 46 (7.7) 45 (8.1)

Gender 47 males, 22 Females 17 Males, 18 Females

Apnea–hypopnea index pre-GPAP (AHI) 33.55 (34.23)

Body mass index (BMI) 37.28 (9.01)
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Table 2

Speed and acceleration bounds for each SAX letter. Speed is in kph and acceleration is in g.

Letter Speed bounds (kph) Acceleration bounds (g)

a x > 87.64 x > 0.14

b 87.64 < x < 76.07 0.14 < x < 0.10

c 76.07 < x < 67.99 0.10 < x < 0.06

d 67.99 < x < 61.32 0.06 < x < 0.00

e 61.32 < x < 55.36

f 55.36 < x < 49.75

g 49.75 < x < 44.25

h 44.25 < x < 38.64

i 38.64 < x < 32.68

j 32.68 < x < 26.01

k 26.01 < x < 17.93

l 17.93 < x < 6.36

m 6.36 < x < 0.00
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Table 3

Prediction results for the random forest CPAP adherence detection algorithm with the data from the healthy 

control participants.

Total predictions Correct predictions Accuracy

2,292 1,866 81.41%
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